
The CVS Algorithm for View Synchronization in
Evolvable Large-Scale Information Systems?

Anisoara Nica1, Amy J. Lee1 and Elke A. Rundensteiner2

1 Department of EECS, University of Michigan
Ann Arbor, MI 48109-2122

2 Department of Computer Science
Worcester Polytechnic Institute, Worcester, MA 01609-2280

Abstract. Current view technology supports only static views in the
sense that views become unde�ned and hence obsolete as soon as the un-
derlying information sources (ISs) undergo capability changes. We pro-
pose to address this new view evolution problem - which we call view
synchronization - by a novel solution approach that allows a�ected view
de�nitions to be dynamically evolved to keep them in synch with evolving
ISs. We present in this paper a general strategy for the view synchroniza-
tion process that guided by constraints imposed by the view evolution
preferences embedded in the view de�nition achieves view preservation
(i.e., view rede�nition). We present the formal correctness, the CVS algo-
rithm, as well as numerous examples to demonstrate the main concepts.

1 Introduction

Advanced applications such as web-based information services, digital libraries,
and data mining typically operate in an information space populated with a
large number of dynamic information sources (ISs) such as the WWW [14]. In
order to provide easy access to information in such environments, relevant data
is often retrieved from several sources, integrated as necessary, and then mate-
rialized at the user site as what's called a view (or data warehouse). The ISs in
such environments are however dynamic, updating not only their content but
also their capabilities, and joining or leaving the environment frequently.
Views in such environments thus introduce new challenges to the database com-
munity [14]. In our prior work [12, 4], we have identi�ed view evolution caused
by capability changes of one or several of the underlying ISs as a critical new
problem faced by these applications. Current view technology is insu�cient for
supporting
exible view de�nitions. That is views are static, meaning views are
assumed to be speci�ed on top of a �xed environment and once the underlying
ISs change their capabilities, the views de�ned upon them become unde�ned.
In our prior work, we have proposed a novel approach to solve this view in-

exibility problem [12, 5, 8], called EVE (Evolveable View Environment). EVE

? This work was supported in part by the NSF NYI grant #IRI 94-57609. We would
also like to thank our industrial sponsors, in particular IBM for the IBM Partnership
Award and our collaborators at IBM Toronto for their support.

\preserves as much as possible" of the view instead of completely disabling it
with each IS change. While the evolution of views is assumed to be implicitly
triggered by capability changes of (autonomous) ISs in our work, previous work
[3, 7] assumed that view rede�nition was explicitly requested by the view devel-
oper at the view site, while the ISs remained unchanged. They [3, 7] thus focused
on the maintenance of the materialized views after such view rede�nition and
not on the modi�cation of the view de�nitions themselves as done in our work.
One key component of our EVE framework is E-SQL (SQL extended with view
evolution preferences) that allows the view de�ner to control the view evolution
process by indicating the criticality and dispensability of the di�erent compo-
nents of the view de�nition. A second key component of our EVE framework is
a language called MISD for capturing descriptions of the content, capabilities
as well as semantics interrelationships of all ISs in the system. Descriptions of
ISs expressed in this language are maintained in a meta-knowledge base (MKB),
thus making a wide range of resources available to the view synchronizer during
the view evolution process.
Given a view de�ned in E-SQL and a MKB, we present in this paper a formal
foundation for the concept of legal rewritings of a view a�ected by capability
changes. This includes properties characterizing all MKB constraints must be
obeyed, as well as that maximal preservation of the E-SQL evolution prefer-
ences must be achieved. Based on this formal foundation, we then propose a
general strategy for solving the view synchronization problem. Our algorithm,
called CVS (Complex View Synchronization), �nds valid replacements for af-
fected (deleted) components of the existing view de�nitions based on the seman-
tic constraints captured in the MKB. For this, rather than just providing simple
so-called `one-step-away' view rewritings [4, 12], our solution succeeds in deter-
mining possibly complex view rewrites through multiple join constraints given
in the MKB. To demonstrate our approach, we present algorithms for handling
the most di�cult capability change operator, namely, the delete-relation opera-
tor, in depth in this paper. The proposed strategy is shown to �nd a new valid
de�nition of a view in many cases where current view technology (as well as our
initial simple solution [4, 12]) would have simply disabled the view.
The remainder of the paper is structured as follows. In Sections 2 and 3 we
present the IS description language and E-SQL, respectively. Section 4 describes
the formal basis for correct view synchronization, while Section 5 introduces our
CVS algorithm for synchronizing views based on this formal model. Sections 6
and 7 conclude the paper.

2 MISD: Model for Information Source Description

While individual ISs could be based on any data model, the schema exported
by an IS is described by a set of relations IS:R1, IS:R2; : : :, IS:Rn. A relation
description contains three types of information specifying its data structure and
content, its query capabilities as well as its relationships with exported relations
from other ISs that semantically express the operations allowed between ISs.

The descriptions of the ISs are stored in the meta knowledge base (MKB) and
are used in the process of view evolution [5].

