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ABSTRACT

A univariate compactly supported re�nable function � can always be factored into Bk �f , with
Bk the B-spline of order k, f a compactly supported distribution, and k the approximation orders

provided by the underlying shift-invariant space S(�).

Factorizations of univariate re�nable vectors � were also studied and utilized in the literature.

One of the by-products of this article is a rigorous analysis of that factorization notion, including,

possibly, the �rst precise de�nition of that process.

The main goal of this article is the introduction of a special factorization algorithm of re�nable

vectors that generalizes the scalar case as closely (and unexpectedly) as possible: the original vector

� is shown to be `almost' in the form Bk � F , with F still compactly supported and re�nable, and

k the approximation order of S(�): `almost' in the sense that � and Bk � F di�er at most in one

entry. The algorithm guarantees F to retain the possible favorable properties of �, such as the

stability of the shifts of � and/or the polynomiality of the mask symbol. At the same time, the

theory and the algorithm are derived under relatively mild conditions and, in particular, apply to

� whose shifts are not stable, as well as to re�nable vectors which are not compactly supported.

The usefulness of this speci�c factorization for the study of the smoothness of FSI wavelets

(known also as `multiwavelets' and `multiple wavelets') is explained.

The analysis invokes in an essential way the theory of �nitely generated shift-invariant (FSI)

spaces, and, in particular, the tool of superfunction theory.
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A new factorization technique of the matrix mask of univariate re�nable functions

Gerlind Plonka & Amos Ron

1. Introduction

1.1. Factorization: general

Let � be a �nite subset of L2 := L2(IR), which we also treat as a vector with n 2 IN entries.

Let S(�) be the smallest closed subspace of L2 that contains each E
��, � 2 �, � 2 ZZ. Here, E�

is the shift operator

E� : f 7! f(�+ �):

The space S(�) is known as a �nitely generated shift-invariant (FSI, for short) space. FSI

spaces are employed in several di�erent areas of analysis, the most relevant ones to the present

paper are wavelets and uniform subdivisions.

For certain applications concerning FSI spaces (one of which is discussed in x5 of this paper),
it is useful to attempt factoring the vector �. Here, a factorization means expressing � in the

form

� = V F;

with F a `simpler' (in a suitable sense) vector, and V a convolution operator, i.e., a matrix of order

�� F , whose entries are convolution operators.

In more than one variable there are no universal factorization techniques (and the reasons for

that are intrinsic), and this is the main reason the current paper is restricted to the more favorable

univariate case. In that case, general factorization techniques can be either based on the dependence

relations among the shifts of � or on the approximation properties of S(�). For example, assume

that � = f�g is a singleton compactly supported distribution, and that, for some integer k,

� �0 p :=
X
�2ZZ

p(�)E��� 2 �; 8p 2 �k ;

where

�

is the space of all polynomials in one variable, and

�k := fp 2 � : deg p � kg:

Then it is known, [R1], that � can be written in the form B � f , with B the B-spline of order k,

and f some distribution of shorter support. We will actually prove and invoke a stronger variant

of that result in the current article.

A naive extension of the aforementioned result to the vector case is the following ansatz: `if

the shifts of the compactly supported � span all polynomials of degree � k, then � = B � F , with
B as before, and F another compactly supported vector'. While this `naive extension' is invalid,

it is pleasing that a slightly modi�ed version of it is true; however, the simple argument of [R1]

does not carry over, and one needs to resort to some of the most powerful techniques in FSI space

theory, techniques that nowadays are nicknamed superfunction theory.

1



We are ready now to elaborate further on these matters. First (and in contrast with [R1]),

our sole interest here is in a vector � which is re�nable. By de�nition, this means that, for some

dilation operator Ds of the form

(1:1) Ds : f 7! f(�=s);

we have that

Ds(S(�)) � S(�):

We will always assume that the dilation parameter s is an integer greater than 1. (The symbol

f(�=s) above should be understood as the function t 7! f(t=s)). The re�nability assumption on

S(�) is equivalent, [BDR2], to the existence of a matrix P whose rows and columns are indexed

by �, and whose entries are measurable 2�-periodic functions, for which

(1:2) b�(s�) = Pb�; a:e:
The relation expressed in (1.2) is known as the re�nement equation, and the matrix P is referred

to as the mask symbol (or, sometimes, as the `mask' or the `symbol').

Certain guidelines should be followed when considering the problem of factoring a re�nable

�. First, we require that each one of the convolution factors is re�nable (note that B-splines are

re�nable with respect to all integer dilation parameters s). Second, in many practical situations

the vector � is not explicitly known and the actual input is the symbol P. Naturally, one then

needs to factor the symbol P, i.e., if the obtained factorization is, e.g., � = B � F , then the

practical information we seek is the mask symbol of F . The entire factorization can then be

viewed as a factorization of P; we will explain in the sequel the simple connection between the

factorization at the function level and at the symbol level. Third, the functions � and/or the

symbol P usually possess some `favorable' properties. For example, the entries of P may be

trigonometric polynomials, the functions in � may be compactly supported, their shifts may form

a Riesz basis for S(�), etc. It is then desired that the process retains those properties, e.g., that

the entries of the symbol P0 of the factor F will still be polynomials, if those of P were ones.

In view of the above, we formalize the notion of `factoring the mask symbol of a re�nable

function' as follows:

De�nition 1.3. A kth order factorization process is a process that applies to a class of

`admissible' re�nable vectors �. The input of the process is the mask symbol P of � and the

output is a matrix Q such that Q is the mask symbol of a vector F (whose cardinality equals that

of �) for which S(Bk � F ) = S(�), with Bk the B-spline of order k.

Example: trivial factorization. The simplest factorization of order k is the k-fold di�erentiation,

i.e., F := Dk�. In that event, Bk � F = rk�, with r the kth-order backward di�erence, hence

(since S(rG) = S(G) for any �nite function set G � L2) it is a `factorization of order k'. However,

the relation Q = skP clearly indicates that this factorization is practically useless. We will therefore

impose in the sequel an additional condition on the factorization process, which will exclude the

present trivial factorization.

1.2. Superfunction theory and the factorization of [P]

The adjective `new' in the title of this paper certainly indicates that factorization techniques of

re�nable �'s are already in the literature. Indeed, a method for factoring the symbol of a re�nable

vector was introduced by the �rst named author in [P]. In this subsection, we will �rst survey some

aspects of superfunction theory, and recast the factorization of [P] in these terms.
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Superfunction theory is a notion intimately related to approximation orders of FSI spaces

(the discussion here equally applies to multivariate functions; in fact, superfunction theory was

motivated, �rst and foremost, by multivariate approximation problems). One says that the FSI

space S(�) provides approximation order k if, given any `su�ciently smooth' function g 2 L2,
we have that (as h! 0)

dist(g;Dh(S(�))) = O(hk):

It was conjectured by Babu�ska (cf. [SF]) that if � is compactly supported (the FSI space is then

termed local), and if S(�) provides approximation order k, then there exists a �nite linear combi-

nation  of � and its shifts (necessarily, thus, of compact support), such that the small subspace

S( ) of S(�) already provides the same approximation order k. Babu�ska's conjecture was proved

true in [BDR2], and  above (which, we emphasize, is not unique) was subsequently nicknamed `su-

perfunction'. The reference [BDR2] contains extensions of the aforementioned results to non-local

FSI spaces; nonetheless, all those results are too general for our context: their ultimate success

is their validity under extremely mild conditions, alas, the superfunctions, under those conditions,

lack certain properties which we need here.

We will use instead the more recent (and also more straightforward) superfunction results that

were established in [BDR4]. There, improved superfunction results were obtained under additional,

reasonably mild, conditions on the vector �. The basic condition there was termed Strong H(k)

Condition, and a slightly stronger (unnamed) condition was used there in the applications to

re�nable functions. We will recall these two conditions, and name the latter one. But, �rst, we

recall the notions of the bracket product and the Gramian from [BDR1,BDR2].

De�nitions 1.4.

