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Abstract. Luby and Rackoff [26] showed a method for constructing a pseudorandom
permutation from a pseudorandom function. The method is based on composing four
(or three for weakened security) so-called Feistel permutations, each of which requires
the evaluation of a pseudorandom function. We reduce somewhat the complexity of the
construction and simplify its proof of security by showing that two Feistel permutations
are sufficient together with initial and final pairwise independent permutations. The
revised construction and proof provide a framework in which similar constructions may
be brought up and their security can be easily proved. We demonstrate this by presenting
some additional adjustments of the construction that achieve the following:

• Reduce the success probability of the adversary.
• Provide a construction of pseudorandom permutations withlarge input-length

using pseudorandom functions withsmall input-length.
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1. Introduction

Pseudorandom permutations, which were introduced by Luby and Rackoff [26], for-
malize the well-established cryptographic notion of block ciphers. Block ciphers are
private-key encryption schemes such that the encryption of every plaintext-block is a
single ciphertext-blockof the same length. Therefore we can think of the private key
as determining a permutation on strings of the length of the block. A highly influential
example of a block cipher is the Data Encryption Standard (DES) [32].

∗ A preliminary version of this paper appeared inProc. 29th ACM Symp. on Theory of Computing, 1997,
pp. 189–199. The first author is the incumbent of the Morris and Rose Goldman Career Development Chair,
whose research was supported by Grant No. 356/94 from the Israel Science Foundation administered by the
Israeli Academy of Sciences and by BSF Grant No. 94-00032. Part of the research of the second author was
supported by a Clore Scholars award.
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The advantage of block ciphers (compared with using pseudorandom functions for
private-key encryption) is that the plaintext and ciphertext are of the same length. This
property saves on memory and prevents wasting communication bandwidth. Further-
more, it enables the easy incorporation of the encryption scheme into existing protocols
or hardware components.

Luby and Rackoff defined the security of pseudorandom permutations in analogy to
the different attacks considered in the context of block ciphers:

• Pseudorandom permutations can be interpreted as block ciphers that are secure
against an adaptivechosen plaintext attack. Informally, this means that an (efficient)
adversary, with access to the encryptions of messages of its choice, cannot tell apart
those encryptions from the values of a truly random permutation.
• Strong pseudorandom permutations can be interpreted as block ciphers that are se-

cure against an adaptivechosen plaintext and ciphertext attack. Here, the adversary
has the additional power to ask for the decryption of ciphertexts of its choice.

Pseudorandom permutations are closely related (both in definition and in their
construction) to the earlier concept of pseudorandom functions which was defined by
Goldreich et al. [17]. These are efficiently sampled and computable functions that are
indistinguishable from random functions under all (efficient) black-box attacks (see
Section 2 for a formal definition). Pseudorandom functions play a major role in
private-key cryptography and have many additional applications (for some of these appli-
cations, see [10], [16], and [25]).

Luby and Rackoff [26] provided a construction of strong pseudorandom permutations
(LR-Construction ) which was motivated by the structure of DES. The basic building
block is the so-called Feistel permutation1 based on a pseudorandom function defined
by the key. Their construction consists of four rounds of Feistel permutations (or three
rounds, for pseudorandom permutations), each round involves an application of a (dif-
ferent) pseudorandom function (see Fig. 1(a) for an illustration). The LR-Construction’s
main source of attraction is, most probably, its elegance.

Goldreich et al. [17] showed a construction of pseudorandom functions from pseu-
dorandom generators [9], [50]. Thus, the construction of pseudorandom permutations
reduces to the construction of pseudorandom generators. Recently a different construc-
tion of pseudorandom functions was introduced by Naor and Reingold [31]; this is a
parallel construction based on a new primitive called a pseudorandomsynthesizerthat in
particular can be constructed from any trapdoor permutation. This implies a parallel con-
struction of pseudorandom permutations. Nevertheless, all known constructions of pseu-
dorandom functions involve nontrivial (though of course polynomial-time) computation,
so it makes sense to attempt to minimize the number of invocations of pseudorandom
functions.

Alongside cryptographic pseudorandomness the last two decades saw the development
of the notion of limited independence in various settings and formulations [3], [4],

1 A Feistel permutation for a functionf : {0,1}n 7→ {0,1}n is a permutation on{0,1}2n defined by

D f (L , R)
def= (R, L ⊕ f (R)), where|L| = |R| = n. Each of the 16 rounds of DES involves a Feistel

permutation of a function determined by the 56 key bits.
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[12], [13], [24], [30], [49]. For a family of functionsF to have some sort of (limited)
independence means that if we consider the value of a functionf , chosen uniformly at
random fromF , at each point as a random variable (in the probability space defined by
choosingf ), then these random variables possess the promised independence property.
Thus, a family of permutations on{0,1}n is pairwise independent if for allx 6= y the
values of f (x) and f (y) are uniformly distributed over strings(a,b) ∈ {0,1}2n such
thata 6= b. Functions of limited independence are typically much simpler to construct
and easier to compute than (cryptographic) pseudorandom functions.

1.1. New Results and Organization

The goal of this paper is to provide a better understanding of the LR-Construction and
as a result improve the construction in several respects. Our main observation is that the
different rounds of the LR-Construction serve significantly different roles. We show that
the first and last rounds can be replaced by pair-wise independent permutations and use
this in order to:

1. Simplify the proof of security of the construction (especially in the case of strong
pseudorandom permutations) and provide a framework for proving the security of
similar constructions.

2. Derive generalizations of the construction that are of practical and theoretical
interest. The proof of security for each one of the constructions is practically “free
of charge” given the framework.

3. Achieve an improvement in the computational complexity of the pseudorandom
permutations—two applications of a pseudorandom function onn bits suffice for
computing the value of a pseudorandom permutation on 2n bits at a given point
(versus four applications in the original LR-Construction). This implies that the
reduction is “optimal.”

As discussed in Section 5.2, the new construction is in fact a generalization of the
original LR-Construction. Thus, the proof of security (Theorem 3.2) also applies to the
original construction. The following is a brief and informal description of the paper’s
main results and organization:

Section 2reviews the notation and the definitions regarding pseudorandomness and
k-wise independence.

Section 3presents the main construction and proves its security: pairwise independent
permutations can replace the first and fourth rounds of the LR-Construction (see
Fig. 1(b) for an illustration).

Section 4highlights the high-level structure of the proof of security which provides a
framework that enables us to relax and generalize the main construction.

Section 5shows how the main construction can be relaxed by:
5.1. Using a single pseudorandom function (instead of two).
5.2. Using weaker and more efficient permutations (or functions) instead of the

pairwise independent permutations.
Section 6provides a simple generalization of the main construction: usingt rounds

of (generalized) Feistel permutations (instead of two) the success probability of
the distinguisher is reduced from approximatelym2/2`/2 to approximatelyt/2 ·
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m2/2(1−1/t)`, where the permutation is oǹbits and the distinguisher makes at
mostm queries (see Fig. 3 for an illustration).

Section 7provides a second generalization of the main construction. Instead of ap-
plying Feistel permutations on the entire outputs of the first and second rounds,
Feistel permutations can be separately applied on each one of their subblocks. This
is a construction of a strong pseudorandom permutation onmanyblocks using
pseudorandom functions on asingleblock (see Fig. 4 for an illustration).

Section 8analyzes the different constructions of the paper as constructions ofk-wise
δ-dependent permutations.

Section 9suggests directions for further research.

1.2. Related Work

The LR-Construction inspired a considerable amount of research. We try to refer to the
more relevant (to this paper) part of these directions.

Several alternative proofs of the LR-Construction were presented over the years.
Maurer [28] gives a proof of the three-round construction. His proof concentrates on the
nonadaptive case, i.e., when the distinguisher has to specify all its queries in advance.
A point worth noticing is that indistinguishability under nonadaptive attacks does not
necessarily imply indistinguishability under adaptive attacks. For example, a random
involution (an involution is a permutation which is the inverse of itself) and a random
permutation are indistinguishable under nonadaptive attacks and can be distinguished
using a very simple adaptive attack.2 A different approach toward the proof was described
by Patarin [34] (this is the only published proof, we are aware of, for the LR-Construction
of strongpseudorandom permutations; another proof was given by Koren [22]).

Other papers consider the security of possible variants of the construction. A significant
portion of this research deals with the construction of pseudorandom permutations and
strong pseudorandom permutations from asinglepseudorandom function. This line of
work is described in Section 5.1.

Lucks [27] shows that a hash function can replace the pseudorandom function in the
first round of the three-round LR-Construction. His proof is based on [28] and is moti-
vated by his suggestion of using the LR-Construction when the input is divided into two
unequalparts. Lucks left open the question of the construction of strong pseudorandom
permutations.

Somewhat different questions were considered by Even and Mansour [14] and by
Kilian and Rogaway [21]. Loosely speaking, the former construct several pseudorandom
permutations from a single one, while the latter show how to make exhaustive key-search
attacks more difficult. The construction itself amounts, in both cases, to XORing the
input of the pseudorandom permutation with a random key and XORing the output of
the permutation with a second random key.

The background and related work concerning other relevant issues are discussed in
the appropriate sections: definitions and constructions of efficient hash functions in
Section 5.2, reducing the distinguishing probability in Section 6, and the construction of

2 An even more striking example is obtained by comparing a random permutationP that satisfiesP(P(0)) =
0 with a truly random permutation.
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pseudorandom permutations (or functions) with large input-length from pseudorandom
permutations (or functions) with small input-length in Section 7.

2. Preliminaries

In this section the concepts of pseudorandom functions and pseudorandom permutations
are briefly reviewed. A more thorough and formal treatment can be found in [15] and [25].

2.1. Notation

• In denotes the set of alln-bit strings,{0,1}n.
• Fn denotes the set of allIn 7→ In functions andPn denotes the set of all such

permutations (Pn ⊂ Fn).
• Let x andy be two bit strings of equal length, thenx ⊕ y denotes their bit-by-bit

exclusive-or.
• For any f, g ∈ Fn, denote their composition byf ◦ g (i.e., f ◦ g(x) = f (g(x))).
• For x ∈ I2n, denote the first (left)n bits of x by x|L and the last (right)n bits of x

by x|R .

Definition 2.1 (Feistel Permutations).3 For any functionf ∈ Fn, let D f ∈ P2n be the

permutation defined byD f (L , R)
def= (R, L ⊕ f (R)), where|L| = |R| = n.

Notice that Feistel permutations are as easy to invert as they are to compute (since the
inverse permutation satisfiesD−1

f (L , R) = (R⊕ f (L), L); that is,D−1
f (L , R) ≡ ρ◦D f ◦ρ

for ρ(L , R)
def= (R, L)). Therefore, the LR-Construction (and its different variants which

are introduced in Sections 6 and 7) are easy to invert.

2.2. Pseudorandomness

Pseudorandomness is fundamental to cryptography and, indeed, essential in order to
perform such tasks as encryption, authentication, and identification. Loosely speaking,
pseudorandom distributions cannot be efficiently distinguished from the truly random
distributions (usually, random here means uniform). However, the pseudorandom dis-
tributions have substantially smaller entropy than the truly random distributions and are
able to be sampled efficiently.

