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Abstract. In this paper, we present a new approach for continuous probabilistic
mapping. The objective is to build metric maps of unknown environments through
cooperation between multiple autonomous mobile robots. The approach is based on
a Bayesian update rule that can be used to integrate the range sensing data coming
from multiple sensors on multiple robots. In addition, the algorithm is fast and
computationally inexpensive so that it can be implemented on small robots with
limited computation resources. The paper describes the algorithm and illustrates
it with experiments in simulation and on real robots.

1 Introduction

For efficient navigation in cluttered environments, maps are an indispensable tool.
Maps allow mobile robots to autonomously plan trajectories through the environ-
ment while avoiding obstacles. Maps are often pre-recorded or generated by human
operators. However, in unknown or rapidly changing environments, these maps
are usually unavailable or outdated. In order to maintain autonomous operation
in these situations, robots should record their own experiences and build internal
maps themselves.

In recent research results, two different approaches can be identified for repre-
senting the environment:

1. Metric or grid-based representations [5][9]. In this approach, the world is divided
into evenly spaced cells in a grid. Each cell contains information related to the
corresponding region in the environment.

2. Topological representations [4] Here the world is represented as a graph in which
nodes represent states, places, or landmarks. If there is a direct path between
two nodes, they are connected with an arc.

Both approaches have advantages and disadvantages. Metric maps are easy to
build and maintain, but they require accurate measurements of the robot position.
Furthermore, building metric maps is in general time-consuming and may require a
large amount of storage space. Topological maps, on the other hand, are much more
difficult to build but do not depend as much on accurate position measurements.
In addition, their compactness makes them highly suitable for fast global planning.
Overall, metric maps have been used most often for sensor-based map-building.



2 Salido, Paredis, and Khosla

In this paper, we present a novel approach to building grid based metric maps.
Its novelty resides in its generality and simplicity. It requires only limited compu-
tational resources and can be easily implemented in real-time. It allows multiple
sensing modalities to be combined (sonar, laser-range-finder, camera, etc.) and it
can combine maps from multiple robots into a single global map.

2 Previous related work

As we mentioned in the introduction, metric maps have been most successfully
applied until now. In particular, grid based occupancy maps [5][9][10] have shown to
be convenient and useful. In an occupancy map, the world is represented by a grid
in which each cell contains the probability of occupancy; a value of zero corresponds
to free space, a value of one corresponds to an obstacle.!

In grid based maps, Bayes’ rule [11] is used to update occupancy values over
time. The updated occupancy value (a posteriori probability) is based on the occu-
pancy value in the current map (a prior: probability) and the current sensor reading
(conditional probability). The update process requires a sensor model defining the
occupancy values of the grid cells around the sensor, given the current sensor read-
ing. Several solutions have been proposed for the sensor modeling problem:

1. Probabilistic models. A probability density function is used to model the
sensor. Commonly, Gaussian probability density functions are used. [5][10].

2. Histograms. This approach is usually applied for local planning (i.e. obstacle
avoidance), for which a fast response is critical. To avoid the time consuming
evaluation of a probability density functions, a simple histogram is used. [2].

3. Learned models. Instead of using a Gaussian approximation, the probability
density function is learned [15]. This provides greater accuracy but at a the cost
of greater computational requirements at run-time as well as for training. A
neural network trained in simulation has been used to determine the probability
density function [15].

The type of sensor model has a significant impact on the applicability of the
method. For applications in which very accurate global plans need to be constructed
and computational resources are readily available, the most accurate sensor model
is appropriate, namely a learned model, even if this requires a high computation
cost. On the other hand, if information for local obstacle avoidance is the goal
of the algorithm, a very simple sensor model can be used with adequate results.
Because such a simple model can be evaluated very quickly, a high sample rate
can be achieved, which allows the robot to move more quickly while still avoiding
collisions.