(a) Let f; g 2 L2. Their bracket product [f; g] is the 2�-periodization of fg:

[f; g] :=
X

l22�ZZ
f(�+ l)g(�+ l):

Note that the bracket product lies in L1(TT), where TT denotes the torus.

(b) Let � � L2 be �nite. The Gramian G := G� is the Hermitian � � � matrix whose (�; ')-

entry, �; ' 2 �, is the bracket product [b�; b'].
De�nition 1.5: The strong H(k) property. Let � be a �nite subset of IR, and let k be a

positive integer. We say that � satis�es the strong H(k) property at � if the following two

conditions hold:

(I) For some neighborhood O of the origin, and for each � 2 �, each b�, � 2 �, as well as each

entry of the Gramian G�, is k times continuously di�erentiable on � + O + 2�ZZ.

(II) G(�) is invertible, for every � 2 �.

The default set � is f0g, thus the strong H(k) property means `the strong H(k) property at

� = f0g'.
The unnamed condition in [BDR4] corresponds now to the strong H(k) property at

�s := f2�j
s

: j = 0; : : : ; s� 1g;

and this is indeed the basic condition we will need in this paper. It is worth stressing that this

requirement is much weaker than more commonly used assumptions, such as the L2-stability of the

shifts of � (which is also known as `the Riesz basis property') or the linear independence of those

shifts. We elaborate on that point in the next section.
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We want now to explain the factorization technique that was developed in [P]. For that, we

use the following univariate case of Theorem 4.2 of [BDR4]. The reader should immediately note

that this is `a superfunction result'. In this result, as elsewhere in this paper, the notation

D

stands for the di�erentiation operator.

Result 1.6. Assume that � satis�es the strong H(k) property for some k, and that S(�) provides
approximation order k. Then there exist vectors yl := fyl(�) : � 2 �g 2 C�, l = 0; : : : ; k � 1, such

that y0 6= 0, and such that, if  is a �nite linear combination of � and its shifts, i.e., if

b =
X
�2�

��b�;
for some trigonometric polynomials ��, � 2 �, then S( ) provides approximation order j � k if

Dl��(0) = yl(�); � 2 �; l = 0; : : : ; j � 1:

The factorization method of [P] revisited. This method is inductive. Assume that � satis�es

the strong H(1) property, and that S(�) provides approximation order k � 1. Then, Result 1.6, a

superfunction  1 that provides approximation order 1 is available in the form

 1 =
X
�2�

y0(�)�:

Now, order � in any way f�1; �2; : : : ; �ng so that, for some j, y0(�l) 6= 0 if and only if l � j. Then,

replace the vector � = f�1; �2; : : : ; �ng by a vector 	 = f 1;  2; : : : ;  ng, as follows:
(a)  1 is the aforementioned superfunction.

(b) For l = 1; : : : ; j � 1,  l+1 =  l + y0(�l)r�l, with r the backward di�erence operator r =

1�E�1.
(c) For l > j,  l = r�l:

Obviously, S(	) = S(�). Under a mild condition on  1 (e.g., a mild decay condition at 1),

the fact that  1 provides approximation order 1 implies that  1 = B1 � f1, with B1 the B-spline

of order 1, and f1 some function/distribution. Also, for every function g, rg = B1 � Dg: All in
all, one concludes that there exists a vector F (consisting of either functions or distributions), such

that

	 = B1 � F:
If F lies in L2, one can show that it provides approximation order k� 1. If it still satis�es the H(1)

property, the process may be continued, and another factorization step can be applied.

The above description does not mention re�nability. In contrast, the process in [P] assumes

re�nability and is described there as an algorithm for factoring the mask symbol. Indeed, the above

vector F is still re�nable, and the highlight of the factorization of [P] is the (non-trivial) fact that,

if the original symbol P of � consists of trigonometric polynomials, so is the symbol of the new

F (cf. [P] for more details. The strong H(1) property does not su�ce for the validity of the last

assertion: one needs for that to assume the strong H(1) property at �s. [P] makes an assumption

that is equivalent to L2-stability.)

While the above details correspond exactly to the algorithm in [P] (with the only di�erence

being that we use here backward di�erence as opposed to the forward di�erence used in [P]),

it should be stressed that many other variants of that algorithm are possible. One should only

follow the rule that  j above, j > 1, lies in the span of f 1;r�1;r�2;r�3; : : :g, with  1 the

aforementioned superfunction.
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1.3. Our new factorization technique: why and what?

The method of this article is developed under assumptions weaker than those assumed in [P].

However, it will be erroneous to conclude that our aim is at a factorization method that applies to

a wider range of FSI spaces. Had we wanted to, we could have rederived the method of [P] under

the conditions we assume here.

In order to explain our motivation, we �rst note that the factorization outlined in the previous

subsection `shu�es' the vector �. More precisely, in contrast with the unavailable `naive factor-

ization' � = B � F (where there is a natural correspondence between the elements of � and F ),

no simple relation exists (in the method of [P]) between the original entries of � and those of the

factor F . For the application of certain emerging algorithms this is a disadvantage. Speci�cally,

in [RS] a new technique for estimating the smoothness of re�nable functions was developed. The

technique there does not require the factorization of the mask symbol, but its numerical stability is

dramatically improved if a factorization is �rst done. On the other hand, the [RS] method allows

one to �nd separately the smoothness of each entry of F (previous results, such as that of [CDP]

which incidentally is based on the [P] factorization, could �nd only the common smoothness of

all the functions in �). However, as we had just explained, the existing factorization techniques

`scramble' the functions in �, hence one cannot convert the componentwise smoothness estimates

on F to componentwise smoothness estimates on �. This drawback is exactly the one that we over-

come with the new method: in this new method, there will be a simple correspondence between

the functions in the original � and those in the �nal factor F .

Our method can start with a vector � that may or may not be re�nable. Assuming S(�) to

provide approximation order k, we attempt to replace one �0 2 � by a superfunction  (whose

S( ) also provides the same approximation order), and to further replace each the remaining

� 2 � by rk�, where, as before, r is the backward di�erence. Regardless of the choice of  , the

resulting vector �0 is factorable into the form �0 = Bk � F (with Bk the B-spline of order k). The

factorization is adequate: for example, if � are of compact support, so are F . However, more care is

required upon assuming � to be re�nable. For example, if the symbol of � is made of trigonometric

polynomials, F is re�nable, too, but its symbol, in general, will not be made of polynomials. This

is the reason that we rely on subtle superfunction results: the crux is to �nd a superfunction  

so that the polynomiality of the symbol is retained when replacing �0 by  . Theorem 4.12 and

Corollary 5.5 of [BDR4] establish the existence of such superfunction  , indicate which entry �0 of

� can be replaced by  , and compute the symbol of the new �0. (As a matter of fact, the [BDR4]

results we use were tailored by the [BDR4] authors to help us in developing the present method.)

We review those details in x2, and also prove in that section the extension of the [R1] result that

guarantees the factorization of the superfunction  into the form Bk � F .
In x3, we provide a uni�ed approach to factorization which is based on superfunction theory

basics. In x4, we discuss the theoretical aspects of our factorization, and then use the results of x3 in
the derivation of an algorithm for the factorization process. In x5 we explain how the factorization

can help in determining the smoothness of re�nable vectors via the processing of its mask.

2. Superfunctions, re�nable functions, and other preliminaries

We discuss here three topics in preparation for the factorization algorithm. First, we quote

several superfunction results from [BDR4]; some are used in the next section in a general analysis of

factorization, while others are needed in order to `prepare' the vector � for our speci�c factorization.

