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Abstract. Luby and Rackoff [26] showed a method for constructing a pseudorandom
permutation from a pseudorandom function. The method is based on composing four
(or three for weakened security) so-called Feistel permutations, each of which requires
the evaluation of a pseudorandom function. We reduce somewhat the complexity of the
construction and simplify its proof of security by showing that two Feistel permutations
are sufficient together with initial and final pairwise independent permutations. The
revised construction and proof provide a framework in which similar constructions may
be brought up and their security can be easily proved. We demonstrate this by presenting
some additional adjustments of the construction that achieve the following:

e Reduce the success probability of the adversary.
e Provide a construction of pseudorandom permutations laithe input-length
using pseudorandom functions wimmallinput-length.
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1. Introduction

Pseudorandom permutations, which were introduced by Luby and Rackoff [26], for-
malize the well-established cryptographic notion of block ciphers. Block ciphers are
private-key encryption schemes such that the encryption of every plaintext-block is a
single ciphertext-bloclof the same lengthlrherefore we can think of the private key

as determining a permutation on strings of the length of the block. A highly influential
example of a block cipher is the Data Encryption Standard (DES) [32].

* A preliminary version of this paper appearedAroc. 2%h ACM Sympon Theory of Computingl997,
pp. 189-199. The first author is the incumbent of the Morris and Rose Goldman Career Development Chair,
whose research was supported by Grant No. 356/94 from the Israel Science Foundation administered by the
Israeli Academy of Sciences and by BSF Grant No. 94-00032. Part of the research of the second author was
supported by a Clore Scholars award.
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The advantage of block ciphers (compared with using pseudorandom functions for
private-key encryption) is that the plaintext and ciphertext are of the same length. This
property saves on memory and prevents wasting communication bandwidth. Further-
more, it enables the easy incorporation of the encryption scheme into existing protocols
or hardware components.

Luby and Rackoff defined the security of pseudorandom permutations in analogy to
the different attacks considered in the context of block ciphers:

e Pseudorandom permutations can be interpreted as block ciphers that are secure
against an adaptivehosen plaintext attacknformally, this means that an (efficient)
adversary, with access to the encryptions of messages of its choice, cannot tell apart
those encryptions from the values of a truly random permutation.

e Strong pseudorandom permutations can be interpreted as block ciphers that are se-
cure against an adaptiehosen plaintext and ciphertext attatkere, the adversary
has the additional power to ask for the decryption of ciphertexts of its choice.

Pseudorandom permutations are closely related (both in definition and in their
construction) to the earlier concept of pseudorandom functions which was defined by
Goldreich et al. [17]. These are efficiently sampled and computable functions that are
indistinguishable from random functions under all (efficient) black-box attacks (see
Section 2 for a formal definition). Pseudorandom functions play a major role in
private-key cryptography and have many additional applications (for some of these appli-
cations, see [10], [16], and [25]).

Luby and Rackoff [26] provided a construction of strong pseudorandom permutations
(LR-Construction) which was motivated by the structure of DES. The basic building
block is the so-called Feistel permutatidmased on a pseudorandom function defined
by the key. Their construction consists of four rounds of Feistel permutations (or three
rounds, for pseudorandom permutations), each round involves an application of a (dif-
ferent) pseudorandom function (see Fig. 1(a) for an illustration). The LR-Construction’s
main source of attraction is, most probably, its elegance.

Goldreich et al. [17] showed a construction of pseudorandom functions from pseu-
dorandom generators [9], [50]. Thus, the construction of pseudorandom permutations
reduces to the construction of pseudorandom generators. Recently a different construc-
tion of pseudorandom functions was introduced by Naor and Reingold [31]; this is a
parallel construction based on a new primitive called a pseudorasgothnesizethat in
particular can be constructed from any trapdoor permutation. This implies a parallel con-
struction of pseudorandom permutations. Nevertheless, all known constructions of pseu-
dorandom functions involve nontrivial (though of course polynomial-time) computation,
so it makes sense to attempt to minimize the number of invocations of pseudorandom
functions.

Alongside cryptographic pseudorandomness the last two decades saw the development
of the notion of limited independence in various settings and formulations [3], [4],

1 A Feistel permutation for a functiori: {0, 1}" — {0, 1}" is a permutation or{0, 1}*" defined by

D¢ (L, R) def (R,L ® f(R)), where|L| = |R| = n. Each of the 16 rounds of DES involves a Feistel
permutation of a function determined by the 56 key bits.
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[12], [13], [24], [30], [49]. For a family of functionsF to have some sort of (limited)
independence means that if we consider the value of a funétichosen uniformly at
random fromF, at each point as a random variable (in the probability space defined by
choosingf), then these random variables possess the promised independence property.
Thus, a family of permutations 0j®, 1}" is pairwise independent if for ak # y the

values of f (x) and f (y) are uniformly distributed over strings, b) € {0, 1}?" such

thata # b. Functions of limited independence are typically much simpler to construct
and easier to compute than (cryptographic) pseudorandom functions.

1.1. New Results and Organization

The goal of this paper is to provide a better understanding of the LR-Construction and
as a resultimprove the construction in several respects. Our main observation is that the
different rounds of the LR-Construction serve significantly different roles. We show that
the first and last rounds can be replaced by pair-wise independent permutations and use
this in order to:

1. Simplify the proof of security of the construction (especially in the case of strong
pseudorandom permutations) and provide a framework for proving the security of
similar constructions.

2. Derive generalizations of the construction that are of practical and theoretical
interest. The proof of security for each one of the constructions is practically “free
of charge” given the framework.

3. Achieve an improvement in the computational complexity of the pseudorandom
permutations—two applications of a pseudorandom function bits suffice for
computing the value of a pseudorandom permutationrobi at a given point
(versus four applications in the original LR-Construction). This implies that the
reduction is “optimal.”

As discussed in Section 5.2, the new construction is in fact a generalization of the
original LR-Construction. Thus, the proof of security (Theorem 3.2) also applies to the
original construction. The following is a brief and informal description of the paper’s
main results and organization:

Section 2reviews the notation and the definitions regarding pseudorandomness and
k-wise independence.

Section 3presents the main construction and proves its security: pairwise independent
permutations can replace the first and fourth rounds of the LR-Construction (see
Fig. 1(b) for an illustration).

Section 4highlights the high-level structure of the proof of security which provides a
framework that enables us to relax and generalize the main construction.

Section 5shows how the main construction can be relaxed by:

5.1. Using a single pseudorandom function (instead of two).
5.2. Using weaker and more efficient permutations (or functions) instead of the
pairwise independent permutations.

Section 6provides a simple generalization of the main construction: ushoginds
of (generalized) Feistel permutations (instead of two) the success probability of
the distinguisher is reduced from approximatedy/2‘/2 to approximatelyt /2 -
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m?/24-1/b¢ where the permutation is ofibits and the distinguisher makes at
mostm queries (see Fig. 3 for an illustration).

Section 7provides a second generalization of the main construction. Instead of ap-
plying Feistel permutations on the entire outputs of the first and second rounds,
Feistel permutations can be separately applied on each one of their subblocks. This
is a construction of a strong pseudorandom permutatiomany blocks using
pseudorandom functions orsiagleblock (see Fig. 4 for an illustration).

Section 8analyzes the different constructions of the paper as constructidawise
§-dependent permutations.

Section 9suggests directions for further research.

1.2. Related Work

The LR-Construction inspired a considerable amount of research. We try to refer to the
more relevant (to this paper) part of these directions.

Several alternative proofs of the LR-Construction were presented over the years.
Maurer [28] gives a proof of the three-round construction. His proof concentrates on the
nonadaptive case, i.e., when the distinguisher has to specify all its queries in advance.
A point worth noticing is that indistinguishability under nonadaptive attacks does not
necessarily imply indistinguishability under adaptive attacks. For example, a random
involution (an involution is a permutation which is the inverse of itself) and a random
permutation are indistinguishable under nonadaptive attacks and can be distinguished
using a very simple adaptive attatR different approach toward the proof was described
by Patarin [34] (this is the only published proof, we are aware of, for the LR-Construction
of strongpseudorandom permutations; another proof was given by Koren [22]).

Other papers consider the security of possible variants of the construction. A significant
portion of this research deals with the construction of pseudorandom permutations and
strong pseudorandom permutations fromirggle pseudorandom function. This line of
work is described in Section 5.1.

Lucks [27] shows that a hash function can replace the pseudorandom function in the
first round of the three-round LR-Construction. His proof is based on [28] and is moti-
vated by his suggestion of using the LR-Construction when the input is divided into two
unequalparts. Lucks left open the question of the construction of strong pseudorandom
permutations.

Somewhat different questions were considered by Even and Mansour [14] and by
Kilian and Rogaway [21]. Loosely speaking, the former construct several pseudorandom
permutations from a single one, while the latter show how to make exhaustive key-search
attacks more difficult. The construction itself amounts, in both cases, to XORing the
input of the pseudorandom permutation with a random key and XORing the output of
the permutation with a second random key.

The background and related work concerning other relevant issues are discussed in
the appropriate sections: definitions and constructions of efficient hash functions in
Section 5.2, reducing the distinguishing probability in Section 6, and the construction of

2 An even more striking example is obtained by comparing a random permukatiai satisfie$ (P (0)) =
0 with a truly random permutation.
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pseudorandom permutations (or functions) with large input-length from pseudorandom
permutations (or functions) with small input-length in Section 7.

2. Preliminaries

In this section the concepts of pseudorandom functions and pseudorandom permutations
are briefly reviewed. A more thorough and formal treatment can be found in [15] and [25].

2.1. Notation

e |, denotes the set of afl-bit strings,{0, 1}".

e F, denotes the set of all, — |, functions andP, denotes the set of all such
permutations®, C F,).

e Letx andy be two bit strings of equal length, then® y denotes their bit-by-bit
exclusive-or.

e Foranyf, g € F,, denote their composition b/ o g (i.e., f o g(X) = f(g(x))).

e Forx € I, denote the first (lefth bits of x by x, and the last (righth bits of x
by X, .