2.2.1. Overview of Pseudorandom Primitives

In the case ofpseudorandom (bit) generators, which were introduced by Blum and
Micali [9] and Yao [50], the pseudorandom distribution is of bit-sequences. The distri-
bution is efficiently sampled using a, relatively small, truly random bit-sequence (the
seed). Hastad et al. [20] showed how to construct a pseudorandom generator from any

3 D stands for DES-like, another common term for these permutations.
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one-way function (informally, a function is one-way if it is easy to compute its value but
hard to invert it).

Pseudorandom function ensembles (PFE), which were introduced by Goldreich
et al. [17], are distributions of functions. These distributions are indistinguishable from
the uniform distribution under all (polynomially bounded) black-box attacks (i.e., the
distinguisher can only access the function by specifying inputs and getting the value of
the function on these inputs). Goldreich et al. provided a construction of such functions
based on the existence of pseudorandom generators.

Luby and Rackoff [26] definepseudorandom permutation ensembles (PPE)to be
distributions of permutations that are indistinguishable from the uniform distribution to
an efficient observer (that, again, has access to the value of the permutation at points
of its choice). In addition, they consider a stronger notion of pseudorandomness which
they callsuper pseudorandom permutation generators. Here the distinguisher can also
access the inverse permutation at points of its choice. Following [15] we use the term
strong pseudorandom permutation ensembles (SPPE)instead.

Luby and Rackoff provided a simple construction of PPE and SPPE (LR-Construction)
which is the focus of this work. Their construction is based on a basic compound of the
structure of DES [32], namely, the compositions of several Feistel permutations. Their
design of the PPE (resp. SPPE) isD f3 ◦D f2 ◦D f1 (resp.D f4 ◦D f3 ◦D f2 ◦D f1) where all fi ’s
are independent pseudorandom functions andD fi is as in Definition 2.1 (see Fig. 1(a)
for an illustration).

2.2.2. Definitions

A function ensembleis a sequenceH = {Hn}n∈N such thatHn is a distribution overFn,
H is theuniform function ensembleif Hn is uniformly distributed overFn. A permutation
ensembleis a sequenceH = {Hn}n∈N such thatHn is a distribution overPn, H is the
uniform permutation ensembleif Hn is uniformly distributed overPn.

A function ensemble (or a permutation ensemble),H = {Hn}n∈N, is efficiently com-
putableif the distributionHn can be sampled efficiently and the functions inHn can
be computed efficiently. That is, there exist probabilistic polynomial-time Turing ma-
chines,I andV , and a mapping from strings to functions,ϕ, such thatϕ(I (1n)) andHn

are identically distributed andV(i, x) = (ϕ(i ))(x) (so, in fact,Hn ≡ V(I (1n), ·)).
We would like to consider efficiently computable function (or permutation) ensembles

that cannot be efficiently distinguished from the uniform ensemble. In our setting, the
distinguisher is an oracle machine that can make queries to a length-preserving function
(or functions) and outputs a single bit. We assume that on input 1n the oracle machine
makes onlyn-bit long queries,n also serves as the security parameter. An oracle machine
has an interpretation both under the uniform complexity model and under the nonuniform
model. In the former it is interpreted as a Turing machine with a special oracle-tape (in this
case efficient means probabilistic polynomial time) and in the latter as a circuit-family
with special oracle-gates (in this case efficient means polynomial size). The discussion
of this paper is independent of the chosen interpretation.

Let M be an oracle machine, letf be a function inFn, and letHn be a distribution
overFn. Denote byM f (1n) the distribution ofM ’s output when its queries are answered
by f and denote byM Hn(1n) the distributionM f (1n), where f is distributed according
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to Hn. We would also like to consider oracle machines with access both to a permutation
and to its inverse. LetM be such a machine, letf be a permutation inPn, and letHn

be a distribution overPn. Denote byM f, f −1
(1n) the distribution ofM ’s output when

its queries are answered byf and f −1 and denote byM Hn,H
−1
n (1n) the distribution

M f, f −1
(1n), where f is distributed according toHn.

Definition 2.2 (Advantage). LetM be an oracle machine and letH = {Hn}n∈N and
H̃ = {H̃n}n∈N be two function (or permutation) ensembles. We call the function∣∣∣Pr[M Hn(1n) = 1]− Pr[M H̃n(1n) = 1]

∣∣∣
theadvantage Machieves in distinguishing betweenH andH̃ .

Let M be an oracle machine and letH = {Hn}n∈N and H̃ = {H̃n}n∈N be two permu-
tation ensembles. We call the function∣∣∣Pr[M Hn,H

−1
n (1n) = 1]− Pr[M H̃n,H̃

−1
n (1n) = 1]

∣∣∣
the advantageM achieves in distinguishing between〈H, H−1〉 and〈H̃ , H̃−1〉.

Definition 2.3 (ε-Distinguish). We say thatM ε-distinguishes betweenH andH̃ (resp.
〈H, H−1〉and〈H̃ , H̃−1〉) for ε = ε(n) if for infinitely manyn’s the advantageM achieves
in distinguishing betweenH andH̃ (resp.〈H, H−1〉 and〈H̃ , H̃−1〉) is at leastε(n).

Definition 2.4 (Negligible Functions). A functionh: N 7→ N isnegligibleif, for every
constantc > 0 and all sufficiently largen’s,

h(n) <
1

nc
.

Definition 2.5 (PFE). Let H = {Hn}n∈N be an efficiently computablefunction en-
semble and letR = {Rn}n∈N be the uniform function ensemble.H is apseudorandom
function ensembleif, for every efficient oracle machineM , the advantageM has in
distinguishing betweenH andR is negligible.

Definition 2.6 (PPE). LetH = {Hn}n∈N be an efficiently computablepermutationen-
semble and letR= {Rn}n∈N be the uniform permutation ensemble.H is apseudorandom
permutation ensembleif, for every efficient oracle machineM , the advantageM has in
distinguishing betweenH andR is negligible.

Definition 2.7 (SPPE). LetH = {Hn}n∈N be an efficiently computable permutation
ensemble and letR = {Rn}n∈N be the uniform permutation ensemble.H is a strong
pseudorandom permutation ensembleif, for every efficient oracle machineM , the ad-
vantageM has in distinguishing between〈H, H−1〉 and〈R, R−1〉 is negligible.
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Remark2.1. We use the phrase “f is a pseudorandom function” as an abbreviation for
“ f is distributed according to a pseudorandom function ensemble” and similarly for “f
is a pseudorandom permutation” and “f is a strong pseudorandom permutation.”

2.3. k-Wise Independent Functions and Permutations

The notions ofk-wise independent functions andk-wise “almost” independent functions
[3], [4], [12], [13], [24], [30], [49] (under several different formulations) play a major
role in contemporary computer science. These are distributions of functions such that
their value on any givenk inputs is uniformly or “almost” uniformly distributed. Several
constructions of such functions and a large variety of applications were suggested over
the years.

We briefly review the definitions ofk-wise independence (andk-wiseδ-dependence).
The definitions of pairwise independence (and pairwiseδ-dependence) can be derived
by takingk = 2.

Definition 2.8. Let D1 andD2 be two distributions defined overÄ, the variation dis-
tance betweenD1 andD2 is

‖D1− D2‖ = 1
2

∑
ω∈Ä
|D1(ω)− D2(ω)| .

Definition 2.9. Let A andB be two sets, 0≤ δ ≤ 1, letk be an integer (2≤ k ≤ |A|),
and letF be a distribution ofA 7→ B functions. Letx1, x2, . . . , xk bek different members
of A, and consider the following two distributions:

1. 〈 f (x1), f (x2), . . . , f (xk)〉 where f is distributed according toF .
2. The uniform distribution overBk.

F is k-wise independent if for allx1, x2, . . . , xk the two distributions are identical.F is
k-wiseδ-dependent if for allx1, x2, . . . , xk the two distributions are of variation distance
at mostδ.

These definitions are naturally extended to permutations:

Definition 2.10. Let A be a set, 0≤ δ ≤ 1, letk be an integer (2≤ k ≤ |A|), and let
F be a distribution of permutations overA. Let x1, x2, . . . , xk bek different members of
A, and consider the following two distributions:

1. 〈 f (x1), f (x2), . . . , f (xk)〉 where f is distributed according toF .
2. The uniform distribution over sequences ofk differentelements ofA.

F is k-wise independent if for allx1, x2, . . . , xk the two distributions are identical.F is
k-wiseδ-dependent if for allx1, x2, . . . , xk the two distributions are of variation distance
at mostδ.

The connection of this paper tok-wise independence is bidirectional as described in
the following two paragraphs.
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As shown in Section 3, pairwise independent permutations can replace the first and
fourth rounds of the LR-Construction. LetA be a finite field, then the permutation

fa,b(x)
def= a · x + b, wherea 6= 0,b ∈ A are uniformly distributed, is pairwise inde-

pendent. Thus, there are pairwise independent permutations overIn (the permutations
fa,b with operations overGF(2n)). In Section 5.2 it is shown that we can use even more
efficient functions and permutations in our construction. In particular, we consider the
concept ofε-AXU2 functions.

In contrast with the case of pairwise independent permutations, we are not aware of
any “good” constructions ofk-wiseδ-dependent permutations for generalk andδ. The
different variants of the LR-Construction offer a partial solution to this problem (“partial”
because of the bounded values ofδ that can be achieved). For example, usingk-wise
δ′-dependent functions onn bits instead of pseudorandom functions in the original LR-
Construction yields ak-wiseδ-dependent permutation on 2n bits (forδ = O(k2/2n+δ′)).
In Section 8 we analyze the different constructions of this paper as constructions ofk-wise
δ-dependent permutations.

3. Construction of PPE and SPPE

3.1. Intuition

As mentioned in the Introduction, a principle observation of this paper is that the dif-
ferent rounds of the LR-Construction serve significantly different roles. To illustrate
this point, consider two rounds of the construction. Namely,E = D f2 ◦ D f1, where
f1, f2 ∈ Fn are two independently chosen pseudorandom functions. It is not hard to
verify that E is computationally indistinguishable from a random permutation to any
efficient algorithm that has access to pairs{〈xi , E(xi )〉}mi=1, where the sequence{xi }mi=1
is uniformly distributed. The intuition is as follows: Note that it is enough to prove the
pseudorandomness ofE when f1 and f2 aretruly random functions(instead of pseudo-
random). Let(L0

i , R0
i ) = xi and(L2

i , R2
i ) = E(xi ), by the definition ofE we get that

L2
i = L0

i ⊕ f1(R0
i ) and R2

i = R0
i ⊕ f2(L2

i ). Since the sequence{xi }mi=1 is uniformly
distributed, we have that with good probability (better than(1− m2/2n+1)) R0

i 6= R0
j

for all i 6= j . Conditioned on this event, the sequence{L2
i }mi=1 is uniformly distributed

and independent of the sequence{xi }mi=1 (since f1 is random). We now have that with
good probabilityL2

i 6= L2
j for all i 6= j . Conditioned on this event, the sequence{R2

i }mi=1

is uniformly distributed and independent of both{L2
i }mi=1 and{xi }mi=1. Notice that this

argument still works if the sequence{xi }mi=1 is only pairwise independent.
Nevertheless, as Luby and Rackoff showed,E can be easily distinguished from a

random permutation by an algorithm that gets to see the value ofE or E−1 on inputs of
its choice. The reason is that for any valuesL1, L2, andR such thatL1 6= L2 we have
that E(L1, R)|L ⊕ E(L2, R)|L = L1 ⊕ L2. In contrast, for a truly random permutation,
the probability of this event is 2−n. This is the reason that the LR-Construction includes
three or four rounds.

