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Abstract. We define the concept of instability index of an isolated eigenvalue
of a non-self-adjoint operator, and prove some of its general properties. We also
describe a stable procedure for computing this index for Schrödinger operators
in one dimension, and apply it to the complex resonances of a typical operator
with a dilation analytic potential.
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1. Introduction

In some earlier papers we showed that typical non-self-adjoint Schrödinger opera-
tors H exhibit spectral instability in the following sense. For any ε > 0 there exist
many λ ∈ C and f ∈ Dom(H) such that

‖Hf − λf‖2 ≤ ε‖f‖2
even though λ is not near the spectrum of H . This behaviour occurs for the
harmonic oscillator with a nonreal coupling constant as well as for many non-
self-adjoint anharmonic oscillators. There is a rapidly growing literature on pseu-
dospectral theory, which was invented to explore just such possibilities, [5, 6, 8, 9,
10, 15, 16, 17, 18, 19, 20].

The authors thank the Engineering and Physical Sciences Research Council for support under
grant No. GR/L75443
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2 A. ASLANYAN AND E. B. DAVIES

In this paper we return to the same type of operator, but measure spectral insta-
bility by a method which provides more precise information about the instability
of individual eigenvalues. We have computed the so-called instability indices of
the first 100 eigenvalues λn of the harmonic oscillator, and see that they appear
to increase exponentially with n. We have carried out a similar but more limited
exercise for the resonances of a typical Schrödinger operator with dilation analytic
potential, and report our conclusions.

Our definition of the instability index of an isolated eigenvalue λ ofH of multiplicity
1 involves the fact that the eigenfunction f of H associated with λ is different from
the eigenfunction f ∗ of H∗ associated with its eigenvalue λ. In Section 2 we show
that the instability index

κ(λ) :=
‖f‖2‖f ∗‖2
|〈f, f ∗〉|

of λ is equal to the norm of the spectral projection P associated with λ, and also
present a number of other theoretical properties of the index.

If H := −∆ + V acts in L2(RN) where V is a complex-valued potential then
H∗ = −∆+ V and f ∗ = f . Hence for any isolated eigenvalue we have

κ(λ) =

∫

RN |f |2
| ∫RN f 2| .(1)

Note that when κ(λ) is large the eigenvalue is very unstable under small pertur-
bations of the potential, and hence also unstable because of rounding errors in the
computation. The numerical task we face is to compute the eigenvalue and the
instability index accurately in situations in which the denominator of (1) is very
small because the complex-valued eigenfunction f is oscillating rapidly.

Because the spectral instability develops so rapidly as n increases, we have had to
take great care to use computational methods which are reliable. Fortunately for
our first problem there are independent methods of checking the values which we
have obtained. In the second case we use the experience gained by the first problem,
and have checked the reliability of the conclusions under the variation of several
different parameters in the computational method. In Section 6 we summarize the
conclusions of our investigation.
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2. The Instability Index

If λ is an isolated point of the spectrum of a closed operator A in a Hilbert space
H, the spectral projection P associated with λ is defined by

Pφ :=
1

2πi

∫

γ
(z − A)−1φdz

where γ is any sufficiently small closed contour winding around λ. The assump-
tion that this projection has rank 1 is stronger than the assumption that λ is an
eigenvalue of multiplicity 1.

Lemma 1. If f and f ∗ are the normalised eigenvectors of A and A∗ associated

with the eigenvalues λ and λ respectively, and if P has rank 1, then 〈f, f ∗〉 6= 0
and the instability index of λ is equal to ‖P‖.

Proof We have

Ker(P ) = (Ran(P ∗))⊥

= {g : 〈g, f ∗〉 = 0}.
Since f /∈ Ker(P ) we see that 〈f, f ∗〉 6= 0. It is now easy to verify that P is given
by

Ph :=
〈h, f ∗〉
〈f, f ∗〉f

and hence that

‖P‖ =
1

|〈f, f ∗〉| = κ(λ).

Theorem 1. If P has rank 1 then

κ(λ) = sup{a1(V ) : ‖V ‖ ≤ 1}
where a1(V ) is defined to be the coefficient of s in the expansion of the eigenvalue

of the perturbed operator H + sV :

λ(s) = λ+ a1(V )s+ a2(V )s2 + · · ·

Proof By standard arguments in perturbation theory [14] we have

(H + sV )(f + sg + . . . ) = (λ+ sµ+ . . . )(f + sg + . . . )

where the perturbed eigenvector is normalised by

〈f + sg + . . . , f ∗〉 = 〈f, f ∗〉.
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We deduce that Hg + V f = λg + µf and 〈g, f ∗〉 = 0. Therefore

〈Hg, f ∗〉+ 〈V f, f ∗〉 = µ〈f, f ∗〉

and

µ =
〈V f, f ∗〉
〈f, f ∗〉 .

The proof is completed by the observation that

sup{|〈V f, f ∗〉| : ‖V ‖ ≤ 1} = ‖f‖ ‖f ∗‖.

The instability index is also related to the notion of pseudospectrum, which is a
geometric way of looking at resolvent norm properties. Namely if ε > 0 we put

Specε(A) := {z ∈ C : ‖(z −A)−1‖ > ε−1}.

The sizes of these sets, which all contain the spectrum of A, measure the spectral
instability of A. One always has

{z : dist{z, Spec(A)} < ε} ⊆ Specε(H)

but the RHS is often much larger than the LHS. The following theorem states that
if κ(λ) is large then the component of Specε(A) containing λ is large in a related
sense. Several similar results can be obtained in the same manner.

Theorem 2. Suppose that the spectral projection P associated with the isolated

eigenvalue λ of A has rank 1. Let γ be a closed contour surrounding the connected

component of Specε(A) which contains λ but does not intersect Specε(A). Then

|γ| ≥ 2πεκ(λ)

where |γ| is the length of γ.