Name Syntax

Type Integrity Constraint T CR:Ai = (R(Ai) � Typei(Ai)
Order Integrity Constraint OCR = (R(A1; : : : ;An) � C(Ai1 ; : : : ;Aik))
Join Constraint JCR1;R2 = (C1 AND � � � AND Cl)

Partial/Complete Constraint PCR1;R2 = (� �A1(�C(�B1)R1) � � �A2 (�C(�B2)R2))
� 2 f�;�;�;�;�g

Fig. 1. Semantic Constraints for IS Descriptions.

Example 1. We will use the following example in the rest of the paper. Consider a
large travel agency which has a headquarter in Detroit, USA, and many branches
all over the world. It helps its customers to arrange
ights, car rentals, hotel
reservations, tours, and purchasing insurances. A part of relevant IS descriptions
is summarized in Fig. 2 in MISD format described below.

We introduce below MISD constraints that are used in the remainder of this
paper. All MISD constraints are summarized in Fig. 1 [4, 8].
A relation R is described by specifying its information source and its set of at-
tributes as IS:R(A1; : : : ; An). Each attribute Ai is given a name and a data type
to specify its domain of values. This information is speci�ed by using a type in-
tegrity constraint of of the format R(A1; : : : ; An) � Type1(A1); : : : ; T ypen(An).
It says that an attribute Ai is of type Typei, for i = 1; : : : ; n. If two attributes
are exported with the same name, they are assumed to have the same type.
A join constraint is used to specify a meaningful way to combine information
from two ISs. The join constraint is a conjunction of primitive clauses (not neces-
sarily equijoin) of the form JCR1;R2 = (C1 AND � � � AND Cl) where C1; : : : ; Cl are
primitive clauses over the the attributes of R1 and R2. The join constraint gives
a default join condition that could be used to join R1 and R2, specifying that the
join relation J = R1 1(C1��� AND ���Cl) R2 is a meaningful way of combining the
two relations. The MISD attribute function-of constraint relates two attributes
by de�ning a function to transform one of them into another. This constraint is
speci�ed by FR1:A;R2:B = (R1:A = f(R2:B)) where f is a function. FR1:A;R2:B

speci�es that if there exists a meaningful way of combining the two relations R1

and R2 (e.g., using join constraints) then for any tuple t in that join relation we
have t[R1:A] = f(t[R2:B]).

Example 2. For our running example, some join constraints and function-of con-
straints are given in Fig. 2 (underlined names are the relations for which the join
constraints are de�ned).

IS # Descriptions

IS 1 Customer(Name, Addr, Phone, Age)

IS 2 Tour(TourID, TourName, Type, NoDays)

IS 3 Participant(Participant, TourID, StartDate, Loc)

IS 4 FlightRes(PName, Airline, FlightNo, Source, Dest, Date)

IS 5 Accident�Ins(Holder, Type, Amount, Birthday)

IS 6 Hotels(City, Address, PhoneNumber)

IS 7 RentACar(Company, City, PhoneNumber, Location)

JC Join Constraint

JC1 Customer.Name = FlightRes.PName

JC2 Customer.Name = Accident�Ins.Holder AND Customer.Age > 1
JC3 Customer.Name = Participant.Participant

JC4 Participant.TourID = Tour.TourID

JC5 Hotels.Address = RentACar.Location

JC6 FlightRes.PName = Accident�Ins.Holder

F Function-of Constraints

F1 Customer.Name = FlightRes.PName

F2 Customer.Name = Accident�Ins.Holder

F3 Customer.Age = (today - Accident�Ins.Birthday)/ 365
F4 Customer.Name = Participant.Participant

F5 Participant.TourID = Tour.TourID

F6 Hotels.Address = RentACar.Location

F7 Hotels.City = RentACar.City

Fig. 2. Content Descriptions, Join and Function-of Constraints for Ex. 1

3 Extending SQL for Flexible View Synchronization

In this section, we present E-SQL, which is an extension of SELECT-FROM-WHERE SQL
augmented with speci�cations for how the view de�nition may be synchronized
under IS capability changes. Evolution preferences, expressed as evolution pa-
rameters, allow the user to specify criteria based on which the view will be
transparently evolved by the system under capability changes at the ISs. As
indicated in Fig. 3, each component of the view de�nition (i.e., attribute, rela-
tion or condition) has attached two evolution parameters. One, the dispensable
parameter (notation XD, where X could be A, R or C) speci�es if the compo-
nent could be dropped (true) or must be present in any evolved view de�nition
(false). Two, the replaceable parameter (notation XR) speci�es if the compo-
nent could be replaced in the process of view evolution (true) or must be left
unchanged as de�ned in the initial view (false). In Fig. 3, each type of evolu-
tion parameter used by E-SQL is represented by a row in that table, column
one gives the parameter name and its abbreviation while column two lists the
possible values each parameter can take (default values are underlined). The
example below demonstrates the integrated usage of these evolution parameters
(a detailed description of E-SQL can be found in [5]).