If we think of the second and third rounds of the LR-Construction as the permutation
E, then the discussion above implies that the role of the first and fourth rounds is to
prevent the distinguisher from directly choosing the inputs ofE and E−1. We show
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Fig. 1. Constructions of SPPE: (a) the original LR-Construction and (b) the revised construction. In (a) and (b):
∀i ≥ 1, Li = Ri−1 andRi = Li−1⊕ fi (Ri−1). In (b): 〈L0, R0〉 = h1(I nput) andOutput= h−1

2 (〈L2, R2〉).

that this goal can also be achieved with “combinatorial” constructions (e.g., pairwise
independent permutations) rather than “cryptographic” (i.e., pseudorandom functions).
In particular, the LR-Construction remains secure when the first and fourth rounds are
replaced with pairwise independent permutations (see Fig. 1 for an illustration).

3.2. Construction and Main Result

Definition 3.1. For any f1, f2 ∈ Fn andh1, h2 ∈ P2n, define

W(h1, f1, f2)
def= D f2 ◦ D f1 ◦ h1

and

S(h1, f1, f2, h2)
def= h−1

2 ◦ D f2 ◦ D f1 ◦ h1.
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Theorem 3.1. Let h1, h2 ∈ P2n be pairwise independent permutations(similarly to
Remark2.1this is an abbreviation for “distributed according to a pairwise independent
permutation ensemble”) and let f1, f2 ∈ Fn be pseudorandom functions; h1, h2, f1, and
f2 are independently chosen. Then W= W(h1, f1, f2) is a pseudorandom permuta-
tion and S= S(h1, f1, f2, h2) is a strong pseudorandom permutation(W and S as in
Definition3.1).

Furthermore, assume that no efficient oracle machine that makes at most m= m(n)
queries, ε-distinguishes between the pseudorandom functions and random functions for
ε = ε(n) (see Definition2.3). Then no efficient oracle machine that makes at most m
queries to W(resp. S and S−1) ε′-distinguishes W(resp. S) from a random permutation
for ε′ = 2ε +m2/2n +m2/22n.

Remark3.1. The conditions of Theorem 3.1 are meant to simplify the exposition of
the theorem and of its proof. These conditions can be relaxed, as discussed in Section 5.
The main points are the following:

1. A single pseudorandom functionf can replace bothf1 and f2.
2. h1 andh2 may obey weaker requirements than pairwise independence. For example,

it is enough that, for everyx 6= y,

Pr[h1(x)|R = h1(y)|R] ≤ 2−n and Pr[h2(x)|L = h2(y)|L ] ≤ 2−n.

3.3. Proof of Security

We now prove the security of the SPPE construction; the proof of security for the
PPE construction is very similar (and, in fact, a bit simpler). As with the original LR-
Construction, the main task is to prove that the permutations are pseudorandom when
f1 and f2 are truly random (instead of pseudorandom).

Theorem 3.2. Let h1, h2 ∈ P2n be pairwise independent permutations and let f1, f2 ∈
Fn be random functions. Define S= S(h1, f1, f2, h2) (as in Definition3.1) and let
R ∈ P2n be a random permutation. Then, for any oracle machine M(not necessarily an
efficient one) that makes at most m queries,∣∣∣Pr[M S,S−1

(12n) = 1]− Pr[M R,R−1
(12n) = 1]

∣∣∣ ≤ m2

2n
+ m2

22n
.

Theorem 3.1 follows easily from Theorem 3.2 (see a proof-sketch in what follows).
In order to prove Theorem 3.2, we introduce additional notation.

Let G denote the permutation that is accessible to the machineM (G is eitherS or
R). There are two types of queriesM can make: either(+, x) which denotes the query
“what isG(x)?” or (−, y) which denotes the query “what isG−1(y)?” For thei th query
M makes, define the query–answer pair〈xi , yi 〉 ∈ I2n × I2n, where eitherM ’s query
was (+, xi ) and the answer it got wasyi or M ’s query was(−, yi ) and the answer
it got wasxi . We assume thatM makes exactlym queries and refer to the sequence
{〈x1, y1〉, ..., 〈xm, ym〉} of all these pairs as thetranscript (of M ’s computation).

Notice that no limitations were imposed on the computational power ofM . Therefore,
M can be assumed to be deterministic (we can always fix the random tape that maximizes
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the advantageM achieves). This assumption implies that for every 1≤ i ≤ m the i th
query ofM is fully determined by the firsti − 1 query–answer pairs. Thus, for everyi
it can be determined from the transcript whether thei th query was(+, xi ) or (−, yi ).
We also get thatM ’s output is a (deterministic) function of its transcript. Denote by
CM [{〈x1, y1〉, ..., 〈xi−1, yi−1〉}] the i th query ofM as a function of the previous query–
answer pairs and denote byCM [{〈x1, y1〉, ..., 〈xm, ym〉}] the output ofM as a function
of its transcript.

Definition 3.2. Let σ be a sequence{〈x1, y1〉, ..., 〈xm, ym〉}, where for 1≤ i ≤ m we
have that〈xi , yi 〉 ∈ I2n× I2n. Thenσ is apossible M-transcriptif, for every 1≤ i ≤ m,

CM [{〈x1, y1〉, ..., 〈xi−1, yi−1〉}] ∈ {(+, xi ), (−, yi )}.

We consider yet another distribution on the answers toM ’s queries (which, in turn,
induces another distribution on the possibleM-transcripts). Consider a random process
R̃ that on thei th query ofM answers as follows:

1. If M ’s query is(+, x) and for some 1≤ j < i the j th query–answer pair is〈x, y〉,
thenR̃’s answer isy (for an arbitrary such query–answer pair,〈x, y〉).

2. If M ’s query is(−, y) and for some 1≤ j < i the j th query–answer pair is〈x, y〉,
thenR̃’s answer isx (for an arbitrary such query–answer pair,〈x, y〉).

3. If neither 1 nor 2 holds, theñR’s answer is a uniformly chosen 2n-bit string.

It is possible thatR̃ provides answers that are not consistent withanypermutation:

Definition 3.3. Let σ = {〈x1, y1〉, ..., 〈xm, ym〉} be any possibleM-transcript.σ is
inconsistentif for some 1≤ j < i ≤ m the corresponding query–answer pairs satisfy
xi = xj andyi 6= yj or yi = yj andxi 6= xj . Otherwise,σ is consistent.

We first show (in Proposition 3.3) that the advantageM might have in distinguishing
between the process̃Rand the random permutationR is small. The reason is that as long
asR̃answers consistently (which happens with good probability) it “behaves” exactly as
a random permutation. In order to formalize this, we consider the different distributions
on the transcript ofM (induced by the different distributions on the answers it gets).

Definition 3.4. Let TS, TR, andTR̃ be the random variables such thatTS is the transcript
of M when its queries are answered byS, TR is the transcript ofM when its queries are
answered byR, andTR̃ is the transcript ofM when its queries are answered byR̃. Notice
that by these definitions (and by our assumptions)M S,S−1

(12n) = CM(TS) (are the same
random variables) andM R,R−1

(12n) = CM(TR).

Proposition 3.3. ∣∣∣∣Pr
R̃

[CM(TR̃) = 1]− Pr
R

[CM(TR) = 1]

∣∣∣∣ ≤ m2

22n+1
.
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Proof. For any possible and consistentM-transcriptσ we have that

Pr
R

[TR = σ ] = 22n!

(22n −m)!
= Pr

R̃
[TR̃ = σ | TR̃ is consistent].

Therefore, the distribution ofTR̃ conditionedon TR̃ being consistent is exactly the dis-
tribution of TR. Furthermore, the probability thatTR̃ is inconsistent is small:TR̃ is
inconsistent if for some 1≤ j < i ≤ m the corresponding query–answer pairs satisfy
xi = xj andyi 6= yj or yi = yj andxi 6= xj . For a giveni and j this event happens with
probability at most 2−2n. Hence,

Pr
R̃

[TR̃ is inconsistent]≤
(

m

2

)
· 2−2n <

m2

22n+1
.

The proposition follows:∣∣∣∣Pr
R̃

[CM(TR̃) = 1]− Pr
R

[CM(TR) = 1]

∣∣∣∣
≤
∣∣∣∣Pr

R̃
[CM(TR̃) = 1 | TR̃ is consistent]− Pr

R
[CM(TR) = 1]

∣∣∣∣
· Pr

R̃
[TR̃ is consistent]

+
∣∣∣∣Pr

R̃
[CM(TR̃) = 1 | TR̃ is inconsistent]− Pr

R
[CM(TR) = 1]

∣∣∣∣
· Pr

R̃
[TR̃ is inconsistent]

≤ Pr
R̃

[TR̃ is inconsistent]

<
m2

22n+1
.

It remains to bound the advantageM might have in distinguishing betweenTR̃ and
TS. The intuition is that for every possible and consistentM-transcriptσ unless some
“bad” and “rare” event on the choice ofh1 andh2 (as in the definition ofS) happens,
the probability thatTS = σ is exactly the same as the probability thatTR̃ = σ . We now
formally define this event (Definition 3.5) and bound its probability (Proposition 3.4).

Convention 3.1. For any possibleM-transcriptσ = {〈x1, y1〉, ..., 〈xm, ym〉} we can
assume hereafter that ifσ is consistent, then fori 6= j both xi 6= xj andyi 6= yj (this
means thatM never asks a query if its answer is determined by a previous query–answer
pair).

Definition 3.5. Foreveryspecificchoiceofpairwise independentpermutationsh1, h2 ∈
P2n (in the definition ofS) define BAD(h1, h2) to be the set of all possible and consistent
M-transcripts,σ = {〈x1, y1〉, . . . , 〈xm, ym〉}, satisfying:

∃1≤ i < j ≤ m such that h1(xi )|R = h1(xj )|R or h2(yi )|L = h2(yj )|L .
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Proposition 3.4. Let h1, h2 ∈ P2n be pairwise independent permutations, then for any
possible and consistent M-transcriptσ = {〈x1, y1〉, ..., 〈xm, ym〉} we have that

Pr
h1,h2

[σ ∈ BAD(h1, h2)] <
m2

2n
.

Proof. By definition,σ ∈ BAD(h1, h2) if there exist 1≤ i < j ≤ m such that either
h1(xi )|R = h1(xj )|R or h2(yi )|L = h2(yj )|L . For any giveni and j both Prh1[h1(xi )|R =
h1(xj )|R] and Prh2[h2(yi )|L = h2(yj )|L ] are smaller than 2−n (sinceh1 andh2 are pairwise
independent). Therefore,

Pr
h1,h2

[σ ∈ BAD(h1, h2)] <

(
m

2

)
· 2 · 2−n <

m2

2n
.

The key lemma for proving Theorem 3.2 is:

Lemma 3.5. Letσ = {〈x1, y1〉, ..., 〈xm, ym〉}beanypossibleandconsistent M-transcript,
then

Pr
S

[TS = σ | σ 6∈ BAD(h1, h2)] = Pr
R̃

[TR̃ = σ ].