Proof We have

κ(λ) = ‖P‖ = ‖ 1

2πi

∫

γ

dz

z −A
‖ ≤ 1

2πε

∫

γ
|dz| = |γ|

2πε
.
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3. The Computational Procedures

3.1. Finding Eigenvalues. Let H be the Schrödinger operator

Hf(x) := −d2f

dx2
+ V (x)f(x)(2)

acting in L2(R). Let us first outline briefly the method for determining the eigen-
values of H . For any z /∈ [0,∞) there exist two solutions f± of

Hf = zf(3)

which vanish as x → ±∞ respectively. We introduce transfer functions g± :=
f ′
±/f± satisfying nonlinear first order differential equations to be given below and
proper initial conditions at ±∞. We wish to solve the Cauchy problem for g−(x)
for x ≥ X− and for g+(x) for x ≤ X+ where X− < 0, X+ > 0, |X−| and X+

are sufficiently large. Provided we know initial conditions for g± at X± which
correspond to f± vanishing at ±∞ respectively, the two Cauchy problems can be
solved by a standard numerical method. The question how to transfer the so-called
admissible boundary conditions from singular points (which are ±∞ in our case)
has been extensively studied by A. A. Abramov and his collaborators (a survey of
their results can be found in [2]). Naturally, the behaviour of the potential V has
to be taken into account: say, if V is bounded and vanishes rapidly at infinity then
g± are asymptotically constant as x → ±∞, respectively. Later on in this section
we shall consider this and other cases applying the ideas of [2].

To locate the eigenvalues in terms of the transfer functions we choose a ∈ R and
consider

F (z) = F (z; a) := g+(a)− g−(a).

This function is meromorphic on C\[0,∞) with zeros at the eigenvalues of the
operator H . The zeros are independent of a but F may also have poles which
depend on a. They are at the eigenvalues of the restrictions of H to L2(a,∞) and
L2(−∞, a) subject to Dirichlet boundary conditions at a in both cases.

To determine the zeros of F numerically we use the argument principle (cf. [3] for
a contour integration procedure) to obtain their approximate positions followed by
some variant of Newton’s method to obtain accurate values. One has to be careful
not to choose a value of a for which there is a pole close to the zero of interest, so
it is recommended that a few different values of a are investigated.

The numerical elaboration of the above ideas involves a substantial amount of
preliminary work. One may find the approximate location of the eigenvalues and
of the maxima of the eigenfunctions by an independent method. For example if one
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discretises a large enough interval in the real line then one can find approximate
eigenvalues by a standard matrix eigenvalue routine; MATLAB is ideal for this
purpose. Another possibility is to use JWKB asymptotic formulae which also
enable one to find an interval (X−, X+) outside which the relevant eigenfunction
is negligible, and a point x0 at which the modulus of the eigenfunction takes its
maximum value (see the next subsection in this regard).

If the potential V is an even function with respect to reflection about the origin,
then every eigenfunction is either even or odd, and the problem may be decomposed
into two independent problems on [0,∞), with Dirichlet or Neumann boundary
conditions at 0. This is the case in our examples. From now on in this subsection
we concentrate on the symmetric problem and take advantage of symmetry. Actual
computational formulae are given below for the case of the half-line. Note that
the theory of admissible boundary conditions based upon asymptotic analysis of
solutions of the differential equation at ±∞ applies in a generic situation.

Auxiliary Cauchy problems to be solved numerically are as follows. Let us first
assume that V (x) ∼ cx2, x → ∞, where c ∈ C is constant — this corresponds to
the harmonic oscillator problem and its perturbations studied in the next section.
For a fixed value of z we consider the solution f+ of (3) vanishing as x → ∞ and
introduce a new transfer function α+ satisfying

1

x
α′
++

√
cα2

++
1

x2
√
c
(
√
cα+−V +z) = 0, α+(X) ∼ −1+O

(

1

X2

)

, X → ∞

where X is sufficiently large. According to [2],

f ′
+(x)/f+(x) =

√
cxα+(x)

for such x ≥ 0 that α+(x) exists. Moreover, one can work out the coefficients of
the asymptotic expansion of α+ for a particular potential V (x). For V (x) = cx2,
say, we replace the condition at infinity by

α+(X) = −1 +
d

X2
+

√
cd2 − d

2
√
cX4

, d =
z −√

c

2c
,

choosing X so that the last term in the above formula is negligible. Along the lines
of the mentioned paper we pose the so-called admissible condition at infinity for
the considered potential. The above initial condition is equivalent to the boundary
condition f+ → 0 at infinity, up to terms of order O( 1

X6 ) as X → ∞.

Next, we are going to consider the operator H with a potential vanishing rapidly
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enough at infinity (see Section 5). Following the same approach, we introduce

g+(x) = f ′
+(x)/f+(x), x ≥ 0,

and for this function obtain the singular Cauchy problem

g′+ + g2+ − V + z = 0, g+(x) ∼ i
√
z, x → ∞.

Clearly, the initial conditions vary for different types of potential. Still, for each
particular choice of V we are able to apply the developed theory and set appropriate
initial conditions for transfer equations. After that has been done we integrate
those equations numerically from X from right to left to some (fixed) a ≥ 0. The
transfer functions α+, g+ actually take their values in the Riemann sphere, so we
have to switch between them and their inverses at certain values of x. As soon as
|α+| or |g+| becomes greater than a prescribed constant we change to α−1

+ or g−1
+ ,

respectively and from this point on integrate analogous equations starting with
proper initial conditions for the inverse functions. After a finite number of changes
of this kind we reach the chosen point a.

To complete the transfer procedure, consider the solution f0 of (3) satisfying
f ′
0(0) = 0. We denote

f ′
0(x)/f0(x) = g0(x)

and solve
g′0 + g20 − V (x) + z = 0, g0(0) = 0

from left to right. (Obvious changes should be made when considering an odd
solution f0 satisfying a Dirichlet boundary condition at x = 0.) Again, we switch
from g0 to g−1

0 if necessary and stop at the same point a.

Remark that the described procedure is the simplest version of the boundary con-
dition transfer, or pivotal condensation method we have chosen for the second
order equation. There is an extensive literature (cf. [1, 4, 11] etc.) on the transfer
methods where much more advanced techniques are developed. Although there
are other possibilities, in this paper we get satisfactory results implementing the
above version.

Finally, we have g0 (corresponding to either odd or even f0) and g+ calculated at
the same point a. If

F (λ; a) := g+(a)− g0(a) = 0

then λ is an eigenvalue of H . Thus, we evaluate F (z; a) for certain values of z
as described and then find the eigenvalues of interest as zeros of F (z; a). As has
already been mentioned, we first use the argument principle (see [3] for computa-
tional formulae) to locate the eigenvalues and then apply an iterative Newton-like
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method to obtain more precise values. After an eigenvalue has been located up
to the required accuracy, one can compute the corresponding eigenfunction by
recovering its values from the transfer functions g+, g0.

The method proposed has been implemented as a universal Fortran 77 code in-
cluding all the basic procedures described above in this section. Auxiliary Cauchy
problems have been solved by a standard routine based on the Runge–Kutta–
Merson fourth order method. In our computations we have used 32-bit and 64-bit
arithmetic.