Evolution Parameter Semantics

Attribute- dispensable (AD) true: the attribute is dispensable
false: the attribute is indispensable

replaceable (AR) true: the attribute is replaceable
false: the attribute is nonreplaceable

Condition- dispensable (CD) true: the condition is dispensable
false: the condition is indispensable

replaceable (CR) true: the condition is replaceable
false: the condition is nonreplaceable

Relation- dispensable (RD) true: the relation is dispensable
false: the relation is indispensable

replaceable (RR) true: the relation is replaceable
false: the relation is nonreplaceable

View- extent (VE) �: the new extent is equal to the old extent
�: the new extent is a superset of the old extent
�: the new extent is a subset of the old extent
�: the new extent could be anything

Fig. 3. View Evolution Parameters of E-SQL Language.

Example 3. Let's assume a web-based travel agency TRAV has a promotion for
its customers who travel to Asia by air. TRAV will either going to send pro-
motion letters to these customers or call them by phone. Therefore, it needs to
�nd the customers' names, addresses, and phone numbers. Since an SQL view
de�nition is static, we formulate this view in Eq. (1) using E-SQL, setting the
view evolution parameters so that the view Asia-Customer may survive in a
changing environment. Assume the company is willing to put o� the phone mar-
keting strategy, if the customer's phone number cannot be obtained, e.g., the
information provider of the Customer relation decides to delete Phone. This
preference is stated in the SELECT clause of Eq. (1) by the attribute-dispensable
parameter AD = true for the attribute Phone. In addition, if the travel agent
is willing to accept the customer information from other branches, we set the
relation-replaceable parameter RR in the FROM clause to true for the relation
Customer. Further, let's assume TRAV is willing to o�er its promotion to all
the customers who travel by air, if identifying who travels to Asia is impossible
(i.e., the second WHERE condition cannot be veri�ed). This preference can be
explicitly speci�ed by associating the condition-dispensable parameter CC = true
with that condition in the WHERE clause.

CREATE VIEW Asia-Customer (VE =�)AS
SELECT C.Name (AR = true), C.Addr (AR = true),

C.Phone (AD = true, AR = false)
FROM Customer C (RR = true);FlightRes F
WHERE (C.Name = F.PName)AND (F.Dest = 'Asia') (CD = true)

(1)

4 Formal Foundation for View Synchronization

We propose in [8] a three-step strategy for the view synchronization:
Step 1. Given a capability change ch, EVE system will �rst evolve the meta
knowledge base MKB into MKB' by detecting and modifying the a�ected MISD
descriptions found in the MKB.
Step 2. EVE detects all views a�ected either directly or indirectly (due to MKB
evolution) by the capability change ch.
Step 3. Lastly, for a�ected yet potentially curable views we apply some view syn-
chronization algorithm to �nd legal rewritings guided by constraints imposed by
E-SQL evolution preferences from the view de�nition.
Due to limited space, the rest of the paper concentrates on the most di�cult step
of the view synchronization process, namely, the third one. In the remainder of
this section, we introduce and formally de�ne the concept of a legal rewriting for
an a�ected view. In Section 5, we present an algorithm for view synchronization,
referred to as Complex View Synchronization (or short, CVS) algorithm.
We assume SELECT-FROM-WHEREE-SQL views de�ned such that all distinguished
attributes (i.e., the attributes used in the WHERE clause in an indispensable condi-
tion) are among the preserved attributes (i.e., the attributes in the SELECT clause).
Plus, we assume that a relation appears at most once in the FROM clause of a
view.

De�nition1. Let ch be a capability change, and MKB and MKB' be the state
of the meta knowledge base containing the IS descriptions right before and right
after the change ch, respectively. We say that a view V 0 is a legal rewriting of
the view V under capability change ch if the following properties hold:
P1. The view V 0 is no longer a�ected by the change ch.
P2. The view V 0 can be evaluated in the new state of the information space
(i.e., the view V 0 contains only elements de�ned in MKB').
P3. The view extent parameter VEV of V (Fig. 3) is satis�ed by the view
V 0. I.e., if �BV and �BV 0 are the attributes of interfaces of V and V 0, respectively,
then

� �BV \ �BV 0
(V 0) VEV � �BV \ �BV 0

(V) (2)

is satis�ed for any state of the underlying information sources.
P4. All evolution parameters attached to the view elements such as attributes,
relations or conditions of the view V are satis�ed by the view V 0. For example,
any legal rewriting V 0 of the view V must have in the interface all indispensable
attributes (i.e., the ones having AD = false in V) 3.

Example 4. Let an E-SQL view be de�ned as in Eq. (3) and the change ch is
\delete attribute Customer.Addr".