We also present a theorem that allows us to factor the B-spline from the superfunction (and which

we already alluded to in the introduction). We �nally discuss the notions of L2-stability and

pre-stability, notions that appear in the statements of our main results.
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As we already mentioned in x1.2, given an FSI space S(�) that provides approximation order k,
one can �nd in S(�) many superfunctions. The study of [BDR4] focuses, initially, on a canonically

chosen superfunction  0 which, in the univariate case, has the form

(2:1) b 0 = X
�2�

��b�;
where �� is a polynomial in the span of fe�iju : j = 0; 1; : : : ; k� 1g, and which satis�es Dj b 0(l) =
�l;0�j;0 (l 2 2�ZZ, 0 � j � k � 1). We label this particular superfunction the canonical super-

function (of order k). Theorem 4.2 of [BDR4] proves that, under the strong H(k) property, there

exists a unique canonical superfunction. The trigonometric polynomial row vector

� := (��)�2�

of (2.1) will be referred to as the canonical �-vector of order k. As we will see in the sequel,

the canonical vector provides key information in the implementation of factorization algorithms,

and therefore, it is important to be able to compute that vector. In [BDR4], two di�erent methods

are suggested to that end: one (cf. Corollary 4.9 there) does not assume re�nability, and relies on

values of the derivatives of b� at 2�ZZ. The other one (cf. Theorem 5.2 there) extracts the canonical

vector directly from the mask symbol P of the re�nable �, and reads, for a univariate setup, as

follows:

Result 2.2. Let � � L2 be s-re�nable with mask symbol P. Suppose that � satis�es the strong

H(k) property at �s :=
2�
s f0; 1; : : : ; s� 1g. Then the following conditions are equivalent:

(a) S(�) provides approximation order k.

(b) There exists a trigonometric polynomial row vector � = (��)�2�, so that,

(i) �(0)b�(0) = 1,
(ii) �(s�)P has a k-fold zero at each of �sn0, and �(s�)P� � has a k-fold zero at the origin:

Dj(�(s�)P� ��;0�)u=� = 0; � 2 �s; j = 0; : : : ; k � 1:

Moreover, � in (b) is the (unique) canonical �-vector of order k, provided each �� lies in the span
of (e�iju)k�1j=0 . Finally, the implication (b) =) (a) holds under a weaker assumption, viz., that �

satis�es the strong H(k) property at 0 only.

Proof: The fact that (a)=)(b) follows from Theorem 5.2 of [BDR4]: the theorem there

states that, if S(�) provides approximation order k and if � satis�es the strong H(k) property,

then (b) holds for some vector �. That vector � can be chosen as the canonical vector, and this

choice is indeed made in the proof in [BDR4] for Theorem 5.2.

The converse implication, (b)=)(a), is also contained in the proof of Theorem 5.2 of [BDR4]:

the proof there shows that, assuming (b), the function  0 de�ned by b 0 = �b� is the canonical

superfunction of order k.

However, for the speci�c factorization technique of x4, we need a further superfunction result.

That other superfunction result is Theorem 4.12 of [BDR4] that reads in the univariate case as

follows:

Result 2.3. Let k be a positive integer, and let � be a vector of L2-functions satisfying the strong
H(k) property. If S(�) provides approximation order k, then there exists �0 2 � and for this �0 a

unique function  that satis�es the following two properties:
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(a)  satis�es on the Fourier domain a relation of the form

b = b�0 + X
�2(�n�0)

��b�;
with each �� a trigonometric polynomial in the span of (e�iju)k�1j=0 .

(b)  satis�es the Strang-Fix conditions of order k:

b (0) 6= 0; Dj b (l) = 0 (j = 0; : : : ; ; k� 1; l 2 2�ZZnf0g):

Moreover, S( ) provides approximation order k.

Corollary 5.5 of [BDR4] demonstrates the usefulness of this superfunction in the context of

re�nable vectors. We quote below the univariate case of that corollary, and provide, for complete-

ness, its simple proof. More details concerning the above result are found in x4, where we discuss a
method for �nding this special superfunction; more precisely, we will need to �nd the trigonometric

polynomials (��) above. The computation of �� will be based on the canonical �-vector � of order

k in Result 2.2. For convenience, we set

�0 := �n�0;

and

(2:4) �0 := �0 [  ;

with �0 and  as in Result 2.3.

Result 2.5. Assume that the assumptions, hence the conclusions, of Result 2.3 hold. Assume
further that the vector � is re�nable with mask symbol P. Then, in the notations of Result 2.3,

�0 (de�ned in (2.4)) is also re�nable with a symbol P0 of the form

P0 = U1(s�)PU2;

where the entries ofU1,U2 are trigonometric polynomials. More precisely, if we order the functions
in �0 in any order of the form ( ; �2; �3; : : :), then U1 = I + R, U2 = I � R, with R a matrix

whose �rst row is

(0; ��2 ; ��3 ; : : :)

and all its other rows 0 (and with �� the trigonometric polynomials of Result 2.3).

Proof: Let  be the superfunction of Result 2.3, its existence and uniqueness has been

shown in [BDR4], Theorem 4.12. It is evident that the connection between the vectors � and �0

is, on the Fourier domain, of the form b�0 = U1
b�;

with U1 having the structure stated in the result. Thus, the symbol P0 of �0 is

P0 = U1(s�)PU�1
1 :

It is straightforward to check that U�1
1 = U2, with U2 as in statement of the result.
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We postpone the discussion concerning the computation of  as well as explicit constructions

of U1, U2 to x4.
Almost all the observations that are required for the new factorization hold in several variables

(though they are stated and proved in one dimension). The only result that does not extend beyond

the univariate setup is the next theorem. As mentioned before, the compact support case of this

result (i.e., statement (a) here) can already be found in [R1].

Theorem 2.6. Let  2 L2(IR) and assume that, for some origin neighborhood O, b is k-times
continuously di�erentiable on O + 2�ZZn0, and is bounded on O. If S( ) provides approximation

order k, and if Dk b grows slowly on O+ 2�ZZn0, then there exists a tempered distribution � such

that  = Bk � �, with Bk the B-spline of order k. Moreover, � can be chosen in a way that:
(a) If supp � [a; b], then supp � � [a; b� k].

(b) If Dk (u) = O(juj��) for large juj, and for some � > k + ", then �(u) = O(juj�(��k)).
(c) If Dk (u) = O(e��juj), for some positive �, then � decays at that same exponential rate.

Proof: First, since we assume that S( ) provides approximation order k, and since we

further assume that b is bounded around the origin, then,  must have a k-fold zero at each

j 2 2�ZZn0 (see [BDR1]).
Let G1 be the support function of O + 2�ZZ, G2 := 1�G1. We consider the expression (with

B := Bk) b bB =
G1
b bB +

G2
b bB :

We will show that each of the two summands above is a tempered distribution, and this will prove

the existence of the required tempered distribution � (we will then use other techniques to prove

the decay assertions).

Firstly, recall that

bB(u) = �1� e�iu

iu

�k
:

Since 1=(1� e�iu) is bounded on suppG2, we then conclude that G2= bB grows only slowly at 1,

hence the function G2
b = bB is a tempered distribution.

Secondly, let j 2 2�ZZn0. We then write

b (u)= bB(u) = b (u)
(u� j)k

�
u� j

1� e�iu

�k

(iu)k:

Note that k
�

u�j
1�e�iu

�k
kL

1
(j+O) = k1= bBkL

1
(j+O) � const. Thus, since b is assumed to be smooth

at each region of the form j + O, j 2 2�ZZn0 and has a k-fold zero at j, it follows that

kG1
b = bBkL

1
(j+O) = k b = bBkL

1
(j+O) � constkDk b kL

1
(j+O)jjjk:

Since we assume Dk b to grow slowly on O + 2�ZZn0, we conclude from the above that G1
b = bB

grows slowly, as well. This concludes the proof of the existence of � satisfying  = B � �.
Now, we prove (a-c), and use for that a di�erent argument (which applies uniformly well to

all three cases, and which is an adaptation of the argument in [R1]). Firstly, note that the Fourier

transform of Dk has a k-fold zero at each j 2 2�ZZn0, and also has a similar zero at the origin.