The question remains how to choose a — although the zeros of F (z; a) do not
depend on a, in practical computations the choice of a does play a significant role.
In fact, we investigated different functions F (z; a) for a wide range of a. One of the
possible choices is a = 0. For problems with even potentials the zeros and the poles
of F (z; a) interchange (see Figures 1a, 1b, 2a). We use contour map plots to find
initial guesses for eigenvalues when there is no other a-priori information about
their location. Plotting contour maps with the use of Matlab 5.2 has also helped us
to avoid poles when looking for zeros. Thus, in a generic situation we recommend
that one calculates the values of F (z) (for which we have used our Fortran code),
then produces the plots (Matlab graphics) and, finally, finds eigenvalues accurately
(a standard iterative Fortran procedure).

We regard our numerical results obtained via the above method as reliable. In
particular, this is confirmed by several values of a providing entirely different func-
tions F (z) whose zeros coincide. These results are to be reported below in the
following two sections.

3.2. Calculating the Instability Index. The second stage in the process is
to compute the instability index defined by (1). The obvious method, namely
calculating the two integrals after first determining the eigenfunction numerically,
is highly inaccurate if the instability index is large. The reason is that the integrand
in the denominator is highly oscillatory, and the evaluation of such integrals is
problematical. The following method is much superior in applications. Below we
present a technique suitable for an arbitrary (not necessarily symmetric) potential.

We introduce four functions as follows. For x ∈ [a,X+] we define

h+(x) := f(x)−2
∫ X+

x
f(s)2ds

k+(x) := |f(x)|−2
∫ X+

x
|f(s)|2ds



SPECTRAL INSTABILITY 9

where f is the eigenfunction associated with the eigenvalue λ. Similarly for x ∈
[X−, a] we define

h−(x) := f(x)−2
∫ x

X
−

f(s)2ds

k−(x) := |f(x)|−2
∫ x

X
−

|f(s)|2ds.

It is obvious that

k−(a) + k+(a)

|h−(a) + h+(a)|
=

∫X+

X
−

|f(x)|2dx
∣

∣

∣

∫X+

X
−

f(x)2dx
∣

∣

∣

which converges exponentially rapidly to κ as X+ → +∞ and X− → −∞. The
task is to find a procedure to evaluate the four functions accurately. We consider
only h−, the others being similar. It follows from its definition that h−(X−) = 0
and that h− satisfies the differential equation

h−(x)
′ = 1− 2g−(x)h−(x).(4)

This may be solved numerically, say, by a Runge-Kutta method to determine h−(a).

It is important to be sure that the solutions of (4) and the other three equations are
stable. It suffices to note that Re g+(X+) < 0 and Re g−(X−) > 0, which implies
the stability of the solutions h+, k+ and h−, k− from right to left and from left to
right, respectively. This has been confirmed by numerical tests. The same is true
for the transfer equations quoted in the previous subsection — the solution α+,
for instance, is known to be stable from right to left which is essential for practical
computations.

There is a potential problem in that if f(b) = 0 for some b ∈ (X−, a) then h− is
usually infinite at that point. Generically one does not expect a complex-valued C2

function of a real variable to vanish anywhere, and we have not seen this problem
arise, but one needs to discuss how the method should be adapted in the event
of its occurrence. There are two cases, which are distinguished numerically by
whether h−(x) → 0 as x → b or |h−(x)| → ∞ as x → b. Note that since f is a
non-zero solution of (3) and f(b) = 0 it follows that f ′(b) 6= 0, so |g(x)| → ∞ as
x → b.

Lemma 2. If f(b) = 0 and
∫ b
X

−

f(s)2ds = 0 then h−(x) → 0 as x → b and

g(x)h−(x) → 1/3 as x → b.
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Proof Neglecting lower order terms we have

h−(x) ∼ (x− b)/3

g(x) ∼ (x− b)−1

as x → b. The results follow.

Thus, in this case we are still able to integrate the same equation (4); the point b
is, in fact, regular rather than singular.

The more standard case is that in which f(b) = 0 and
∫ b
X

−

f(s)2ds 6= 0. Clearly
|h−(x)| → ∞ as x → b.

Lemma 3. If we put h̃−(x) := h−(x)
−1 then h̃−(x) → 0 and h̃−(x)g(x) → 0 as

x → b and

h̃−(x)
′ = h̃−(x)

2 − 2h̃−(x)g(x)(5)

for all x near b.

Proof Neglecting lower order terms we have

h̃−(x) ∼ f ′(b)2(x− b)2
∫ b
X

−

f(s)2ds

h̃−(x)g(x) ∼ f ′(b)2(x− b)
∫ b
X

−

f(s)2ds

as x → b. The verification that h̃−(x) satisfies the differential equation (5) is
routine.

Thus, in the considered case we recommend to change to h̃ at x = b and integrate
(5) instead of (4).

Naturally, the stability of the procedure proposed in this subsection depends heav-
ily on a (though the exact value of κ does not depend on the norm of f). A proper
choice of a is very important and can essentially influence the results. Choosing
a = argmax|f(x)| seems to be a reasonable way.

Compared to standard approaches the above mentioned technique has two clear
advantages. First, we do not need to evaluate the fast oscillating integrands f(x)2

and |f(x)|2 themselves — instead, we integrate several auxiliary ODEs. Secondly,
this procedure is numerically stable. In the cases which we have examined the
solutions h±, k± change quite slowly and smoothly.
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3.3. Possible Difficulties. If the instability index of an eigenvalue is very large
then it is clear from Theorem 2 that the eigenvalue is intrinsically difficult to
compute. One mechanism by which this can occur in computations is that at the
eigenvalues, for which one knows that F (λ) = 0, one also finds that F ′(λ) is very
small, so it is not possible to locate λ accurately. The following theorem provides
a link in one direction between these two phenomena at a theoretical level.

We assume that

Hf(x) := −d2f

dx2
+ V (x)f(x)

on L2(R), where V (x) vanishes rapidly enough as |x| → ∞. Given a ∈ R and
z ∈ C satisfying Re (i

√
z) < 0, let g+(z, x) be the solution of

g′(x) + g(x)2 + z − V (x) = 0

on [a,∞) subject to g+(z, x) ∼ i
√
z as x → ∞. Let g−(z, x) be the solution of the

same equation on (−∞, a] subject to g−(z, x) ∼ −i
√
z as x → −∞. We put

F (z) = g+(z, a)− g−(z, a)

as usual so that F (λ) = 0 if and only if λ is an eigenvalue of H .