Definition 2.1 (Feistel Permutations).® For any functionf € F,, letD; € P, be the

permutation defined b+ (L, R) def (R, L @ f(R)),where|L| = |R] =n.

Notice that Feistel permutations are as easy to invert as they are to compute (since the
inverse permutation satisfi@s;l(L, R) = (R f (L), L);thatis,Df‘l(L, R) = poDsop

forp(L, R) def (R, L)). Therefore, the LR-Construction (and its different variants which
are introduced in Sections 6 and 7) are easy to invert.

2.2. Pseudorandomness

Pseudorandomness is fundamental to cryptography and, indeed, essential in order to
perform such tasks as encryption, authentication, and identification. Loosely speaking,
pseudorandom distributions cannot be efficiently distinguished from the truly random
distributions (usually, random here means uniform). However, the pseudorandom dis-
tributions have substantially smaller entropy than the truly random distributions and are
able to be sampled efficiently.

2.2.1. Overview of Pseudorandom Primitives

In the case opseudorandom (bit) generators which were introduced by Blum and
Micali [9] and Yao [50], the pseudorandom distribution is of bit-sequences. The distri-
bution is efficiently sampled using a, relatively small, truly random bit-sequence (the
seed). Hastad et al. [20] showed how to construct a pseudorandom generator from any

3 D stands for DES-like, another common term for these permutations.
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one-way function (informally, a function is one-way if it is easy to compute its value but
hard to invert it).

Pseudorandom function ensembles (PFEWwhich were introduced by Goldreich
et al. [17], are distributions of functions. These distributions are indistinguishable from
the uniform distribution under all (polynomially bounded) black-box attacks (i.e., the
distinguisher can only access the function by specifying inputs and getting the value of
the function on these inputs). Goldreich et al. provided a construction of such functions
based on the existence of pseudorandom generators.

Luby and Rackoff [26] definpseudorandom permutation ensembles (PPEBp be
distributions of permutations that are indistinguishable from the uniform distribution to
an efficient observer (that, again, has access to the value of the permutation at points
of its choice). In addition, they consider a stronger notion of pseudorandomness which
they callsuper pseudorandom permutation generatétere the distinguisher can also
access the inverse permutation at points of its choice. Following [15] we use the term
strong pseudorandom permutation ensembles (SPPH)stead.

Luby and Rackoff provided a simple construction of PPE and SBREJonstructioi
which is the focus of this work. Their construction is based on a basic compound of the
structure of DES [32], namely, the compositions of several Feistel permutations. Their
design of the PPE (resp. SPPEPig oDy, o Dy, (resp.Dy, o D¢, 0 Dy, oDy, ) where allf;’s
are independent pseudorandom functions Bads as in Definition 2.1 (see Fig. 1(a)
for an illustration).

2.2.2. Definitions

A function ensemblis a sequencél = {H,}ney such thatH, is a distribution ovelr,,

H is theuniform function ensembitH, is uniformly distributed oveF,. A permutation
ensemblés a sequencél = {H,}nen Such thatH,, is a distribution overP,, H is the
uniform permutation ensembifieH, is uniformly distributed oveP;.

A function ensemble (or a permutation ensembi¢)= {H,}nen, is efficiently com-
putableif the distributionH,, can be sampled efficiently and the functionsHp can
be computed efficiently. That is, there exist probabilistic polynomial-time Turing ma-
chines,| andV, and a mapping from strings to functions,such thaty(l (1")) andH,
are identically distributed and (i, X) = (¢(i))(X) (so, in fact,H, = V(I (1), -)).

We would like to consider efficiently computable function (or permutation) ensembles
that cannot be efficiently distinguished from the uniform ensemble. In our setting, the
distinguisher is an oracle machine that can make queries to a length-preserving function
(or functions) and outputs a single bit. We assume that on inptiteloracle machine
makes onlyn-bit long queriesh also serves as the security parameter. An oracle machine
has an interpretation both under the uniform complexity model and under the nonuniform
model. Inthe former itisinterpreted as a Turing machine with a special oracle-tape (in this
case efficient means probabilistic polynomial time) and in the latter as a circuit-family
with special oracle-gates (in this case efficient means polynomial size). The discussion
of this paper is independent of the chosen interpretation.

Let M be an oracle machine, ldt be a function inF,, and letH, be a distribution
overF,. Denote byM f (1) the distribution ofM’s output when its queries are answered
by f and denote by ' (1") the distributionM f (1"), wheref is distributed according
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to H,. We would also like to consider oracle machines with access both to a permutation
and to its inverse. LemM be such a machine, Idt be a permutation ifP,, and letH,

be a distribution oveR,. Denote byM f~f’1(l”) the distribution ofM’s output when

its queries are answered Wy and f~ and denote byM "H"(1") the distribution

M 71", wheref is distributed according tél,.

Qefinitipn 2.2 (Advantage). LetM be an oracle machine and let = {H,}nen and
H = {Hnh}nhen be two function (or permutation) ensembles. We call the function

PrM ™ (1") = 1] — P{M " (1") = 1]

theadvantage Machieves in distinguishing betweéhand H. y
Let M be an oracle machine and ldt = {H,}neny andH = {H}nen be two permu-
tation ensembles. We call the function

Pr{M o He ' (17) = 1] — Pr{M P Fe (1) = 1]
the advantag® achieves in distinguishing betweéH, H1) and(H, H-1).

Definition 2.3 (¢-Distinguish).  We say tha¥l e-distinguishes betwee andH (resp.
(H, H Y and(H, H™1))fore = &(n) ifforinfinitely manyn’s the advantaghl achieves
in distinguishing betweenl andH (resp.(H, H™1) and(H, H™1)) is at leask(n).

Definition 2.4 (Negligible Functions). A functioh: N — Nisnegligibleif, for every
constant > 0 and all sufficiently large’s,

h(n) < i

nC

Definition 2.5 (PFE). LetH = {Hp}hen be an efficiently computabl&inction en-

semble and leR = {R}nen be the uniform function ensemblel is apseudorandom
function ensembld, for every efficient oracle machin#, the advantagéM has in

distinguishing betweeh andR is negligible.

Definition 2.6 (PPE). LetH = {Hn}nhen be an efficiently computablgermutatioren-
semble and leR = { R}y be the uniform permutation ensemhiteis apseudorandom
permutation ensembl§ for every efficient oracle machinkl, the advantag® has in
distinguishing betweehl andR is negligible.

Definition 2.7 (SPPE). LetH = {H\}neny be an efficiently computable permutation
ensemble and leR = {R,}hen be the uniform permutation ensembld. is a strong
pseudorandom permutation ensemifidéor every efficient oracle machin®l, the ad-
vantageM has in distinguishing betwedii, H~1) and(R, R™1) is negligible.
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Remark2.1. We use the phrasd ‘is a pseudorandom function” as an abbreviation for
“f is distributed according to a pseudorandom function ensemble” and similarly for “
is a pseudorandom permutation” anflis a strong pseudorandom permutation.”

2.3. k-Wise Independent Functions and Permutations

The notions ok-wise independent functions akevise “almost” independent functions
[31, [4], [12], [13], [24], [30], [49] (under several different formulations) play a major
role in contemporary computer science. These are distributions of functions such that
their value on any givek inputs is uniformly or “almost” uniformly distributed. Several
constructions of such functions and a large variety of applications were suggested over
the years.

We briefly review the definitions df-wise independence (akewises-dependence).
The definitions of pairwise independence (and pairwisiependence) can be derived
by takingk = 2.

Definition 2.8. Let D; and D, be two distributions defined ové&t, the variation dis-
tance betweel; andD; is

D1~ Dall = 3 3 ID1(@) — D2(w)].

weR

Definition 2.9. Let AandB be two sets, G< § < 1, letk be an integer (¥ k < |A)),
and letF be adistribution ofA — B functions. Lek;, Xo, ..., Xk bek different members
of A, and consider the following two distributions:

1. (f(xp), f(X2), ..., f(X)) wheref is distributed according t& .
2. The uniform distribution oveBk.

F is k-wise independent if for ak;, Xz, . .., Xk the two distributions are identicdf. is
k-wises-dependent if for alky, xp, . . ., Xk the two distributions are of variation distance
at mosts.

These definitions are naturally extended to permutations:

Definition 2.10. Let Abe aset, 0< § < 1, letk be an integer (¥ k < |AJ), and let
F be a distribution of permutations ovAr Letxy, X, ..., Xk bek different members of
A, and consider the following two distributions:

1. (f(Xp), f(X2),..., f(Xk)) wheref is distributed according t& .
2. The uniform distribution over sequencekdifferentelements ofA.

F is k-wise independent if for aky, xo, . . ., Xk the two distributions are identicdt. is
k-wises-dependent if for alks, xo, . . ., Xk the two distributions are of variation distance
at mosts.

The connection of this paper tewise independence is bidirectional as described in
the following two paragraphs.
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As shown in Section 3, pairwise independent permutations can replace the first and
fourth rounds of the LR-Construction. L&% be a finite field, then the permutation
fap(X) Lra.x+ b, wherea # 0, b € A are uniformly distributed, is pairwise inde-
pendent. Thus, there are pairwise independent permutationd pithie permutations
fa.p With operations ove® F(2")). In Section 5.2 it is shown that we can use even more
efficient functions and permutations in our construction. In particular, we consider the
concept ofs-AXU , functions.

In contrast with the case of pairwise independent permutations, we are not aware of
any “good” constructions df-wise §-dependent permutations for genekands. The
different variants of the LR-Construction offer a partial solution to this problem (“partial”
because of the bounded valuessahat can be achieved). For example, uskagise
§’-dependent functions ambits instead of pseudorandom functions in the original LR-
Construction yields k-wises-dependent permutation on Bits (fors = O(k?/2"+4")).

In Section 8 we analyze the different constructions of this paper as constructiongsef
3-dependent permutations.