The method that we propose in this article, makes a compromise between these
two extremes. It uses a sensor model that is slightly more expensive to evaluate than
in the Histogramic In-Motion Mapping approach [2]. Yet, the method provides maps
that are sufficiently accurate to perform global planning, at a fraction of the cost
of learned models.

The whole map-building process consists of the following three steps:

! For visual purposes that likelihood is usually represented by gray levels where
‘black’ means a completely occupied cell and ‘white’, free space.
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1. Sensing.
2. Computation of conditional occupancy probabilities based on the sensor model.
3. Update the occupancy values in the grid using Bayes’ rule.

An important requirement for building metric maps is the accurate determi-
nation for the robot position and orientation. That does not pose a big problem
for outdoor applications where global positioning systems (GPS and compass) are
available. However, for indoor applications or space applications these global posi-
tioning systems are usually not available.

Early results used dead-reckoning and filtering to locate the robot in its environ-
ment [1][5][10] Recently, a new set of probabilistic approaches has emerged based
on Markov Decision Processes [13]. Instead of using a single position estimate, a
probability distribution is used to represent the robot’s belief of being in a partic-
ular position/orientation. This method requires an ‘a priori’ map to be supplied to
the robot, which may cause some undesired cyclic behavior. Moreover, the basic
assumptions for a Markov process are not satisfied in highly dynamic environments.
To overcome these problems, researchers have introduced modifications to the basic
MDP, such as the (Partially Observable Markov Decision Process) [3] and the work
in [7]. Instead of combining user supplied maps with sensor readings, recent work
at Carnegie Mellon University has focussed on combining map-based localization
and autonomous map-building [6][14][15].

As part of the CyberScout project, we are also developing a sonar-based indoor
localization system. In this system, each robot is equipped with a sonar beacon
and an RF transmitter, as illustrated in Figure 1. A conical reflector is mounted
above the sonar transceiver to reflect the sound into a horizontal plane and provide
360° coverage. Periodically, each robot will transmit a sonar and an RF pulse
simultaneously. All the other robots in the vicinity will receive the RF pulse almost
instantaneously and the sonar pulse after a delay proportional to the distance from
the transmitting robot. When the distances between all the robots are known,
one can use trilateralization to determine their relative positions. This localization
system will allow us in the future to implement the mapping algorithm described
in this article on the small robot platforms shown in Figure 1.

3 Continuous probabilistic mapping — CPM

This section describes the details of our approach for building metric maps called
Continuous Probabilistic Mapping (CPM). By continuous we emphasize the fact
that CPM allows one to update the map continuously—every execution cycle. The
approach requires only limited computation each time-step and can easily be imple-
mented on the small robot platforms with limited computational resources that we
use in the lab. The applications that we consider are cooperative exploration and
reconnaissance by a team of autonomous robots in unknown and possibly dynamic
environments.

In CPM, the environment is divided into uniform cells ¢;; (with center at
[zi,y;]). We define a metric Occup(c) that defines the occupancy likelihood of the
cell c:

In the further derivation of the CPM algorithm, we assume that the robot’s
position (z,y,6) can be measured sufficiently accurately.



4 Salido, Paredis, and Khosla

Fig.1. A Millibot (size 6 x 6 x 6cm) with a sonar-beacon.

Table 1. Occupancy metric

Value Description

0.0 minimum occupancy free space no uncertainty

0.5 medium occupancy unknown maximum uncertainty
1.0 maximum occupancy obstacle no uncertainty

We further assume that the sensor readings consist of proximity measurements
(e.g. sonar or laser-range-finder) and that the characteristics of the sensor are well
understood (e.g. field of view and maximum range).