Using any of the decay conditions (a-c), a standard application of Poisson's summation formula

then yields that

(Dk ) �0 p = 0; 8p 2 �k�1:
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We choose p to be the polynomial of degree k � 1 that makes the following identity valid

(2:7) � :=

1X
�=k

p(�)E�(Dk ) =

1X
�1=1

� � �
1X

�k=1

E�1+:::+�k(Dk )

(i.e., rk�1p = (�1)k�1). The decay assumption on Dk grants us that the sum that de�nes �

converges absolutely (distributionally). That same decay assumption can be easily used to show

that, as t!1, �(t) decays as it is required to. However, since (Dk )�0 p = 0 (and since p vanishes

at f1; : : : ; k� 1g), we have the alternative expression for �

� =

0X
�=�1

p(�)E�(Dk );

which can be used to show that � also decays suitably at �1. Finally, the right-most expression

for � in (2.7) implies that rk� = Dk . Now, set g := B � �. Since B is a compactly supported

function, g decays at 1 at least at the same rate as � does. Further, Dkg = rk�, which means

that Dk(g �  ) = 0, hence that g �  is a polynomial. That polynomial is 0, since both g and  

vanish at 1.

We now turn our attention to the third topic of this section: stability and pre-stability. We

recall that a subset G � L2(IR
d) is called L2-stable if there exist two positive constants c; C, such

that, for any �nitely supported sequence u de�ned on G,

ckuk`2(G) � k
X
g2G

u(g)gkL2
� Ckuk`2(G):

We are interested in the L2-stability of the set E(�) of the integer shifts of �. That stability

property was characterized in [BDR2] as follows:

Result 2.8. Let � � L2 be �nite with Gramian G. For each ! 2 IR, let �(!) (respectively, �(!))

be the largest (respectively, smallest) eigenvalue of G(!). Then the shifts E(�) of � are stable if
and only if the functions � and 1=� are essentially bounded on [��; �].

The above result is somewhat inconvenient for our purposes, since it does not allow a simple

extension of the stability property from L2-functions to distributions. Therefore we will use instead

the following related notion, labeled `pre-stability'.

De�nition 2.9. Let � be a �nite collection of tempered distributions and assume that b� are

continuous. We say that the shifts E(�) of � are pre-stable if, for each � 2 IR, the restriction ofb� to � + 2�ZZ is linearly independent.

The following result draws a connection between the notions of stability and pre-stability:

Proposition 2.10. Let � � L2 be �nite, and assume that for each � 2 � (i) b� is continuous, and

(ii) [b�; b�] is �nite everywhere. Let � be the eigenvalue function of Result 2.8. If E(�) are pre-stable,
then 1=� 2 L1(IR).

Proof of Proposition 2.10. We let Gm, m 2 IN, be the matrix obtained from the Gramian G

of � by replacing each bracket product [b'; b�] with
mX

j=�m
b'(�+ 2�j)

�b�(�+ 2�j):

9



Fix ! 2 [��; �], and let �m(!) be the smallest eigenvalue of Gm(!). Since the entries of G(!) are

assumed �nite, Gm(!) converges to G(!), and hence

0 � �m(!) " �(!):

(since G(!), Gm(!) as well as (G�Gm)(!) are Hermitian and non-negative). Furthermore, since

the entries ofGm are continuous, so is the function �m, hence its zero set 
m � [��; �] is compact.
Now, the assumption of pre-stability is equivalent to � having no zeros. This means that

\m
m = ;, hence that 
m = ;, for a large enough m. But this implies that the continuous

function �m vanishes nowhere, hence that 1=�m is bounded; a fortiori 1=� is bounded.

Thus, if we know that � are in L2, that their Fourier transform is continuous, and that their

Gramian matrix has bounded entries, pre-stability implies stability. The boundedness of the Gram

entries is a `minor' assumption, in the sense that it is usually implied by technical conditions on

� (either a mild decay condition on �, or, in the case b� is continuous, by a mild smoothness

assumption on �). Moreover, the following result, which is essentially due to [JM], provides simple

conditions under which pre-stability and stability become equivalent notions for L2-vectors �. One

should keep in mind, however, that the main point in the pre-stability notion is its applicability to

functions and distributions outside L2.

Corollary 2.11. Let � � L2 be �nite, and assume that the entries of the Gramian G of � are

continuous (i.e., equal a.e. to continuous functions). Then the shifts of E(�) are stable if and only

if they are pre-stable.

We note that the product [ bf; bg] is the Fourier series of the sequence
ZZ 3 j 7! hf; Ejgi;

hence that the product is continuous if, e.g., f and g are both O(j � j�(1+")) at 1, for some " > 0.

Proof: Since G has continuous entries, its eigenvalue function � is continuous (and 2�-

periodic). This implies that � is bounded, hence that stability is equivalent here to the boundedness

of 1=�. Since � is continuous, too, 1=� is bounded i� � vanishes nowhere. That latter condition is

equivalent to pre-stability.

The discussion so far reveals that the stability of E(�) can be roughly thought of as the

invertibility of G� everywhere. At the same time, the essential requirement in `the strong H(k)

property at �' is the invertibility of G� at each � 2 �. Thus, the H(k) property is a signi�cant

relaxation of the stability requirement.

3. General facts about factorizations

Before we develop the new factorization technique that we aim at, we would like to clarify the

notion of a `factorization process'. We have already de�ned it in the introduction, but immediately

showed there that, as de�ned, the notion is broad enough to admit `factorizations' that are useless

in nature. In this section, we provide further details about the nature of a `useful factorization'

and discuss the relations between those `useful factorizations' on the one hand, and the matrices

involved in the factorization on the other hand. The general discussion here will be used in the

next section in the conversion of our new factorization technique from a mere existence theorem to

an actual algorithm.
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The following example is the prototype of what may be considered a `useful factorization', and

is hidden in the core of all practical factorizations.

The simplest example of `good' factorization. Assume that the vector � contains a function

�0 whose SI space S(�0) provides approximation order k. Then, under some mild conditions on

�0, Theorem 2.6 provides us with a factorization �0 = Bk � �, for some distribution �. We then

de�ne the factor F to be (�;Dk(�n�0)). Note that Bk �F = (�0;rk(�n�0)) =: �1. Since (cf. e.g.,

[BDR1]) S(�1) = S(�), we conclude that the above process is indeed a `factorization of order k'.

Remarks.

(1) One should note that there is only a subtle di�erence between the example here and the trivial

(and worthless) factorization (x1.1).
(2) The above example fully demonstrates the role played here by `superfunction theory'. The

function �0 is clearly a superfunction. If the original vector � does not contain a superfunction,

the factorization process starts with changing the vector � to another vector, say �1, which con-

tains a superfunction among its entries. If the symbol P of � is known to be a polynomial matrix,

then the actual challenge here is to select �1 such that its symbol is a polynomial matrix, too. The

move then from the symbol of �1 to the symbol of F is guaranteed to preserve the polynomiality of

the mask symbol.

Questions addressed in this section: A factorization was de�ned as � 7! F , with S(�) =

S(Bk � F ). This yields the existence of a matrix C with 2�-periodic measurable entries such that,

with P and Q the mask symbols of � and F respectively,

(3:1) PC = s�kC(s�)Q; a:e:

(See assertion (a) in the theorem below.) We are then interested here in the following two questions:

(1) How exactly we distinguish between `useful' and `useless' factorizations?

(2) What are the characteristics of the transition matrices C that are involved in `useful' factor-

izations?

De�nition: good factorizations. A good factorization process of order k is a factorization
process of order k � 7! F (i.e., S(�) = S(Bk � F )) such that bF is continuous at 0 and bF (0) 6= 0.

The following theorem establishes the connection between good factorizations and their cor-

responding transition matrices. Connections are also drawn between those transition matrices and

the superfunctions in the FSI space. A complementary theorem (Theorem 3.6) discusses the con-

verse problem, of choosing the transition matrix C in a way that, given a matrix Q, the `lifted'

matrix P (de�ned by PC = s�kC(s�)Q) is the symbol of a vector � whose FSI space provides

approximation order k.