Proof. Sinceσ is a possibleM-transcript we have that, for all 1≤ i ≤ m,

CM [{〈x1, y1〉, ..., 〈xi−1, yi−1〉}] ∈ {(+, xi ), (−, yi )}.
Therefore,TR̃ = σ iff, for all 1 ≤ i ≤ m, the i th answerR̃ gives isyi in the case that
CM [{〈x1, y1〉, ..., 〈xi−1, yi−1〉}] = (+, xi ) and otherwise itsi th answer isxi . Assume
that R̃ answered “correctly” (i.e.,yi or xi as above) for each one of the firsti −1 queries.
Then by Convention 3.1 and the definition ofR̃ its i th answer is an independent and
uniform 2n-bit string. Therefore,

Pr
R̃

[TR̃ = σ ] = 2−2nm.

Sinceσ is a possibleM-transcript we have thatTS = σ iff, for all 1 ≤ i ≤ m,
yi = S(xi ). Consider any specific choice of permutationsh1 andh2 (for which S =
S(h1, f1, f2, h2)) such thatσ 6∈ BAD(h1, h2). Let (L0

i , R0
i ) = h1(xi ) and(L2

i , R2
i ) =

h2(yi ). By the definition ofS, we get that

yi = S(xi ) ⇐⇒ f1(R
0
i ) = L0

i ⊕ L2
i and f2(L

2
i ) = R0

i ⊕ R2
i .

For every 1≤ i < j ≤ m both R0
i 6= R0

j andL2
i 6= L2

j (otherwiseσ ∈ BAD(h1, h2)).
Therefore, sincef1 and f2 are random, we have that for every choice ofh1 andh2 such
thatσ 6∈ BAD(h1, h2) the probability thatTS = σ is exactly 2−2nm. We can conclude:

Pr
S

[TS = σ | σ 6∈ BAD(h1, h2)] = 2−2nm,

which complete the proof of the lemma.
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Proof of Theorem 3.2. Let0 be the set of all possible and consistentM-transcriptsσ
such thatM(σ ) = 1.∣∣∣∣Pr

S
[CM(TS) = 1]− Pr

R̃
[CM(TR̃) = 1]

∣∣∣∣
≤
∣∣∣∣∣∑
σ∈0

(
Pr
S

[TS = σ ] − Pr
R̃

[TR̃ = σ ]

)∣∣∣∣∣ + Pr
R̃

[TR̃ is inconsistent]

≤
∑
σ∈0

∣∣∣∣Pr
S

[TS = σ |σ 6∈ BAD(h1, h2)] − Pr
R̃

[TR̃ = σ ]

∣∣∣∣
· Pr

h1,h2

[σ 6∈ BAD(h1, h2)] (1)

+
∣∣∣∣∣∑
σ∈0

(
Pr
S

[TS = σ |σ ∈ BAD(h1, h2)] − Pr
R̃

[TR̃ = σ ]

)
· Pr

h1,h2

[σ ∈ BAD(h1, h2)]

∣∣∣∣ (2)

+ Pr
R̃

[TR̃ is inconsistent]. (3)

We already showed in the proof of Proposition 3.3 that the value of (3) is smaller than
m2/22n+1, by Lemma 3.5 we get that the value of (1) is zero. Therefore, it remains to
bound the value of (2): Assume without loss of generality that∑

σ∈0
Pr
S

[TS = σ | σ ∈ BAD(h1, h2)] · Pr
h1,h2

[σ ∈ BAD(h1, h2)]

≤
∑
σ∈0

Pr
R̃

[TR̃ = σ ] · Pr
h1,h2

[σ ∈ BAD(h1, h2)],

then using Proposition 3.4 we get that∣∣∣∣∣∑
σ∈0

(
Pr
S

[TS = σ | σ ∈ BAD(h1, h2)] − Pr
R̃

[TR̃ = σ ]

)
· Pr

h1,h2

[σ ∈ BAD(h1, h2)]

∣∣∣∣∣
≤
∑
σ∈0

Pr
R̃

[TR̃ = σ ] · Pr
h1,h2

[σ ∈ BAD(h1, h2)]

≤ max
σ∈0

Pr
h1,h2

[σ ∈ BAD(h1, h2)]

<
m2

2n
.

Thus, we can conclude that

∣∣∣∣Pr
S

[CM(TS) = 1]− Pr
R̃

[CM(TR̃) = 1]

∣∣∣∣ < m2

2n
+ m2

22n+1
.
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Using Proposition 3.3 we complete the proof:∣∣∣∣Pr
S

[M S,S−1
(12n) = 1]− Pr

R
[M R,R−1

(12n) = 1]

∣∣∣∣
=
∣∣∣∣Pr

S
[CM(TS) = 1]− Pr

R
[CM(TR) = 1]

∣∣∣∣
≤
∣∣∣∣Pr

S
[CM(TS) = 1]− Pr

R̃
[CM(TR̃) = 1]

∣∣∣∣+ ∣∣∣∣Pr
R̃

[CM(TR̃) = 1]− Pr
R

[CM(TR) = 1]

∣∣∣∣
<

m2

2n
+ m2

22n
.

Given Theorem 3.2, the proof of Theorem 3.1 is essentially the same as the corre-
sponding proof of the original LR-Construction (the proof of Theorem 1 of [26], given
their main lemma). The proof idea is the following: Define three distributions:

• S1 = S(h1, f1, f2, h2), whereh1, h2 ∈ P2n are pairwise independent andf1, f2 ∈
Fn are pseudorandom functions.
• S2 = S(h1, g1, f2, h2), whereh1, h2 ∈ P2n are pairwise independent,f2 ∈ Fn is a

pseudorandom function, andg1 ∈ Fn is a random function.
• S3 = S(h1, g1, g2, h2), whereh1, h2 ∈ P2n are pairwise independent andg1, g2 ∈

Fn are random functions.

It is enough to show that, for every oracle machine, for all but a finite number ofn’s:

1. |Pr[M S1,S
−1
1 (12n) = 1]− Pr[M S2,S

−1
2 (12n) = 1]| ≤ ε(n).

2. |Pr[M S2,S
−1
2 (12n) = 1]− Pr[M S3,S

−1
3 (12n) = 1]| ≤ ε(n).

If 1 or 2 do not hold, then we can construct an efficient oracle machineM ′ that ε-
distinguishes the pseudorandom functions from the random functions in contradiction
to the assumption. Assume, for example, that, for infinitely manyn’s,∣∣∣Pr[M S1,S

−1
1 (12n) = 1]− Pr[M S2,S

−1
2 (12n) = 1]

∣∣∣ > ε(n).

The oracle machineM ′ on input 1n and with access to a functionO ∈ Fn first samples
pairwise independent permutations,h1, h2 ∈ P2n, and a pseudorandom functionf2 ∈ Fn.
M ′ then invokesM with input 12n and answers its queries with the values ofSandS−1,
for S = S(h1,O, f2, h2). WhenM halts so doesM ′ and it outputs whatever was the
output of M . Notice that if O is a pseudorandom function, then the distribution ofS
is S1 whereas ifO is a truly random function, then the distribution ofS is S2. This
is the reason thatM ′ distinguishes a pseudorandom function from a random one with
advantage greater thanε(n). Similar hybrid arguments apply to all other constructions
of this paper.

4. The Framework

As we shall see in Sections 5–7, the construction of Section 3 can be relaxed and
generalized in several ways. The different pseudorandom permutations obtained share a
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Fig. 2. The high-level structure of the different constructions of SPPE.

similar structure and almost identical proof of security. In this section we examine the
proof of Theorem 3.2 in a more abstract manner. Our goal is to establish a framework for
proving (almost) all the constructions of this paper and to suggest a way for designing
and proving additional constructions.

Our framework deals with constructions of a pseudorandom permutationS on ` bits
which is the composition of three permutations:S ≡ h−1

2 ◦ E ◦ h1 (see Fig. 2 for an
illustration). In general,h1 andh−1

2 are “lightweight” andE is where most of the work is
done.E is constructed from pseudorandom functions and for the purpose of the analysis
we assume (as in Theorem 3.2) that these functions are truly random. In Section 3,
for example,̀ = 2n, h1 andh2 are chosen as pairwise independent permutations, and
E ≡ D f2 ◦ D f1 for random f1, f2 ∈ Fn.

The framework starts withE which may be easily distinguished from a truly ran-
dom permutation and transforms it viah1 and h2 into a pseudorandom permutation.
The propertyE should have is that for almost every sequence,{〈x1, y1〉, . . . , 〈xm, ym〉},
the probability that,∀i, yi = E(xi ) is “close” to what we have for a truly random
permutation:

Definition 4.1. Asequence,{〈x1, y1〉, . . . , 〈xm, ym〉}, isE-Good ifPrE[∀i, yi = E(xi )]
= 2−`·m.

We assume that apart from some “rare” sequences all others areE-Good. Loosely speak-
ing, the role ofh1 andh2 is to ensure that under any (adaptive chosen plaintext and
ciphertext) attack onS the inputs and outputs ofE form anE-Good sequence with very
high probability.
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For the exact properties needed from the distributions onh1, h2, andE, we try to follow
the statement and proof of Theorem 3.2. The goal is to show thatS is indistinguishable
from a truly random permutationR on` bits. Specifically, that for some smallε (whose
choice will be explained hereafter), for any oracle machineM (not necessarily an efficient
one) that makes at mostm queries:∣∣∣Pr[M S,S−1

(1`) = 1]− Pr[M R,R−1
(1`) = 1]

∣∣∣ ≤ ε + m2

2`
.

Let the notions of a query–answer pair, a transcript, the functionCM , a possibleM-
transcript, the random processR̃, a consistent transcript, and the different random vari-
ablesTS, TR, andTR̃ be as in the proof of Theorem 3.2. Proposition 3.3 (saying that the
distance betweenTR andTR̃ is bounded by the probability thatTR̃ is inconsistent and that
this probability is bounded bym2/2`+1) still holds. The heart of applying the framework
is in specifying the “bad”M-transcripts for givenh1 andh2. This set BADE(h1, h2) re-
places BAD(h1, h2) in Definition 3.5 and in the rest of the proof. It contains possible and
consistentM-transcripts and should have the property that any{〈x1, y1〉, . . . , 〈xm, ym〉}
not inBADE(h1, h2) satisfies that{〈h1(x1), h2(y1)〉, . . . , 〈h1(xm), h2(ym)〉} is E-Good.
Note that Definition 3.5 is indeed a special case of the above and also that, by this
property,

Pr
S

[TS = σ | σ 6∈ BADE(h1, h2)] = 2−`·m.

This implies that Lemma 3.5 where BAD(h1, h2) is replaced with BADE(h1, h2) is true:

Lemma 4.1. Letσ = {〈x1, y1〉, . . . , 〈xm, ym〉} be any possible and consistent M-tran-
script, then

Pr
S

[TS = σ | σ 6∈ BADE(h1, h2)] = Pr
R̃

[TR̃ = σ ].