3.1 The model for ‘a priory’ occupancy likelihood

CPM uses a simplified ‘a priori” occupancy likelihood based on the concept of field
of view (FOV) of a sensor. By FOV we mean the spatial region where a sensor is
able to perceive. As is illustrated in Figure 2, the FOV can be characterized by two
parameters: the maximum range (r), and the perception angle («a). For example,
for the sonar used in our lab (Polaroid 6500 series) the maximum range is 2 meters
and the perception angle is 20 degrees.
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Based on the FOV, we define a function Occupo(s, ¢; ;) for each cell ¢; ; around
the sensor s. If a cell ¢ covers only a fraction f of the FOV of the sensor s, the
function Occupg is proportional to (1 — f) or

Area(FOV N c)) (1)

1
Occupo(s,cij) = b (1 - Area(c)

One can interpret this function as the probability that a cell is occupied when
no obstacles are detected. As a result, any cell that does not overlap with the FOV
of the sensor is assigned a value of 0.5 meaning that the occupancy is completely
unknown.

For the further development of the algorithm, we only need to consider the
cells that overlap with the FOV. As indicated in Figure 2, we call this set of cells
the Sensor Occupancy Pattern or SOP. The Occupo(s, ci ;) values for the SOP are
independent of the sensor readings and can be computed beforehand. An SOP
requires little storage and can be applied to any type of range sensor.

Fig.2. The a priori sensor occupancy values (r=range, a=perception angle), and
the Sensor Occupancy Pattern (SOP)

3.2 Computation of the occupancy function

In this section, we will explain how the SOP is combined with a sensor reading
to obtain the occupancy value for each cell in the FOV. These values will later be
combined with the occupancy probabilities in the global map to update the robot’s
world view.

The computation of the occupancy function consists of two steps. In a first step,
we classify the cells in the field of view into three categories, depending on whether
they are within the range of the current sensor reading or not. Next, we combine
this information with the values in the SOP to obtain the final occupancy value of
Sensor.

The classification process divides the cells in the FOV into three categories:
occupied, free or unknown. Consider the example in Figure 3. Each cell is a square
of dimension C.. The distance d = D. — S is the difference between the sensor
reading S and the distance to the center of the cell D.. The classification function
h(c,S) is than computed as:
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Fig. 3. Classification of cells: (1) sensor, (2) obstacle, and (3) cell

Occupied,if |d|< Cs/2
h(c,S) =< Free, if S=r Vv (|d|>Cs/2Ad<0) (2)
Uknown, if |d|>Cs/2 A d>0

The classification is conservative in that it overestimates the probability of
occupation. From the range measurement, we know that somewhere at a distance
r there is an obstacle in the FOV. However we do not know in which cell exactly.
Therefore, we label every cell at distance r as occupied, even though it is not
very likely that all these cells are actually occupied. Our conservative approach
still provides accurate results in the long term because unoccupied cells that were
wrongly labeled as occupied based on one sensor reading will most likely be labeled
correctly when the robot changes positions.

In the classification, we do not take into account the extent to which a cell is
inside the FOV of the sensor. Therefore, the classification value is now combined
with the a priori occupancy to obtain the actual occupancy value Occup(c, S) of
each cell:

Occupg if h(c, S) = Free
Occup(c,S) =4 0.5 if h(¢, S) = Unknown (3)
1 — Occupg if h(c, S) = Occupied
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It is clear that the computation of the occupancy values requires minimal com-
putation. The total number of operations needed is proportional to the total number
of cells in the SOPs of all sensors. Compared to other occupancy grid methods, the
computations per cell are much simpler and the number of cells is much reduced by
only considering the cells in the FOV. In the next section, these occupancy values
will be used to update the global map of the environment using a Bayes’ update
rule.

3.3 Spatial-temporal integration

So far, we have illustrated how to obtain an approximate probability distribution
for a single range sensor based on a single sensor reading. However, mapping is a
dynamic process in which sensor readings from different locations and at different
time instants are fused into a single global representation. Bayesian probability
theory has been applied successfully to the mapping problem [5][10][9][15]. In this
section, we describe how Bayes’ rule is applied in our approach.