3 See [8] for a discussion of how evolution parameters are set for new components

CREATE VIEWAsia-Customer (AName, AAddr, APh) (VE =�)AS
SELECT C.Name, C.Addr(AD = false;AR = true);C.Phone
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

(3)

CREATE VIEWAsia-Customer' (AName, AAddr, APh) (VE =�)AS
SELECT C.Name, P.PAddr (AD = false;AR = true);C.Phone

FROM Customer C, FlightRes F, Person P
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

AND (P.Name = C.Name)

(4)

We have to �nd a replacement for this attribute that could be obtained using
constraints de�ned in MKB. Let's assume we have de�ned the following con-
straints in MKB:
(i) The relation Person is de�ned by Person(Name, SSN, PAddr);
(ii) JCCustomer, Person = (Customer.Name = Person.Name);
(iii) FCustomer.Addr, Person.PAddr = (Customer.Addr = Person.PAddr);
(iv) PCCustomer, Person = (�Name, PAddr(Person) � �Name, Addr(Customer)).
It is easily veri�able that the new view de�nition Asia-Customer' de�ned in
Eq. (4) is a legal rewriting (new elements are underlined) conform to Def. 1.
We use JCCustomer, Person (de�ned in (ii)) to obtain the address from the
relation Person by using in the WHERE clause the join relation (Customer
1JCCustomer, Person

Person), and the function-of constraint de�ned in (iii).

We can prove that the the extent parameter \VE =�" is satis�ed given the PC
constraint from (iv). I.e., for any state of the relations Customer, Person and
FlightRes, Asia-Customer' � Asia-Customer.

5 View Synchronization: The CVS Algorithm

We now describe our solution for the third step of the view synchronization
process given in Section 4, namely, the actual rewriting of an a�ected view de�-
nition. Four of the six capability change operations we consider can be handled in
a straightforward manner. Namely, add-relation, add-attribute, rename-relation
and rename-attribute capability changes do not cause any changes to existing
(and hence valid) views.
However, the two remaining capability change operators, i.e., delete-attribute and
delete-relation, cause existing views to become invalid and hence need to be ad-
dressed by the view synchronization algorithm. Below, we present the algorithm
for handling the most di�cult operator, namely, the delete-relation operator, in
depth. The algorithm for the delete-attribute operator is a simpli�ed version of
it and is omitted in this paper due to space limitations.
We start by giving de�nitions of concepts needed to characterize valid replace-
ments of view components (the assumptions made in Section 4 about view de�-
nitions are still valid here).

Example 5. To illustrate the steps of our approach for rewriting, we will use the
view de�ned by Eq. (5) and the change operator \delete relation Customer"
de�ned in the context of our Ex. 1. The view Customer-Passengers-Asia de-
�nes (passenger; participant) pairs of passengers
ying to Asia and participants
to a tour in Asia that
y and start the tour at the same day, respectively. Such
a view could be used to see what participants of a tour are
ying to \Asia" on
the same day as the tour starts.

CREATE VIEWCustomer-Passengers-Asia (VEV) AS
SELECT C.Name (false; true), C.Age (true; true),

P.Participant (true; true), P.TourID (true; true)
FROM Customer C (true; true), FlightRes F (true; true),

Participant P (true; true)
WHERE (C.Name=F.PName)(false; true)AND(F.Dest='Asia')

(P.StartDate = F.Date) AND (P.Loc = 'Asia')

(5)

Generally, a database schema can be represented as a hypergraph whose nodes
are the attributes and whose hyperedges are the relations.We extent this repre-
sentation for the MISD descriptions (relations, attributes, constraints) described
in MKB by de�ning the hypergraph
H(MKB) = f (A(MKB)) ; (J (MKB);S(MKB);F(MKB)) g
whose components correspond to the set of attributes as hypernodes, and the
set of join constraints, relations, and function-of constraints as hyperedges, re-
spectively.

Example 6. Fig. 4 depicts the hypergraph for our travel agency example with:
A(MKB) = f Name, Addr, Phone, Age, Tour.TourID, TourName,
Tour.Type, NoDays, Participant, TourID, StartDate, Loc, PName,
Airline, FlightNo, Source, Dest, Data, Holder, Type, Amount, Birth-
day, Hotels.City, Hotels.Address,Hotels.PhoneNumber, Company, City,
PhoneNumber, Location g (see Fig. 2);
J (MKB) = f JC1, JC2, JC3, JC4, JC5, JC6 g (see Fig. 2);
S(MKB) = f Customer, Tour, Participant, FlightRes, Accident-Ins,
Hotels, RentACar g (see Fig. 2);
F(MKB) = f F1, F2, F3, F4, F5, F6, F7 g (see Fig. 2).

We say that a hypergraph is disconnected if one can partition its hyperedges
into nonempty sets such that no hypernode appears in hyperedges of di�erent
sets. If such partition doesn't exist, then we say that the hypergraph is con-
nected. Using these de�nitions, one can de�ne connected sub-hypergraphs of a
disconnected hypergraph as being its maximal connected components. For our
problem, we are interested in �nding the connected sub-hypergraph that contains
a given relation R denoted by HR(MKB). Note that because JC-nodes are the
only shared nodes between relation-edges in H(MKB) and because HR(MKB)
is a connected sub-hypergraph, we have: 8 S1, S2 2 SR(MKB), there exists
a sequence of join constraints JCS1;R1 ; : : : ;JCRn;S2 de�ned in MKB, with
R1; : : : ; Rn 2 SR(MKB) such that the following join relation can be de�ned
S1 1JCS1;R1

R1 � � � 1 � � � 1JCRn;S2
S2.