3. Construction of PPE and SPPE

3.1. Intuition

As mentioned in the Introduction, a principle observation of this paper is that the dif-
ferent rounds of the LR-Construction serve significantly different roles. To illustrate
this point, consider two rounds of the construction. Namély= Dy, o Ds,, where
f;, f, € F, are two independently chosen pseudorandom functions. It is not hard to
verify that E is computationally indistinguishable from a random permutation to any
efficient algorithm that has access to pdipg, E(x))}™ ,, where the sequende;}" ,
is uniformly distributed. The intuition is as follows: Note that it is enough to prove the
pseudorandomness Bfwhen f; and f, aretruly random functionginstead of pseudo-
random). Let(L?, R%) = x; and(L?, R?) = E(x), by the definition ofE we get that
L2 =L@ f1(R%) andR? = R® @ f,(L?). Since the sequenda;} ; is uniformly
distributed, we have that with good probability (better than- m?/2"1)) R? # R?
for alli # j. Conditioned on this event, the sequerité}™ , is uniformly distributed
and independent of the sequeriggi™; (since f; is random). We now have that with
good probabilityl 7 # L# foralli # j. Conditioned on this event, the sequenBg}”
is uniformly distributed and independent of bath?}™ ; and {x;}™ . Notice that this
argument still works if the sequenée }I"; is only pairwise independent.

Nevertheless, as Luby and Rackoff show&d¢can be easily distinguished from a
random permutation by an algorithm that gets to see the val&easfE ~* on inputs of
its choice. The reason is that for any values L,, andR such that_; # L, we have
thatE(L1, R), @ E(L2, R), = L1 @ L». In contrast, for a truly random permutation,
the probability of this event is2. This is the reason that the LR-Construction includes
three or four rounds.

If we think of the second and third rounds of the LR-Construction as the permutation
E, then the discussion above implies that the role of the first and fourth rounds is to
prevent the distinguisher from directly choosing the inputEcind E~1. We show
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Fig.1. Constructions of SPPE: (a) the original LR-Construction and (b) the revised construction. In (a) and (b):
Vi >1,Li =R_1andR = Li_1® fi(R-1).In (0): (Lo, Ro) = ha(Input) andOutput= hf(('—z R2)).

that this goal can also be achieved with “combinatorial” constructions (e.g., pairwise
independent permutations) rather than “cryptographic” (i.e., pseudorandom functions).
In particular, the LR-Construction remains secure when the first and fourth rounds are
replaced with pairwise independent permutations (see Fig. 1 for an illustration).

3.2. Construction and Main Result

Definition 3.1. For anyf;, f, € F, andhy, hy, € Py, define

W(hy, fy, fp) & D¢, 0 Dy, 0 hy

and
S(hlv fls f27 h2) dzef hgl o sz o Df1 o} hl-
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Theorem 3.1. Let hy, h, € Py, be pairwise independent permutatiofsmilarly to
Remark2.1this is an abbreviation for “distributed according to a pairwise independent
permutation ensemblgand let f, f, € F, be pseudorandom functiaris, hy, f;, and

f, are independently chosefthen W= W(h,, f;, f;) is a pseudorandom permuta-
tion and S= S(hy, f;, f2, hy) is a strong pseudorandom permutati@¥ and S as in
Definition3.1).

Furthermore assume that no efficient oracle machine that makes at mestmin)
queries e-distinguishes between the pseudorandom functions and random functions for
e = ¢(n) (see Definitior2.3). Then no efficient oracle machine that makes at most m
queries to W(resp S and S?) ¢'-distinguishes Wresp S) from a random permutation
fore’ = 2 + m?/2" + m?/2%".

Remark3.1. The conditions of Theorem 3.1 are meant to simplify the exposition of
the theorem and of its proof. These conditions can be relaxed, as discussed in Section 5.
The main points are the following:

1. Asingle pseudorandom functidncan replace botH; and f5.
2. h; andh, may obey weaker requirements than pairwise independence. Forexample,
it is enough that, for every # vy,

Prihi(X),, = hi(y)i)] <2 and  Prha(x), = ha(y), ] <2

3.3. Proof of Security

We now prove the security of the SPPE construction; the proof of security for the
PPE construction is very similar (and, in fact, a bit simpler). As with the original LR-
Construction, the main task is to prove that the permutations are pseudorandom when
f1 and f, are truly random (instead of pseudorandom).

Theorem 3.2. Lethy, hy € Py, be pairwise independent permutations and lgtff
Fn be random functionsDefine S= S(h;, fi, f, hy) (as in Definition3.1) and let
R € Py, be arandom permutatioThen for any oracle machine Mnot necessarily an
efficient ongthat makes at most m querjes
2 2
PIMSS*(1%) = 1] — PMRR (12" = 1]| < % + %

Theorem 3.1 follows easily from Theorem 3.2 (see a proof-sketch in what follows).
In order to prove Theorem 3.2, we introduce additional notation.

Let G denote the permutation that is accessible to the madiif& is eitherS or
R). There are two types of querid$ can make: eithef+, x) which denotes the query
“what is G(x)?” or (—, y) which denotes the query “what@1(y)?” For theith query
M makes, define the query—answer p&ir, i) € lan x lon, Where eitheM’s query
was (+, X;j) and the answer it got wag or M’s query was(—, y;) and the answer
it got wasx;. We assume tha¥l makes exactlyn queries and refer to the sequence
{{X1, Y1), ---, {Xm, ¥m)} Of all these pairs as theanscript (of M’s computation).

Notice that no limitations were imposed on the computational powkt.afherefore,
M can be assumed to be deterministic (we can always fix the random tape that maximizes
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the advantag®! achieves). This assumption implies that for everg 1 < mtheith
query of M is fully determined by the first — 1 query—answer pairs. Thus, for every

it can be determined from the transcript whetherittiequery was(+, x) or (—, v;).

We also get thaM'’s output is a (deterministic) function of its transcript. Denote by
Cml{{X1, Y1), --., (Xi—1, ¥i—1)}] theith query ofM as a function of the previous query—
answer pairs and denote B [{(X1, Y1), ---, (Xm, Ym)}] the output ofM as a function

of its transcript.

Definition 3.2. Leto be a sequencgx, Y1), ---, (Xm, Ym)}, where for 1<i < mwe
have thatx;, yi) € lon x l2n. Theno is apossible Mtranscriptif, forevery 1<i < m,

CM[{<X17 y1>7 ceey (Xi—la yl—l>}] € {(+7 Xi)a (_’ yl)}

We consider yet another distribution on the answerlite queries (which, in turn,
induces another distribution on the possiMetranscripts). Consider a random process
R that on the th query ofM answers as follows:

1. If M’s query is(+, x) and for some Xk j < i the jth query—answer pair i, ),
thenR's answer isy (for an arbitrary such query—answer pai, y)).

2. If M’s query is(—, y) and for some k j < i the jth query—answer pair i, Y),
thenR's answer isx (for an arbitrary such query—answer pdi, y)).

3. If neither 1 nor 2 holds, theR's answer is a uniformly chosemsait string.

It is possible thaR provides answers that are not consistent \sitly permutation:

Definition 3.3. Leto = {(X1, Y1), ..., (Xm, ¥m)} be any possibléM-transcript.c is
inconsistenif for some 1< j < i < mthe corresponding query—answer pairs satisfy
Xi = xj andy; # yj ory; =Yy; andx # x;. Otherwiseg is consistent

We first show (in Proposition 3.3) that the advantagenight have in distinguishing
between the proce$dand the random permutatidiis small. The reason is that as long
asRanswers consistently (which happens with good probability) it “behaves” exactly as
a random permutation. In order to formalize this, we consider the different distributions
on the transcript oM (induced by the different distributions on the answers it gets).

Definition 3.4. LetTs, Tr, andTs be the random variables such tiigts the transcript
of M when its queries are answered 8yTr is the transcript oM when its queries are
answered byr, andTy, is the transcript oM when its queries are answered RyNotice
that by these definitions (and by our assumptidi$)S ' (12") = Cy (Ts) (are the same
random variables) andl R-R ™ (121) = Cy, (TR).

Proposition 3.3.

2

PACM(Te) = 1] = PICu(TR) = 1] < Zg.
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Proof. For any possible and consistévittranscriptc we have that

22N
= P{Tz = o | Tz is consistent]

PR = 0] = @ _m) g

Therefore, the distribution ofs conditionedon T being consistent is exactly the dis-
tribution of Tg. Furthermore, the probability thdis is inconsistent is smallTy is
inconsistent if for some X j < i < mthe corresponding query—answer pairs satisfy
Xi = xj andy; # yj ory; = y; andx; # x;. For a giveri andj this event happens with
probability at most 22". Hence,

m2
22n+1°

m
P T is inconsistent <2> 27N <
R
The proposition follows:
PHC(To) = 1] - PACu (To) = 1]

=<

P{Cwm(Tg) = 1| Ty is consistent}- F;I{CM(TR) = 1]‘
R

- P{Tg is consistent]
R

+ 'Pj{CM(Tﬁ) = 1] Ty is inconsistent}- FF’J[CM(TR) = 1]'
R
- P{Tg is inconsistent]
R

< F';r[TfQ is inconsistent]
m2
< 22n+1°

O

It remains to bound the advantatye might have in distinguishing betwedly, and
Ts. The intuition is that for every possible and consistBhtranscripto unless some
“bad” and “rare” event on the choice bf andh, (as in the definition ofS) happens,
the probability thafls = o is exactly the same as the probability tHat= o. We now
formally define this event (Definition 3.5) and bound its probability (Proposition 3.4).

Convention 3.1. For any possibleM-transcriptc = {(X1, Y1), ..., (Xm, ¥m)} We can
assume hereafter thatdf is consistent, then far # j bothx # x; andy; # y; (this
means thaM never asks a query if its answer is determined by a previous query—answer
pair).