Theorem 3. Let κ(λ) be the instability index at an eigenvalue λ, let f be the

associated eigenfunction and assume that g := f ′/f is bounded on R. Then

κ(λ)|F ′(λ)| ‖g‖∞ ≥ 1.

Proof If ε > 0 is small enough there exists

µ = λ+
ε

F ′(λ)
+O(ε2)

such that F (µ) = ε. Now put

g̃−(x) := g−(µ, x) + ε/2

g̃+(x) := g+(µ, x)− ε/2

for the appropriate values of x, so that

g̃+(a)− g̃−(a) = 0.

We have

g̃′−(x) = Ṽ (x)− µ− g̃−(x)
2

g̃′+(x) = Ṽ (x)− µ− g̃+(x)
2
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under the following conditions on Ṽ . If x > a then

Ṽ (x)− V (x) = g̃′+(x) + µ+ g̃+(x)
2 − V (x)

= g+(µ, x)
′ + µ+ (g+(µ, x)− ε/2)2 − V (x)

= −εg+(µ, x) + ε2/4

while if x < a we must have

Ṽ (x)− V (x) = g̃′−(x) + µ+ g̃−(x)
2 − V (x)

= g−(µ, x)
′ + µ+ (g−(µ, x) + ε/2)2 − V (x)

= εg−(µ, x) + ε2/4

Therefore

‖Ṽ − V ‖∞ = sup{ε‖g+(µ, ·)‖∞ +O(ε2), ε‖g−(µ, ·)‖∞ +O(ε2)}.
But g±(µ, x) → g(x) uniformly as µ → λ by the assumptions of this section, so

‖Ṽ − V ‖∞ = ε‖g‖∞ + o(ε).

The statement of the theorem now follows from the formula for the instability
index given in Theorem 2.

In the two examples considered below, F ′(z) is very small for large values of |z|,
so it is impossible to determine its zeros. This seems to be the main barrier to the
determination of large eigenvalues.

4. The Harmonic Oscillator

4.1. Basic Facts. Consider the operator H defined by (2) with the potential
V (x) = cx2, referred to as Ho in the rest of the paper. The eigenvalue problem
for Ho is called the harmonic oscillator problem and is known to have infinitely
many eigenvalues λ(o)

n =
√
c(2n + 1), n = 0, 1, . . . . The corresponding eigen-

functions fn = Cne
−
√
cx2/2φn( 4

√
c x) where Cn are normalising constants, φn denote

Hermite polynomials, Re
√
c > 0. These eigenfunctions are either even or odd:

f2k(x) = f2k(−x), f2k+1(x) = −f2k+1(−x), k = 0, 1, . . . . As proposed in Section 3,
we consider Ho on the half-line adding either Neumann or Dirichlet boundary con-
ditions at the origin. We have used it as a sample problem to check the above
method for finding eigenvalues and eigenfunctions. Indeed, the results thus ob-
tained are in very good accordance with the theory; they confirm the reliability of
the method. It allowed us to calculate ∼ 100 eigenvalues of Ho up to the accuracy
δ ∈ (10−10, 10−4).
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When implementing the method of Section 3 we found that the accurate numer-
ical determination of the eigenvalue λn for n > 100 is not possible using double
precision (64-bit) arithmetic, particularly because F ′(z) can be very small near
the points where F (z) = 0. We computed the instability indices for the first 100
eigenvalues, using the JWKB approximation to the eigenfunction fn associated
with the eigenvalue λ(o)

n as described in [9, 10]. This approximation suggests that
|fn(x)| takes its maximum near x = an and

fn(an + y) = e−iηny+O(y2)

where the real constants an and ηn are computed from
√
c(2n+ 1) = η2n + ca2n.

Having an appropriate value of an is, of course, helpful when we calculate κn by
means of the method given in Subsection 3.2.

4.2. Perturbations of the Operator Ho. Let us present some results concerned
a perturbation of the harmonic oscillator operator

HW := Ho +W (x).

We have investigated various perturbations of the form W (x) = εeimx for a range
of fairly small ε. The reason is that looking for the perturbation providing the
most unstable results, one has to choose W (x) as follows. From the perturbation
theory formula cited in the proof of Theorem 1 one can easily see that among
perturbations satisfying

|W (x)| ≤ ε

the function

Wn(x) = ε
f̄n(x)

fn(x)

provides the worst perturbation of the n-th eigenvalue of Ho. Indeed we then have

λn = λ(o)
n + εκ(λ(o)

n ) + o(ε).(6)

If we only take account of the first term of the JWKB expansion for fn, we obtain
the perturbing potential

W̃n(x) = εe2iηnx

after removing an irrelevant phase factor. The expectation that W̃n provides a
perturbation of the eigenvalue almost as great as that due to Wn is tested below.
We tabulate below the absolute values of the corrections to several eigenvalues
λn of HW calculated numerically by means of the method described in Section 3.
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Tables 1–3 contain the values of |λ(o)
n − λn| for c =

√
i and W (x) = εeimx. The

figures related to ε = 0 give the absolute errors of the computation of the n-th
eigenvalue of Ho.
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Table 1. Values of |λ(o)
n − λn|, n = 9, 2ηn = 6.4133