Theorem 3.2. Let � 7! F be a factorization process of order k, and assume that b� is bounded

around the origin and that bF is continuous at each j 2 2�ZZ. Then:
(a) � is re�nable if and only if F is re�nable. Furthermore, the corresponding mask symbols P

and Q satisfy a relation
PC = s�kC(s�)Q

for some matrix C with 2�-periodic entries. In particular,

b�(u) = 1

(iu)k
C(u) bF(u):

11



(b) If F and � are re�nable with symbols P and Q, then the determinant of the matrix C in the
relation PC = s�k C(s�)Qmust have a k-fold zero at the origin, provided that the factorization

is good, and that the entries of C are smooth at the origin.

(c) Assume, in addition to (b), that b� are linearly independent over 2�ZZ. Let  be a function in

S(�): b = � b�, with � a row vector indexed by � whose entries are bounded 2�-periodic, and
are smooth at the origin. If  is a superfunction (i.e., S( ) provides approximation order k)

then �C has a k-fold zero at the origin.

Most of the technical conditions that are assumed in the above theorem are satis�ed auto-

matically in practical situations. For example, the following corollary is a special case of Theorem

3.2:

Corollary 3.3. Let � 7! F be a good factorization process of order k. Assume that � and F are
compactly supported re�nable vectors with polynomial re�nement symbols P and Q which satisfy

the relation PC = s�kC(s�)Q, for some trigonometric polynomial matrix C. Then:

(a) detC vanishes to order k at the origin.

(b) Assume b� are linearly independent over 2�ZZ, and let � = (��)�2� be a vector of trigonometric
polynomials. If the compactly supported function  de�ned by

b := � b�
is a superfunction, then �C vanishes at the origin to order k.

Proof of Theorem 3.2. (a) Since we assume that S(�) = S(Bk �F ), there exist, [BDR2], an a.e.

invertible matrix U with 2�-periodic measurable entries such that

b� = cBkU bF:
If b� is re�nable with mask symbol P, we conclude from

cBk(s�)U(s�) bF(s�) = b�(s�) = P b� = cBk PU bF
that F is re�nable with symbol Q = cBkcBk(s�)

U�1(s�)PU . Analogous computations prove that � is

re�nable whenever F is re�nable. Thus, (a) is established with C := (1� e�i�)kU:
(b): From the relation (3.1) (which was established in (a)), and the fact that Dk� is re�nable

with symbol P0 := skP, we conclude that P0C = C(s�)Q, hence that dDk� = C bF . Since bF (0) 6= 0,

we may assume that the �rst entry of bF (0) is non-zero. Let F be the matrix obtained from the

identity matrix by replacing its �rst column by bF . Then detF is continuous at the origin and

does not vanish there. On the other hand, detC detF vanishes at the origin to order k since CF
contains the column dDk� which vanishes to that order at the origin. Thus, detC has a k-fold zero

at the origin.

(c): Since b = � b� is a superfunction, and since � is bounded while b� is bounded around the

origin, it follows (cf. [BDR1: Theorem 1.14]) that b has a k-fold zero at each j 2 2�ZZn0, hence
that dDk has such a zero everywhere on 2�ZZ. On the other hand dDk = � dDk� = �C bF , with
the second equality following from the proof of (b). But �C is 2�-periodic, and the vectors bF (j),
j 2 2�ZZ, span all of CF (due to the linear independence of bF over 2�ZZ), hence it easily follows

that �C vanishes to order k at the origin.
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Example: Orthogonal GHM-scaling functions [GHM]. Choose s = n = 2, and let � =

(�1; �2)
T be the vector which has the mask symbol

(3:4) P(u) =
1

20

�
6(1 + e�iu) 8

p
2

1p
2
(1 + e�iu)(�1 + 10e�iu � e�2iu) �3 + 10e�iu � 3e�2iu

�
;

and which is normalized by k�1kL1
=
p
2=3. These conditions de�ne � uniquely, and we �nd

supp�1 = [0; 1]; supp�2 = [0; 2]. The space S(�) provides approximation order 2. In particular,

one can show, [SS], that

B2(x) =
1p
2
(�1(x) + �1(x� 1)) + �2(x);

where B2 is the hat function with support [0; 2]. Choosing F = (D2�1; �)
T , where � denotes the

Dirac distribution, it follows that � 7! F is a good factorization process (of order 2), since from

cB2
bF =

�
(1� e�i�)2b�1cB2

�
=

�
(1� e�i�)2 0
1p
2
(1 + e�i�) 1

� b�;
it follows that S(B2 �F ) = S(�), while bF (0) = (0; 1)T 6= 0. Further, b�(u) = (iu)�2C(u) bF (u) with

C(u) =

�
1 0

� 1p
2
(1 + e�iu) (1� e�iu)2

�
:

The symbol Q of F is then found with the aid of the relation 4PC = C(2�)Q:

Q(u) =
1

5

�
�2(1 + e�iu) 8

p
2(1� e�iu)2

0 5

�
:

We can now check that the matrix C satis�es the conditions asserted in Theorem 3.2: indeed,

detC vanishes to order 2 at 0, and choosing the superfunction  := B2 (which satis�es b = cB2 =

� b�, for �(u) = ( 1p
2
(1 + e�iu); 1)), we �nd that � C as well as D(� C) vanish at the origin.

Obviously, the factorization process is not unique. Using, e.g., the matrix factorization of

Example 4.5 of [P], we obtain P(u) = 4�1 ~C(2u) ~Q(u) ~C(u)�1 with

~C(u) =

�p
2(1 + e�iu) �2

p
2

�4e�iu 2(1 + e�iu)

�
; ~Q(u) =

�
1 0

1
10
(�1 + 20e�iu � e�2iu) �2

5
(1 + e�iu)

�
:

The function vector ~F = (�; ~f2)
T corresponding to ~Q satis�es the relations D2�2 = �4� + 2 ~f2 +

2E�1 ~f2 and D2�1 =
p
2(� +E�1� � 2 ~f2).

These two factorizations are still closely related in the sense that the (in�nite) span of E(F )

coincides with that of E( ~F), and suppD2�1 = supp ~f2 = [0; 1].

Our use of the above theorem (in the next section) will be as follows: our speci�c factorization

technique there exploits a transition matrix C of a very special structure. That structure will

be then combined with the `universal properties' that are attributed in the theorem above to all

transition matrices, and the result will be an algorithm that �nds the special transition matrix C

of our process.

As stated before, we also establish a converse theorem, concerning the passage from the symbol

Q of some re�nable vector to the symbol P of a re�nable vector that provides high approximation

order. In that theorem, we will need the following lemma:
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Lemma 3.5. Let C be a square n� n matrix with 2�-periodic entries. Assume that C is smooth
at the origin, that detC has a zero at the origin of exact order k, and that rankC(0) = n � 1.

Then, after permuting the columns of C if necessary, C can be factored into

C = Ck (I+Tk);

such that:

(i) I is the identity matrix and

Tk =

0
BBB@
(1� e�i�)k � 1 0 : : : 0

t2 0 : : : 0

t3 0 : : : 0

� � � �
tn 0 : : : 0

1
CCCA ;

with tj , 2 � j � n, trigonometric polynomials with spectrum in f0;�1; : : : ;�(k� 1)g.
(ii) The entries of the �rst column of Ck are as smooth as the corresponding entries of C, save

the fact that at the origin the former may `lose' k orders of smoothness. In particular, since

C and Ck di�er at most in their �rst column, Ck is a trigonometric polynomial matrix, if C
is one.

Proof: Since rankC(0) = n� 1, we may assume without loss that the last n� 1 columns

of that matrix are linearly independent. It su�ces to prove the k = 1 case, and then to apply

induction: indeed, suppose that the factorization is possible for j < k. Then, the last n � 1

columns of Cj are the same as those of C, hence these columns are still linearly independent in

Cj(0). Also, Cj(0) is still singular, since det(I+Tj) has a zero at the origin of exact order j, and

j < k. Therefore, the case k = 1 applies here to extract another factor of the form I+T1 from Cj .

The induction is completed with the observation that the product of two expressions of form I+Tj

and I + T1 is clearly an expression of the form I+ Tj+1. So, we assume without loss that k = 1.

Since C(0) is singular, there exists a vector v = (1; v2; v3; : : : ; vn)
T 2 Cn such that C(0)v = 0. This

means that there exists a smooth vector w such thatCv = tw, with t(u) := 1�e�iu. (Here `smooth'
is meant in the sense of the case k = 1 in the theorem, i.e., that w is as smooth as the entries

of C, except at the origin, where it may loose one order of smoothness.) Let C1 (respectively V)

be the matrix obtained from C (respectively I) when replacing the �rst column by w (respectively

v). Then the above shows that CV = C1 diag(t; 1; : : : ; 1). The result now follows from the fact

that diag(t; 1; : : : ; 1)V�1 has exactly the required form I + T1 (with the �rst column of T1 being

(t� 1;�v2; : : : ;�vn)T .)

Theorem 3.6. Let Q be the symbol of an s-re�nable distribution vector F with n entries:

bF (su) = Q(u) bF(u):
Let C be an n� n matrix whose entries are 2�-periodic bounded functions that are smooth at the

origin. Assume that the following conditions are satis�ed for some numbers k > 0, andm < k�1=2.
(i) bF is smooth at the origin, and grows slowly at 1: j bF (u)j = O(jujm).
(ii) Q(0) has no eigenvalue of the form sl (l 2 IN; l � k).
(iii) detC has a k-fold zero at the origin, and rankC(0) = n� 1.

(iv) While bF (0) 6= 0, C bF has a k-fold zero at the origin.

Then the matrix

(3:7) P(u) :=
1

sk
C(su)Q(u)C(u)�1
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is a symbol of a uniquely determined (up to multiplicative constant) s-re�nable vector � � L2
whose corresponding S(�) provides approximation order k. Moreover, the functions in � decay at

�1 at the same rates as the distributions in F (in particular, � is compactly supported if F is
compactly supported) provided that C is a trigonometric polynomial matrix.

Proof: We note that the vector � is obtained from the inverse transform �0 of C bF by a

k-fold integration, i.e., b�(u) = (iu)�kb�0(u) = (iu)�kC(u) bF (u) (this is due to the appearance of

the s�k factor in the de�nition of P).

We �rst want to show that the vector � is uniquely determined by P, and for that rewrite

(3.7) as PC = s�kC(s�)Q, which gives at the origin the relation

(3:8) P(0)C(0) = s�kC(0)Q(0):

We recall that � can be a re�nable vector with symbol P only if P(0) has an eigenvalue of the

form � = sl, l � 0 (cf. [HC], [JS]; the statements there are con�ned to compactly supported �

and dyadic dilations, but the argument extends verbatim to arbitrary dilations, and to the case

when P and b� are merely smooth at the origin). Let y be any left eigenvector of P(0) whose

corresponding eigenvalue is a power sl of s. Then (3.8) implies that sk+lyC(0) = yC(0)Q(0). Since

sk+l cannot be an eigenvalue of Q(0) (because of assumption (ii)), we conclude that yC(0) = 0.

Since rankC(0) = n� 1, it follows further that y is uniquely determined (up to a multiplication by

a scalar). This implies that there exists a unique right eigenpair of P(0) of the form (sl; x), l � 0,

and from that one easily concludes the uniqueness. Indeed, given a solution �, one observes from

the relation b�(s�) = Pb� that (sj ; Dj(b�)(0)) is a right eigenpair of P(0), with j the �rst derivative
of b� that does not vanish at the origin. Thus, the uniqueness of the right eigenpair (sl; x) implies

that, given two di�erent solutions � and 	, they vanish both to same order j at the origin, and

Dj(b�)(0) = Dj(b	)(0) = x. But, then, the transform of the non-trivial solution � � 	 has a zero

at the origin of order j + 1, hence P(0) has the eigenvalue sj+1, which is a contradiction.

Since C is bounded, it follows from the slow growth assumption on bF that jb�0(u)j = O(jujm),
hence that jb�(u)j = O(jujm�k). Since m� k < �1=2, we conclude that � � L2.

If C is a trigonometric polynomial matrix, then �0 lies in the �nite span of the shifts of F ; in

particular �0 decays at �1 (at least) at the same rate as F . Since condition (iv) above implies

that b�0 vanishes to order k at the origin, it easily follows that � also decays at �1 at that same

rate (with the usual exception: if �0 decays at �1 at an algebraic rate l, the decay rate of � may

only be l� k.)

In order to prove that S(�) provides approximation order k, we invoke Lemma 3.5: since our

matrix C here satis�es the assumptions made in the lemma, we can factor C into Ck(I+T), with

T being in the form of Tk in the lemma. Note that the �rst entry of a vector (I+ T) bF is of the

form (1� e�iu)kb�1(u), with �1 the �rst entry of F . This implies that the �rst entry in the inverse

transform of (I+T) bF is rk�1. When applying the k-fold integration, we obtain a vector �1 whose

�rst entry is Bk � �1. Note that b� = Ck
b�1:

Now, Ck(0) is invertible, hence Ck is invertible on some neighborhood 
 of the origin. Let S

(respectively S1) be the set of all functions in S(�) (respectively, S(�1)) whose Fourier transform

is supported on 
+2�ZZ. The relations b� = Ck
b�1, and b�1 = C�1

k
b�, which are valid on 
+2�ZZ,

show, [BDR2], that S = S1. On the other hand, the general theory of approximation orders of FSI

spaces, [BDR1,BDR2], implies that the approximation orders provided by any S(F ) are determined

by the restriction of bF to 
+ 2�ZZ. Combining all the above, we conclude that the approximation

orders provided by S(�) equal those provided by S(�1).
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We now recall that one of the entries of �1 is of the form �1 := Bk � �1, and show that the

subspace S(�1) of S(�1) already provides approximation order k. For that we observe �rst thatb�1(0) 6= 0 (otherwise, since C(0)bF(0) = 0 by assumption, we get from the linear independence of

the last n�1 columns of C(0) that bF (0) = 0.) Thus, [BDR1], in order to prove that S(�1) provides

approximation order k, it su�ces to show that
P

j22�ZZn0 jc�1(u+ j)j2 = O(juj2k), near the origin.
Using the fact that j bBk(u)j2 = sin2k(u=2)ju=2j�2k, that requirement is reduced to showing thatP

j22�ZZn0 j b�1(u + j)j2ju + jj�2k is bounded near the origin. However, that follows from the slow

growth of b�1, together with the fact that m� k < �1=2.
Again, the conditions in the theorem can be simpli�ed under various additional assumptions

on the re�nable vectors. We provide here a sample result in this direction, in which we study the

following additional feature of stability.

Corollary 3.9. Assume that F is a compactly supported re�nable vector, with symbol Q, whose
shifts are pre-stable, and let C be a trigonometric polynomial matrix which is non-singular every-

where on (0; 2�). If (i-iv) of Theorem 3.6 are valid then the solution � of Theorem 3.6 is compactly
supported and has stable shifts, provided that the zero detC has at the origin is exactly of order k.

Proof: The existence of a unique solution was proved in Theorem 3.6, and the argument

that proves the compact support of � is sketched there, too. So, it remains to show that the shifts

of � are stable. Since � has compact support, the stability requirement is equivalent to pre-stability

(see Corollary 2.11 and the discussion following it), i.e., equivalent to the linear independence, for

each � 2 [0; 2�), of the sequences

c�;� : 2�ZZ 7! C : l 7! b�(� + l); � 2 �:

For � 2 (0; 2�) that linear independence is clear from the relation b�(�+l) = (i(�+l))�kC(�) bF (�+l)
(since C(�) is invertible, and the sequences l 7! bf(� + l), f 2 F are linearly independent, by the

pre-stability assumption on the shifts of F ). It remains, thus, to show the linear independence of

fb�(l)gl22�ZZ, � 2 �.

For that, note �rst that the restriction to 2�ZZn0 of b� has rank n � 1: indeed, assume that

yb�(l) = 0, for every l 2 2�ZZn0. Then yC(0) bF (l) = 0, for every l 2 2�ZZ (with the case l = 0

follows from the assumed fact that C(0)bF(0) = 0). The pre-stability assumption on F then implies

that yC(0) = 0; however, C(0) has rank n�1, by assumption, hence such y is (essentially) unique.

Consequently, in order to complete the proof here we need to show that, yb�(0) 6= 0, for the unique

y in kerC(0)�.
Let E := qC�1, with q := detC. Then the entries of E are trigonometric polynomials, hence

EC as well as CE are continuous everywhere. Since o� the origin EC = CE = qI (with I the

identity), we conclude then that E(0)C(0) = C(0)E(0) = 0. However, rankC(0) = n� 1, with the

corresponding left (right) eigenvector being y ( bF (0), due to assumption (iv)), hence, necessarily

E(0) = c bF (0)y, for some non-zero c. Combining these observations with the identity

q(u)C�1(u)b�(u) = (iu)�kq(u) bF (u)
(which is valid everywhere o� the origin), we obtain, by taking u! 0, that

(cyb�(0))bF(0) = ( lim
u!0

(iu)�kq(u)) bF (0);
i.e., yb�(0) = (limu!0(iu)

�kq(u))=c. Since we assume that the order of the zero detC has at the

origin is exactly k, we conclude that yb�(0) 6= 0.
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Example: spline functions. Take bF (u) = (1; iu; : : : ; (iu)n�1)T and let k � n. Then obviously,

F is compactly supported, has pre-stable integer shifts and F is s-re�nable with symbol Q(u) =

diag(1; s; s2; : : : ; sn�1). Let further, C = Ck (Tk + I) with

Tk(u) =

0
BBB@
(1� e�iu)k � 1 0 : : : 0

t2(u) 0 : : : 0

t3(u) 0 : : : 0

� � � �
tn(u) 0 : : : 0

1
CCCA ;

where each tj , 2 � j � n, lies in the span of (e�ilu)k�1l=0 and is determined by Dltj(0) =

��l;j�1 ij�1 (j�1)! for l = 0; : : : ; k�1. Then indeed, Dl[(Tk(u)+I) bF(u)]ju=0 = 0 for l = 0; : : : ; k�1,
and conditions (ii){(iv) of Theorem 3.6 are satis�ed.

In the special case that Ck is a matrix of trigonometric polynomials, the vector � which is

determined by the symbol P = s�kC(s�)QC�1 is a vector of compactly supported spline functions

of degree k � 1 with integer knots.

Letting for instance n = 2, i.e., bF (u) = (1; iu)T , and k = 2, Ck = I, we obtain t2(u) = e�iu�1

and b�(u) = � b�1(u)b�2(u)
�
=

1

(iu)2

�
(1� e�iu)2 0

�1 + e�iu 1

� bF (u);
leading to

�1(x) =

8<
:

x x 2 (0; 1]

2� x x 2 (1; 2]

0 x 62 (0; 2]

; �2(x) =

�
1� x x 2 (0; 1]

0 x 62 (0; 1]
:

The corresponding symbol P2 reads

P2(u) =
1

s2

0
@

�
1�e�ius

1�e�iu

�2
0

�(1�e�isu)+s(1�e�iu)

(1�e�iu)2
s

1
A :

For n = 2, k = 3, and Ck = I, we �nd t2(u) = 2�1(�3 + 4e�iu � e�2iu) and

b�(u) = 1

(iu)3

�
(1� e�iu)3 0

1
2
(�3 + 4e�iu � e�2iu) 1

� bF (u)
with the corresponding symbol

P3(u) =
1

sk (1� e�iu)3

�
(1� e�ius)3 0

1
2
((1� e�ius)(�3 + e�ius) + s(1� e�iu)(3� e�iu)) s

�
:

This time, the �rst entry is the cardinal B-spline of order 3 with support [0; 3] and for the second,

we �nd

4�2(x) =

8<
:
(�3x+ 4)x x 2 (0; 1]

(2� x)2 x 2 (1; 2]

0 x 62 (0; 2]

:

17



4. Factoring the re�nement symbol

The main result of this paper, which leads to the new factorization is as follows:

Theorem 4.1. Let � be an s-re�nable vector of L2-functions with symbol P that provides ap-
proximation order k. Assume further that

(i) � satis�es the strong H(k) property at �s = f2�j=s : j = 0; : : : ; s� 1g.
(ii) Dkb� grows slowly on O+ 2�ZZ, with O the neighborhood that appears in the H(k) condition.

Then there exist �0 2 � and a distribution � such that

F := � [Dk�0; �0 := �n�0
is s-re�nable with a symbol Q, and the following hold:

(a) The entries of Q have the same smoothness as those of P. In particular, if P is a matrix-valued
trigonometric polynomial, then so is Q.

(b) If � satis�es the strong H(k+1) property, but S(�) does not provide approximation order k+1,
no non-zero distribution in the �nite span of E(F ) is in L2(IR).

(c) If the shifts of � are L2-stable then the shifts of F are pre-stable.

(d) � 7! F is a good factorization process of order k, i.e., S(Bk �F ) = S(�), with Bk the B-spline

of order k and bF is continuous at 0 with bF (0) 6= 0.

Since the case when P is polynomial (hence � is compactly supported) is of primary interest

here, we �nd it suitable to restate the main theorem for this particular case:

Corollary 4.2. Let � be an s-re�nable vector of compactly supported L2-functions with trigono-
metric polynomial symbol P, and assume that S(�) provides approximation order k. Assume

further that b� are linearly independent over � + 2�ZZ, for every � 2 �s. Then there exist �0 2 �

and a compactly supported distribution � such that

F := � [Dk�0;

with �0 := �n�0, is s-re�nable with a trigonometric polynomial symbol Q, and the following hold:
(a) No entry of F is in L2(IR) unless S(�) provides approximation order k + 1.

(b) If the shifts of � are L2-stable then the shifts of F are pre-stable.
(c) F is a factor of � in the sense that S(Bk � F ) = S(�), with Bk the B-spline of order k.

Remark: the exact meaning of the `same smoothness'. We claim in the above theorem that

the new symbol Q is `as smooth as' the old symbol P is. The precise meaning of that statement is as

follows: each entry q of the new mask will be proved to be in the form pt, with p the corresponding

entry of the old mask, and t a rational (entry-dependent) trigonometric polynomial; the rational

polynomial t has the following property: �rst, all its poles are at �s, and second, if t has a pole of

order j at �, then p is smooth in a neighborhood of � and has a zero of order � j at � itself. One

then concludes that the entries ofQ are trigonometric polynomials (respectively, analytic functions,

C1-functions, continuous functions) if the entries of P satisfy that property. However, the property

P 2 C� is not inherited by Q.

We turn our attention now to the proof of Theorem 4.1. For that, several preparations are

needed. We start with the following de�nition from [R2]:

De�nition 4.3. Let k be a positive integer. We say that � � L2 has the Property H(k) if the

following condition is met: S(�) provides approximation order k for the entire W k
2 whenever there

exists a nonzero function f 2W k�1
2 such that, for some sequence (hi)i that decreases to zero,

dist (f; Dh(S(�))) = o(hk�1); h = h1; h2; : : : :
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If � is re�nable, then dist(f;Dh(S(�)) = 0, for every f 2 S(�), and every h = s�m, m positive

integer. Thus, if the re�nable S(�) satis�es the Property H(k) and has non-zero intersection with

W k�1
2 , it must provide approximation order k. The reference [R2] establishes simple su�cient

conditions for the satisfaction of the H(k) property. For example, it shows that in the univariate

case every local FSI space satis�es that property, regardless of the value of k. However, if the

generators � are not compactly supported, more should be assumed. For example, the following is

implied by the proof of Proposition 4.2 in [R2].