Definition 3.5. For every specific choice of pairwise independent permutatipn® €
P, (in the definition ofS) define BAD(hy, hy) to be the set of all possible and consistent
M-transcriptsg = {(X1, Y1), ..., {Xm, ¥m)}, Satisfying:

J1<i < j<m suchthat hi(X), =hi(Xj), or ha(y), =ha(y)),.
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Proposition 3.4. Let hy, h, € Py, be pairwise independent permutatiotisen for any
possible and consistent M-transcrigpt= {(X1, Y1), ..., (Xm, Ym)} We have that

2

m
hll:,)ffz[o- € BAD(hy, hz)] < F

Proof. By definition,oc € BAD (hy, hy) if there exist 1< i < j < msuch that either
h1(X) e = h1(X})) Or ha(yi)). = ha(y)), . For any given andj both P [hi(X), =
h1(X)) ] and Pp,[h2(yi),. = ha(yj), ] are smaller than?' (sinceh; andh; are pairwise
independent). Therefore,

m
Pro € BAD(hy, hy)] < <2) 2.2 < O

The key lemma for proving Theorem 3.2 is:

Lemma 3.5. Leto = {(X1, Y1), --.-, {(Xm, Ym)} b€ any possible and consistent M-transcript
then

F;'{Ts =0 |0 ¢ BAD(h, hp)] = P{Tg = o].
R

Proof. Sinceo is a possibleM-transcript we have that, forallZ i < m,

CM[{<X1» YI>7 SE) (Xifls Y|71>}] € {(+9 Xi)v (_7 yl)}

Therefore,Tg = o iff, forall1 <i < m, theith answerR gives isy; in the case that
Cml{{X1, Y1), ---, (Xi—1, ¥i—1)}] = (+, %) and otherwise it$th answer isg. Assume
that R answered “correctly” (i.ey; orx as above) for each one of the first 1 queries.
Then by Convention 3.1 and the definition Bfits ith answer is an independent and
uniform 2n-bit string. Therefore,

PiTg=0] = 272"
R
Sinceo is a possibleM-transcript we have thals = o iff, forall 1 < i < m,
yi = S(x;). Consider any specific choice of permutatidgnsandh, (for which S =

S(hy, f1, f2, hy)) such thatr ¢ BAD(hy, hy). Let (L2, R%) = hy(x) and(L?, R?) =
hz(yi). By the definition ofS, we get that

Vi =Sx) <= h[LERHY=L"@L? and f(L?) =R @R
Forevery 1<i < j < mbothR? # R andL? # L? (otherwises € BAD (hy, hy)).
Therefore, sincef; and f, are random, we have that for every choicénpfandh, such
thato ¢ BAD (hy, hy) the probability thaffs = o is exactly 22"™. We can conclude:

PiTs =0 |0 ¢ BAD(hy, h)] = 2-2nm

which complete the proof of the lemma. O
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Proof of Theorem 3.2. LetI be the set of all possible and consistdhitranscriptsr
such thatM (o) = 1.

PACU(To) = 1)~ PHCu(To) = 1]

=D (PI[TS =o] - PI{TQ = a]>

oel

=)
oel

Pr[o ¢ BAD(hy, hy)] &)

+ Pi{ Tg is inconsistent]
R

Pr[Ts =olo € BAD(hy, hy)] — Pr[T = 0]

+D (Pr[TS = oo € BAD(hy, hy)] — Pr[T = a])

oel

hprf [0 € BAD(hy, hy)] )

1,12

+ P Ty is inconsistent] 3)
R

We already showed in the proof of Proposition 3.3 that the value of (3) is smaller than
m?/22"+1 by Lemma 3.5 we get that the value of (1) is zero. Therefore, it remains to
bound the value of (2): Assume without loss of generality that

ZPI{TS =0 | o € BAD(hy, hy)] - Pr [rr € BAD (hy, hy)]

oel

< Z Pr[T =o]- h!’gz[o € BAD (hy, hy)],

oel

then using Proposition 3.4 we get that

Z <F;|'[Ts =0 | o € BAD(h]_, hz)] — FBI'[TIQ = O‘]) . hPI: [O‘ S BAD(hl, hz)]
R 1,N2

oel

<> Pr[T =o0]- Pr [0 € BAD(hy, hy)]

oel’

< max. Pr [c € BAD(hy, hy)]

ogel’ h 1, 2
m2

< —.
2n

Thus, we can conclude that

2

2
RACW(Ts) = 1] = PCu(Te) = 1] < 5 + s

22n+1°
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Using Proposition 3.3 we complete the proof:
‘F;r{MSSl(lZ“) = 1] - PMTRT @) = 1]‘
= '%’[CM(TS) =1] - I?J[CM(TR) = 1]‘

=

F;'{CM(TS) =1]- Ig[CM (Tp) = 1]’ + ‘%‘[CM (Ty) =1] - FF)J[CM (Tr) =1]

m?  m?
Given Theorem 3.2, the proof of Theorem 3.1 is essentially the same as the corre-
sponding proof of the original LR-Construction (the proof of Theorem 1 of [26], given
their main lemma). The proof idea is the following: Define three distributions:

e S = S(hy, f1, fz, hy), wherehy, h, € Py, are pairwise independent arfg, f,
F, are pseudorandom functions.

e S = S(hy, 01, f2, hp), wherehy, h, € Py, are pairwise independent; € F, is a
pseudorandom function, amg € F, is a random function.

e S = S(hy, 01, 02, h2), wherehy, h, € Py, are pairwise independent agd g, €
F, are random functions.

It is enough to show that, for every oracle machine, for all but a finite numh@s.of

1. |PMSST(120) = 1] — PIM &S (12") = 1]| < &(n).
2. |PIM®S (120 = 1] — PIM®S7(12") = 1]| < e(n).

If 1 or 2 do not hold, then we can construct an efficient oracle mackifh¢hat ¢-
distinguishes the pseudorandom functions from the random functions in contradiction
to the assumption. Assume, for example, that, for infinitely masy

PIMSS (12" = 1] — PIM2S ' (12") = 1]| > &(n).

The oracle machin®’ on input T' and with access to a functidd € F;, first samples
pairwise independent permutatiohs, h, € P,,, and a pseudorandom functiésn e F,.

M’ then invokesM with input 12" and answers its queries with the valuesSaindS1,

for S = S(h;, O, f;, hy). WhenM halts so doedd’ and it outputs whatever was the
output of M. Notice that ifO is a pseudorandom function, then the distributiorSof

is S whereas ifO is a truly random function, then the distribution 8fis S,. This

is the reason thatl’ distinguishes a pseudorandom function from a random one with
advantage greater thaiin). Similar hybrid arguments apply to all other constructions
of this paper.

4. The Framework

As we shall see in Sections 5-7, the construction of Section 3 can be relaxed and
generalized in several ways. The different pseudorandom permutations obtained share a
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Input

| Output I

Fig. 2. The high-level structure of the different constructions of SPPE.

similar structure and almost identical proof of security. In this section we examine the
proof of Theorem 3.2 in a more abstract manner. Our goal is to establish a framework for
proving (almost) all the constructions of this paper and to suggest a way for designing
and proving additional constructions.

Our framework deals with constructions of a pseudorandom permutatore bits
which is the composition of three permutatio®= h,* o E o h; (see Fig. 2 for an
illustration). In generah; andhz‘1 are “lightweight” andkE is where most of the work is
done.E is constructed from pseudorandom functions and for the purpose of the analysis
we assume (as in Theorem 3.2) that these functions are truly random. In Section 3,
for example£ = 2n, h; andh, are chosen as pairwise independent permutations, and
E = Dy, o Dy, for randomfy, f, € F.

The framework starts withle which may be easily distinguished from a truly ran-
dom permutation and transforms it via and h, into a pseudorandom permutation.
The propertyE should have is that for almost every sequed¢e,, yi), ..., (Xm, Ym)},
the probability thatVvi, yi = E(X) is “close” to what we have for a truly random
permutation:

Definition 4.1. Asequence(Xi1, Y1), ..., {(Xm, Ym)},iISE-Good if P[Vi, v = E(X)]
= 2-tm

We assume that apart from some “rare” sequences all otheEs@aod. Loosely speak-
ing, the role ofh; andh; is to ensure that under any (adaptive chosen plaintext and
ciphertext) attack ot the inputs and outputs & form anE-Good sequence with very
high probability.
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For the exact properties needed from the distributiortg;oh,, andE, we try to follow
the statement and proof of Theorem 3.2. The goal is to showalsindistinguishable
from a truly random permutatioR on ¢ bits. Specifically, that for some smal(whose
choice will be explained hereafter), for any oracle machih@ot necessarily an efficient
one) that makes at most queries:

2
PIMSS (1Y) = 1] — PIMRR (1) = 1]| < e + %

Let the notions of a query—answer pair, a transcript, the fund@ign a possibleM -

transcript, the random proceBS a consistent transcript, and the different random vari-

ablesTs, Tr, andTg be as in the proof of Theorem 3.2. Proposition 3.3 (saying that the

distance betweeng andT is bounded by the probability tha@ig is inconsistent and that

this probability is bounded by?/2¢+1) still holds. The heart of applying the framework

is in specifying the “bad'M-transcripts for givertn; andh,. This set BADQ: (hy, hy) re-

places BATh;, hy) in Definition 3.5 and in the rest of the proof. It contains possible and

consistentM-transcripts and should have the property that@ry, yi1), ..., (Xm, Ym)}

not in BAD g (hy, hy) satisfies thaf(h1(x1), ha(y1)), ..., (h1(Xm), h2(ym))} is E-Good.

Note that Definition 3.5 is indeed a special case of the above and also that, by this

property,

PSr[TS =0|o ¢ BADg(hy, hz)] =27tm
This implies that Lemma 3.5 where BADY, hy) is replaced with BAR (hy, hy) is true:

Lemma4.l. Leto = {{X1, Y1), ..., (Xm, Ym)} be any possible and consistent M-tran-
script, then

RiTs =0 [ o ¢ BADe(hy, hy)] = Pi(Tg = o].