After having computed the function Occup(c) for each of the sensors, there are
two steps remaining. In a first step, the cells in the grid around each sensor are
mapped to cells in the global map using the position and orientation information
from the robot. Then, in a second step, the occupancy value of each sensor cell is
used to update the estimated occupancy of the corresponding cell in the global map.
Because the robot moves, over time cells in the global map are covered multiple
times by different sensors from different sensing locations and most likely.

Using Bayes’ rule, all these sensor readings are integrated into the global map,
improving the estimates for the occupancy of each cell. This integration is accom-
plished using the following equation [15]:

(4)

-1
Occup(c | s, 53 ... sy = (1+H Occup(c | S1) ))

1 — Occup(c | S(7)

This equation expresses the a posteriori probability of occupation of cell ¢ given
a sequence of readings (5(1)75(2) ~~~S(T)). In the equation, we assume an initial
occupancy value of Occup(c) = 0.5 for all the cells. The sequence of readings may
include readings at different time instants as well as readings from different sensing
locations, different sensors on the same robot, or sensors on multiple robots.

Notice that Equation 4 can also be evaluated iteratively, which reduces the store
requirements significantly; only one value per cell needs to be stored.

Occup(c | 5(1)75(2) . ~~S(T)) =
L (1 n Occup(c | S(T)) Occup(c | SM ... 5(T=1)) )_1 5)
1 — Occup(c | S(T)) 1 — Occup(c | S ... S(T=1))

Finally, the same equation can also be used to integrate maps from two different
robots. One can write Equation 4 as
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Occup(c | st s ~~~S(N)) —
1 (1 n Occup(c | S ... 5]y Occup(c | SE+D ... g )_1(6)
1 — Occup(c | SM ... Sy 1 — Occup(c | SH+ ... 5(V))

This allows one to combine maps from different robots (sensor readings 1
through %k from robot 1; sensor readings k 4+ 1 through N from robot 2).

Implementational considerations. The main purpose for the integration
process discussed in this section is to produce a map in a global frame of reference.
However, the sensor occupancy values are obtained in the robot’s frame of reference.
Although the local cells can be mapped to the global frame of reference by applying
a translation and rotation transformation,the cells do not line up with the cells of
the global map in general. This problem is solved by using a simple interpolation
scheme that determines the sensor occupancy value at each of the centers of the
cells in the global map.

A second important implementational issues has to do with dynamically chang-
ing environments. When a cell in the global map is occupied by an obstacle, the
occupancy value of that cell will move closer and closer to one as more and more
sensor reading are incorporated. Due to the finite precision of floating point com-
putation, the occupancy value may actually become equal to one at some point in
time. However, this causes problems in the evaluation of Equation 5. Even with a
careful implementation of Equation 5, there still remains a problem with dynamic
environments. Once, a cell reaches a value of either zero or one, the value cannot
change anymore, regardless of the current sensor readings. Therefore, in dynamic
environments, where the position of obstacles may change over time, the occupancy
value should never be allowed to reach zero or one completely. In our implementa-
tion we limit the occupancy value to remain inside the interval [107¢,1 — 107°].

4 Experiments and results

We performed experiments in simulation as well as with real robots. All the exper-
iments were executed using the CyberRAVE environment developed at Carnegie
Mellon University [8] [12]. CyberRAVE is a general purpose framework for simula-
tion and command and control of multiple robots. It allows algorithms developed
in a simulated environment to be transfered transparently to the real robot, and
even allows real and simulated robots to interact with each other in a single experi-
ment. CyberRAVE allows us to quickly develop algorithms for multi-robot systems,
evaluate different sensor configurations in simulation, and transition the software
to real hardware one robot at a time.

4.1 Experiments in simulated environments

The main purpose for the simulation experiments is to determine how well CPM
performs in terms of real-time computation and its ability to integrate maps in a
multi-robot system.
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The experiment consists of a collaborative mapping task with at team of five
robots. The simulated robots are modeled after the RC-tank based robots developed
in our lab (Figure 5). They are equipped with 8 sonars: 5 in the front, 1 left, 1 right,
and 1 in the back. The sonars are modeled to have a sensing cone with r = 2m.
and a = 20°). The environment the robots need to map consists of a flat terrain
with polygonal obstacles.