ε\m 1.0 5.0 6.0 6.4133 7.0 10.0
0 10−10

10−6 7.9 · 10−7 6.6 · 10−6 7.7 · 10−6 8.0 · 10−6 7.8 · 10−6 2.9 · 10−7

10−5 8.6 · 10−6 6.4 · 10−5 7.9 · 10−5 8.1 · 10−5 7.7 · 10−5 1.9 · 10−6

10−4 8.7 · 10−5 6.4 · 10−4 8.0 · 10−4 8.0 · 10−4 7.7 · 10−5 1.8 · 10−5

10−3 8.7 · 10−4 6.42 · 10−3 7.97 · 10−3 8.16 · 10−3 7.66 · 10−3 1.7 · 10−4

Table 2. Values of |λ(o)
n − λn|, n = 19, 2ηn = 9.1884

ε\m 5.0 9.0 9.1884 10.0 20.0
0 10−8

10−8 1.0 · 10−7 4.0 · 10−6 3.9 · 10−6 1.1 · 10−6 6.1 · 10−7

10−7 2.6 · 10−6 3.25 · 10−5 3.22 · 10−5 2.63 · 10−5 6.2 · 10−7

10−6 3.7 · 10−5 3.25 · 10−4 3.20 · 10−4 2.77 · 10−4 6.1 · 10−7

10−5 4.0 · 10−4 3.20 · 10−3 3.20 · 10−3 2.80 · 10−3 6.3 · 10−7

Table 3. Values of |λ(o)
n − λn|, n = 29, 2ηn = 11.3014

ε\m 10.0 11.0 11.3014 12.0 20.0
0 10−6

10−10 2 · 10−6 2 · 10−6 3 · 10−6 3 · 10−6 10−6

10−9 1.2 · 10−5 1.5 · 10−5 1.4 · 10−5 1.4 · 10−5 10−6

10−8 1.14 · 10−4 1.48 · 10−4 1.46 · 10−4 1.34 · 10−4 10−6

10−7 1.141 · 10−3 1.454 · 10−3 1.441 · 10−3 1.336 · 10−3 10−6

10−6 0.01142 0.01455 0.01453 0.01334 10−6

10−5 0.11657 0.14927 0.14563 0.13670 10−6

First of all, the above results show that the values of |λ(o)
n − λn| are approximately

proportional to ε, that is, confirm formula (6) numerically. In fact, for very small
ε the method can only feel the first order corrections to the eigenvalues of the
harmonic oscillator within the chosen accuracy as expected. Secondly, maximal
perturbations of eigenvalues are observed for m ≈ 2ηn which justifies the above
arguments.
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4.3. Another Approach. Instability Index. We have also investigated the
harmonic oscillator using the quantum mechanical creation and annihilation oper-
ators A∗ and A. This is not possible for generic differential operators, but provides
a method of testing the general algorithms developed in the last section. In this
language

Ho = P 2 + cQ2

= −(A∗ − A)2/2 + c(A∗ + A)2/2

= (c− 1)A∗2/2 + (c+ 1)A∗A + (c− 1)A2/2 + (c+ 1)/2.

If {φn}∞n=0 is the orthonormal basis of Hermite functions in H := L2(R), then
Aφn =

√
nφn−1 and A∗φn =

√
n+ 1φn+1 for all n, and we may represent Ho by

means of the infinite matrix

Ho,m,n :=



















am if m = n
bm if n = m+ 2
bn if m = n + 2
0 otherwise

with respect to this basis, where m,n = 0, 1, 2, . . . and

am := (c+ 1)(m+ 1/2)

bm := (c− 1){(m+ 1)(m+ 2)}1/2/2.

The even and odd subspaces H0 and H1 with respect to reflection about 0 are
invariant under Ho, and these subspaces may also be characterised by

H0 = lin{φ2n : n = 0, 1, . . . }
H1 = lin{φ2n+1 : n = 0, 1, . . . }.

Restricting the matrix to either of these subspaces renders it tri-diagonal, so numer-
ical computations are particularly easy and accurate. We compute the instability
index of an eigenvalue λr =

√
c(2r + 1) for r = 0, 1, . . . by evaluating

κr :=

∑N−1
n=0 |f(n)|2

|∑N−1
n=0 f(n)2|

where f is the eigenvector associated with λr, obtained by solving the obvious
recurrence relation starting from n = 0. Note that λr is taken to be an exact
eigenvalue of the infinite matrix, not an eigenvalue of the truncated N×N matrix.
For a particular eigenvalue λr, N must be large enough for the coefficients fn
with n > N to be insignificant, but not so large that the recurrence relation
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becomes unstable. For r > 50 it is not possible to satisfy both of these conditions
simultaneously using standard double precision 32-bit arithmetic, and we used the
high precision arithmetic of Maple V.4.

The delicacy of the computations is indicated by the evaluation of κ100 ∼ 2.5594×
1016 for c =

√
i. For N = 200 this required us to use the command ‘Digits =

30’ in Maple V.4, but putting N = 500, we only obtained the same result for
‘Digits = 110’ or greater. The instability in the solution of the recurrence relation
is evidently more important than the contributions of the terms of the series in the
range 200 < n < 500. The following results (see Table 4) were all obtained with
N = 200 and ‘Digits = 100’, and appear to be reliable.

The instability indices tabulated below have been obtained in two independent
ways. The methods developed in this and the previous sections turned out to
provide very close results for the first 40 eigenvalues. This can be seen from Table 4
where κ(1)

n is related to the method of this section, and κ(2)
n to that of Section 3.

The figures obtained for n ≥ 40 are clearly different for the two methods although
they are qualitatively of the same order.

Table 4. Instability indices of Ho, c =
√
i

n 0 10 20 30 40 50

κ(1)
n 1.0404 14.2777 563.2146 2.5789·104 1.2625·106 6.3627·107

κ(2)
n 1.0404 14.2777 563.2146 2.5789·104 1.2625·106 6.3649·107
n 60 70 80 90 100
κ(1)
n 3.2734·109 1.7081·1011 9.0059·1012 4.7860·1014 2.5594·1016

κ(2)
n 3.2922·109 1.7110·1011 8.9063·1012 4.0052·1014 1.9261·1016

The growth of the instability index corresponds to the values of |λ(o)
n −λn| increasing

with n (see also Tables 1–3). Results to be cited below provide another numerical
evidence of this fact. In Table 5 the values of |λ(o)

n − λn|, c =
√
i, corresponding to

the perturbing potentials W̃n are given. Comparing Table 5 to Table 4 we conclude
that µn ≈ κn which indicates reasonably good agreement of our numerical results
and perturbation theory.

Table 5. Values of |λ(o)
n − λn|, W̃n(x) = εe2iηnx, c =

√
i
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ε\n 30 40 50 60
10−6 0.021542 1.19860
10−7 0.002155 0.10747
10−8 0.000216 0.01056 0.54950
10−9 2.2 · 10−5 0.00105 0.05518 2.4921
10−10 3 · 10−6 0.00010 0.00587 0.2587
10−11 10−5 0.00059 0.0279
10−12 6 · 10−5 0.0028
0 10−6 5 · 10−6 10−5 10−4

Analysing the rate of divergence of the instability index of Ho in Table 4, one can
notice that it grows exponentially: κn ∼ e0.4n for the studied range of n.

The eigenfunctions for the harmonic operator with nonreal coupling constant do
not form an unconditional basis, [9]. If they formed a conditional basis the projec-
tions Pn associated with the eigenvalues λn =

√
c(2n+1) as in Lemma 1 would be

uniformly bounded in norm by a standard argument, [12]. However, we have ob-
tained strong numerical evidence that the norms increase exponentially with n. We
therefore make the conjecture that for nonreal coupling constant the eigenfunctions
of the harmonic oscillator do not form a conditional basis.

