
Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

1712

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Harold Boley

A Tight, Practical
Integration of
Relations and Functions

Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
J6rg Siekmann, University of Saarland, Saarbrticken, Germany

Author

Harold Boley
Stanford Medical Informatics
251 Campus Drive, Stanford, CA 94305-5479, USA
E-mail: boley @ SMI.Stanford.EDU

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufiudane

bley, HareM:
A tight, practical integration of relations and functions / Harold Boley. -
Berlin ; Heidelberg ; New York; Barcelona ; Hong Kong ; London ; Milan ; Paris
; Singapore ; Toyko : Springer, 1999
(Lecture notes in computer science ; 1712 : Lecture notes in artificial
ilitelligence)
ISBN 3-540-66644-3

CR Subject Classification (1998): 1.2, E4, E3, D.3

ISBN 3-540-66644-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10705076 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

As in other fields, in computer science certain objects of study can be synthesi-
zed from different basic elements, in different ways, and with different resulting
stabilities. In subfields such as artificial intelligence, computational logic, and
programming languages various relational and functional ingredients and tech-
niques have been tried for the synthesis of declarative programs. This text
considers the notions of relations, as found in logic programming or in relational
databases, and of functions, as found in functional programming or in equational
languages. We study a declarative integration which is tight, because it takes
place right at the level of these notions, and which is still practical because it
preserves the advantages of the widely used relational and functional languages
PROLOG and LISP. The resulting relational-functional language, RELFUN,
will be used here for exemplifying all integration principles.

Part of the unique attraction of computer science stems from the fact that
most of its notions permit a multitude of simultaneous perspectives, connecting
form and content, theory and practice, etc. Thus, the study of programming
involves syntax, semantics, and pragmatics: Syntactically, a program can be
specified by grammar formalisms on several levels. Semantically, a program can
be characterized as a static entity such as a mathematical model and by dynamic
computations such as derivation traces. Pragmatically, a program can be run by
an interpreter, in an abstract machine, and as native code of a real computer. In
order to obtain insights into new programming paradigms one can start off from
either of these ends or from somewhere in the middle. The texts treats most of
these perspectives for the RELFUN integration, whose development started at
the practical ends, later tailored theoretical ones for them, and now is proceeding
in both directions:* In chapter 2.6. the PROLOG-like user syntax is specified
by an EBNF grammar. In chapter 3 the semantics is founded equivalently
on Herbrand models and on SLD-resolution. In chapter 5 the pragmatics is
implemented via the Warren Abstract Machine. For further summaries we refer
to the reader's guide at the end of the overview chapter 1 and to the synopses
at the beginning of all five chapters.

*This research was supported by the Univ. Kaiserslautern, the SFB 314, and the BMBF
under the DFKI Grants ITW 8902 C4 and 413-5839-ITW9304/3.

yl

Here we summarize our contributions to the theory and practice of tight
relational-functional integration:

�9 The relational notions of non-ground terms and (don't-know) non-determinism
were integrated with the functional notions of application values and higher-
order functions into a minimal kernel system (chapter 1).

�9 This was extended by 'first-class' finite domains and exclusions (chapter
4), sort hierarchies, 'single-cut' determinism specification (chapter 2), etc.

�9 Encapsulated partial (non-ground) data structures were transferred to the
functional paradigm even for computations with ground I /O (chapter 2).

�9 The semantics of first-order functions was founded on the same model-
theoretic level as that of relations (chapter 3).

�9 Relational-functional transformers, compilers, and abstract machines were
developed in LISP (chapter 5).

�9 Using these, application studies were conducted about declarative pro-
gramming in engineering domains (chapter 1).

�9 The reusability of concepts, techniques, and source programs was shown
with the languages COLAB (BMBF project ARC-TEC) and DRL (BMBF
project VEGA).

My thanks go first to Michael M. Richter for having set standards in combi-
ning theory and practice, for discussions concerning Horn-logic and higher-order
functional programming, for many suggestions with respect to succinct formula-
tion, for his encouragement during this entire work, as well as for establishing the
DFKI department of Intelligent Engineering Systems. And I want to thank all
'IIS' colleagues at the DFKI for their patience in times when I was preoccupied
with this work. In particular, in the ARC-TEC knowledge-compilation group,
Philipp Hanschke, Knut Hinkelmann, and Manfred Meyer provided input that
helped me improve things. More recently, in VEGA, Andreas Abecker, Otto
Kiihn, and Holger Wache have also given me important feedback on the use and
presentation of RELFUN. In particular, in the DRL and RFM groups we have
been discussing issues of declarative representation languages and relational-
functional machines. Thanks to Panagiotis Tsarchopoulos for joining us for a
while. On this occasion I want to acknowledge the software contributions to the
defining RELFUN interpreter by the (former) students Simone Andel, Michael
Christen, Klans Elsbernd, Andreas Gilbert, Victoria Hall, Hans-Giinther Hein,
Michael Herfert, Thomas Labisch, Markus Perling, Ralph Scheubrein, Michael
Sintek, Werner Stein, and Stefan Steinacker. Additional special thanks go to
Markus Perling and Michael Sintek for their key contributions to the compi-
ler/emulator system and to most of the other RELFUN components as well as
for their careful proof-reading of several drafts of this text. Many other people

vii

at the Fachbereich Informatik and the DFKI of the University of Kaiserslautern
have helped me in important ways, and I want to thank you all.