For BADE(h1, h2) to be useful we must have that

Pr
h1,h2

[σ ∈ BADE(h1, h2)] ≤ ε (4)

and this substitutes Proposition 3.4. This is the only place in the proof where we use the
definition ofε and the definition of the distributions ofh1 andh2. As will be demonstrated
in Sections 5.2 and 7.1, there is actually a tradeoff between reducing the requirements
from h1 andh2 and having a somewhat larger value ofε. Applying (4) and Lemma 4.1
as in the proof of Theorem 3.2 we conclude:

Theorem 4.2. Let h1, h2, E be distributed over permutations in P`, let S≡ h−1
2 ◦E◦h1,

and let R∈ P̀ be a random permutation. Suppose thatBADE(h1, h2) is as above and
ε satisfies(4). Then, for any oracle machine M(not necessarily an efficient one) that
makes at most m queries,∣∣∣Pr[M S,S−1

(1`) = 1]− Pr[M R,R−1
(1`) = 1]

∣∣∣ ≤ ε + m2

2`
.
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To summarize, the major point in proving the security of the different constructions is
to define the set BADE(h1, h2) such that for any possible and consistentM-transcript,
σ , both PrS[TS = σ | σ 6∈ BADE(h1, h2)] = 2−`·m and Prh1,h2[σ ∈ BADE(h1, h2)] ≤ ε
(for the specificε in the claim we are proving). This suggests that the critical step for
designing a pseudorandom permutation, using the framework described in this section, is
to come up with a permutationE such that the set ofE-Good sequences is “large enough”
and “nice enough.” Note that to meet this end different or more general definitions of an
E-Good sequence can be used with only minor changes to the proof (as is the case for
the permutation̂S in Section 7).

5. Relaxing the Construction

5.1. PPE and SPPE with a Single Pseudorandom Function

Since Luby and Rackoff introduced their construction a considerable amount of research
[33]–[36], [38], [42]–[44], [46], [51] has been focused on the following question: Can
we obtain a similar construction of PPE or SPPE such that every permutation will be
constructed from asinglepseudorandom function?

Apparently, this line of research originated in the work of Schnorr [46]. Schnorr
considered the LR-Construction, where the functions used are truly random, as a pseu-
dorandom generator that is secure if not too many bits are accessible. The security of
Schnorr’s generator does not depend on any unproven assumption. This notion of local-
randomness is further treated in [28] and [29]. Since the key of a random function is
huge it makes sense to minimize the number of functions and, indeed, Schnorr sug-
gestedD f ◦ D f ◦ D f as pseudorandom (the suggested permutation was later shown to
be distinguishable from random [42]).

Following is an informal description of some of these results. Letf ∈ Fn be a random
function, then:

• For all i, j, k ≥ 1 the permutationD f i ◦ D f j ◦ D f k is not pseudorandom [51].
• For all i, j, k, ` ≥ 1 the permutationD f i ◦D f j ◦D f k ◦D f ` is not strongly pseudo-

random [43].
• D f 2 ◦ D f ◦ D f ◦ D f is pseudorandom [38].
• D f ◦ DI ◦ D f 2 ◦ D f ◦ DI ◦ D f 2 is strongly pseudorandom, whereI ∈ Fn is the

identity function [44].
• D f ◦ξ◦ f ◦D f ◦D f is pseudorandom andD f ◦ξ◦ f ◦D f ◦D f ◦D f is strongly pseudo-

random, whereξ is, for example, a rotation of one bit [36].

A critique which has often been voiced is that using only one pseudorandom function
does not seem too significant: A pseudorandom function onn + 2 bits can replace
four pseudorandom functions onn bits or, alternatively, a small key can be used to
pseudorandomly generate a larger key. It should also be noticed that the new constructions
require additional invocations of the pseudorandom functions which imply an increase in
the computation time. Furthermore, these results involve detailed and nontrivial proofs
(to a point where some papers claim to find inaccuracies in others).

The adjustment of the LR-Construction we suggest in Section 3 can easily be converted
into a construction of PPE and SPPE from a single pseudorandom function. Simply re-
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place both (pseudorandom) functionsf1 and f2 with a single (pseudorandom) function
f . This solution does not suffer from the drawbacks of the previous ones. The construc-
tion and the proof remain as simple as before and the pseudorandom function is only
invoked twice at each computation of the permutation. The additional key-length for the
pairwise independent functions (h1 andh2) is not substantial (especially compared with
the length of a truly random function). Consider, for example, the construction of SPPE
when we use a truly random functionf :

Theorem 5.1. Let h1, h2 ∈ P2n be pairwise independent permutations and let f∈ Fn

be a random function. Define S= S(h1, f, f, h2) (as in Definition3.1)and let R∈ P2n

be a random permutation. Then, for any oracle machine M(not necessarily an efficient
one) that makes at most m queries,∣∣∣Pr[M S,S−1

(12n) = 1]− Pr[M R,R−1
(12n) = 1]

∣∣∣ ≤ 2m2

2n
+ m2

22n
.

The proof follows the framework described in Section 4. The set BAD(h1, h2) (Defi-
nition 3.5) is replaced with the set BAD1(h1, h2) defined to be:

The set of all possible and consistentM-transcripts,

σ = {〈x1, y1〉, . . . , 〈xm, ym〉},
satisfying that there exist 1≤ i < j ≤ msuch that eitherh1(xi )|R = h1(xj )|R
or h2(yi )|L = h2(yj )|L (as before),or there exist 1≤ i, j ≤ m such that
h1(xi )|R = h2(yj )|L .

In order to apply Theorem 4.2, it is enough to note that by this definition we get that for
any possible and consistentM-transcripts,σ , both PrS[TS = σ | σ 6∈ BAD1(h1, h2)] =
2−2nm (hence, it is a proper definition according to the framework) and Prh1,h2[σ ∈
BAD1(h1, h2)] < 2m2/2n.

5.2. Relaxing the Pairwise Independence Requirement

The construction of Section 3 may be interpreted in the following way: given the task
of constructingefficientpseudorandom permutations it is enough to concentrate on the
efficient construction of pseudorandomfunctions. The assumption that supports such
a claim is that the computation of pseudorandom functions is much more expensive
than the computation of pairwise independent permutations. Therefore, computing the
value of the pseudorandom permutation (that is constructed in Section 3) on any input
of 2n bits is essentially equivalent to two invocations of a pseudorandom function with
n-bit inputs. In this section we show that we can use even weaker permutations instead
of the pairwise independent ones—resulting in an even more efficient construction of
pseudorandom permutations.

As mentioned in Section 4, the only place in Section 3 we use the fact thath1 and
h2 are pairwise independent permutations is in the proof of Proposition 3.4. In fact, the
exact requirement onh1 andh2 we use is that, for everyx 6= y,

Pr
h1

[h1(x)|R = h1(y)|R] ≤ 2−n and Pr
h2

[h2(x)|L = h2(y)|L ] ≤ 2−n.
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Furthermore, we can replace 2−n with anyε ≥ 2−n and still get a construction of pseudo-
random permutations (with somewhat larger distinguishing probability). Consider, for
example, the revised statement of Theorem 3.2:

Theorem 5.2. Let H1 and H2 be distributions of permutations in P2n such that, for
every pair of2n-bit strings x 6= y,

Pr
h1∈H1

[h1(x)|R = h1(y)|R] ≤ ε and Pr
h2∈H2

[h2(x)|L = h2(y)|L ] ≤ ε.

Let h1 be distributed according to H1, let h2 be distributed according to H2, and let
f1, f2 ∈ Fn be random functions. Define S= S(h1, f1, f2, h2) (as in Definition3.1)and
let R∈ P2n be a random permutation. Then, for any oracle machine M(not necessarily
an efficient one) that makes at most m queries,∣∣∣Pr[M S,S−1

(12n) = 1]− Pr[M R,R−1
(12n) = 1]

∣∣∣ < m2 · ε + m2

22n
.

The proof follows the framework described in Section 4. This time the definition of
BAD(h1, h2) stays unchanged and, in order to apply Theorem 4.2, we only need to note
that, for any possible and consistentM-transcriptσ , Prh1,h2[σ ∈ BAD(h1, h2)] < m2 ·ε.

The conditions onH1 and H2 in Theorem 5.2 are somewhat nonstandard (since
the requirements are on half the bits of the output). Nevertheless, these conditions are
satisfied by more traditional requirements on function families. In particular, the concept
of ε-AXU2 functions can be used:

Definition 5.1. A distribution onIn 7→ In functions (or permutations),H , is ε-AXU2

if, for everyx 6= y and everyz (x, y, z ∈ In),

Pr
h∈H

[h(x)⊕ h(y) = z] ≤ ε.

This concept was originally defined by Carter and Wegman [12]; we use the terminology
of Rogaway [40].

It is easy to verify that the conditions onH1 and H2 in Theorem 5.2 are satisfied if
bothH1 andH2 are((2n−1)−1 ·ε)-AXU2. Such a distribution of permutations overI2n,

for ε = (2n+1)−1, isha(x)
def= a · x wherea is uniform in I2n\{0} and the multiplication

is in GF(22n).
Another way to constructH1 andH2 is by using Feistel permutationswith ε-AXU2

functions. Let H be a distribution ofε-AXU2 functions onn-bit strings, then we can
define H1 to be {Dh}h∈H and H2 to be {D−1

h }h∈H . The reason is that for every two
different2n-bit stringsx = (L1, R1) andy = (L2, R2) and every functionh ∈ Fn we
have by definition that

Dh(x)|R = Dh(y)|R ⇐⇒ h(R1)⊕ h(R2) = L1⊕ L2.

If R1 = R2, thenL1 6= L2 and thereforeDh(x)|R 6= Dh(y)|R otherwise, by the definition
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of ε-AXU2 functions:

Pr
h∈H

[Dh(x)|R = Dh(y)|R] = Pr
h∈H

[h(R1)⊕ h(R2) = L1⊕ L2] ≤ ε.

Thus,H1 satisfies its requirement and similarly forH2.
By using Feistel permutations to constructH1 and H2 we get the original LR-

Construction as a special case (since a random function is in particular 2−n-AXU2).
Thus, the proof of security in Section 3 also holds for the original LR-Construction. The
idea of usingε-AXU2 functions instead of pseudorandom functions for the first round
of the LR-Construction was previously suggested by Lucks [27].

Another advantage of this approach is that it allows us to use many efficient construc-
tions of function families. An example of efficient 2−n-AXU2 functions are Vazirani’s
“shift” family [48]. A key of such a function is a uniformly chosen stringa ∈ I2n−1 and
the j th bit of fa(x) (1≤ j ≤ n) is defined to be

∑n
i=1 xi aj+i−1 mod 2.

A substantial amount of research [12], [19], [23], [40], [47], [49] deals with the con-
struction ofefficienthash functions. This line of work contains constructions that obey
weaker definitions on function families than pairwise independence and in particular
contains constructions ofε-AXU2 functions. Unfortunately, these functions were de-
signed to be especially efficient when their output is substantially smaller than their
input (since they were mainly brought up in the context of authentication) which is not
true in our case (but is relevant in Section 7). An additional objective is to reduce the
size of the family of hash functions (e.g., [18] and [23]). In our setting the purpose of
this is to reduce the key-length of the pseudorandom permutations.

6. Reducing the Distinguishing Probability

There are various circumstances where it is desirable to have a pseudorandom permuta-
tion on relativelyfewbits (say 128). This is especially true when we want to minimize
the size of the hardware circuit that implements the permutation or the communication
bandwidth with the (hardware or software) component that computes the permutation.