More precisely let N > 0 and let PN be the spectral projection of Ho associated
with the first N complex eigenvalues λ(o)

n where they are ordered in increasing
absolute values. Explicitly

PNf :=
N−1
∑

n=0

〈f, f ∗
n〉

〈fn, f ∗
n〉
fn.

If ‖PNf − f‖ → 0 as N → +∞ for all f ∈ H then the uniform boundedness
theorem implies that there exists a constant C such that ‖PN‖ ≤ C for all N .
From the inequality

‖PN − PN−1‖ ≤ 2C

we are then able to deduce that the instability index κn is a bounded function of n.
This conflicts with the numerical evidence that these indices increase exponentially
with n. We have attempted to confirm the exponential increase by using the JWKB
approximations to the eigenfunctions constructed in [9, 10], but the eigenfunctions
oscillate so rapidly for high eigenvalues that the JWKB approximations were not
useful. While we have not proved the exponential increase of κn the corresponding
result for the pseudospectrum (resolvent norms) has been proved in [10] not just
for the harmonic oscillator but for a wide range of anharmonic oscillators.
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5. Complex Resonances

5.1. Definitions. Let H be the Schrödinger operator

Ĥf(x) := −d2f

dx2
+ V (x)f(x)

acting in L2([0,∞)) subject to Dirichlet or Neumann boundary conditions at x = 0,
where the potential V is bounded and vanishes at infinity. For any positive constant
c we define

Ĥcf(x) :=
(

DcĤDc−1f
)

(x)

= −c−2d
2f

dx2
+ V (cx)f(x)(7)

where Dc is the unitary dilation operator

Dcf(x) :=
√
cf(cx).

We observe that Ĥc is unitarily equivalent to Ĥ . If V is an entire function on C
then the formula (7) defines a family of non-self-adjoint operators parametrised
by c ∈ C, c 6= 0. Under suitable conditions the eigenvalues of these operators
are known to be independent of c, and are called resonances of Ĥ; see [7, 13] for

expositions of the theory of dilation analytic resonances. Since the operators Ĥc

are unitarily equivalent for values of c with the same argument, we only consider
c of the form c := eiθ/2 where 0 < θ < π/2.

We investigate the particular case of the operator

H0f(x) := −d2f

dx2
+ x2e−x2/b2f(x)

where b > 0 is to be fixed. If one imposes a Dirichlet boundary condition at x = 0,
this operator determines the evolution in the zero angular momentum sector of
a three-dimensional quantum particle trapped by a rotationally invariant barrier,
where the particle may tunnel through the barrier and escape to infinity. Because
the potential is non-negative and vanishes rapidly at infinity, H0 has absolutely
continuous spectrum [0,∞) and no eigenvalues. A direct calculation shows that

Hθf(x) := Ĥeiθ/2f(x) = −e−iθ d
2f

dx2
+ eiθx2e−eiθx2/b2f(x).

We consider Hθ subject to either Dirichlet or Neumann boundary conditions at
x = 0. The potential of this operator vanishes rapidly as x → ∞ provided 0 < θ <
π/2. Under this condition Hθ has essential spectrum e−iθ × [0,∞) and also some
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isolated eigenvalues in the sector {z : −θ < arg z ≤ 0}, these being independent of
θ.

For large values of b (we take b = 100) the potential of Hθ is similar to that of
the complex harmonic oscillator, and the eigenvalues of Hθ are close to the values
{2n + 1 : n = 0, 1, . . . }. For smaller values of b there are several resonances very
close to the positive real axis, but at a certain point they turn sharply away into
the lower half plane.

5.2. Location of Resonances. The reason for there being resonances very close
to the real axis is as follows. Let us consider the operator Hθ as a perturbation of
the harmonic oscillator operator Ho. In our notation we now have

Hθ = Ho +W (t, ν), W (t, ν) = t2(e−t2/b2 − 1)

where we put t = eiθ/2x and ν = 1/b2. Regarding ν as a small parameter we
expand

W (t, ν) =
∞
∑

k=1

Wk(t)ν
k =

∞
∑

k=1

(−1)kt2(k+1)

k!
νk.

Again, for an arbitrary n, following the standard perturbation theory approach,
we expand the n-th eigenvalue of Hθ as

λn(ν) ∼ λ(o)
n +

∞
∑

k=1

µkν
k(8)

which is a non-convergent asymptotic expansion, and calculate

µ1 =

∫∞
−∞W1(t)f

2
ndt

∫∞
−∞ f 2

ndt
= −C2

n

∫ ∞

−∞
t4e−t2φ2

n(t)dt.(9)

Here we follow the notations of Section 4: fn are the eigenfunctions of Ho and φn

are Hermite polynomials.

Formula (9) implies that the first order correction µ1 is real and does not depend on
θ. The same is true for all µk. Indeed, it is easily seen that the parameter θ enters
the problem in a specific way. If one passes to the new variable t and proceeds
with calculation of higher order corrections, all the relations thus obtained do not
contain any complex values except for t as an integration variable. Thus, one only
deals with integrals of the form

∫∞
−∞ p(t)dt which do not depend on θ and, therefore,

are real.



SPECTRAL INSTABILITY 21

Using the creation–annihilation technique based on the corresponding decompo-
sition of the operator Ho (see the previous section), we calculate the first order
correction for the n-th eigenvalue implicitly. Thus, formula (9) becomes

µ1 = µ1(n) = −3

4
(2n2 + 2n+ 1), n = 0, 1, . . . .(10)

Following the same numerical procedure (see Section 3) we compute some of the
eigenvalues of Hθ. These results can be found in Subsection 5.4.

5.3. Numerical Range and Complex Resonances. The resonances must turn
away from the real axis as their absolute value increases, because of the fact that
a resonance z is an eigenvalue of Hθ. This implies that

z ∈
⋂

0<θ<π/2

N(θ)

where N(θ) is the numerical range of the operator Hθ. The numerical range of Hθ

is defined by

Nθ := {〈Hθf, f〉 : ‖f‖ = 1}
= {

∫

{Vθ(x)|f(x)|2 + e−iθ|f ′(x)|2}dx : ‖f‖ = 1}

⊆ {
∫

Vθ(x)|f(x)|2dx : ‖f‖ = 1}+ e−iθ[0,∞)

⊆ conv{Vθ(x) : x ∈ R}+ e−iθ[0,∞),

where

Vθ(x) := eiθx2e−eiθx2/b2 .