As this text is a revision of my Habilitationsschrift at the Fachbereich Infor-
matik of the Universit/it Kaiserslautern, I also want to acknowledge my referees
Wolfram-M. Lippe (Institut ffir Informatik, Universit~it Mfinster), Otto Mayer,
and Michael M. Richter, as well as the head of my Habilitation committee,
Stefan Heinrich. Furthermore, I am thankful to Burckhard Strehl and his col-
leagues and students from the Fachbereich Mathematik of the Universit~it Kai-
serslautern for their help with our RELFUN-based ontology for the Mathematics
International study program. I am also grateful to Andreas Dengel and his colla-
borators from DFKI's Information Management and Document Analysis lab for
providing an environment that permitted the development of Web-oriented REL-
FUN enhancements such as ONTOFILE. Moreover, my thanks extend to Mark
Musen and his collaborators at Stanford Medical Informatics for giving me the
opportunity to explore cross-fertilizations of RELFUN and PROTEGE axiom
languages. Finally, I appreciate the advice of Ralf Kleinfeld from infoTex Kai-
serslautern about setting up the RELFUN Web domain http://www.relfun.org/.

Kaiserslautern and Stanford, July 1999 Harold Boley

Content s

1 An Overview of the Relational-Functional Language R E L F U N 1

1.1 Dec la ra t i ve Merger v ia Min ima l Ex tens ions 1

1.2 F r o m Re la t ions and Func t ions to O p e r a t o r s 5

1.3 P R O L O G - L I S P - R E L F U N C o m p a r i s o n 8

1.4 Semant ics and I m p l e m e n t a t i o n 11

1.5 App l i ca t i ons . 14

1.6 Re l a t ed Work . 16

1.7 R e a d e r ' s Gu ide . 19

Extended L o g i c - p l u s - F u n c t i o n a l P r o g r a m m i n g

2.1

2.2

2.3

21

I n t r o d u c t i o n . 21

Re la t ions Defined by Horn i sh Clauses 23

2.2.1 Open-wor ld D A T A L O G 23

2.2.2 P R O L O G - l i k e S t ruc tu re s and Lists 25

2.2.3 Va ry ing -a r i t y S t ruc tu re s 26

2.2.4 Va ry ing -a r i t y Re la t ionsh ips 28

2.2.5 Higher -o rde r C o n s t r u c t o r s and Re la t ions 29

Func t ions Defined by Foo ted Clauses 31

2.3.1 D A T A F U N as a Func t iona l D a t a b a s e L a n g u a g e 31

2.3.1.1 Molecu la r Rules a n d N o n - g r o u n d Func t ions . . . 31

2.3.1.2 Foo ted Rules and the d e n s i t y E x a m p l e 33

•

2.3.1.3 Non-determinism, DATALOG Relationalizing, and
WAM Compilat ion 35

2.3.2 Full RELFUN Exemplified by "Self"-Functions 36

2.3.3 Higher-order Constructors and Functions 39

2.4 The Logic/Funct ional Style in Use 42

2.4.1 s e r i a l i s e : Inplace Specialization of Structures 42

2.4.2 wang: On-the-fly Construct ion of Proof Trees 45

2.4.3 e v a l : Interpret ing a LISP Subset in RELFUN 48

2.5 Conclusions . 50

2.6 Appendix: The RELFUN Syntax 52

3 A D i r e c t S e m a n t i c C h a r a c t e r i z a t i o n o f R E L F U N 55

55 3.1 Int roduct ion .

3.2 Extending Fi rs t -order Theories to Fi rs t -order Relat ional-Funct ional
Theories . 61

3.3 Relat ionai-Funct ional In terpreta t ions and Models 65

3.4 SLV-Resolution . 72

3.5 Soundness of SLV-Resolution . 78

3.6 Least Herbrand Crossbase Models as Fixpoints 80

3.7 Completeness of SLV-Resolution 85

3.8 Conclusions . 87

4 F i n i t e D o m a i n s a n d E x c l u s i o n s as F i r s t - c l a s s C i t i z e n s 89

4.1 Introduct ion . 89

4.2 Domain Terms . 91

4.3 Exclusion Terms . 93

4.4 Occurrence Bindings . 95

4.5 Domains/Exclusions in Relat ion Definitions 97

4.5.1 Facts and dom/exc Reductions 9?

4.5.2 Clauses and bnd- to-" . =" Reductions 99

xI

4.6 Fini te-Domain/Exclusion Functional Programming 101

4.6.1 Domains/Exclusions as Function Arguments 102

4.6.2 Functions with Domain/Exclusion Values 103

4.7 Domain and Exclusion Anti-unification 105

4.8 Operational Semantics . 109

4.9 Conclusions . 111

4.10 Appendix: The RELFUN Meta-un• 114

M u l t i p l e - v a l u e d H o r n Clauses and Their W A M C o m p i l a t i o n

5.1 Introduction .

5.2

5.3

A Multiple-valued Relational/Functional Language

5.2.1 Amalgamat ing Relations and Functions

5.2.2 Single-valued and Multiple-valued Clauses

5.2.3 An Example: Refining the p a l i n d r o m e Opera tor

5.2.4 Higher-order Functions and Relations

Relat ional/Functional WAM Compilation

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

117

117

120

120

123

128

134

137

A Compilation Strategy 137

Evaluative Foots and Denotat ive Normalization 140

Non-deterministic, Multiple-valued Nestings and Static Flat-
tening . 143

Higher-order Clauses and Constant-operator Reduction 148

Translation to WAM Instructions 151

5.4 Conclusions . 157

Bibliography 161