Let F be a pseudorandom permutation on` bits (note thatn = `/2 in Section 3) con-
structed from truly random functions (on`/2 bits) using the LR-Construction. As shown
by Patarin [35],F can be distinguished (with constant probability) from a random per-
mutation usingO(2`/4) queries (which means that the analysis of the LR-Construction,
where the distinguishing probability form queries isO(m2/2`/2), is tight). Therefore,
the LR-Construction oǹ bits can only be used if 2`/4 is large enough to bound the
number of queries in the attack on the block cipher.

In this section a simple generalization of the construction of Section 3 is presented.
Using this construction, the adversary’s probability of distinguishing between the pseu-
dorandom and random permutations can be reduced to roughlyt/2 · m2/2(1−1/t)` for
every integer 2≤ t ≤ ` (for t = 2 we get the original construction). To achieve this
securityt +2 permutations are composed. The initial and final are pairwise independent
permutations, the rest are (generalized) Feistel permutations defined byI(1−1/t)` 7→ I`/t

random (or pseudorandom) functions (see Fig. 3 for an illustration).
Patarin [37] shows that if we take six rounds of the LR-Construction (instead of three or

four), then the resulting permutation cannot be distinguished from a random permutation
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Fig. 3. Construction of strong pseudorandom permutations with reduced distinguishing probability using
t + 2 rounds (heret = 3). Recall, fi : I(1−1/t)` 7→ I`/t (here fi : I2`/3 7→ I`/3).
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with advantage better than 5m3/2` (improving [35]). This means that distinguishing the
six-round construction from a truly random permutation (with constant probability)
requires at leastÄ(2`/3) queries. The bound we achieve in this section (Ä(2(1−1/t)·`/2))
is better (for anyt ≥ 4). Note that our construction uses pseudorandom functions with
larger input-length, which might be a disadvantage for some applications.

In order to describe our generalized constructions we first extend Feistel permutations
to deal with the case where the underlying functions have arbitrary input and output
lengths (instead of length-preserving functions as in Definition 2.1). We note that using
such “unbalanced” Feistel permutations was previously suggested in [5], [27], and [45].

Definition 6.1 (Generalized Feistel Permutations). For any two positive integers,sand
`′, and any functionf : I`′ 7→ Is, let ` = `′ + s and letD f ∈ P̀ be the permutation

defined byD f (L , R)
def= (R, L ⊕ f (R)), where|L| = s and|R| = `′.

We can now define the revised construction and consider its security. These are simple
generalizations of the construction in Section 3 and of its proof of security.

Definition 6.2 ((t + 2)-Round Construction). For any integers 2≤ t ≤ `, let s andr
be integers such that` = s · t + r (wherer < t). For anyh1, h2 ∈ P̀ ,

f1, f2, . . . , fr : I`−s−1 7→ Is+1,

and fr+1, . . . , ft : I`−s 7→ Is define

W(h1, f1, f2 . . . , ft )
def= D ft ◦ D ft−1 ◦ · · · ◦ D f1 ◦ h1

and

S(h1, f1, f2, . . . , ft , h2)
def= h−1

2 ◦ D ft ◦ D ft−1 ◦ · · · ◦ D f1 ◦ h1.

(We get the construction of Definition 3.1 by choosingt = 2, s= `/2, andr = 0.)

Theorem 6.1. Let W and S be as in Definition6.2, where h1 and h2 are pairwise
independent permutations and f1, f2, . . . , ft are pseudorandom functions(t is allowed
to be a function of̀ ); h1, h2, and f1, f2, . . . , ft are independently chosen. Then W is a
pseudorandom permutation and S is a strong pseudorandom permutation.

Furthermore, assume that no efficient oracle machine that makes at most m= m(`)
queries, ε-distinguishes between the pseudorandom functions and random functions
for ε = ε(n). Then no efficient oracle machine that makes at most m queries to W
(resp. S and S−1) ε′-distinguishes W(resp. S) from a random permutation forε′ =
t · ε + t/2 ·m2/2`−d`/te +m2/2`.

In case the middle functions are truly random this reduces to:

Theorem 6.2. Let S be as in Definition6.2,where h1 and h2 are pairwise independent
permutations and f1, f2, . . . , ft are random functions and let R∈ P̀ be a random
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permutation. Then, for any oracle machine M(not necessarily an efficient one) that
makes at most m queries,∣∣∣Pr[M S,S−1

(1`) = 1]− Pr[M R,R−1
(1`) = 1]

∣∣∣ ≤ t

2
· m2

2`−d`/te +
m2

2`
.

The proof of Theorem 6.2 follows the framework described in Section 4. Assume for
simplicity that` = s · t , the set BAD(h1, h2) (Definition 3.5) is replaced with the set
BAD2(h1, h2) defined to be:

The set of all possible and consistentM-transcripts,σ = {〈x1, y1〉, . . . ,
〈xm, ym〉}, satisfying that there exist 1≤ i < j ≤m and 1≤ k≤ t such that

(Fk+1
i , . . . , Ft

i , L1
i , . . . , Lk−1

i ) = (Fk+1
j , . . . , Ft

j , L1
j , . . . , Lk−1

j ),

where(F1
i , F2

i , . . . , Ft
i ) = h1(xi ) and(L1

i , L2
i , . . . , Lt

i ) = h2(yi ) (
∣∣F1

i

∣∣ =∣∣F2
i

∣∣ = · · · = ∣∣Ft
i

∣∣ = ∣∣L1
i

∣∣ = ∣∣L2
i

∣∣ = · · · = ∣∣Lt
i

∣∣ = s).

This guarantees that for any possible and consistentM-transcriptσ we have that
PrS[TS = σ | σ 6∈ BAD2(h1, h2)] = 2−`m (and, hence, it is a proper definition according
to the framework). The reason is that, under the notation above,

∀i, yi =S(xi )⇐⇒∀1≤ i ≤m, ∀1≤k≤ t, fk(F
k+1
i , . . . , Ft

i , L1
i , . . . , Lk−1

i ) = Fk
i ⊕Lk

i .

Therefore, given any specific choice ofh1 and h2 (in the definition ofS) such that
σ 6∈ BAD2(h1, h2) the eventTS = σ is composed ofm · t independent events, each of
which has probability 2−s of happening. In order to apply Theorem 4.2, it remains to
note that for any suchσ we have that

Pr
h1,h2

[σ ∈ BAD2(h1, h2)] < t ·
(

m

2

)
· 2−(`−d`/te) <

t

2
· m2

2`−d`/te .

Remark6.1. The construction of this section achieves a substantial improvement in
security over the construction in Section 3 even for a small constantt > 2 (that is, with
a few additional applications of the pseudorandom functions). Nevertheless, it might be
useful for some applications to take a larger value oft . Choosingt = ` reduces the
advantage the distinguisher may achieve to roughly(` ·m2)/2`.

7. SPPE on Many Blocks Using PFE or PPE on a Single Block

Consider the application of pseudorandom permutations to encryption, i.e., usingf (M)
in order to encrypt a messageM , where f is a pseudorandom permutation. Assume
also that we want to use DES for this purpose. We now have the following problem:
while DES works on fixed and relatively small length strings, we need a permutation on
|M |-bit long strings, where the length of the message,|M |, may be large and may vary
between different messages.

This problem is not restricted to the usage of DES (though the fact that DES was
designed for hardware implementation contributes to it). Usually, a direct construction
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of pseudorandom permutations or pseudorandom functions (if we want to employ the
LR-Construction) with large input-length is expensive. Therefore, we would like a way to
construct pseudorandom permutations (or functions) onmany blocksfrom pseudorandom
permutations (or functions) ona single block.

Several such constructions were suggested in the context of DES (see, e.g., [10]
for the different modes of operation for DES). The simplest, known as the electronic
codebook mode (ECB mode), is to divide the input into subblocks and to apply the
pseudorandom permutation on each subblock separately. This solution suffers from the
obvious drawback that every subblock of output solely depends on a single subblock of
input (and, in particular, the permutation on the complete input is not pseudorandom).
This may leak information about the message being encrypted (see further discussion in
Section 7.2).

In this section we consider a generalization of the construction of Section 3 that
uses pseudorandom functions (or permutations) on asingleblock to construct strong
pseudorandom permutations onmanyblocks. The idea is as follows: apply a pairwise
independent permutation on the entire input, divide the value you get into subblocks, and
apply two rounds of Feistel permutations (or one round of a pseudorandom permutation)
on each subblock separately, finally, apply a second pairwise independent permutation
on the entire value you get (see Fig. 4 for an illustration).

This solution resembles the ECB mode, it is almost as simple and it is highly suitable
for parallel implementation. Contrary to the ECB mode, this construction does give a
pseudorandom permutation onthe entire message(though the security parameter is still
relative to the length of a subblock).

For simplicity, we only describe the construction using truly random functions (or
a truly random permutation). The analysis of the construction when pseudorandom
functions are used follows easily. In addition, we restrict our attention to the construction
of strongpseudorandom permutations.

Definition 7.1. For any two integersb ands, for any functiong ∈ Fs let g×b ∈ Fb·s be
the function defined by

g×b(x1, x2, . . . , xb)
def= (g(x1), g(x2), . . . , g(xb)).

For any f1, f2 ∈ Fn andh1, h2 ∈ P2nb, define

S(h1, f1, f2, h2)
def= h−1

2 ◦ D×b
f2
◦ D×b

f1
◦ h1.

For anyp ∈ P2n andh1, h2 ∈ P2nb, define

Ŝ(h1, p, h2)
def= h−1

2 ◦ p×b ◦ h1.

Theorem 7.1. Let h1, h2 ∈ P2nb be pairwise independent permutations, let f1, f2 ∈
Fn be random functions, and let p ∈ P2n be a random permutation. Define S=
S(h1, f1, f2, h2) and Ŝ = Ŝ(h1, p, h2) (as in Definition7.1) and let R∈ P2nb be a
random permutation. Then, for any oracle machine M(not necessarily an efficient one)
that makes at most m queries,∣∣∣Pr[M S,S−1

(12nb) = 1]− Pr[M R,R−1
(12nb) = 1]

∣∣∣ ≤ m2 · b2

2n
+ m2

22nb
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Fig. 4. Construction of a strong pseudorandom permutation on many (six in this case) blocks from a
pseudorandom function on a single block.

and ∣∣∣Pr[M Ŝ,Ŝ−1
(12nb) = 1]− Pr[M R,R−1

(12nb) = 1]
∣∣∣ ≤ m2 · b2

22n−1
.

The proof of Theorem 7.1 forS follows the framework described in Section 4. The
set BAD(h1, h2) (Definition 3.5) is replaced with the set BAD3(h1, h2) defined to be:

The set of all possible and consistentM-transcripts,

σ = {〈x1, y1〉, . . . , 〈xm, ym〉},

such that either there are two equal values in{F2 j
i }1≤i≤m, 1≤ j≤b or there are

two equal values in{L2 j−1
i }1≤i≤m, 1≤ j≤b, where(F1

i , F2
i , . . . , F2b

i ) = h1(xi )
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and(L1
i , L2

i , . . . , L2b
i ) = h2(yi ) (

∣∣F1
i

∣∣ = ∣∣F2
i

∣∣ = · · · = ∣∣F2b
i

∣∣ = ∣∣L1
i

∣∣ =∣∣L2
i

∣∣ = · · · = ∣∣L2b
i

∣∣ = n).