Example 7. Fig. 4 depicts two connected sub-hypergraphs for the hypergraph
H(MKB) for Ex. 1. E.g., the connected sub-hypergraph HCustomer(MKB) is
the connected sub-hypergraph drawn on the top left of the Fig. 4.

Given a view de�nition referring to a relation R and an MKB, we want to
determine which parts of the view need to be replaced when R is dropped. To
�nd possible replacements, we look in the MKB for join constraints related to
the relation R that are also used in the view de�nition. That is, the view could
be seen as a join between a join relation de�ned using only join constraints from
MKB and some other relations (the rest of the view de�nition). As we will show
later, if R is to be dropped, our synchronization algorithm will try to substitute
the a�ected part of the view de�nition with another join relation de�ned using
join constraints from MKB. Def. 2 formally de�nes this relationship between a
view de�nition and the (default) join constraints in MKB.

Relation−edges

F−edges

JC−nodes

Attribute−nodes

Symbol Hypergraph
 Element

 MKB
 Element

join constraint

attribute

relation

Relation−edges

function−of constraint

Tour

JC3

JC4

Hotels RentACar

JC5

Phone
Age

PName

Source

Dest

Date
Participant

TourID
StartingDate

JC2

Holder
Type

Amount
BirthDay

Company
City

PhoneNumber
Location

Hotels.City

Hotels.Address
Hotels.PhoneNumber

Address

JC1

JC6

Ac
ci

de
nt

−I
ns

Participant

Tour.Name

Tour.Type
NoDays

Tour.TourID

Name

Airline

FlightNo

Fl
ig

ht
R

es

F1

F2

F3

F4

F5

F6

F7

Customer

Deleted edges

in Min(H’_Customer)

Indispensable Attributes for Customer

Dispensable Attributes for Customer

Fig. 4. The Hypergraphs H(MKB) and H0(MKB') for Ex. 1.

De�nition2. R-mapping of a view V into sub-hypergraph HR(MKB).
We de�ne the R-mapping of V into HR(MKB) by R-mapping(V , HR(MKB))
= (Max(VR);Min(HR)) to be a pair of two subexpressions one constructed from
the view V and the second one constructed from the connected sub-hypergraph
HR(MKB) such that the following must hold:
(I) The expression Max(VR) is of the form:

Max(VR) = Rv1 1CRv1 ;Rv2
� � � 1CRvl�1 ;Rvl Rvl (6)

such that relations fRv1 ; : : : ; Rvlg(3 R) are from the FROM clause of V , and
fCRv1 ;Rv2

; : : : ; CRvl�1
;Rvl

g are conjunctions of primitive clauses from the WHERE

clause of V . A conjunction CRvs�1
;Rvs

contains all the primitive clauses that use
only attributes of relations Rvs�1 and Rvs.
(II) The expression Min(HR) is of the form:

Min(HR) = Rv1 1JCRv1 ;Rv2
� � � � � � 1JCRvl�1

;Rvl
Rvl (7)

with fRv1; : : : ; Rvlg � SR(MKB), fJCRv1 ;Rv2
; : : : ;JCRvl�1

;Rvl
g � JR(MKB).

(III) The relation Max(VR) is contained in the relation Min(HR):

Max(VR) �Min(HR) (8)

(IV) Max(VR) is maximalwith the properties (I) and (III). I.e., there is no other
relations from the FROM clause and primitive clauses from the WHERE clause of the
view V that could be added to it and still be able to �nd a subexpression in
HR(MKB) such that (I) and (III) are satis�ed.
(V) Min(HR) is minimal with the properties (II) and (III). I.e., we cannot drop
a relation or a join condition from it and still have (II) and (III) satis�ed.

Def. 2 implies that there exists a conjunction of primitive clauses CMax=Min such
that

Max(VR) = �CMax=Min
(Min(HR)) (9)

The goal of Def. 2 is to �nd the expressions Max(VR) and Min(HR) such that
the view V could be written as:

V = � �BV
(
�
�CMax=Min

(Min(HR))
�

| {z }
Max(VR)

1CRest Rest) (10)

where �BV is the view interface, CRest and Rest are the rest of the primitive
clauses and relations in V , respectively. Rest is a join relation containing rela-
tions from the FROM clause that don't appear in Min(HR).

