Math Meth Oper Res (2001) 54:47-51 ]
Mathematical Methods

of Operations Research
© Springer-Verlag 2001

An optimal bound for d.c. programs with convex
constraints™

Emilio Carrizosa®

f Facultad de Mateméticas. Universidad de Sevilla. Tarfia s/n, 41012 Sevilla, Spain.
(e-mail: ecarriz@cica.es)

Manuscript received: November 2000/Final version received: April 2001

Abstract. A well-known strategy for obtaining a lower bound on the minimum
of a d.c. function f — g over a compact convex set S < IR” consists of replac-
ing the convex function f by a linear minorant at x, € S. In this note we show
that the x; giving the optimal bound can be obtained by solving a convex
minimization program, which corresponds to a Lagrangian decomposition of
the problem. Moreover, if S is a simplex, the optimal Lagrangian multiplier
can be obtained by solving a system of n + 1 linear equations.
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1 Problem statement

Let S be a nonempty compact convex subset of IR”, and let f, g be convex
and finite on R”. Our aim is to find a lower bound on the optimal value z* of
the d.c. program

min f(x) —g(x) (1)

Obtaining such lower bounds may be a real need when one is solving
global optimization problems by a branch-and-bound strategy, [2, 1, 3], both
in the bounding process (indeed, one needs to find good lower bounds for
subproblems in the form (1) at each stage in the resolution of min,cq f(x)
—¢g(x) using polyhedral, — say, simplicial or hyperrectangular — branching
schemes) and in order to check feasibility as well (showing that a lower bound
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for min, g f(x) — g(x) is strictly positive implies the infeasibility of the (sub)-
problem min{/(x) : f(x) — g(x) < 0,x € S}). In both cases, it is important to
have the bounds as sharp as possible, since this may considerably reduce the
computational effort.

Now we introduce some notation: let ext(S) denote the set of extreme
points of the convex set S, and, for any xj € S, let df (xo) denote the subdiffer-
ential of f at xq.

One immediately derives the following result from the definition of sub-
gradients and the fact that a concave function attains its minimum on a
bounded convex set S at some point in ext(S), e.g. [2].

Proposition 1. For any xo € S and uy € 0f (xy), it follows
2" = min /(xo) + <ug, X = xo) — g(x)
X€E

= min_f(xo) + {up,x — X0y — g(x)
xeext(S)

The bound given in Proposition 1 strongly depends on the choice of the
point xy € S. Such bound can then be sharpened if one choses the best possible
X0,

Corollary 1. Define

Zp = sup{ gclxitl(lS)f(XO) + Sug, x — x0) — g(x) : X0 € S,up € af(XO)} (2)

X

Then, zp < z*.

Finding the optimal lower bound zp from the definition amounts to solving
a maxmin nonlinear problem with nonconvex constraints, thus, at first glance,
it does not seem obvious at all that the possible enhancement of the bound
zp with respect to any of the simple bounds given in Proposition 1 will deserve
the resolution of the global-optimization problem (2). It turns out however
that (2) can be formulated as a convex program, as shown in Section 2.

2 A Lagrangian decomposition scheme

Lower bounds for z* can also be obtained via Lagrangian decomposition, [4].
Indeed, (1) can be equivalently rephrased as

min{ f(x) —g(y) : x=y,xe S, ye S}
Dualizing the constraints x = y, one obtains the Lagrangian dual

zp = max L(u), (3)

uelR"”
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with
L(u) = xr.,l;l)iens(f(x) —uyxy —g(y) + <u, p)
- {\fleirsl(f(x) — {u,x>) + ryneigl(—g(y) +<u, y3). (4)

We see that (3) is a bilevel problem, since the mere evaluation of the
Lagrangian function L at a given u € R" amounts to solving the convex min-
imization program minycs(f(x) — <u,x)) and the concave minimization

program max,cs(g(y) — <u, y)).

Since the latter reduces to vertex enumeration if S is polyhedral, L can be
evaluated in finite time for particular instances (e.g., when f is polyhedral or
quadratic and S is a polytope), whilst for general problems L must be approx-
imated by finding a near-optimal solution of a nonlinear program.

The next result shows that finding an optimal multiplier is equivalent to
solving (2).

Proposition 2. One has zp = zp
Proof. Let fg the restriction of f to S,

f(x), ifxeS
400, else

fs(x) = {
and let /¢ denote the Fenchel conjungate of fs, 5]

fs(p) = sup{<{p, x) — fs(x) : xe R"}

We will show now that

L(u) <zp VuelR" (5)
Indeed, for any given u € R",

L(u) = ~fs (u) + min(<u, y) — ()

Moreover, there exists xp € S such that f¢(u) = <u,x0) — fs(xo), thus it fol-
lows that u € dfs(xy), see [5]. Hence, by definition of subgradients,

L(u) = f(x0) — <u, xo) + r)}leitsl(<u, > —9(»))

= min (—{u,x0) +f(x0) + <u, y> — g(»))

yeext(S)
<zp

Hence, (5) holds.
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Conversely, given xo € S and ug € df (xo), one has that —f& (uy) = fs(x0) —
{up, xo, thus

min(/ (xo) + Cuo, ¥ = x0» = 9(x))
=/ (x0) = <uo, %0) + min(<ug, x) — g(x))
= /s (uo) + min({up, x> — g(x))
= L(up)

<zp [l

Since, by (4), the function L:u e R" — L(u) = minyes(f(x) — {u, x)) +
minycs(—g(x) — <u, x») is minimum of affine functions, thus concave, Prop-
osition 2 implies that zp can be obtained by solving the concave maximization
problem

max L(u) (6)

Although much simpler than the original expression (1), solving (6) still
involves some computational burden, since it is a (nondifferentiable as a rule)
nonlinear concave program, the objective function of which has no known
analytical expression but must be evaluated by solving a convex minimization
problem. This implies that, in practice, finding the optimal multiplier in (6) may
be too costly, and, as customary in branch-and-bound approaches to combina-
torial problems, see [6], one just performs a few iterations of some concave-
maximization algorithm, leading to a lower bound on zp.

This should be the strategy for an arbitrary compact convex set S. However,
branch-and-bound schemes often assume S to be a simplex in IR", see e.g. [2].
In that case, Proposition 2 can be further strengthened, since finding the opti-
mal multiplier for (6) is reduced to solving a linear system of n + 1 equations.
Indeed, one has

Proposition 3. Let S be a simplex in R", with vertices vy, . . . , vy, and let it be the
solution to the system of linear equations

g(v1) — v, uy = g(vo) — {vo, uy

g(v2) — <2, uy = g(vo) — vo,uy

g(vn) - <Un,u> = g(UO) - <007 u>
Then, zp = L(1)

Proof. First of all, since S is assumed to be a simplex, the system of equations
(7) has a unique solution, thus # is well defined. In order to show the result, it
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suffices to show that i is an optimal solution to the convex program min, g~
—L(u), by showing that 0 is a subgradient of —L at i. Indeed, since f is finite
at S and S is compact, the optimal value of the optimization problem

max f(x) — <it, x)
is attained at some xy € S. In other words, x, satisfies
—fs(x0) + <it, x0) = f (i)
Hence, by Theorem 23.5 of [5], xo € df¢ (it). Moreover, since the piecewise

linear function /4 : u € R" — h(u) = maxo<;<, — {v;,uy+g(v;) has all its com-
ponents active at u, it follows that

oh(it) = conv({—vp,...,~va})
= _S.
Hence —xo € dh(it), thus
0 € ofs () + oh(a)
= o(-L)(@),

showing that # minimizes —L, as asserted. O
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