This guarantees that for any possible and consistentM-transcriptσ we have that

Pr
S

[TS = σ | σ 6∈ BAD3(h1, h2)] = 2−2n·b·m

(and, hence, it is a proper definition according to the framework). The reason is that,
under the notation above,

∀i, yi = S(xi ) ⇐⇒ ∀1≤ i ≤ m, ∀1≤ j ≤ b, f1(F
2 j
i ) = F2 j−1

i ⊕ L2 j−1
i

and f2(L
2 j−1
i ) = F2 j

i ⊕ L2 j
i .

Therefore, given any specific choice ofh1 and h2 (in the definition ofS) such that
σ 6∈ BAD3(h1, h2) the eventTS = σ is composed of 2m · b independent events, each
of which has probability 2−n of happening. In order to apply Theorem 4.2, it remains to
note that for any suchσ we have that

Pr
h1,h2

[σ ∈ BAD3(h1, h2)] ≤ 2 ·
(

m · b
2

)
· 2−n <

m2 · b2

2n
.

The proof of Theorem 7.1 for̂S slightly deviates from the framework described in
Section 4 (providing yet further evidence to the claim that “nobody is perfect”). The set
BAD(h1, h2) (Definition 3.5) is replaced with the set BAD4(h1, h2) defined to be:

The set of all possible and consistentM-transcripts,σ = {〈x1, y1〉, . . . ,
〈xm, ym〉}, such that either there are two equal values in{F j

i }1≤i≤m, 1≤ j≤b or
there are two equal values in{L j

i }1≤i≤m, 1≤ j≤b, where(F1
i , F2

i , . . . , Fb
i ) =

h1(xi ) and (L1
i , L2

i , . . . , Lb
i ) = h2(yi ) (

∣∣F1
i

∣∣ = ∣∣F2
i

∣∣ = · · · = ∣∣Fb
i

∣∣ =∣∣L1
i

∣∣ = ∣∣L2
i

∣∣ = · · · = ∣∣Lb
i

∣∣ = 2n).

Now we have that, for any possible and consistentM-transcriptσ ,

Pr
h1,h2

[σ ∈ BAD4(h1, h2)] ≤ 2 ·
(

m · b
2

)
· 2−2n <

m2 · b2

22n

but now, for any suchσ ,

Pr
Ŝ

[TŜ = σ | σ 6∈ BAD4(h1, h2)] = 22n!

(22n −m · b)!

instead of 2−2n·b·m as “required” by the framework. However, the difference in probabili-
ties is rather small which results in only a minor deviation from the proof of Theorem 3.2.

7.1. Relaxing the Construction

As in Section 5.2 we would like to reduce the requirements fromh1 andh2 in Theorem
7.1. Our main motivation in doing so is todecrease the key-lengthof the pseudorandom
permutations. We would like the key-length to be of ordern—the length of the small
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subblocks—andnot of order 2nb—the length of the complete input (in some cases we
may allow a small dependence onb).

We sketch a way to redefine the distributions onh1 andh2 in the definition ofŜ(almost
the same ideas apply to the definition ofS). The requirement these distributions have
to obey is that for any possible and consistentM-transcriptσ we have that Prh1,h2[σ ∈
BAD4(h1, h2)] is “small.” We use the following notation: For any (2n · b)-bit string
z = (z1, z2, . . . , zb) (such that∀ j,

∣∣zj

∣∣ = 2n) and for all 1≤ i ≤ b, denote byz|i the
substringzi (thei th substring ofz). The requirement above can be achieved by sampling
h1 andh2 according to a permutation distributionH such that for some smallε ≥ 2−2n

we have that:

1. For any (2n · b)-bit stringx, ∀1≤ i < j ≤ b, Prh∈H [h(x)|i = h(x)|j ] ≤ ε.
2. For any (2n · b)-bit strings x 6= x′, ∀1 ≤ i, j ≤ b, Prh∈H [h(x)|i
= h(x′)|j ] ≤ ε.

We start by defining a permutation distributionH ′ that almost achieves this: A permuta-
tion h′ = h′u1,u2

sampled fromH ′ is defined by twoε′-AXU2 functions,u1: I2n 7→ I2n

andu2: Idlogbe 7→ I2n (see the definition ofε-AXU2 functions in Section 5.2). For any
z= (z1, z2, . . . , zb) (such that∀ j,

∣∣zj

∣∣ = 2n),

h′u1,u2
(z)

def= (z1⊕ u1(zb)⊕ u2(1), z2⊕ u1(zb)⊕ u2(2), . . . , zb−1⊕ u1(zb)

⊕ u2(b− 1), zb ⊕ u2(b)).

It is not hard to verify that:

1′. For any (2n · b)-bit stringx, ∀1≤ i < j ≤ b, Prh′∈H ′ [h′(x)|i = h′(x)|j ] ≤ ε′.
2′. Forany (2n·b)-bit stringsx 6= x′ such thatx|b 6= x′|b,∀1≤ i, j ≤ b,Prh′∈H ′ [h′(x)|i =

h′(x′)|j ] ≤ ε′.
In order to eliminate the additional requirement in 2′ that x|b 6= x′|b, we define the
permutation distributionH such that a permutationh sampled fromH is defined to be
h′ ◦Dg (see Definition 6.1), whereh′ is sampled according toH ′ andg: I2n·(b−1) 7→ I2n

is aε′-AXU2 function (see Fig. 5 for an illustration). Using 1′ and 2′ and the fact that,
for any (2n · b)-bit stringsx 6= x′,

Pr
g

[Dg(x)|b = Dg(x
′)|b] ≤ ε′,

we get thatH satisfies 1 and 2 forε = 2ε′.
Notice that the computation of a functionh ∈ H is essentially equivalent to one

computation of anε-AXU2 function, g: I2n·(b−1) 7→ I2n, and a few additional XOR
operations per block. Using efficient constructions ofε-AXU2 functions [12], [19], [23],
[40], [47], [49] we get an efficient functionh. Krawczyk [23] shows a construction
of ((m+ `)/2`−1)-AXU2 functions fromm bits to ` bits with ` key-bits. Using these
functions we can achieve the desired goal of reducing the key-length ofh to O(n) bits.

7.2. Related Work

The construction presented in this section is certainly not the only solution to the problem
at hand. We refer in brief to some additional solutions:
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Fig. 5. The construction ofh ∈ H . Eachvi denotes the stringu2(i ).

As mentioned above, DES modes of operation were suggested as a way of encrypting
long messages. However, none of these modes constitutes a construction of a pseudo-
random permutation.4 Note that when the encryption of a messageM is f (M), for a
pseudorandom permutationf , then the only information that is leaked onM is whether
or not M is equal to a previously encrypted message. This is not true for DES modes
of operation. For instance, when using the cipher block chaining mode (CBC mode),
the encryptions of two messages with identical prefix will also have an identical prefix.
The ECB mode leaks even more information—the existence of two identical subblocks
(in two different encrypted messages or in a single message). The reason that the ECB
mode leaks so much information is that every ciphertext-block solely depends on a single
plaintext-block. Our construction implies that only very little and “noncryptographic”
diffusion (the permutationsh1 andh2) is required in order to overcome this flaw of the
ECB mode.

Bellare and Rogaway [8] show how to convert the CBC mode in order to construct a
pseudorandom permutation with large input-length (this is the only place we are aware
of that explicitly refers to the problem). The amount of work in their construction is
comparable with two applications of the original CBC mode (approximately twice the
work of our construction, assuming thath1 andh2 are relatively efficient). The security
of this construction is of similar order to the security of our construction. In contrast to
our construction, [8] (as well as [6] and [7]) is sequential in nature.

4 However, as shown by Bellare et al. [7], the CBC mode does define a construction of a pseudorandom
function with small output-length. A somewhat related solution to this problem is the so-calledcascade
construction that is considered by Bellare et al. [6].
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A different approach is to define a length-preserving pseudorandom functionF̃ on ˜̀
bits using a length-preserving pseudorandom functionF on ` bits (where` < ˜̀) and
then to apply our version of the LR-Construction usingF̃ in order to get a pseudorandom
permutationon 2· ˜̀ bits. The functionF̃ can be defined to beG ◦ F ◦ h, whereh is a
pairwise independent hash function from̃` bits to` bits andG is a pseudorandom (bit)
generator from̀ bits to ˜̀ bits. This idea may be attributed in part to Wegman and Carter
[49]. Anderson and Biham [5] and Lucks [27] show how to apply similar ideas directly
into the LR-Construction. A comparison between this approach and our construction
relies on the specific parameters of the different primitives that are used. In particular,
the parameters of the pseudorandom functionF versus the pseudorandom generatorG.
For instance, for this approach to be more efficient than our construction we need that
one application ofG would be more efficient thand ˜̀/`e applications ofF .

7.2.1. Reducing the Distinguishing Probability

All the constructions of a pseudorandom permutation on many blocks from a pseudo-
random function (or permutation) on a single block that are described in this subsection
(including ours) have the following weakness: if the length of a single block is too small
(e.g., 64-bits), then the pseudorandom permutation on many blocks is very weak even
when the original pseudorandom function (or permutation) is very secure (e.g., com-
pletely random). In the following few paragraphs we discuss this problem and a way to
overcome it.

Consider the permutationS= S(h1, f1, f2, h2) (as in Definition 7.1), whereh1, h2 ∈
P2nb are pairwise independent permutations andf1, f2 ∈ Fn are random functions.
Our analysis of the security ofS (Theorem 7.1) fails when the number of queries that
the adversary makes isÄ(2n/2/b) (in fact this analysis is tight). Having 2n/2/b large
enough forces a significant restriction onn. Therefore, a natural question is whether we
can improve the security of the construction. A simple information-theoretic argument
implies that all such constructions can be distinguished from random usingO(2n/b)
queries. This follows from the fact that withO(2n/b) queries the adversary gets many
more bits than the length of the permutation’s secret key. Hence, the distribution of the
answers to these queries is statistically very different from uniform (which allows an
all-powerful adversary to distinguish the permutation from random).

In order to match this bound we first note that the somewhat high distinguishing
probability of S is due to its vulnerability to a birthday-attack on the length of a single
block. An adversary that makesÄ(2n/2/b) uniformly chosen queries toS will force a
collision in the inputs tof1 (or f2) with a constant probability. Such a collision fails
our analysis (and can indeed be used to distinguishS from uniform). The solution lies
in the following observation: the problem of foiling birthday-attacks when constructing
a pseudorandom permutation onmanyblocks can be reduced to the problem of foil-
ing birthday-attacks when constructing a pseudorandom function (or permutation) on
two blocks. We demonstrate this using the Aiello and Venkatesan [1] construction of
pseudorandomfunctions.

Let f̃1 and f̃2 be two independent copies of the pseudorandomfunctionson 2n bits
we get when using truly random functions onn bits in the construction of Aiello and
Venkatesan. By [1] distinguishing each̃fi from a truly random function (with constant
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probability) requiresÄ(2n) queries. Leth1 and h2 ∈ P2nb be pairwise independent
permutations and let the permutationS̃ = S(h1, f̃1, f̃2, h2) be as in Theorem 7.1 (for
the parametersn′ = 2n andb′ = b/2). We now get that distinguishing̃S from random
(with constant probability) requiresO(2n/b) queries which is optimal.