For small positive θ the set N(θ) crosses the real axis near x ∼ 0.461b2.

Indeed, if we represent Vθ(x) = Xθ(x) + Yθ(x) and denote the point where N(θ)
meets the real axis by (Bθ, 0) then a simple calculation gives us

Bθ = Xθ + Yθ cot θ = b2 max{x2e−x2

(2− x2) : x ∈ R}+O(θ) = 0.461b2 +O(θ).

Therefore the imaginary parts of any resonances must start decreasing before their
real parts reach this value. This is in good accordance with the numerical data
quoted in the next subsection.
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5.4. Numerical Results. Lower eigenvalues of the operator Hθ lying close to
the real axis for different values of ν are given in Tables 6, 7. The computed
eigenvalues proved not to depend on θ, so our numerical results are in agreement
with the theoretical arguments of Section 5.1. The fact that for a range of θ lower
eigenvalues coincide up to a high accuracy shows the stability of our method as a
whole.

Remark that the results to be reported below are consistent with formulae (9) and
(10); they confirm, in particular, that µ1 < 0. On the other hand, these results
illustrate the fact that series (8) is asymptotic rather than convergent. This only
implies that the imaginary parts of the resonances have to be very small within
the regime for which the asymptotic expansion provides useful information.

Table 6. Resonances of H0, n = 0, 1

ν λ0 λ1

0. 1. 3.
10−4 0.999925 2.999677

4 · 10−4 0.999700 2.998502
10−3 0.999251 2.996253
10−2 0.992475 2.962115
0.04 0.969405 2.824312
0.1 0.920295− 2. · 10−6i 2.560861− 0.003347i
0.2 0.822647− 0.005282i 2.028250− 0.249944i
0.25 0.768023− 0.019417i 1.850388− 0.425748i

Table 7. Resonances of H0, ν = 10−4
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n λn n λn

0 0.999925 18 36.948571
1 2.999677 20 40.936844
2 4.999025 22 44.923925
3 6.998125 24 48.909797
4 8.996924 26 52.894462
5 10.995877 28 56.877922
6 12.993623 30 60.860175
7 14.991344 40 80.753321
8 16.989119 50 100.616298
9 18.986242 60 120.449097
10 20.983418 70 140.237430
12 24.976502 80 160.000434
14 28.968399 90 179.874965
16 32.959086 100 199.664121

Along with Table 7 we present some plots (see Figures 1a–1c). They include
contour maps of the function F (z; a) defined in Section 3 whose zeros are the
eigenvalues we are looking for. One can see that the zeros and the poles of F
interchange (we have plotted F for Neumann boundary condition at x = 0, i.e., its
zeros are the even eigenvalues, while the poles correspond to the odd ones). For
|z| ≤ 200 we have discovered 100 eigenvalues all being real up to the accuracy
δ = 10−6. Note that for different values of a (an intermediate matching point)
we obviously get quite different functions F (z; a) (compare Figure 1a to 1c) while
their zeros remain the same.

Given a certain number n we watch λn changing as ν increases and compare this
eigenvalue with its first order approximation (see (8)).

Table 8. Eigenvalues of Hθ, n = 10, 30
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ν λ10 λ
(o)
10 + µ1(10)ν λ30 λ

(o)
30 + µ1(30)ν

10−4 20.9834 20.9834 60.8602 60.8604
10−3 20.8332 20.8343 59.5781 59.6043

2 · 10−3 20.6643 20.6685 58.0976 58.2085
4 · 10−3 20.3195 20.3370 54.9090 55.4170
6 · 10−3 19.9644 20.0005 51.2492 52.6255
8 · 10−3 19.5531 19.6740 46.2597− 0.1492i 49.8340
9 · 10−3 19.3747 19.5083 43.3597− 1.5496i 48.4383
10−2 19.2045 19.3425 41.2601− 3.2488i 47.0425

It is seen from Table 8 that only for a narrow range of ν do the perturbation theory
formulae (8) approximate actual eigenvalues (compare to Table 6). As ν increases
a typical eigenvalue deviates gradually from the value given by (8) and at some
stage its imaginary part becomes substantial.

The values of the instability indices of resonances depend on θ, even though the
positions of the resonances do not. We have observed that the indices are in fact
monotonically increasing functions of θ. While this is not surprising we have no
proof of the fact. We have also observed that the instability indices are increasing
functions of b, provided one follows the ‘same’ resonance as b increases. The insta-
bility indices κn, n = 0, 10, 20, computed for a wide range of θ and b are given in
the following three tables.
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Table 9.1. Instability indices κn, n = 0

ν \θ π/30 π/8 π/6 π/4 π/3 π/2.5
0. 1.002750 1.040381 1.074570 1.189207 1.414214 1.798908

10−4 1.002750 1.040378 1.074563 1.189185 1.414134 1.798588
10−2 1.002729 1.040039 1.073886 1.186951 1.406329 1.769120

Table 9.2. Instability indices κn, n = 10

ν \θ π/3000 π/300 π/30 π/20 π/10
0. 1.000028 1.0233 1.3299 1.8249 6.6784

10−4 1.000027 1.0209 1.3294 1.8243 6.6728
10−2 1.000031 1.0028 1.3046 1.7562 5.9928
ν \θ π/8 π/6 π/5 π/4 π/3
0. 14.2777 57.4539 195.9499 1565.2614 1.3645551 · 105

10−4 14.2836 57.3505 195.4619 1558.9429 1.3507237 · 105
10−2 12.3306 45.7594 143.8155 965.0957 4.6122845 · 104

Table 9.3. Instability indices κn, n = 20

ν \θ π/20 π/10 π/6 π/5 π/4 π/3
0. 5.9275 113.5766 9850.7214 1.1753 · 105 7.4538 · 106 3.6609 · 1010

10−4 5.9190 113.1898 9782.2812 1.1641 · 105 7.3412 · 106 3.6119 · 1010
10−3 5.6055 109.2017 9128.5324 1.0610 · 105 6.3605 · 106 3.4647 · 1010
10−2 4.7349 75.0929 4811.8348 4.5459 · 104 1.6894 · 106 1.7152 · 109

Finally, let us cite some results obtained for b = 10. In this case we have found
numerically several resonances, which are real up to the chosen accuracy δ =
10−4, and a series of complex ones. As is seen, starting from about n = 20 their
imaginary part rapidly increases in absolute value. In fact, for different values of
θ the number of resonances with negative imaginary parts varies. The resonances
and the relevant instability indices are tabulated below. In Table 10 we cite the
eigenvalues λn of Hθ along with the corresponding instability indices κn calculated
for θ = π/4 and θ = π/16.