For BADg (hy, hy) to be useful we must have that

Pr [O‘ € BADE(hl, hz)] <e (4)
hy,hy

and this substitutes Proposition 3.4. This is the only place in the proof where we use the
definition ofe and the definition of the distributions bf andh,. As will be demonstrated

in Sections 5.2 and 7.1, there is actually a tradeoff between reducing the requirements
from h; andh, and having a somewhat larger valuesoApplying (4) and Lemma 4.1

as in the proof of Theorem 3.2 we conclude:

Theorem 4.2. Lethy, hy, E be distributed over permutationsin,iet S= hz‘lo Eoh;y,
and let Re P, be a random permutatiorsuppose thaBADEg (hy, h,) is as above and
¢ satisfieg(4). Then for any oracle machine Mnot necessarily an efficient onthat
makes at most m queries

2

PHMSS™(1%) = 1] — PHMRR 1) = 1| < ¢ + %
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To summarize, the major point in proving the security of the different constructions is
to define the set BAP(h1, hy) such that for any possible and consistiétvtranscript,
o, both PE[TS =o|loéd BADE (hq, hz)] =2"%"and Pﬁl,hz[a € BADg(hy, hz)] <e¢
(for the specifice in the claim we are proving). This suggests that the critical step for
designing a pseudorandom permutation, using the framework described in this section, is
to come up with a permutatida such that the set &-Good sequences is “large enough”
and “nice enough.” Note that to meet this end different or more general definitions of an
E-Good sequence can be used with only minor changes to the proof (as is the case for
the permutatiorS in Section 7).

5. Relaxing the Construction

5.1. PPE and SPPE with a Single Pseudorandom Function

Since Luby and Rackoff introduced their construction a considerable amount of research
[33]-[36], [38], [42]-[44], [46], [51] has been focused on the following question: Can
we obtain a similar construction of PPE or SPPE such that every permutation will be
constructed from ainglepseudorandom function?

Apparently, this line of research originated in the work of Schnorr [46]. Schnorr
considered the LR-Construction, where the functions used are truly random, as a pseu-
dorandom generator that is secure if not too many bits are accessible. The security of
Schnorr’s generator does not depend on any unproven assumption. This notion of local-
randomness is further treated in [28] and [29]. Since the key of a random function is
huge it makes sense to minimize the number of functions and, indeed, Schnorr sug-
gestedD; o D¢ o D¢ as pseudorandom (the suggested permutation was later shown to
be distinguishable from random [42]).

Following is an informal description of some of these results.fLet F, be arandom
function, then:

e Foralli, j, k > 1 the permutatioli o D¢; o D¢k is not pseudorandom [51].

e Foralli, j, k, £ > 1 the permutatiolsi o D¢; o D¢k o D¢« is not strongly pseudo-
random [43].

e D2 0 Dt o D¢ o D¢ is pseudorandom [38].

e D o D) o D2 o Df o Dy o Dy is strongly pseudorandom, whetee F; is the
identity function [44].

e Diotof 0 Df o Dy is pseudorandom arid ¢t o Df o Dt o Dy is strongly pseudo-
random, wheré is, for example, a rotation of one bit [36].

A critique which has often been voiced is that using only one pseudorandom function
does not seem too significant: A pseudorandom functiom aen?2 bits can replace
four pseudorandom functions anbits or, alternatively, a small key can be used to
pseudorandomly generate a larger key. It should also be noticed thatthe new constructions
require additional invocations of the pseudorandom functions which imply anincrease in
the computation time. Furthermore, these results involve detailed and nontrivial proofs
(to a point where some papers claim to find inaccuracies in others).

The adjustment of the LR-Construction we suggestin Section 3 can easily be converted
into a construction of PPE and SPPE from a single pseudorandom function. Simply re-
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place both (pseudorandom) functiofisand f, with a single (pseudorandom) function

f. This solution does not suffer from the drawbacks of the previous ones. The construc-
tion and the proof remain as simple as before and the pseudorandom function is only
invoked twice at each computation of the permutation. The additional key-length for the
pairwise independent functionisy(andhy) is not substantial (especially compared with

the length of a truly random function). Consider, for example, the construction of SPPE
when we use a truly random functidn

Theorem 5.1. Let hy, hy € P,, be pairwise independent permutations and let f,
be a random functiorDefine S= S(hy, f, f, hy) (as in Definition3.1)and let Re P,
be a random permutatio hen for any oracle machine Mnot necessarily an efficient
oné that makes at most m querjes

2m?> P

PrMSS (1% = 1] - PIMRR (12" = 1]| < o+ 2

The proof follows the framework described in Section 4. The set BADh,) (Defi-
nition 3.5) is replaced with the set BAIh1, hy) defined to be:

The set of all possible and consistéittranscripts,

o = {{X1, Y1), - - - » (Xm, Ym) },

satisfying thatthere exist® i < j < msuchthateitheni(x),, = hi(X)),
or ha(yi). = ha(yj), (as before)or there exist 1< i, j < m such that
hi(Xi) i = ha(yj),, -

In order to apply Theorem 4.2, it is enough to note that by this definition we get that for
any possible and consistet-transcriptsg, both Pg[Ts = o | 0 € BAD1(hy, hy)] =
2-2"M (hence, it is a proper definition according to the framework) angdHo <
BADl(hl, hg)] < 2m2/2”.

5.2. Relaxing the Pairwise Independence Requirement

The construction of Section 3 may be interpreted in the following way: given the task
of constructingefficientpseudorandom permutations it is enough to concentrate on the
efficient construction of pseudoranddomctions The assumption that supports such
a claim is that the computation of pseudorandom functions is much more expensive
than the computation of pairwise independent permutations. Therefore, computing the
value of the pseudorandom permutation (that is constructed in Section 3) on any input
of 2n bits is essentially equivalent to two invocations of a pseudorandom function with
n-bit inputs. In this section we show that we can use even weaker permutations instead
of the pairwise independent ones—resulting in an even more efficient construction of
pseudorandom permutations.

As mentioned in Section 4, the only place in Section 3 we use the fachthatd
h, are pairwise independent permutations is in the proof of Proposition 3.4. In fact, the
exact requirement oh; andh, we use is that, for every # vy,

flffhl(x)\R =hi(y)e] <2 and th’fhz(X)\L =hy(y) ] <2"



On the Construction of Pseudorandom Permutations: Luby—Rackoff Revisited 49

Furthermore, we can replace™with anye > 27" and still get a construction of pseudo-
random permutations (with somewhat larger distinguishing probability). Consider, for
example, the revised statement of Theorem 3.2:

Theorem 5.2. Let H! and H? be distributions of permutations inyPsuch tha for
every pair of2n-bit strings x# vy,

Pr [ni(¥), =hi(y)] <& and  Pr [hax), =ha(y), ] <e.
|"I1€H1 h2€H2

Let hy be distributed according to H let h, be distributed according to & and let

f1, fo € F, be random function®efine S= S(h,, fi, 2, ho) (asin Definition3.1)and

let R € P,, be a random permutatiofhen for any oracle machine Mnot necessarily
an efficient ongthat makes at most m querjes

2

PIMSS"(12") = 1] — PrIMRR(12) = 1]| < m? - ¢ + >
The proof follows the framework described in Section 4. This time the definition of
BAD (hy, hy) stays unchanged and, in order to apply Theorem 4.2, we only need to note

that, for any possible and consistéttranscripto, Pty n,[0 € BAD(h1, hy)] < m?-e.

The conditions orH! and H? in Theorem 5.2 are somewhat nonstandard (since
the requirements are on half the bits of the output). Nevertheless, these conditions are
satisfied by more traditional requirements on function families. In particular, the concept
of e-AXU , functions can be used:

Definition 5.1. A distribution onl, — I, functions (or permutationsH, is e-AXU
if, for everyx # y and everyz (x, y, z € 1),

hI:l[i[h(X) ®h(y) =17 <e.

This concept was originally defined by Carter and Wegman [12]; we use the terminology
of Rogaway [40].

It is easy to verify that the conditions d#® and H? in Theorem 5.2 are satisfied if
bothH!andH? are((2" — 1)~1-¢)-AXU,. Such a distribution of permutations ove,

fore = (2"+1)71, isha(x) %4 x wherea is uniform in I2n\{0} and the multiplication
is in GF(22M).

Another way to construdtl* and H? is by using Feistel permutationgith ¢-AXU »
functions Let H be a distribution ot-AXU, functions onn-bit strings, then we can
defineH?! to be {Dplhen and H? to be{Dgl}heH. The reason is that for every two
different2n-bit stringsx = (L%, R!) andy = (L?, R?) and every functioth € F, we
have by definition that

Dh(X), =Dn(y), <= hRYHY@h(R)=L'eL2

If Rt = R?, thenL! # L2 and therefor®;(x)|, # Dn(y),, otherwise, by the definition
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of e-AXU , functions:

PriDh(0), = Dn(y)i] = Prin(RY @ h(R) = L & L7 < e.

Thus,H! satisfies its requirement and similarly felr?.

By using Feistel permutations to construdtt and H? we get the original LR-
Construction as a special case (since a random function is in partictlad®U ;).

Thus, the proof of security in Section 3 also holds for the original LR-Construction. The
idea of usings-AXU ;, functions instead of pseudorandom functions for the first round
of the LR-Construction was previously suggested by Lucks [27].

Another advantage of this approach is that it allows us to use many efficient construc-
tions of function families. An example of efficient2AXU, functions are Vazirani's
“shift” family [48]. A key of such a function is a uniformly chosen striage 1,,_; and
the jth bit of f4(x) (1 < j < n)is defined to b& "', xia;i_1 mod 2.

A substantial amount of research [12], [19], [23], [40], [47], [49] deals with the con-
struction ofefficienthash functions. This line of work contains constructions that obey
weaker definitions on function families than pairwise independence and in particular
contains constructions af-AXU, functions. Unfortunately, these functions were de-
signed to be especially efficient when their output is substantially smaller than their
input (since they were mainly brought up in the context of authentication) which is not
true in our case (but is relevant in Section 7). An additional objective is to reduce the
size of the family of hash functions (e.g., [18] and [23]). In our setting the purpose of
this is to reduce the key-length of the pseudorandom permutations.

