Skip to main content

First experiments with MIPS 1 (mini in-parallel positioning system)

  • Chapter 9 Modeling And Design
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 232))

Abstract

We present preliminary results of the design of a mini inparallel 3-d.o.f. positioning system called MIPS. MIPS degrees of freedom are one translation and two orientations, which are obtained by the motions of linear magnetic actuators acting within a special in-parallel mechanical architecture. Its overall width will be about 1cm for a length of about 3cm. MIPS should be useful in medical applications and in inspection tasks.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai T., Stoughton R., and Jaya Y.M. Micro hand module using parallel link mechanism. In Japan/USA Symp. on Flexible Automation, pages 163–168, San Francisco, July, 13–15, 1993.

    Google Scholar 

  2. Fukuda T. and others. Characteristics of optical actuator-servomechanisms using bimorph optical piezo-electric actuator. In IEEE Int. Conf. on Robotics and Automation, volume 2, pages 618–623, Atlanta, May, 2–6, 1993.

    Google Scholar 

  3. Grundfest W.S., J.W. Burdick, and Slatkin A.B. Robotic endoscopy, August, 16, 1994. United States Patent no 5,337,732, Cedars-Sinai Medical Center.

    Google Scholar 

  4. Guo S. and others. Development of the micro pump using icpf actuator. In IEEE Int. Conf. on Robotics and Automation, pages 266–271, Albuquerque, April, 21–28, 1997.

    Google Scholar 

  5. Hegao C. and others. A new force-controlled micro robotic worktable driven by piezoelectrical elements. In IMACS/SICE Int. Symp. on Robotics, Mechatronics, and Manufacturing Systems, pages 637–644, Kobe, September, 16–20, 1992.

    Google Scholar 

  6. Hollis R.L., Allan A.P., and Salcudean S. Six degree of freedom magnetically levitated variable compliance fine motion wrist. In 4th Int. Symp. of Robotics Research, pages 65–73, Santa Cruz,, 1987.

    Google Scholar 

  7. Khatib O. and Bowling A. Optimization of the inertial and acceleration characterics of manipulators. In IEEE Int. Conf. on Robotics and Automation, pages 2883–2889, Minneapolis, April, 24–26, 1996.

    Google Scholar 

  8. Lee K-M. and Arjunan S. A three-degrees-of freedom micromotion in-parallel actuated manipulator. IEEE Trans. on Robotics and Automation, 7(5):634–641, October 1991.

    Article  Google Scholar 

  9. Lu A., Grant D., and Hayward V. Design and comparison of high strain shape memory alloy actuators. In IEEE Int. Conf. on Robotics and Automation, pages 260–265, Albuquerque, April, 21–28, 1997.

    Google Scholar 

  10. Merlet J-P. Direct kinematics and assembly modes of parallel manipulators. Int. J. of Robotics Research, 11(2):150–162, April 1992.

    Article  Google Scholar 

  11. Merlet J-P. and Gosselin C. Nouvelle architecture pour un manipulateur parallèle à 6 degrés de liberté. Mechanism and Machine Theory, 26(1):77–90, 1991.

    Article  MathSciNet  Google Scholar 

  12. Nakamura Y., Kimura Y., and Arora G. Optimal use of non-linear electromagnetic force for micro motion wrist. In IEEE Int. Conf. on Robotics and Automation, pages 1040–1045, Sacramento, April, 11–14, 1991.

    Google Scholar 

  13. Pernette E. and Clavel R. Parallel robot and microrobotics. In 6th ISRAM, pages 535–542, Montpellier, May, 28–30, 1996.

    Google Scholar 

  14. Pierrot F., Dauchez P., and Fournier A. Fast parallel robots. Journal of Robotic Systems, 8(6):829–840, December 1991.

    Article  MATH  Google Scholar 

  15. Shahinpoor M. Microelectro-mechanics of ionic polymeric gels as artificial muscles for robotic applications. In IEEE Int. Conf. on Robotics and Automation, pages 380–385, Atlanta, May, 2–6, 1993.

    Google Scholar 

  16. Sturges R.H. and Laowattana S. A flexible, tendon-controlled device for endoscopy. In IEEE Int. Conf. on Robotics and Automation, Sacramento, April, 11–14, 1991.

    Google Scholar 

  17. Treat M.R. and Trimmer W.S. Self-propelled endoscope using pressure driven linear actuators, January, 21, 1997. United States Patent no 5,595,565, Columbia University.

    Google Scholar 

  18. Wendlandt J.M. and Sastry S.S. Design and control of a simplified Stewart platform for endoscopy. In 33nd Conf. on Decision and Control, pages 357–362, Lake Buena Vista, December, 14–16, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alicia Casals Anibal T. de Almeida

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Merlet, JP. (1998). First experiments with MIPS 1 (mini in-parallel positioning system). In: Casals, A., de Almeida, A.T. (eds) Experimental Robotics V. Lecture Notes in Control and Information Sciences, vol 232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0112982

Download citation

  • DOI: https://doi.org/10.1007/BFb0112982

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76218-8

  • Online ISBN: 978-3-540-40920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics