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Abstract
The aim of this paper is to describe an efficient adaptive strategy
for discretizing ill-posed linear operator equations of the first kind: we
consider Tikhonov-Phillips regularization
2d = (A*A+al) "t A%y°

(07

with a finite dimensional approximation A, instead of A. We propose
a sparse matrix structure which still leads to optimal convergences
rates but requires substantially less scalar products for computing A,
compared with standard methods.

Introduction

ill-posed linear operator equations of the first kind

We assume that only perturbed data y° with || y — ¢° || is available. More

Ax =y.

precisely, we consider Tikhonov-Phillips regularization

w), = (A"A+al)tAYY

o
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where the regularization parameter « is chosen according to Morozov’s dis-
crepancy principle, i.e. one determines the largest a € {a,, = ¢"aglm =
0,1,..} s.t.

Az, =9l <do .

Any numerical realisation requires to carry out all computations with a finite
dimensional approximation A, instead of A.

The choice of the approximation A, determines the accuracy as well as the
overall complexitiy of the algorithm. The complexity of the algorithm has to
be measured in two categories: 1) the number of scalar products required to
compute A,, 2) the number of matrix—vector-multiplications —weighted by
the number of non—zero entries of A,,— required to compute (2).

Several authors have investigated approximations of the type

A, = QAP

where P and @) denote orthogonal projections onto suitable finite dimensional
subspaces. These investigations aim at minimizing the dimensions of the
subspaces. E.g. [16] treats discretizations of this type for general projection
methods and [12] investigates discretizations for Tikhonov regularization.
A recent publication [7] also exploits the strutcure of the resulting linear
systems for different values of o in order to construct efficient CG-methods
for solving (2). However, all these publications link the level of approximation
to the data error d only, i.e. A, is kept fixed for all & which have to be tested.
A first adaptive strategy, which linked the level of approximation to the value
of a,, by

14, = Al < ev/avs

was suggested in [10]. There the approximations were obtained by wavelet
techniques in order to obtain sparse approximations. This allows for an
efficient computation of the matrix-vector multiplications needed for deter-
mining $‘5am.

From a numerical point of view an efficient algorithm for computing the ap-
proximation A, is equally important. This efficiency (or complexity of type
1) is measured by the number of scalar products required to compute A,.
This number is called the required amount of discrete information.

If A,, is obtained from a 2"-dimensional approximation space

Vo = span{p; | j=1,2,.,2" },

2



I Figure 1: The marked area determines the
coefficients of A, for n = 2 which have to
be computed in the adaptive discretization

scheme. The dimnension of this matrix is
22" = 16.

then standard methods require the evaluation of 22" scalar products < ¢;, Ap; >
for computing A,,. This is the case even for wavelet—approximations if no fur-
ther assumptions on the structure of A, e.g. convolution operator or weakly
singular integral operators with known degree of singularity [2, 3], can be
exploited.

The computation of such scalar products would be cheap if a singular value or
a wavelet—vaguelette decomposition of A [5, 4] would be available. However
the computation of these decompositions is in general as costly as solving 2"
linear systems of dimension 2".

An elegant and efficient approximation was proposed in [14]. The number n
has to be even in this approach, i.e. the dimensional index is replaced by 2n:

2n
Adisc - An - Z(Pj - ijl)APanj + POAPQn 5 (3)

Jj=1

where P; denotes the orthogonal projection onto a suitable 2/ — dimensional
subspace. This idea amounts to computing only a small fraction of the coef-
ficients of the matrix A4,,.

The idea of this paper is to combine the approaches in [14] and [10], ie. to
combine the discretization (3) with an adative strategy for choosing n de-
pending on ¢ and «. This strategy still yields optimal convergence rates but
requires substantially less scalar products for computing the discretized op-
erators, i.e. these methods require a smaller amount of discrete information.



2 Notation and basic assumptions

Denote by (-,-) the inner product for some Hilbert space H and as usual,
lollz = (¢, ¢)Y2. For r € (0,00), we let H" denote a linear subspace of H
which is equipped with a norm ||¢||gr > ||¢|lg. Moreover, in the spirit of
wavelets updating [3] we suppose that there exists a sequence of nested finite
dimensional subspaces Vo C V;, C Vo C ... C V, C ... C H such that

inf o = vjlla < 27 ||vl|lgr, v e H, (4)

vieV;

and

dimVj ~ 257 (5)

where s > 1 and a ~ b will always mean that a and b can be bounded by
constant multiples of each other. The condition (4) can be written in the
form

11 = Pillrn < 277, (6)

with a constant ¢, > 1 and where P; : H — Vj is the orthogonal projection
onto subspace V}, i.e.

dimV;

k=1

Here ®; = {@;r: k=1,2,...,dimV;} denotes an orthonormal basis of V},
Pj1 C Py

Now we define the class of equations (1) which will be considered in
the sequel. First of all it will be assumed that the operators A have some
smoothness with respect to the family of subspaces H", r € (0,00). Namely,

AeH, ={A: | Allgsn + 1A laonr <7} 72> 1 (7)

Here A* denotes the adjoint operator of A : H — H, i.e. (f, Ag) = (A*f,g)
for any f,g € H.

Now we present a rather simple example to illustrate the assumptions
described above. We consider an integral equation

Asr) = [ Lkt D)a(r)dr = y(2). (8)

The underlying spaces and projections are chosen as follows. As Hilbert
space H we take the space Ly(0,1) with the usual norm and inner product.
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As H"™ we take the Sobolev space W (0,1) of functions f(¢) having square-
summable derivatives f) € L,(0,1), i = 0,1,...,r, with an appropriate
norm. For r = 1 as nested finite dimensional subspaces we choose the spaces
of piecewise constant functions, such that

Vo = span{1}, V; =span{p;r, k=1,2,...,27},
dimV; = 27,

Here {¢; } is the orthonormal basis of Haar-wavelet functions, where ¢;; =1
and for k=2""1 44 m=1,2,...,5,i=1,2,...,2""!

20m=DR e [(i - 1)/2m7 (i - 1/2) /277
pip(t) = =22t e [(i—1/2)/2m 7 i/2m )
0, elsewhere

It is well-known that for such spaces V; and for the orthonormal projection
P; : Ly(0,1) — V; we have

11 = Pjllwio,)=r2001) < 277,

This means that for H = Ly(0,1), H" = W3(0,1) and for spaces of Haar-
wavelet functions V; the conditions (4)-(6) hold for » = 1, s = 1. Asindicated
in [3], for example, one can construct wavelets on the interval [0, 1] in such a
manner that (5), (6) hold for H = L5(0,1), H" =WJ3(0,1), r>1,s> 1. If
the kernel k(t,7) of the integral operator of (8) has square-summable partial
derivatives 82’2%’”, 6”2(:57), i=0,1,...,7, then it is easy to see that A € H[
for H = Ly(0,1), H" = W3(0,1) and some +.

We shall study the equation (1) with A € H. On the other hand, from
the condition (7) one sees that A € H! is a compact linear operator acting
from H to H and so it is not continuously invertible. In this setting the
problem (1) is ill-posed, that is, its minimum norm solution z' does not
depend continuously on the right-hand side y. Small perturbation ys of the
exact but unknown data y may cause dramatic changes in z7.

The usual discussion of the order of accuracy of solution techniques for

(1) is done under the assumptions that the minimum norm solution ' lies




in the range of (A*A)”, v > 0, that is
ol = (A"A)", lla < p, (9)

and the perturbed data y; satisfies ||y — ys/|lg < ¢ with an a priori known
noise level § > 0. From [17], [18] it follows that under these assumptions
for any solution technique the best possible order of accuracy in the power
scale is 62/(2»+1) Therefore in the sequel we shall consider the class ®rv of
equations (1) with A € H! and

y e AM,,,,,(A) = {f o f=Au, ue M,,,p(A)},

where M, ,(A) ={u: u= (A*A)"v, |jv|]lg < p}. It is easy to see that in
this case the solution z' of (1) has the form (9).

3 Morozov’s discrepancy principle for the stan-
dard projection methods with a predeter-
mined level of discretization

Traditionally the discretization of problem (1) is done by a Galerkin method.
This means that instead of (1) we consider now the equation

Adiscx - Pmy67 (10)

where Agise = PnAP,. But if (1) is ill-posed, i.e., the solution z is not
a continuous function of the data y, regularization techniques are required
for solving (10). In this paper we consider Tikhonov-Phillips regularization.
In this method a solution of (10), and hence of (1), is approximated by a
solution x4, of the equation

ax + A Adiscx = AZiscy(s‘ (11)

disc

Note that finding on element x ,, , reduces to solving a system of min{dimV,,,
dimV,,} linear algebraic equations.

One of the most widely used strategies for choosing the regularization
parameter « is Morozov’s discrepancy principle [11]. Following [16], we shall
consider this discrepancy principle in a form tailored to the discretized ver-
sion of Tikhonov-Phillips regularization and A € Mo Let 1 < di < dy. If
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|Pryslle < did, then take x = 0 as the approximation. If || P, ys||lz > di0,
then choose o > amin = (7¢,27™")? such that

d15 S ||Pmy<5 - Adiscxa,m,n

| < dyd. (12)

If there is no «a > i, such that (12) holds, then choose o = ayy,. The
following theorem allows us to estimate the efficiency of the traditional ap-
proach to discretization (10)—(12).

Theorem 1 [16]. Let the parameter « be chosen according to the discrep-
ancy principle (12). If equation (1) belongs to the class 74,0 < v < 1/2,
then

||.’L"T _ $a,m,n||H <d, {(5% + 9—2vnr + 2721/77’”"} ,

where d,, is independent of 6,n, m.

Let us consider the following situation. We know that equation (1) be-
longs to the class ®2" for some v € (0,1/2], but we don’t know the exact
value of v. From Theorem 1 it follows that — within the framework of the
standard projection methods (10)—(12) and with a predetermined level of
discretization — we can guarantee the optimal order of accuracy §2/(*+1) in
the case when 27 > §~1/@v+r gm > §=1/Cv+Dr for all v € (0,1/2]. As with
[16], the minimal m and n satisfying above conditions for all v € (0,1/2]
have the following orders: 2" ~ 2™ ~ §=1/7.

Denote by card(IP) the number of inner products of the form

(Omk, Apng) and  (©mk, Ys), (13)

required to construct an approximate solution ., , realizing the optimal
order of accuracy for all v € (0,1/2]. Then by virtue of (5)

card(IP) = dimVy, (dimV,, + 1) ~ 250mFm)  §=2s/7, (14)

4 An adaptive discretization scheme

So far we have discussed to which extend A may be replaced by a discretized
operator Agjs., where Ay is kept fixed for all possible values of the regular-
ization parameter a. However since we choose « by testing different values
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of the regularization parameter we would like to link the amount of discrete
information card(IP) to «. This will allow us to use coarser discretizations
for large values of a and to obtain the optimal order of accuracy in the power
scale §2/(2¥*+1) ysing an amount of discrete information of the form (13) such
that

card(IP) ~ (6y/a) ™" log"**/" (6 /)"

Let us consider the discretization scheme within the framework of which
2

Adisc = An = (P7 - ijl)APanj + POAPQn =

j=1

(15)
2n
= '21 P2n—jA(Pj — Pj—l) + PQnAPO.
1=

Note that this scheme was used earlier in [15], p.295, for discretizing second
kind operator equations (well-posed problems). This discretization uses a
discretization space of dimension 22" but computes only a small fraction of
the scalar products required to compute the standard discretization Py, AP,,.
To be more precise, this approximation incorporates the full discretization
P,,AP,, only for m = n and adds some coefficients describing the mixing of
high and low frequency components by the action of A.

In the sequel we need the lemma

Lemma 1 For A € 7-[1;

||A*A — A;AnHH—)H < CT,’YanQnr, ||AA* — AnA:lHH—)H < CT,’YanQnr,

(A = A3) Allyr < epyn2 ™,
where ¢, = 2" 322,

Proof. We prove only the first estimate. Other estimates are established
in a similar manner.
It is easy to see that

[A*A = A Anllon < ||A(T = Pon)® Allgon+

(16)
| A Pop A — AL Aul .



Keeping in mind that
2n
A;An - Z PQn,jA* (P] - ijl)APanj + PQTLA*P()APQn7 (17)
j=1
we have
|A*Pon A — AL Anllg—n < ||A*PyA — Popy A*PoAPoy || n—su+
+2 |Gl s,
j=
where
Gj=A"(Pj — Pj1)A — Py jA"(Pj — Pj_1) APy ;.

It is easy to calculate that
|Gl < (I = Pop—j) A*(Pj = Pi—1) Allp-n+
| Pon— A*(Pj = Pim1)A(I = Ponj)l 1> <

< 2[|1 — P

Pj — Pj_]

wr— || A g || Al <

< 203722*(2”*j)r (Z’jT + 2’(j*1)T) = 26272(1 + 27) 272
|A*PoA — Py, A* PyAPoy || < 2¢,7227207,
[A*(I = Pon)* Al < cy?271
Then by virtue of (16), (18) we obtain the assertion of the lemma.

Let us study the approximation properties of Tikhonov-Phillips algorithm
with a parameter selection according to discrepancy principle which has the
following form:

L. given data: A € H7, ys, 0;
2. initialization: ap, 0 <qg <1, d> 2;

3. iterate



(a) a=a, =q¢"a,

(b) determine a discretization level n = n(a,d) such that
n27*"" = de, ) 0\ 0, (19)
(c¢) compute the inner products
(PanisYs), =1,2,...,dimVay,, (20)
(d) compute the inner products

((pj,lﬁ A@2n7‘7,4)7 ] = 17 27 SRR 2”7 (21)
k=1,2,...,dimV,,
(= 1, 2, ey dlm‘/Qn,7

required to construct A,,

(e) compute 3, = (amI + AfA,) "' Arys by solving
until
[Anzd,,. o = sl < db. (23)

As we will see in the following, this variant of Tikhonov-Phillips algorithm
insures the best possible order of accuracy in the power scale.

Denote by {u;,v;,0;} the singular value decomposition for a compact
operator A, where u;,v; € H are the singular vectors and o; > 0 are the
singular values.

Lemma 2 Assume that A € H!, and that xt obeys (9). Then for v € (0,1/2]

) Cpny 27207
g < —= +a’ca(v) + —22—o

2/« ’ «

||$T - $6a,n

where ¢, , = 2¢, 4P,



Proof. We follow the proof of Lemma 2.5 in [12]. First of all we note that
ot = af ol < ot = (o + A*A)" Ay g+

Hl(ad + AL AR) T ALy = ws) ||+ (24)

+|[(ad + A*A) L A*y — (ol + AXA,) T Axyll 5.
Equation (9) and inserting the singular value decomposition yields

|zt — (ol + A*A) P A%yl y =
= ||(af + A*A) Y axt + A* Azt — A*y)||g = (25)

= all(al + A*A)2M||g < cpa(v)a”.

Moreover, from standard estimates using the singular value decomposition
of compact operator T one knows:

l@I + T°T) Mo < 0™, (@ + TT) T | < 35,

(26)
(oI + T°T) T T < 1,

where T'= A, A* or T' = A,, A}. Then

J
T+ AfA) TA N (y — < —.
(e + A5 A) " AL (y — ys)lln < a
On the other hand, from (9), (26) and Lemma 1 we know that
(o + A*A) " A%y — (ol + AZA) Ayl y <

(27)

<l(af + AfA,) " Y(A2A, — A*A)(al + A*A) "L A*y||u+
+[(ad + Az A,) 1 (A — AN)ylly <
(28)
<o Y Ar A, — A*Allgoll(al + A*A) " A Azt || g+

+a (A" = A5 Axtlg < 207 e ym27 o |y <

2w, —1,9-2nr n2-2""
< 2¢. 7 pa” i n2 S Crpypg—-

11



The assertion of the lemma follows from (24)—(27).

We now continue to analyse the convergence properties of the proposed adap-
tive scheme by following the standard lines of proof; i.e. we first show that
the proposed stopping criterion with noisy data yields a regularization pa-
rameter o which would have been also obtained by a related discrepancy
principle with perfect data.

Lemma 3 If a = ay and n = n(ay,0) are chosen within the framework of
algorithm (19)-(23) for A € H!, then there exist dy,dy > 0 such that

d15 S ||Axa - y”H S d267
where xo = (o + A*A)~1A*y.

Proof. We follow the proof of Lemma 7 and Lemma 10 in [10].
We put Ro(T) = (al +T*T)"'T* and 29" = R,(A,)y°. Then

Azy —y= AR (A)y —y =
(AR(A) — ApRo(An))y + (I — AyRo(An)) (v — ys) + (Anx(sa,n —Ys)-

(29)
Keeping in mind that

T(al +TT)"' = (al + TT*)"'T,

T (ad + TT*)‘1 = (al + T*T)_lT*,
we have

(ARo(A) — ApRa(An))y = (AA*(a + AA*)™L — A, A% (ol + A, A%) 1)y
= (AA* — A, A%)(af + AA)"Vy — Ay A% (o + Ay A%)H(AA* — A A%) (ol + AA*)™
= (o + Ay A%) " {(af + A AT) — Ay AL} (AA* — A AF)(al + AAY)~!

= a(a] + A, A%) Y (AA* — A, A%)(al + AA*) Ty

(
Using this formula, (26) and Lemma 1, we obtain the following estimate for
any a = ay, andn—n(a J)

||( ( ) AnRa(An))y“H -
= of|(af + A, AX)THAA* — A A% (al + AA*) L AxT ||y <
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—2nr . 2v —2nr
Cran2” "y p < Crpy,pT2

e — 4/a

Moreover, it is easy to see that

17 = AnRa(An))(y = yo)llur < (I = (o] + An A7) T A Al lly — wsll o <

< — 5.

If o = ay satisfies (23) then combining (29)—(30) we have

|Aza — yllm < (d+2)d.

On the other hand, the same steps as in the proof of Lemma 10 [10] lead to
the inequality

”A:L'a]v - y”H = HA'T;QCVN—I - yHH > qHA'T;CYN—l - y”H7 (31)

where ¢ is the denominator of geometric progression {a,, : oy, = ¢™ag, m =
1,2,...}, which contains ay. But for & = ay_1 and n = n(ay_1,9) from the
definition of algorithm (19)—(23) it follows

|]Anx5 — Ysllg > do.

anN-—1,n

Then combining similarly (29)-(30) for & = ay_1, n = n(ay_1,9), by in-
verse triangle inequality we have

[AZay_, =yl 2 [ Anzey_, n = vslln — 26 > (d = 2)0. (32)
Now by virtue of (31), (32) we find
[Azay =yl > q(d - 2)0.

Thus, we obtain the assertion of the lemma for dy = ¢(d — 2), dy =d + 2.

5 Complexity of the adaptive discretization
scheme

Theorem 2 The optimal order of accuracy in the power scale 62/*+1 on

the classes 7% 0 < v < 1/2, is realized by the algorithm (19)-(23).
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Proof. From Lemma 2 it follows that for any o = a,,, and n = n(ay,, 0)

an||H—2\/—+a Cua(v )+j—%—7+a Cua(V). (33)

Moreover, one should note that inserting the singular value decomposition
shows (see,e.g., [13]) that

[Aza =yl = o™ *dg, (v), (34)

||1JT -z

where d, , (v) itself is bounded for 0 < v < 1/2 and
Cra (V) [dan (0)] /2D < ¢ (35)

Now if @ = ay satisfies (23) and n is chosen according to (19) for a,, = ay
then from Lemma 3 and (34), (35) one sees that

1/(2v+1 1/(2v+1
0 —5 da,u(U) /G <s da,u(v) [ < 6521//(21/+1) (36)
va |Aze — yllu N di0 N ’

v/(2v+1)
V 420 - oll’
Weun(0) = coulo) (12221

< CV,Q(U) [dmy(v)]—?V/(?V-l-l) (d25)2u/(2u+1) < 0521//(21/—1—1). (37)
The assertion of the theorem follows from (33), (36), (37) .

Let us denote by card(Eq) the number of linear algebraic equations in
the system corresponding to (22). Using the representation

Ay =5 (Pj— Pj_1)APs_j + Zl Doy jA(P; — Pj-1)+
‘7:

7=1
+ P, APy + PyAP,, — P, AP,

and (5) we get the estimate

card(Eq) = rankAl = rankA, < rank (i (P; — le)APQRJ) +
7=1

(38)
+rank (Z Pop_;A(P; — Pj_1)> < 2rankP, ~ dimV,, ~ 2°".
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Now we estimate the number card(IP) of inner products of the form (20),
(21) required to construct an approximate solution z%, . From (5), (20),
(21) it follows

2n
card(IP) < Y dimVj-dimVa,_; + dimVsy, ~
=0

(39)

2n . .
~ S 23j2(2n—])s + 92ns ., n92ns.
J=0
To illustrate the advantages of proposed adaptive discretization scheme
we assume that oy satisfying (23) has the order §~2* for some A € (0,1/2).
It is sufficiently natural assumption because (see, e.g. [6]) the regularization
parameter « is normally chosen in dependence of § such that
62

lim— =0, lima=0.
6—0 (v 6—0

Keeping in mind (19) for a,, = ay ~ 622" and
,,7/272717’ ~ (527)\
we obtain the following estimates

ns —(2—A)s/(2r 2r) 1
card(Eq) < 27 ~ §~(2-Vs/(2r) [ogs/(2r) L

card(IP) < en22's ~ 5= Ns/m |oglts/r L

Then the total number of inner products of the form (13) required to achieve
the optimal order of accuracy in the power scale within the framework of
algorithm (19)—(23) is no more than

1 1
card(IP) - N < clog gnz%s ~ NS/ o2t X

Moreover, from (36) it follows that if ay satisfies (23) then (6 /an)™' <
c6 2w H1)/v+1) - Therefore

2s(v+1) 1
CCLTd(IP) - N S 0(5 /aN)—S/T 10g2+5/1"(5 /—aN)—l S C(S_T(Til) 10g2+5/r g
When these relations are compared with (14) it is apparent that for the

classes @7 0 < v < 1/2, the adaptive discretization scheme (19)-(23) is
more efficient than traditional non-adaptive approach to discretization (10)—

(12).
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6 Numerical example
A standard example for inverse ill-posed problems is given by (see [9])
Ar =y

with the compact operator

A L2([0,1]) — L2([0,1]), = +— /k(s,t) 2(t)dt

0

where
t(l—s) fort<s

s(1—t) fors<t

k(s,t) = {

As the solution z we take x(s) = s(1 — s) which yields

y(s) = Ax(s) = 11—2(84 —25% +5)
This operator lies in the considered class A € H. with r = 2. We now
compare the results of the full discretized operator A, = P, AP, with those
obtained with our algorithm (19)—(23). The discrepancy principle was used
in both cases with d = 2 and the sequence of regularization parameters
o, = Moo was obtained with ag = 1 and ¢ = 0.8. Moreover the constant
4c 1 in equation (19) was set to 1 for simplicity.

T!’y!p
The discretization spaces V; were obtained as in Chapter 2 with the Haar-
wavelet basis, i.e. s = 2 gives the desired level of approximation. The

proposed adaptive scheme shows its advantage for small noise levels, i.e. for
comparatively large dimensions n. Figure 2 displays the reconstructions with
both methods for a noise level of 0, 5%, the reconstruction error ||zt — x|
was 0.0145 for the adaptive scheme and 0.0165 for the full discretization.
However the number of scalar products required to construct the discretized
matrix A, was 764 compared to 16384. Table 1 displays the results for differ-
ent noise levels, the value of ”dimension” refers to finest level of discretization,
which was used for the final value of «.

16



| noise level | method | o | dimension | number of scalar products |

5% adaptive 1 24 36
full 1 22 16
1% adaptive | 0.0024 20 164
full 0.0059 26 4096
0.5% adaptive | 0.0010 28 764
full 0.0038 27 16384

Table 1: The adaptive discretization scheme shows its advantage for small noise levels,
the computation of A,, requires substantially less scalar products, despite the smaller value
of the a, which was determined by Morozov’s discrepancy principle.

Figure 1: Left: result obtained with the adaptive strategy and noise level 0.5%, right:
result obtained with full discretization and noise level 0.5%
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