6. Reducing the Distinguishing Probability

There are various circumstances where it is desirable to have a pseudorandom permuta-
tion on relativelyfewbits (say 128). This is especially true when we want to minimize
the size of the hardware circuit that implements the permutation or the communication
bandwidth with the (hardware or software) component that computes the permutation.

Let F be a pseudorandom permutationdpits (note thah = ¢/2 in Section 3) con-
structed from truly random functions (@2 bits) using the LR-Construction. As shown
by Patarin [35],F can be distinguished (with constant probability) from a random per-
mutation usingD(2¢/4) queries (which means that the analysis of the LR-Construction,
where the distinguishing probability fon queries isO(m?/2¢/?), is tight). Therefore,
the LR-Construction orf bits can only be used if‘?* is large enough to bound the
number of queries in the attack on the block cipher.

In this section a simple generalization of the construction of Section 3 is presented.
Using this construction, the adversary’s probability of distinguishing between the pseu-
dorandom and random permutations can be reduced to rotighlym?/21-1/V¢ for
every integer 2< t < ¢ (fort = 2 we get the original construction). To achieve this
securityt + 2 permutations are composed. The initial and final are pairwise independent
permutations, the rest are (generalized) Feistel permutations defingd by, — 14/t
random (or pseudorandom) functions (see Fig. 3 for an illustration).

Patarin [37] shows that if we take six rounds of the LR-Construction (instead of three or
four), then the resulting permutation cannot be distinguished from a random permutation
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| Input I

| Output 4'

Fig. 3. Construction of strong pseudorandom permutations with reduced distinguishing probability using
t + 2 rounds (here = 3). Recall,fi: 11_1/t)¢ = gyt (herefi: loez = 1g3).
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with advantage better tham/2¢ (improving [35]). This means that distinguishing the
six-round construction from a truly random permutation (with constant probability)
requires at leas (2¢/3) queries. The bound we achieve in this secti@iZ1—1/-¢/2))

is better (for anyt > 4). Note that our construction uses pseudorandom functions with
larger input-length, which might be a disadvantage for some applications.

In order to describe our generalized constructions we first extend Feistel permutations
to deal with the case where the underlying functions have arbitrary input and output
lengths (instead of length-preserving functions as in Definition 2.1). We note that using
such “unbalanced” Feistel permutations was previously suggested in [5], [27], and [45].

Definition 6.1 (Generalized Feistel Permutations). Forany two positive integars)

¢, and any functionf: 1, — lg, let¢ = ¢ 4+ s and letDs € P, be the permutation

defined byD; (L, R) &' (R, L @ f(R)), where|L| = sand|R| = ¢'.

We can now define the revised construction and consider its security. These are simple
generalizations of the construction in Section 3 and of its proof of security.

Definition 6.2 ((t + 2)-Round Construction). For any integers<2t < ¢, lets andr
be integers such thét=s -t +r (wherer < t). For anyhy, h, € Py,

LETHN P P R AT

andf g, ..., fi: l,_s — lgdefine

W(hl, f]_, f2..., ft) d:(-:‘fot ODfF1 O~--ODf1 Ohl

and

def

Sthy, fq, fo, ..., ft,hy) = hgl o Df‘ o th_l 0---0 Df1 ohjy.

(We get the construction of Definition 3.1 by choosing 2,s = ¢/2, andr = 0.)

Theorem 6.1. Let W and S be as in DefinitioB.2, where h and h, are pairwise
independent permutations ang, ff,, . .., f; are pseudorandom functioffsis allowed
to be a function of); hy, hp, and f;, fo, ..., f; are independently chosefhen W is a
pseudorandom permutation and S is a strong pseudorandom permutation
Furthermore assume that no efficient oracle machine that makes at mestmi¢)
gueries e-distinguishes between the pseudorandom functions and random functions
for ¢ = e(n). Then no efficient oracle machine that makes at most m queries to W
(resp S and S?) ¢'-distinguishes Wresp S) from a random permutation fas’ =
tee4+t/2.m2/20100 4 om2/2t,

In case the middle functions are truly random this reduces to:

Theorem 6.2. Let S be as in Definitioi.2,where h and h, are pairwise independent
permutations and f f,, ..., f; are random functions and let R P, be a random
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permutation Then for any oracle machine Mnot necessarily an efficient onthat
makes at most m queries

1 —1 t m2 m2
SStoqy 11 R,R oy _ i _
Pr[M 1 =1] - Pr[M 15 =1]| < 5" SE=Te + R
The proof of Theorem 6.2 follows the framework described in Section 4. Assume for
simplicity that¢ = s - t, the set BAOhy, hy) (Definition 3.5) is replaced with the set
BAD>(hy, hy) defined to be:

The set of all possible and consistévittranscripts,ec = {(X1, y1), ...,
{Xm, Ym)}, satisfying that there existdi < j <mand 1<k <t such that

(R RLLL L = (RS R L L,

where(F!, F?, ..., FY) = hy(x) and(LL L?, ..., LD = ha(y) (|RY| =
[F?l=-=[F|=[]=[L[=-=]|Li|=09.

This guarantees that for any possible and consistétitanscriptc we have that
Prs[Ts = o | 0 & BAD,(hy, hy)] = 27™ (and, hence, it is a proper definition according
to the framework). The reason is that, under the notation above,

Vi, ¥ =S(x)<=Vl<i<m, Vl<k<t, fi(F* .. FLLL ..., LKY = Fre Lk

Therefore, given any specific choice lof and h, (in the definition ofS) such that

o ¢ BAD,(hy, hy) the evenfTs = o is composed ofm - t independent events, each of
which has probability 2° of happening. In order to apply Theorem 4.2, it remains to
note that for any suct we have that

m t m2
P A . L o—(=Te/t)) .
hl.frl‘z[a €B D2(hl’ h2)] <t (2) 2 = 2 2t-re¢/t1”

Remark6.1. The construction of this section achieves a substantial improvement in
security over the construction in Section 3 even for a small constar (that is, with

a few additional applications of the pseudorandom functions). Nevertheless, it might be
useful for some applications to take a larger value.dthoosingt = ¢ reduces the
advantage the distinguisher may achieve to roughlym?) /2.

7. SPPE on Many Blocks Using PFE or PPE on a Single Block

Consider the application of pseudorandom permutations to encryption, i.e.,fudhg
in order to encrypt a messad@é, where f is a pseudorandom permutation. Assume
also that we want to use DES for this purpose. We now have the following problem:
while DES works on fixed and relatively small length strings, we need a permutation on
|M|-bit long strings, where the length of the messdi#|, may be large and may vary
between different messages.

This problem is not restricted to the usage of DES (though the fact that DES was
designed for hardware implementation contributes to it). Usually, a direct construction
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of pseudorandom permutations or pseudorandom functions (if we want to employ the
LR-Construction) with large input-length is expensive. Therefore, we would like a way to
construct pseudorandom permutations (or functiong)any blockérom pseudorandom
permutations (or functions) amsingle block

Several such constructions were suggested in the context of DES (see, e.g., [10]
for the different modes of operation for DES). The simplest, known as the electronic
codebook mode (ECB mode), is to divide the input into subblocks and to apply the
pseudorandom permutation on each subblock separately. This solution suffers from the
obvious drawback that every subblock of output solely depends on a single subblock of
input (and, in particular, the permutation on the complete input is not pseudorandom).
This may leak information about the message being encrypted (see further discussion in
Section 7.2).

In this section we consider a generalization of the construction of Section 3 that
uses pseudorandom functions (or permutations) simgle block to construct strong
pseudorandom permutations oranyblocks. The idea is as follows: apply a pairwise
independent permutation on the entire input, divide the value you get into subblocks, and
apply two rounds of Feistel permutations (or one round of a pseudorandom permutation)
on each subblock separately, finally, apply a second pairwise independent permutation
on the entire value you get (see Fig. 4 for an illustration).

This solution resembles the ECB mode, it is almost as simple and it is highly suitable
for parallel implementation. Contrary to the ECB mode, this construction does give a
pseudorandom permutation tite entire messagg¢hough the security parameter is still
relative to the length of a subblock).

For simplicity, we only describe the construction using truly random functions (or
a truly random permutation). The analysis of the construction when pseudorandom
functions are used follows easily. In addition, we restrict our attention to the construction
of strongpseudorandom permutations.

Definition 7.1. For any two integerb ands, for any functiong € Fs letg*? € Fy.s be
the function defined by

90, Xa, -, X0) = (G0X0), GO, - .+, (X))
For anyfi, f, € F, andhy, hy € Payp, define

Sthy. 1. f2.hp) €y o D0 DFP o hy.

For anyp € P,, andhq, hy, € Py, define

&(hy. p.hp) E'hyo pPohy.

Theorem 7.1. Let hy, h, € P,y be pairwise independent permutatiohet f;, f,
F, be random functionsand let p € P,, be a random permutatiorDefine S =
S(ha, f1, f2,hy) and S = S(hy, p, hy) (as in Definition7.1) and let R e Py, be a
random permutationThen for any oracle machine Mnot necessarily an efficient one
that makes at most m querjes

m?2.b?>  n?