8. Constructions ofk-Wiseδ-Dependent Permutations

In this section we summarize the connection between the various constructions of this
paper and the task of obtainingk-wiseδ-dependent permutations. As mentioned in Sec-
tion 5.1, Schnorr [46] suggested using the LR-Construction with truly random functions
in order to get a pseudorandom generator that is secure as long as not too many bits of its
output are accessible to the adversary. This idea is further treated by Maurer and Massey
[29]. Maurer [28] suggested replacing the truly random functions with what he calls lo-
cally random (or almost random) functions. In the terminology ofk-wise independence
these ideas can be interpreted as a way of using the LR-Construction in order to obtain
k-wise δ-dependent permutations fromk-wise δ′-dependent functions (as long ask is
not too large). Theorem 1 in [28] implies that

whenk-wiseδ′-dependent functions are used instead of pseudorandom func-
tions in the LR-Construction the result is ak-wiseδ-dependent permutations
for δ = O(k2/2n + δ′).

Similar observations apply to the different constructions of our paper as discussed in this
section.

Corollary 8.1 (to Theorem 3.2). Let h1, h2 ∈ P2n be pairwise independent permuta-
tions and let f1, f2 ∈ Fn be k-wiseδ′-dependent functions. Then S= S(h1, f1, f2, h2)

(as in Definition3.1) is a k-wiseδ-dependent permutation for

δ
def= k2

2n
+ k2

22n
+ 2δ′.

Proof. Let S1, S2 ∈ P2n have the following distributions:

• S1 = S(h1, g1, f2, h2), whereh1, h2 ∈ P2n are pairwise independent,f2 ∈ Fn is a
k-wiseδ′-dependent function, andg1 ∈ Fn is a truly random function.
• S2 = S(h1, g1, g2, h2), whereh1, h2 ∈ P2n are pairwise independent andg1, g2 ∈

Fn are truly random functions.

Let R ∈ P2n be a truly random permutation. It is enough to show that for everyk strings
of 2n-bits,x1, x2, . . . , xk, we have

1. ‖〈S(x1), S(x2), . . . , S(xk)〉 − 〈S1(x1), S1(x2), . . . , S1(xk)〉‖ ≤ δ′.
2. ‖〈S1(x1), S1(x2), . . . , S1(xk)〉 − 〈S2(x1), S2(x2), . . . , S2(xk)〉‖ ≤ δ′.
3. ‖〈S2(x1), S2(x2), . . . , S2(xk)〉 − 〈R(x1), R(x2), . . . , R(xk)〉‖ ≤ k2/2n + k2/22n.

The reason 3 holds is that if we define an oracle machineM such that itsi th query is
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always(+, xi ) and such that

CM({〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉}) = 1

⇐⇒ Pr[〈S2(x1), . . . , S2(xk)〉 = 〈y1, . . . , yk〉]
< Pr[〈R(x1), . . . , R(xk)〉 = 〈y1, . . . , yk〉]

we get by the definition of variation distance and from Theorem 3.2 that

‖〈S2(x1), S2(x2), . . . , S2(xk)〉 − 〈R(x1), R(x2), . . . , R(xk)〉‖
=
∣∣∣Pr[M S2,S

−1
2 (12n) = 1]− Pr[M R,R−1

(12n) = 1]
∣∣∣

≤ k2

2n
+ k2

22n
.

1 and 2 hold by the definition ofk-wiseδ′-dependent functions. For example, if

‖〈S(x1), S(x2), . . . , S(xk)〉 − 〈S1(x1), S1(x2), . . . , S1(xk)〉‖ > δ′,

then we can fixh1, h2 ∈ P2n and f2 ∈ Fn in the definition of bothSandS1 such that the
inequality still holds. This definesk strings ofn-bits, z1, z2, . . . , zk (not necessarily all
different), and a functionV for which

〈S(x1), S(x2), . . . , S(xk)〉 = V(〈 f1(z1), f1(z2), . . . , f1(zk)〉)
and

〈S1(x1), S1(x2), . . . , S1(xk)〉 = V(〈g1(z1), g1(z2), . . . , g1(zk)〉).
We get a contradiction since, for any functionV ,

‖V(〈 f1(z1), f1(z2), . . . , f1(zk)〉)− V(〈g1(z1), g1(z2), . . . , g1(zk)〉)‖
≤ ‖〈 f1(z1), f1(z2), . . . , f1(zk)〉 − 〈g1(z1), g1(z2), . . . , g1(zk)〉‖
≤ δ′.

In a similar way we get the following two corollaries from the constructions of Sections
6 and 7:

Corollary 8.2 (to Theorem 6.2). Let S be as in Definition6.2, where h1 and h2 are
pairwise independent permutations and f1, f2, . . . , ft are k-wiseδ′-dependent functions.
Then S is a k-wiseδ-dependent permutation for

δ
def= t

2
· k2

2`−d`/te +
k2

2`
+ t · δ′.

Corollary 8.3 (to Theorem 7.1). Let h1, h2 ∈ P2nb be pairwise independent permuta-
tions, let f1, f2 ∈ Fn be(b · k)-wiseδ′-dependent functions, and let p∈ P2n be a (b · k)-
wiseδ′-dependent permutation. Define S= S(h1, f1, f2, h2) and Ŝ= Ŝ(h1, p, h2) (as
in Definition7.1).Then S is a k-wiseδ-dependent permutation for

δ
def= k2 · b2

2n
+ k2

22nb
+ 2δ′
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andŜ is a k-wisêδ-dependent permutation for

δ̂
def= k2 · b2

22n−1
+ δ′.

By takingt = ` in Corollary 8.2 we get a simple construction of ak-wiseδ-dependent
permutation oǹ bits for δ as close to((`+ 1) · k2)/2` as we wish. This construction
requires̀ applications ofk-wiseδ′-dependent functions from̀−1 bits to a single bit. An
interesting question is to find a simple construction ofk-wiseδ-dependent permutations
for anarbitrarily small δ and an arbitraryk.

An “old” proposal by the first author (see p. 17 of [41]) is to apply a card shuffling
procedure that requires only few rounds and is oblivious in the sense that the location of
a card after each round depends on a few random decisions. The specific card shuffling
for which this idea is described in [41] was suggested by Aldous and Diaconis [2].
Unfortunately, to the best of our knowledge, this procedure was never proven to give
(with few rounds) an almost uniform ordering of the cards. Nevertheless, we briefly
describe it in order to demonstrate the concept of oblivious card shuffling and the way
that such a procedure can be used to construct ak-wiseδ-dependent permutation. Finally
we describe the main idea in the definition of another oblivious card shuffling for which
we can prove that only few rounds are needed.

Each round (shuffle) in a card shuffling procedure is a permutation on the locations

of the N cards of a deck (i.e., a permutation on the set [N]
def= {1,2, . . . , N}). In the

case of the Aldous and Diaconis [2] card shuffling, each such permutation is defined by
a uniformly chosen (N/2)-bit string,r = r1r2 · · · r N/2. Denote this permutation by5r

then

∀1≤ i ≤ N/2,

{
5r (i ) = 2i − 1 and 5r (i + N/2) = 2i if ri = 1,
5r (i ) = 2i and 5r (i + N/2) = 2i − 1 otherwise.

That is, the cards at locationsi andi + N/2 move to locations 2i − 1 and 2i and their
internal order is uniformly chosen independently of all other choices. Note that,∀x,
evaluating5r (x) or 5−1

r (x) requires the knowledge of asinglebit of r and therefore
this card shuffling is indeed oblivious.

Considers rounds of the card shuffling described above,5s = 5r 1,...,r s
def= 5r s ◦

5r s−1 ◦ · · · ◦5r 1, where{r 1, . . . , r s} are uniformly distributed and independent of each
other. If5s is of statistical distance at mostδ′ from a uniform permutation, then we can
construct ak-wiseδ-dependent permutation,5̃s, for δ = δ′ + δ′′ as follows: simply take
the permutation5̃s to bes rounds5r s ◦ 5r s−1 ◦ · · · ◦ 5r 1 where thes · N/2 bits of
{r 1, . . . , r s} arethe outputs of a(k ·s)-wiseδ′′-dependent binary function, f . Evaluating
5̃s (or its inverse) at a given point consists ofs invocations off . Therefore, an interesting
problem is to show that5s is of exponentially small statistical distance from a uniform
permutation for a small value ofs. In [2] it is conjectured that this can be shown for
s = O(log2 N). While this conjecture is, to the best of our knowledge, still open we
can show a different card shuffling procedure for which it can be proven thatO(log2 N)
rounds are sufficient. This card shuffling is defined in a recursive manner: Split the
deck into halves (locations{1, . . . , N/2} and locations{N/2, . . . , N}), apply the card
shuffling (recursively) on each half of the deck, and merge the (now shuffled) halves in an
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almost uniform way. A permutation,M , on [N] is a merge if for everyi and j such that
1 ≤ i < j ≤ N/2 or N/2+ 1 ≤ i < j ≤ N we have thatM(i ) < M( j ). An oblivious
(in the same meaning as above) merging procedure can also be defined recursively but
since the construction is rather cumbersome we omit its description. This direction may
become attractive given an efficient and simple merging procedure.

A different direction to solving the problem of constructingk-wiseδ-dependent per-
mutations is to try and generalize the algebraic construction of pairwise independent
permutations. Leonard Schulman (private communication) suggested such a general-
ization that yields 3-wise independent permutations. His suggestion is to use sharply
3-transitive permutation groups. A permutation group over the set [n] = {1,2, . . . ,n} is
a subgroup of the symmetric groupSn. A permutation groupG over [n] is k-transitive
if for every twok-tuples{a1, . . . ,ak} and{b1, . . . ,bk} of distinct elements of [n] there
exists a permutationπ ∈ G such that,∀1≤ i ≤ k, π(ai ) = bi . A permutation groupG
over [n] is sharplyk-transitive if for every two such tuples there exists exactly one per-
mutationπ ∈ G such that,∀1≤ i ≤ k, π(ai ) = bi . A sharplyk-transitive permutation
group is in particulark-wise independent and indeed the algebraic construction of pair-
wise independent permutations use a sharply 2-transitive permutation group (containing
all the linear permutations). Schulman suggested using the fact that there are known
constructions of sharply 3-transitive permutation groups. However, this approach cannot
be generalized to larger values ofk: from the classification of finite simple groups it
follows that fork ≥ 6 there are nok-transitive groups over [n] other than the symmetric
groupSn and the alternating groupAn and there are only few such groups fork = 4 and
k = 5 (see [11] and [39]). One should be careful not to interpret this as implying that for
k ≥ 4 there are no efficient algebraic constructions ofk-wise independent permutations.
It is however justified to deduce that fork ≥ 4 any small family ofk-wise indepen-
dent permutations is not a permutation group (i.e., is not closed under composition and
inverse).

9. Conclusion and Further Work

The constructions described in Sections 3 and 7 are optimal in their cryptographic work
in the sense that the total number of bits on which the cryptographic functions are
applied is exactly the number of bits in the input. Therefore, it seems that in order to
achieve the goal of constructing efficient block-ciphers it is sufficient to concentrate on
the construction of efficient pseudorandom functions. The depth of the constructions,
on the other hand, is twice the depth of the cryptographic functions. It is an interesting
question whether there can be a construction of similar depth. The goal of reducing the
depth is even more significant in the case of the (t + 2)-round construction in Section 6.
A different question is finding a simple construction ofk-wiseδ-dependent permutations
for anarbitrarily small δ and an arbitraryk. This question is discussed in Section 8.
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