Example 8. In Fig. 4, the minimal subexpression Min(HCustomer) of
HCustomer(MKB) is marked by bold lines and corresponds to:

Min(HCustomer) = FlightRes1FlightRes.PName=Customer.Name| {z }
JC1

Customer

(11)
The maximal subexpression Max(Customer-Passenger-AsiaCustomer) of the
view de�ned by Eq. (5) and the relation Customer is:

Max(Customer-Passenger-AsiaCustomer) = (12)

= FlightRes1�(FlightRes.PName= Customer.Name)
AND (FlightRes.Dest='Asia')

�
| {z }

CFlightRes, Customer

Customer

= �FlightRes.Dest='Asia'| {z }
CMax=Min

(Min(HR))

The relation de�ned in Eq. (12) is contained in the relation de�ned by Eq. (11)
and they are maximal and minimal, respectively, with this property (conform
with Def. 2).

To �nd two expressions Max(VR) and Min(HR) with the properties from Def..
2 it is su�cient to have each join constraint JCS;S0 of expression Min(HR) (Eq.
(7)) implied by the corresponding join condition CS;S0 of expression Max(VR)
(Eq. (6)), where S; S0 2 fRv1; : : : ; Rvlg. The algorithm for computing the R-
mapping is straightforward and it is omitted here (see [8]).
Intuitively, we now have found the maximal part of the view de�nition that
\relates" to our MKB (Def. 2). So now we can ask how this part (i.e.,Max(VR))
is a�ected by the relation R being dropped. And, further, we need to determine
how we can �nd new join relations from the MKB that can replace a�ected view
components in the view de�nition (i.e.,Max(VR)). The next de�nition identi�es
what are the most useful candidates for such replacement constructed using join
constraints de�ned in MKB. At this point we don't worry about the relationship
between the R-mapping and the potential candidates (e.g., subset, equivalent or
superset). Our goal is to �nd all possible replacements for the relationMax(VR)
(Eq. (10)). Only after that, when given the view-extent parameter VEV (Section
3) and the PC constraints from MKB (Section 2), we want to choose the ones
that satisfy the property P3 from Def. 1.

De�nition3. R-replacement(V;HR(MKB)). For a view V and the MKB,
we compute a set of expressions constructed from HR(MKB) that don't con-
tain R and could be used to meaningfully replace the maximal subexpression
Max(VR) in V . Let MKB' be the meta knowledge base evolved from MKB when
relation R is dropped; and H0

R(MKB0) be the sub-hypergraph of HR(MKB)
obtained by erasing relation-edge R. We de�ne R-replacement(V; HR(MKB))
= fMax(V1;R); : : : ;Max(Vl;R)g to be a set of subexpressions constructed from
H0

R(MKB0) and Max(VR) such that Max(Vj;R) has the following properties:

(I)Max(Vj;R) = �C0Max=Min

�
R1 1JCR1;R2

� � � 1JCRk�1;Rk
Rk

�
with R1; : : : ; Rk

and JCR1;R2 ; : : : ;JCRk�1;Rk in H0
R(MKB0).

(II) R doesn't appear in Max(Vj;R). I.e., R is not among R1; : : : ; Rk.
(III) The expression Min(HR) without R, Min(H0

R), could be mapped into
Max(Vj;R). That is, ifMin(HR) is given by the Eq. (7) then: fRv1; : : : ; RvlgnfRg
� fR1; : : : ; Rkg and fJCRv1 ;Rv2

; : : :JCRvl�1
;Rvl

g nfJCS;S0 j S = R or S0 = Rg

� fJCR1;R2;:::JCRk�1
;Rkg. I.e., the expression Max(Vj;R) must contain all the

elements of the expression Min(HR) una�ected by dropping relation R.
(IV) For any attribute A 2 R that is indispensable and replaceable in the view
de�nition, the expression Max(Vj;R) contains a relation S 2 fR1; : : : ; Rkg such
that there exists a function-of constraint FR:A;S:B = (R:A = f(S:B)) in MKB.
We call the relation S a cover for the attribute A and the attribute f(S:B) a
replacement for the attribute A in Max(Vj;R).
(V) The conjunction C0Max=Min is obtained from conjunction CMax=Min by sub-
stituting the attributes of R with their replacements (see (IV)) if any, or drop-
ping primitive clauses that are dispensable and for which no replacement was

found for their attributes.

Erasing R from the connected sub-hypergraph HR(MKB) could lead to a dis-
connected sub-hypergraph H0

R(MKB0). If H0
R(MKB0) is disconnected and

the relations left in Min(H0
R) are in disconnected components then the set

R-replacement(V;HR(MKB)) is empty. If relations left in Min(H0
R) are in

a connected component of H0
R(MKB0), the construction algorithm of the set

fMax(V1;R); : : : ;Max(Vk;R)g is following directly from Def. 3 (see [8]).