PIM S (17%) = 1] - PIMR R (17) = 1] < —— + o5



On the Construction of Pseudorandom Permutations: Luby—Rackoff Revisited 55

Input

%
P

Qutput ’

Fig. 4. Construction of a strong pseudorandom permutation on many (six in this case) blocks from a
pseudorandom function on a single block.

and

B ) m? - b?
PIMSS ™ (179) = 1] - PAM™ R (@) = 1) < -

The proof of Theorem 7.1 fos follows the framework described in Section 4. The
set BAD(hy, hy) (Definition 3.5) is replaced with the set BAh;, h,) defined to be:

The set of all possible and consistévittranscripts,

= {{X1, Y1), . . ., {(Xm, Ym)},

such that either there. are two equal vaIueSFlflj }1<i<m, 1<j<b OF there are
two equal values iflL > 1}, . 1<j<b, Where(FL, F2, ..., F?) = hy(x)



56 M. Naor and O. Reingold

and (LY, L2, ..., L®) = hy(y) (|FY = |F? = - = |[F®] = |L}| =
= (R

This guarantees that for any possible and consistettanscriptc we have that

PiTs=0 | o & BADs(hy, hy)] = 272"

(and, hence, it is a proper definition according to the framework). The reason is that,
under the notation above,

Vi,yi=S(x) <= Vi<i<mVi<j<h fH(F)=F1teLd"

and f(L2 Y =F @L?,

Therefore, given any specific choice lof and h; (in the definition ofS) such that

o ¢ BAD3(hy, hy) the eventls = o is composed of & - b independent events, each
of which has probability 2" of happening. In order to apply Theorem 4.2, it remains to
note that for any suck we have that

m? - b2
2n

b
hPfI; [O’ € BAD3(hy, hz)] <2 (mz ) 27N <

The proof of Theorem 7.1 fo$ slightly deviates from the framework described in
Section 4 (providing yet further evidence to the claim that “nobody is perfect”). The set
BAD (h1, hy) (Definition 3.5) is replaced with the set BA[h1, h,) defined to be:

The set of all possible and consistdvittranscripts,o = {(X1, V1), .. .,
(Xm, Ym)}, such that either there are two equal value{sﬁih}lfigmﬁ 1<j<b OF

there are two equal values{nij}lgigm, 1<j<b, Where(FL, F2, ..., FP) =
hi(x) and (L}, L2, ..., LP) = ho(y) (|FY = |[F?| = -+ = |[F?| =
e === b =20,

Now we have that, for any possible and consistdatranscripto,

Prio e BAD4(hy. hy)] < 2- <m2 b) 2 m;.an
but now, for any suchr,
22
F;V[Tg =0 |0 € BAD4(hy, )] = @ —m o)

instead of 22"P'™ as “required” by the framework. However, the difference in probabili-
ties is rather small which results in only a minor deviation from the proof of Theorem 3.2.

7.1. Relaxing the Construction

As in Section 5.2 we would like to reduce the requirements frgrandh, in Theorem
7.1. Our main motivation in doing so is tiecrease the key-lengtiithe pseudorandom
permutations. We would like the key-length to be of orderthe length of the small
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subblocks—andahot of order Zib—the length of the complete input (in some cases we
may allow a small dependence bn

We sketch a way to redefine the distributiongwm@ndh; in the definition ofS (almost
the same ideas apply to the definition®f The requirement these distributions have
to obey is that for any possible and consisthtranscriptc we have that Rt p,[o €
BAD4(h1, hy)] is “small.” We use the following notation: For anyr{2 b)-bit string
zZ=1(21,22,...,2Z) (such thavj, zJ-| = 2n) and for all 1< i < b, denote byz, the
substringg; (theith substring ok). The requirement above can be achieved by sampling
h; andh;, according to a permutation distributidth such that for some smaidl> 2-2"
we have that:

1. Forany (2 - b)-bit stringx, V1 <i < j < b, Phen[h(X); =hX)] <e.
2. For any (& - b)-bit strings x # X/, V1 < i,j < b, Phen[h(X),
=hX),] <e.

We start by defining a permutation distributibti that almost achieves this: A permuta-
tionh" = h;, ,, sampled fromH" is defined by twa’-AXU; functions,us: lan = I2n

anduy: lpegb) — I2n (See the definition of-AXU functions in Section 5.2). For any
2= (21,2, ....2) (suchthavj, |z| = 2n),

def

h, 0, (D = (21 @ uw(zp) ® Ua(1), 22 ® Us(Zp) S U2(2), ..., Zo1 D Us(2p)

® uz(b — 1), z, @ Uz(b)).
It is not hard to verify that:

1'. For any (1 - b)-bit stringx, V1 <i < j < b, Py [N'(X), =N (x),] <¢'.
2'. Forany (&-b)-bitstringsx # x"suchthak), # x| ,¥1 <i, j <b,Pyen[h'(X);, =
h'(x),] <&

In order to eliminate the additional requirement intBat x,, # x|, we define the
permutation distributioH such that a permutatidmsampled fronH is defined to be
h" o Dy (see Definition 6.1), wher' is sampled according td’ andg: Iz.p-1) = l2n
is a&’-AXU, function (see Fig. 5 for an illustration). Usingdnd 2 and the fact that,
for any (h - b)-bit stringsx # X/,

Pg'[Dg(X)m = Dg(x"),] < ¢,

we get thatH satisfies 1 and 2 far = 2¢'.

Notice that the computation of a functidn € H is essentially equivalent to one
computation of are-AXU function, g: lon.p-1) +— l2n, and a few additional XOR
operations per block. Using efficient constructions-#tXU , functions [12], [19], [23],
[40], [47], [49] we get an efficient functioh. Krawczyk [23] shows a construction
of (M + £)/2"1-AXU, functions fromm bits to £ bits with ¢ key-bits. Using these
functions we can achieve the desired goal of reducing the key-lengtoo® (n) bits.

7.2. Related Work

The construction presented in this section is certainly not the only solution to the problem
at hand. We refer in brief to some additional solutions:
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Ay ! l A e g Xy
&

57] @ <—"i Xy I
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i b | l Y2 [ vt Yo Yy

Fig. 5. The construction ofi € H. Eachv; denotes the string(i).

As mentioned above, DES modes of operation were suggested as a way of encrypting
long messages. However, none of these modes constitutes a construction of a pseudo-
random permutatiofi.Note that when the encryption of a messadds f (M), for a
pseudorandom permutatidn then the only information that is leaked dhis whether
or not M is equal to a previously encrypted message. This is not true for DES modes
of operation. For instance, when using the cipher block chaining mode (CBC mode),
the encryptions of two messages with identical prefix will also have an identical prefix.
The ECB mode leaks even more information—the existence of two identical subblocks
(in two different encrypted messages or in a single message). The reason that the ECB
mode leaks so much information is that every ciphertext-block solely depends on a single
plaintext-block. Our construction implies that only very little and “noncryptographic”
diffusion (the permutationk; andh;) is required in order to overcome this flaw of the
ECB mode.

Bellare and Rogaway [8] show how to convert the CBC mode in order to construct a
pseudorandom permutation with large input-length (this is the only place we are aware
of that explicitly refers to the problem). The amount of work in their construction is
comparable with two applications of the original CBC mode (approximately twice the
work of our construction, assuming that andh, are relatively efficient). The security
of this construction is of similar order to the security of our construction. In contrast to
our construction, [8] (as well as [6] and [7]) is sequential in nature.

4 However, as shown by Bellare et al. [7], the CBC mode does define a construction of a pseudorandom
function with small output-length. A somewhat related solution to this problem is the so-czdlerhde
construction that is considered by Bellare et al. [6].
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A different approach is to define a length-preserving pseudorandom furi€tior?
bits using a length-preserving pseudorandom funcBoon ¢ bits (where¢ < ¢) and
then to apply our version of the LR-Construction uskhin order to get a pseudorandom
permutationon 2- ¢ bits. The functionF can be defined to b& o F o h, whereh is a
pairwise independent hash function frdrbits to¢ bits andG is a pseudorandom (bit)
generator front bits to¢ bits. This idea may be attributed in part to Wegman and Carter
[49]. Anderson and Biham [5] and Lucks [27] show how to apply similar ideas directly
into the LR-Construction. A comparison between this approach and our construction
relies on the specific parameters of the different primitives that are used. In particular,
the parameters of the pseudorandom funckoversus the pseudorandom gener&or
For instance, for this approach to be more efficient than our construction we need that
one application ofs would be more efficient thaf¢/¢] applications ofF.

7.2.1. Reducing the Distinguishing Probability

All the constructions of a pseudorandom permutation on many blocks from a pseudo-
random function (or permutation) on a single block that are described in this subsection
(including ours) have the following weakness: if the length of a single block is too small
(e.g., 64-bits), then the pseudorandom permutation on many blocks is very weak even
when the original pseudorandom function (or permutation) is very secure (e.g., com-
pletely random). In the following few paragraphs we discuss this problem and a way to
overcome it.

Consider the permutatid® = S(h;, f;, f2, hp) (asin Definition 7.1), wherhy, h; €
Ponn are pairwise independent permutations aidf, € F, are random functions.

Our analysis of the security & (Theorem 7.1) fails when the number of queries that
the adversary makes &(2"/%/b) (in fact this analysis is tight). Having"2/b large
enough forces a significant restriction mnTherefore, a natural question is whether we
can improve the security of the construction. A simple information-theoretic argument
implies that all such constructions can be distinguished from random @{&tyb)
queries. This follows from the fact that wit®(2"/b) queries the adversary gets many
more bits than the length of the permutation’s secret key. Hence, the distribution of the
answers to these queries is statistically very different from uniform (which allows an
all-powerful adversary to distinguish the permutation from random).

In order to match this bound we first note that the somewhat high distinguishing
probability of Sis due to its vulnerability to a birthday-attack on the length of a single
block. An adversary that make&®(2"/%/b) uniformly chosen queries t8 will force a
collision in the inputs tof; (or fy) with a constant probability. Such a collision fails
our analysis (and can indeed be used to disting8ifflom uniform). The solution lies
in the following observation: the problem of foiling birthday-attacks when constructing
a pseudorandom permutation oranyblocks can be reduced to the problem of foil-
ing birthday-attacks when constructing a pseudorandom function (or permutation) on
two blocks. We demonstrate this using the Aiello and Venkatesan [1] construction of
pseudorandorfunctions

Let f; and f, be two independent copies of the pseudorandiamstionson 2h bits
we get when using truly random functions orbits in the construction of Aiello and
Venkatesan. By [1] distinguishing eadhfrom a truly random function (with constant
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probability) requires2(2") queries. Leth; andh, € Py, be pairwise independent
permutations and let the permutatin= S(hy, f1, >, hy) be as in Theorem 7.1 (for
the parameters’ = 2n andb’ = b/2). We now get that distinguishing from random
(with constant probability) require®(2"/b) queries which is optimal.