The data of Table 10 is illustrated by the plot of F (z) (Figure 2a) and its contour
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maps (Figures 2b, 2c). Remark that the largest instability indices for θ = π/4
and θ = π/16 correspond to the 26-th and the 24-th eigenvalue respectively (here
we have concentrated on even eigenvalues; odd eigenvalues behave similarly).
Figures 2b, 2c also show that the most unstable eigenvalues are related to n = 24
and n = 26. They appear to be the first eigenvalues with negative imaginary parts
— as one can see, the following eigenvalues go to the complex plane quite abruptly.
We do not have any theoretical explanation of this fact except for the remark on
the boundedness of κn made in the end of Section 4. Anyway, the contour maps
and the values of κn agree very well and imply the same — the maximum of κn is
obtained for the ‘critical’ range of the spectral parameter where eigenvalues start
moving away from the real axis.

Note that though for θ = π/16 and θ = π/4 the contour map plots are quite similar,
this only means that the first 28 eigenvalues coincide for the two operators. As
we know, there are no eigenvalues of Hθ below the line e−iθ × [0,∞). The spots
indicating the zeros of the function F (z) which are beyond the range {z : −θ <
arg z ≤ 0} correspond to solutions of Hθf = zf growing at infinity rather than
decaying. Thus, in the considered example we should only regard the first 28 zeros
as the eigenvalues of Hθ, θ = π/16. They coincide with those obtained for θ = π/4
as we expected. We believe that our results are reliable because of their stability
under the variation of several parameters involved in the problem.

Table 10. Values of λn and κn for ν = 10−2
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n λn κn, θ = π/4 κn, θ = π/16
0 0.9925 1.1870 1.0097
2 4.9009 2.8983 1.0684
4 8.6836 11.3609 1.2100
6 12.3350 49.4772 1.4462
8 15.8488 219.4180 1.7974
10 19.2174 960.5058 2.2918
12 22.4312 4075.82 2.9652
14 25.4782 1.6515 · 104 3.8576
16 28.3422 6.2860 · 104 5.0033
18 31.0004 2.1989 · 105 6.4039
20 33.7512− 0.0003i 1.3978 · 106 9.5706
22 35.5098− 0.0014i 1.5650 · 106 10.0018
24 37.0693− 0.1593i 2.4535 · 106 10.2337
26 38.7468− 1.0004i 2.8963 · 106 8.8755
28 39.8045− 2.0367i 2.5627 · 106 7.0743
30 41.2601− 3.2488i 1.8339 · 106
32 42.6021− 4.7565i 1.3337 · 106
34 45.6102− 8.0230i 4.2730 · 105
36 47.0034− 9.8515i 2.3134 · 105

6. Conclusions

The instability index of an eigenvalue of a non-self-adjoint ordinary differential
operator was defined in Section 2, where we investigated its theoretical proper-
ties. We have described a known general numerical procedure for computing the
eigenvalues of the differential operator and have introduced a new and numerically
stable procedure for computing the instability indices.

In order to test this procedure, we have carried out extensive computations for
the harmonic oscillator with a complex coefficient. The eigenvalues λn of this
operator are given by an exact formula, and we found close agreement between
the formula and our numerical results for n ≤ 100. We have also computed the
instability index by two independent methods, the first being the general procedure
mentioned above. The second uses a special numerical technique only available for
the harmonic operator, but capable of yielding extreme accuracy if implemented
in Maple with high precision arithmetic. The instability indices of the first 40
eigenvalues obtained by the two methods were found to be in close agreement; see
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Table 4.

The discrepancies between the two methods are partly explained by the very high
values of the instability indices of the eigenvalues λn for n ≥ 40. This phenomenon
was first observed for the harmonic oscillator in [9, 10] where we approached the
phenomenon via pseudospectral theory. Our current approach has the advantage
that it provides a quantitative measure of the instability of individual eigenval-
ues under small perturbations of the potential. We have carried out numerical
experiments and confirmed that the size of the effects predicted matches what we
have observed for a particular perturbation. In Section 4 we have conjectured on
the basis of the numerical results that the eigenfunctions of the complex harmonic
oscillator do not form a conditional basis.

We have also investigated the complex resonances of a typical self-adjoint operator
by means of the standard technique of dilation analyticity. This identifies the
resonances of the original operator with eigenvalues of any one of a family of
associated non-self-adjoint operators indexed by an angle. The eigenvalues of these
operators are independent of the angle, but the instability indices depend upon its
value.

We have discovered that for a certain operator, as is seen from Table 10, the first
20 eigenvalues have very small imaginary parts, which is explained by the fact that
there exists a (non-convergent) asymptotic expansion which has real coefficients
of all orders. For higher eigenvalues the imaginary parts of the eigenvalues in-
crease rapidly in absolute value. We have computed the instability indices of these
eigenvalues for typical angles and discovered that they increased rapidly with the
modulus of the eigenvalue, reaching a maximum value near the region where the
imaginary part starts to increase (see Tables 9.1–9.3, 10). No theoretical explana-
tion of this phenomenon exists.

The very large size of the instability indices in both examples indicates that the
computation of large eigenvalues of non-self-adjoint differential operators is likely
to be intrinsically intractable in many other cases of a similar type. The same
applies to the computation of large resonances of self-adjoint differential operators.
The effect of rounding errors or of small perturbations of the operator may be to
change the computed eigenvalues drastically. This discovery casts some doubt
on the significance of theoretical investigations of the asymptotic distributions of
resonances or of any computations of such eigenvalues for all except self-adjoint
operators. Our experience, and that of others who work within the pseudospectral
approach, has been that the extreme instability of large eigenvalues is the norm
rather than a possibility which occurs only in pathological cases.
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Figure 1a. Function F (z; a), a = 0, b = 100
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Figure 1b. Contour map of F (z; a)
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Figure 1c. Plot and contour map of F (z; a), a = 4, b = 100
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Figure 2a. Function F (z; 0), b = 10, θ = π/4
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Figure 2b. Contour map of F (z; 0), b = 10, θ = π/4

Figure 2c. Contour map of F (z; 0), b = 10, θ = π/16
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