Example 9. In Fig. 4, the expression Min(H0
Customer) de�ned by Eq. (11) is

marked with bold lines: Min(H0
Customer) = (FlightRes). We give now an ex-

ample of R-replacements for the view de�ned by Eq. (5) and R = Customer.
H0(MKB0) is depicted in Fig. 4.
Step 1. In our example, using the hypergraph depicted in Fig. 4, we �nd:
Cover(Customer.Name) =
f (Accident�Ins, F2 = (Customer.Name = Accident�Ins.Holder)),
(Participant, F4 = (Customer.Name = Participant.Participant)),
(FlightRes, F1 = (Customer.Name = FlightRes.PName)) g.
Step 2. From Def. 3 (V), C0Max=Min = (FlightRes.Dest = 'Asia'). Let's now
construct the candidate expressionsMax(Customer-Passenger-Asiaj;Customer)
and de�ne what is the replacement for the attribute Customer.Name.
(1) For the cover (Accident�Ins, (Customer.Name=Accident�Ins.Holder))
the expression below has all the properties from Def. 3. Similarly, we can con-
struct Max(Customer-Passenger-Asia2;Customer) from the third cover.

Max(Customer-Passenger-Asia1;Customer) = �(FlightRes.Dest = 'Asia')| {z }
C0Max=Min0

B@ FlightRes| {z }
Min(H0

Customer)

1(FlightRes.PName = Accident�Ins.Holder)| {z }
JC6

Accident�Ins| {z }
Cover(Customer.Name)

1
CA

(2) The cover (Participant,(Customer.Name = Participant.Participant))
cannot be used as replacement as there is no connected path inH0(MKB0) (Fig.
4) that contains both the cover and the relation FlightRes.

Now we are ready to give the Complex View Synchronization (CVS) al-
gorithm that has as input a view de�nition V , the MKB and a change \delete
relation R", and returns all legal rewritings (see Def. 1) of the view V .
CVS(V , ch =delete�relation R, MKB, MKB')
INPUT: a SELECT-FROM-WHEREE-SQL view de�nition V ;
change ch = delete-relation R;
MKB represented by the hypergraph H(MKB);
evolved MKB' represented by the hypergraph H0(MKB0).
OUTPUT: A set of legal rewritings V1; : : :Vl of V .
Step 1. Construct the sub-hypergraph HR(MKB).
Step 2. Compute R-mapping(V , HR(MKB)) = (Max(VR);Min(HR)) (Def. 2).

Step 3. ComputeR-replacement(V ,H0
R(MKB0)) =fMax(V1;R); : : :,Max(Vk;R)g

as de�ned in Def. 3. If R-replacement(V , H0
R(MKB0) = ; then the algorithm

fails to �nd an evolved view de�nition for the view V .
Step 4. A synchronized view de�nition V 0 is found by replacing Max(VR) with
Max(Vj;R) in Eq. (10); and then by substituting the attributes of R in V with
the corresponding replacements found in Max(Vj;R). Because some more con-
ditions are added in the WHERE clause (corresponding to the join conditions in
Max(Vj;R)), we have to check if there are no inconsistencies in the WHERE clause.
Step 5. Set the E-SQL evolution parameters for all V 0 obtained at Step 4.
Step 6. All the rewritings obtained by Step 4 have properties P1, P2, and P4
from Def. 1, Section 4. At this step, we have to check for which rewriting V 0

obtained in Step 4 the extent parameter VEV of the view V is satis�ed (prop-
erty P3 from Def. 1) This problem is similar to the problem of answering queries
using views which was extensively studied in the database community [6, 13].
However, our rewritings are not necessarily equivalent to the initial view, the re-
lationship among them being imposed by the view-extent evolution parameter.
We use the partial/complete information constraints de�ned in MKB' to com-
pare the extents of the initial view V and the evolved view V 0. This development
is beyond the scope of current paper and it is part of our future work.

Example 10. For our view Customer-Passenger-Asia de�ned by Eq. (5), we
now show how to apply Steps 4 and 5 from the algorithm CVS and �nd replace-
ment under the change \delete relation Customer".
Max(Customer-Passenger-AsiaCustomer) =
FlightRes1�(FlightRes.PName = Customer.Name) AND

(FlightRes.Dest = 'Asia')

� Customer

(Ex. 8, Eq. (12)) could be replaced, for example, with the following expres-
sion found at Step 3 of CVS (the second solution is similarly obtained from
Max(Customer-Passenger-Asia2;Customer)):
(1) Max(Customer-Passenger-Asia1;Customer) =
�(FlightRes.Dest = 'Asia')(FlightRes 1(FlightRes.PName = Accident�Ins.Holder)

Accident�Ins).

CREATE VIEWCustomer-Passengers-Asia1 AS

SELECT A.Holder (false; true), f(A.Birthday) (true; true),

P.Participant (true; true), P.TourID (true; true)
FROM Accident�Ins A(true; true), FlightRes F (true; true),

Participant P (true; true)
WHERE (F.PName=A.Holder)(false; true)AND(F.Dest='Asia')

(P.StartDate = F.Date) AND (P.Loc = 'Asia')

(13)

For this particular case, we see that the attribute Customer.Age is also cov-
ered by the relation Accident�Inswith the function-of constraint F3 = (Cus-
tomer.Age = (today � Accident�Ins.Birthday)=365). In this case, we can
replace the attribute Customer.Age in the view, too. A new rewriting of Eq.
(5) using this substitution is given in Eq. (13).