8. Constructions ofk-Wise §-Dependent Permutations

In this section we summarize the connection between the various constructions of this
paper and the task of obtainikgwise §-dependent permutations. As mentioned in Sec-
tion 5.1, Schnorr [46] suggested using the LR-Construction with truly random functions

in order to get a pseudorandom generator that is secure as long as not too many bits of its
output are accessible to the adversary. This idea is further treated by Maurer and Massey
[29]. Maurer [28] suggested replacing the truly random functions with what he calls lo-
cally random (or almost random) functions. In the terminologi-efise independence

these ideas can be interpreted as a way of using the LR-Construction in order to obtain
k-wise §-dependent permutations frokawise &’-dependent functions (as long lass

not too large). Theorem 1 in [28] implies that

whenk-wiseéd’-dependent functions are used instead of pseudorandom func-
tions in the LR-Construction the result ikavises-dependent permutations
for 5§ = O(k%/2" 4 §').

Similar observations apply to the different constructions of our paper as discussed in this
section.

Corollary 8.1 (to Theorem 3.2). Let hy, hy € Py, be pairwise independent permuta-
tions and let {, f, € F, be k-wise$’-dependent functionhen S= S(h;, f;, fz, hy)
(as in Definition3.1) is a k-wises-dependent permutation for

def K> K2
§ = % + ﬁ + 28,

Proof. LetS, S € P;, have the following distributions:

e S = S(hy, 01, f2, hy), wherehy, h, € P,y are pairwise independent; € F, is a
k-wise §’-dependent function, argl € F, is a truly random function.

e S = S(hy, g1, 02, h2), wherehy, h, € Py, are pairwise independent agg g, €
Fn are truly random functions.

Let R € Py, be a truly random permutation. It is enough to show that for ekestyings
of 2n-bits, X1, Xo, . .., X, we have

1' “(S(Xl)v S(XZ)v ey S(Xk)) - (Sl(X]_), Sl(XZ)s ey S]_(Xk))” < 8/-
2. {Si(X0), Si(X2), - - -, SI)) — (S(X1), (X2, - -+, SN < &
3. {S(X1), S(X2), - - -, %)) — (R(X1), R(X2), . .., R || < k?/2" + k?/22",

The reason 3 holds is that if we define an oracle machMrgich that itsth query is
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always(+, x;) and such that

Cm({{X1, Y1), (X2, ¥2), ..., (X, YidH) =1
— Pr{S(X), ..., (X)) = (Y1, ..., Y]
< Pri{R(X1), ..., RO = (Y1, ..., Y]

we get by the definition of variation distance and from Theorem 3.2 that

(S (XD, S(X2), ..., S(X)) — (R(X1), R(X2), ..., R
= [PM®%"(12") = 1] - PIMRR (12" = 1]
k> K2
=< on + o
1 and 2 hold by the definition df-wise §’-dependent functions. For example, if

[{S(X1), S(X2), ..., S(X)) — (Si(X1), Si(X2), ..., S| > &,

then we can fithy, h, € Py, and f, € F, in the definition of bottSand S, such that the
inequality still holds. This definels strings ofn-bits, z;, z,, . . ., z« (not necessarily all
different), and a functioW for which

(S(X1), S(X2), ..., SX)) = V((f1(z0), f1(22), ..., T1(z)))
and

(SI(x), S(%2), - - - s S(%)) = V({(91(z1), G1(22), - - -, 01(Z)))-
We get a contradiction since, for any functighn

IV ((fi(z0), f1(22), ..., f1(z0)) — V({91(22), 91(22), . . ., Gu(ZOD I
< {f1(z0), f1(z2). ..., f1(z0)) — (01(21), Q1(Z2), - . ., 91 (Z))
<4 O

In asimilar way we get the following two corollaries from the constructions of Sections
6and 7:

Corollary 8.2 (to Theorem 6.2). Let S be as in Definitio®.2, where h and h, are
pairwise independent permutationsand f,, . . ., f; are k-wise’-dependent functions
Then S is a k-wis&-dependent permutation for

def t k2 k? ,

= 5 o + 2 +t.4.
Corollary 8.3 (to Theorem 7.1). Let hy, h, € P,y be pairwise independent permuta-
tions let f;, f, € F, be(b-k)-wises’-dependent functionand let pe Py, be a (b-k)-
wised’-dependent permutatioefine S= S(hy, fi, f2, hy) and S = S(hy, p, hy) (as
in Definition7.1).Then S is a k-wis&-dependent permutation for

def k2 . b2 k2

’
§ = on +ﬁ+28
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and$S is a k-wisé-dependent permutation for

~ def k2 . b2 f
= W + §.

By takingt = ¢ in Corollary 8.2 we get a simple construction dé-avises-dependent
permutation or¢ bits for § as close ta(¢ + 1) - k?)/2¢ as we wish. This construction
required applications ok-wiseé’-dependent functions from- 1 bits to a single bit. An
interesting question is to find a simple constructiok-efise §-dependent permutations
for anarbitrarily small § and an arbitrark.

An “old” proposal by the first author (see p. 17 of [41]) is to apply a card shuffling
procedure that requires only few rounds and is oblivious in the sense that the location of
a card after each round depends on a few random decisions. The specific card shuffling
for which this idea is described in [41] was suggested by Aldous and Diaconis [2].
Unfortunately, to the best of our knowledge, this procedure was never proven to give
(with few rounds) an almost uniform ordering of the cards. Nevertheless, we briefly
describe it in order to demonstrate the concept of oblivious card shuffling and the way
that such a procedure can be used to constrketses-dependent permutation. Finally
we describe the main idea in the definition of another oblivious card shuffling for which
we can prove that only few rounds are needed.

Each round (shuffle) in a card shuffling procedure is a permutation on the locations

of the N cards of a deck (i.e., a permutation on the 9¢} ﬁf {1,2,...,N}. In the

case of the Aldous and Diaconis [2] card shuffling, each such permutation is defined by
a uniformly chosenNl/2)-bit string,r = rir>---rn/2. Denote this permutation b,

then

vi<i<N/2 {Hr(|)=2|—1 and TI,(i + N/2) = 2i if =1,

,(i)=2 and I(i+N/2)=2 —1 otherwise

That is, the cards at locationsndi + N/2 move to locationsi2— 1 and 2 and their

internal order is uniformly chosen independently of all other choices. Note\Rat,
evaluatingIT, (x) or TI-%(x) requires the knowledge ofsinglebit of r and therefore
this card shuffling is indeed oblivious.

.....

[;s10--- 01, where{r?, ..., rs} are uniformly distributed and independent of each
other. IfIT° is of statistical distance at ma$tfrom a uniform permutation, then we can
construct &-wises-dependent permutatiofl®, for § = 8’ 4 §” as follows: simply take

the permutatiorf1® to bes roundsI;s o IT,s1 o - - - o 1,1 where thes - N/2 bits of

{rl, ..., rS}arethe outputs of &k - s)-wises”-dependent binary functiorf . Evaluating

I18 (orits inverse) at a given point consistssafivocations off . Therefore, an interesting
problem is to show thdfl® is of exponentially small statistical distance from a uniform
permutation for a small value & In [2] it is conjectured that this can be shown for

s = O(log? N). While this conjecture is, to the best of our knowledge, still open we
can show a different card shuffling procedure for which it can be proverttiag? N)
rounds are sufficient. This card shuffling is defined in a recursive manner: Split the
deck into halves (locationgl, ..., N/2} and locationdN/2, ..., N}), apply the card
shuffling (recursively) on each half of the deck, and merge the (now shuffled) halvesin an
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almost uniform way. A permutatiom, on [N] is a merge if for every andj such that
1<i<j=<N/20orN/2+1<i < j < NwehavethaM(i) < M(j). An oblivious

(in the same meaning as above) merging procedure can also be defined recursively but
since the construction is rather cumbersome we omit its description. This direction may
become attractive given an efficient and simple merging procedure.

A different direction to solving the problem of constructikgvise §-dependent per-
mutations is to try and generalize the algebraic construction of pairwise independent
permutations. Leonard Schulman (private communication) suggested such a general-
ization that yields 3-wise independent permutations. His suggestion is to use sharply
3-transitive permutation groups. A permutation group over thadet[{1, 2, ..., n}is
a subgroup of the symmetric groi. A permutation grougs over [n] is k-transitive
if for every twok-tuples{ay, ..., ax} and{bs, ..., by} of distinct elements oft{] there
exists a permutation € G such thatyl <i <k, n(a) = bj. A permutation groujis
over [n] is sharplyk-transitive if for every two such tuples there exists exactly one per-
mutationr € G such thatyl <i <k, (&) = bj. A sharplyk-transitive permutation
group is in particulak-wise independent and indeed the algebraic construction of pair-
wise independent permutations use a sharply 2-transitive permutation group (containing
all the linear permutations). Schulman suggested using the fact that there are known
constructions of sharply 3-transitive permutation groups. However, this approach cannot
be generalized to larger values laffrom the classification of finite simple groups it
follows that fork > 6 there are né-transitive groups ovemn] other than the symmetric
group$S, and the alternating groufs, and there are only few such groups koe 4 and
k = 5 (see [11] and [39]). One should be careful not to interpret this as implying that for
k > 4 there are no efficient algebraic constructionk-gfise independent permutations.

It is however justified to deduce that far> 4 any small family ofk-wise indepen-
dent permutations is not a permutation group (i.e., is not closed under composition and
inverse).

9. Conclusion and Further Work

The constructions described in Sections 3 and 7 are optimal in their cryptographic work
in the sense that the total number of bits on which the cryptographic functions are

applied is exactly the number of bits in the input. Therefore, it seems that in order to

achieve the goal of constructing efficient block-ciphers it is sufficient to concentrate on

the construction of efficient pseudorandom functions. The depth of the constructions,
on the other hand, is twice the depth of the cryptographic functions. It is an interesting

guestion whether there can be a construction of similar depth. The goal of reducing the
depth is even more significant in the case of the 2)-round construction in Section 6.

A different question is finding a simple constructiorkefvise§-dependent permutations

for anarbitrarily small § and an arbitrark. This question is discussed in Section 8.
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