Figure 4 illustrates some of the results. Initially, the robots start without any
knowledge of the environment: the complete map is initialized with occupancy val-
ues of 0.5. While the user maneuvers the robots around using a simulated joystick,
the robots build up information about the environment through their sonar sensors.

This results in occupancy values moving towards one (black) in cells containing ob-
stacles, and toward zero (white) in free space. Each robot builds up a local map
containing occupancy information for the area it has traversed. Periodically, the
local maps for each of the robots is transmitted to a “Team Leader” who uses CPM
to integrate the local maps into a single global map.

[—— ]

r Tiave & I o O

o) S Pt
Joystick panel

et 1 [ 1 |

Map panel

Fig.4. Cooperative mapping results in simulation using CyberRAVE
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4.2 Experiments with real robots

To perform mapping experiments with real robots, we have equipped our lab with
a vision-based localization system, as is illustrated in Figure 6. The CPM algorithm
requires that the global position of the robot be known. Since GPS sensors cannot
be used inside, we use two overhead cameras and a cognachrome tracking system
to measure the position and orientation of the robots with an accuracy of about 5
cm and 5 degrees. Relative to the size of the robots (30x50cm), the tracking system
provides sufficient accuracy to build maps collaboratively.

Fig.5. Scouts: (1) B/W camera, (2) microphones, (3) sonars, and (4) IRs.

The robots shown in Figure 5 are small RC-tanks that have been retrofitted
with a PC-104 stack containing a 486 computer running Linux OS, a digital 10
board for sensor and actuator interaction, a wireless Ethernet connection, and a
hard disk. They are further equipped with 8 sonar sensors, 5 IR obstacle detectors,
a B/W camera mounted on a pan/tilt mechanism, and stereo microphones. For the
mapping experiment, we only use the 8 Polaroid sonars (series 6500) with a sampling
rate of about 5Hz. In their current configuration the sonars have a reliable sensing
range of 0.50m to 2.0m with a precision of £0.02m.

The area in which the experiments are conducted is delimited by fiberboard
panels. When the robot is at an oblique angle with respect to the paneling, the
sonar pulse may not reflect back to the robot directly but bounce back via one of
the other four panels. This multi-path effect may erroneously cause the robot to
sense obstacles further than they really are or even stop the robot from sensing
the obstacle at all. However, from a mapping perspective, infrequent erroneous
measurements pose no problem. Over time, only the correct measurements contain
enough correlated information to show up in the map.

Figure 7 shows the results obtained in a mapping experiment compared to the
actual obstacle layout. The quality of the map is not only determined by the size of
the grid cells, but also by the trajectory followed by the robot and the the number of
multi-path readings. In this experiment, the robot moved through the environment
relatively quickly and experienced a several number of multi-path readings. The
result is that the map marks the inside of the obstacles and even areas outside the
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Fig. 6. The physical layout of the testing area.

boundary of the experimental area as unoccupied. The obstacles on the right side of
the map are not marked, because the area has not yet been explored by the robot.
The second and third experiment were produced with 10 x 10cm cells, and b

Obstacle Layout
L

Fig. 7. Mapping result with a real robot
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5 Summary

In this paper, we have described a novel method for continuous mapping in unknown
environments: Continuous Probabilistic Mapping. The novelty of CPM resides in
two properties: simplicity for real-time computation, and scalability for multiple
robots each with multiple sensors.

The algorithm requires only limited computational resources so that it can be
executed at a high frequency, which allows the robot to move quickly while still
avoiding obstacles. This simplicity is also important for our future work in small
distributed robotic systems in which computation is at a premium.

With respect to distributed robotics, the scalability of the algorithm is also very
important. The algorithm allows robots to integrate their sensing data locally for
collision avoidance, but at the same time to combine this local information with
that of other robots to obtain a global view of the environment.
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