6 Related Work

While no one has addressed the view synchronization problem itself before, there
are several issues we address for EVE that relate to work done before in other
contexts as outlined below.
Gupta et al. [3] and Mohania et al. [7] address the problem of materialized view
maintenance after a view rede�nition explicitly initiated by the user takes place.
They study under which conditions this view maintenance can take place with-
out requiring access to base relations, i.e., the self-maintainability issue.
The EVE system can be seen as an information integration system using view
technology to gather and customize data across heterogeneous ISs [4, 12, 5, 8].
On this venue, related work that addresses the problem of information inte-
gration are among others the SIMS [1] and SoftBot [2] projects. In the SIMS
project, the user interaction with the system is via queries posed against a uni�ed
schema. The SoftBot project has a very di�erent approach to query processing
as the system discovers the \link" among data sources. None of the two projects
addresses the particular problem of evolution under IS changes.
Much research has been done on query reformulation using materialized views.
For example, Levy et. al. [6, 13] consider the problem of replacing a query with
a new query expression containing view de�nitions such that the new query is
equivalent to the old one. To the best of our knowledge, there is no work done
that has as purpose query reformulation without equivalence (e.g., the new query
de�nition is a subset of the original view). We, on the other hand, have extended
the notion of query reformulation by using E-SQL to specify constraints on query
reformulation. Thus, when in compliance to those constraints, we allow the view
rede�nitions to be a subset or a superset of the original view.

7 Conclusion

To our knowledge, we are the �rst to study the problem of view synchroniza-
tion caused by capability changes of participating ISs. In [12], we establish a
taxonomy of view adaptation problems which distinguishes our new view syn-
chronization problem, while in [4, 5] we lay the basis for the EVE solution frame-
work. Formal criteria of correctness for view synchronization as well as actual
algorithms for achieving view synchronization are the key contributions of this
current work. To summarize, the main contributions of this paper are:
� We have formally presented the properties for legal rewritings.
� We have designed a solution approach for view synchronization that achieves
view rewriting by exploiting chains ofmultiple join constraints given in the MKB.
� To demonstrate our solution approach, we have presented the Complex View
Synchronization (CVS) algorithm for handling the most di�cult capability change
operator, namely, the \delete-relation" operator.
This work has opened a new problem domain important for a wide range of
modern applications, and we thus expect that much future research will be con-
ducted within the context of our proposed framework. Examples of work to be

done include the exploration of alternative view evolution preference models,
MKB evolution and cost models for maximal view preservation.

References

1. Y. Arens, C. A. Knoblock, and W.-M. Shen. Query Reformulation for Dynamic
Information Integration. J. of Intelligent Information Systems, 6:99{130, 1996.

2. O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet. Communica-
tion of ACM, 1994.

3. A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after Redef-
inition. In Proc. of ACM SIGMOD Int. Conf. on Management of Data, 1995.

4. A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Re-
sources Up and Running. In Proc. of IBM Centre for Advanced Studies Conf.
CASCON97, Best Paper Award, pages 1{14, November 1997.

5. A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Framework: View Evolu-
tion in an Evolving Environment. Technical Report WPI-CS-TR-97-4, Worcester
Polytechnic Institute, Dept. of Computer Science, 1997.

6. Alon Y. Levy, Anand Rajaraman, and Je�rey D. Ullman. Answering queries using
limited external processors. In Proc. of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 227{237, 1996.

7. M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data
Warehouses. Int. Symposium on Cooperative Database Systems for Advanced Ap-
plications, December 1996.

8. A. Nica, A.J . Lee, and E. A. Rundensteiner. View Synchronization with Complex
Substitution Algorithms. Technical Report WPI-CS-TR-97-8, Worcester Polytech-
nic Institute, Dept. of Computer Science, 1997.

9. A. Nica and E. A. Rundensteiner. On Translating Loosely-Speci�ed Queries into
Executable Plans in Large-Scale Information Systems. In Proc. of Second IFCIS
Int. Conf. on Cooperative Information Systems CoopIS, pages 213{222, 1997.

10. A. Nica and E. A. Rundensteiner. Loosely-Speci�ed Query Processing in Large-
Scale Information Systems. Int. Journal of Cooperative Information Systems, 1998.

11. Y. G. Ra and E. A. Rundensteiner. A transparent schema-evolution system based
on object-oriented view technology. IEEE Transactions on Knowledge and Data
Engineering, September 1997.

12. E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolv-
ing Environments. In Proc. of 4th Int. Workshop on Knowledge Representation
Meets Databases (KRDB'97): Intelligent Access to Heterogeneous Information,
pages 13.1{13.11, Athens, Greece, August 1997.

13. D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy. Answering Queries with
Aggregation Using Views. In Proc. of Int. Conf. on Very Large Data Bases, 1996.

14. J. Widom. Research Problems in Data Warehousing. In Proc. of Int. Conf. on
Information and Knowledge Management, pages 25{30, November 1995.

This article was processed using the LATEX macro package with LLNCS style