Result 4.4. Let k be a positive integer, � a �nite subset of L2(IR
d). If � has the strong H(k)

property then it also has the Property H(k).

In addition to the above, we need to following (technical) lemma:

Lemma 4.5. Let �0 := ( ; �2; : : : ; �n)
T be an s-re�nable vector of L2-functions with a symbol

P0, which satis�es the strong H(k) property at �s = f2�js : j = 0; : : : ; k � 1g. Further, assume

that  satis�es the Strang-Fix conditions of order k (i.e., b has zero of order k at each point of
2�ZZn0, but does not vanish at the origin.) Then each of the o�-diagonal entries in the �rst row of

P0 has a k-fold zero at each � 2 �s. The diagonal element of the �rst row has a k-fold zero at each
� 2 �sn0.

Proof: Let v be the �rst row of P0; then b = v( �s )
b�0(

�
s ). Assume �rst to the contrary

that some derivative Dj , 0 � j < k of v does not vanish at some r 2 2�
s
f1; : : : ; s � 1g. We may

assume without loss that

(4:6) Dj0v(r) = 0; j0 2 f0; : : : ; j � 1g:

Now, for every m 2 2�ZZ,

0 = Dj b ((r+m)s) = (Djv)(r) b�0(r+m);

with the left-most equality due to the Strang-Fix conditions, while the right-most equality due to

(4.6). Since, by our strong H(k) property at r, the sequences b�0(r+ �) are linearly independent on

2�ZZ, we obtain the contradiction that Djv(r) = 0.

It remains to show that the non-diagonal entries of v vanish to order k at 0, too. We choose in

the previous argument r = 0, and assume that m 2 2�ZZn0. With v0 the o�-diagonal entries of the

vector v, and �00 := �0n , we observe that, for l < k, Dl(v b�0)(m) = Dl(v0 b�00)(m), since b has a

k-fold zero at m, due to its satisfaction of the Strang-Fix conditions.

Thus, we may repeat the same argument by negation as for the case r 6= 0, to �nd j such that

Djv0(0) 6= 0, while

0 = Dj b (sm) = (Djv0)(0)c�00(m):

In order to reach the desired contradiction, we need thus to know that the entries of b�00 are linearly
independent on 2�ZZn0. Suppose that there is a non-trivial linear combination b� of span b�00 that

vanishes on 2�ZZn0. Since b also vanishes there, then a non-trivial linear combination of b and b�
must vanish at all the 2�-integers. However, the strong H(k) property that we assume here implies,

inter alia, that b�0 are linearly independent over 2�ZZ.
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Proof of Theorem 4.1.

We �rst invoke Result 2.3 and replace one of the entries of � by the superfunction  of that

result. It is elementary to verify that the new vector still satis�es the strong H(k) property. Also,

Result 2.5 tells us that the symbol of the new vector is obtained by multiplying P by matrix-valued

trigonometric polynomials, hence the new mask maintains all smoothness properties of P. We

denote the new vector by �0 =  [ �0 and its symbol by P0.

Next, by Theorem 2.6 there exists a tempered distribution � such that  = Bk � �. We de�ne

F := (�;Dk�0):

We will show that this vector F is re�nable with mask Q, and that (F;Q) satisfy the requirements

(a-d). The most immediate condition is, perhaps, (d): upon convolving F with B := Bk , we obtain

B � F = ( ;rk�0) =: �1:

As easily follows from Theorem 1.7 of [BDR2], S(rk�0) = S(�0), and thus S(�1) = S(�0). It

is also straightforward to see that S(�0) = S(�). The continuity of bF at the origin follows from

the continuity of b�, the latter being granted by the strong H(k) property; �nally, bF (0) 6= 0, sinceb�(0) 6= 0 (since b (0) 6= 0, by Result 2.3). Altogether, we obtain (d).

In order to prove the re�nability of F (and in order to �nd its mask Q), it is convenient to

inspect �rst the vector �1 (see above). We note that any vector G that generates S(�) (in the sense

that S(G) = S(�)) is re�nable, hence so is �1. However, we would like to �nd its mask. For that,

note that b�1 = D b�0 with D the diagonal matrix D(u) := diag (1; (1� e�iu)k; : : : ; (1� e�iu)k),
hence indeed �1 is re�nable with symbol

P1 :=D(s�)P0D
�1:

Now, �1 = B � F , and B is re�nable with symbol

s�k
�
1� e�isu

1� e�iu

�k
:

Therefore, we obtain that F is indeed re�nable with symbol

Q(u) = sk
�
1� e�iu

1� e�isu

�k

D(su)P0(u)D(u)�1:

Introducing D1(u) := (1� e�iu)kD(u)�1 = diag ((1� e�iu)k; 1; : : : ; 1), we can rewrite Q as

Q = skD�1
1 (s�)P0D1:

So, only the entries in the �rst (i.e.,  -) row of P0 are being divided when switching to Q: the

diagonal entry is divided by (1�e
�isu

1�e�iu )
k, and the rest by (1� e�isu)k.

We are claiming, however, that the entries of Q are smooth; thus we need to show that each

entry in the �rst row of P0 vanishes to order k at each of the zeros of the polynomial it is divided

by. For that, we have Lemma 4.5: Since our  satis�es the SF conditions of order k (thanks to

Result 2.3), and since the vector �1 satis�es the strong H(k) property, we are entitled to invoke

that lemma. It is elementary to check that the zeros the lemma grants us are exactly those we need

in order to render the above division `benign', and (a) is thus proved.
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Assertion (b) follows from Result 4.4 (together with the discussion preceding that result): If

there exists a non-zero L2-function f in the span of E(F ), then g := Bk � f 2 W k
2 and, by (d), g

lies in S(�). Therefore, the strong H(k+1) property will imply that S(�) provides approximation

order k + 1.

Finally, in view of Corollary 2.11, we may assume, while proving (c), that b� are linear inde-

pendent over each �+2�ZZ, � 2 IR (and prove that bF has a similar property). First, in view of the

de�nition of �0, it is clear that b�0 is also linearly independent over each � + 2�ZZ. Since

bF (u) = 1bBk(u)
D(u)b�0(u) = (b�(u); (iu)kb�0(u));

and D(u) is invertible for u 2 (0; 2�), the linear independence of fb�0(u + 2�l)gl2ZZ gives the

linear independence of f bF (u+ 2�l)gl2ZZ. It remains to show that f bf(2�l)gl2ZZ (f 2 F ) are linearly
independent, or equivalently, that f bF (2�l) : l 2 ZZg has rank n. By the L2-stability of �0,

dimfb�0(2�l) : l 2 ZZg = n, and, since b (2�l) = �0;l, dimfb�0(2�l) : l 2 ZZ n f0gg = n � 1. Thus,

dimf(2�il)k b�0(2�l) : l 2 ZZ n f0gg = n � 1 and the assertion follows since b�(0) = b (0)= bBk(0) 6= 0.

We would like to describe an algorithm that implements the factorization whose existence

is asserted in Theorem 4.1. For that purpose, we only need the following general sketch of the

proof of the theorem: in order to �nd the factor F , we �rst replace one of the entries of � by the

superfunction  of Result 2.3. The new vector �0 is then related to the old one � via b�0 = U1
b�,

with U1 as in Result 2.5. In the next step, a k-fold di�erence is applied to each � 2 (�0n ) to
yield a new vector �1 which is related to �0 via

b�1 = Db�0; D(u) = diag (1; (1� e�iu)k; : : : ; (1� e�iu)k):

Finally, the B-spline Bk is factored from each of the entries of �1 resulting in the �nal vector F .

Thus

(4:7) bF = bB�1
k DU1

b�:
We state below the corollary that summarizes those observations. In that corollary we use the

following (essentially known: cf. e.g. [DM], Lemma 2.1, and the case k = 1 in Result 2.3) lemma:

Lemma 4.8. Let � be a re�nable vector such that

(i) b� is continuous on O + 2�ZZ, with O some neighborhood of the origin and b�(0) 6= 0;

(ii) the sequences b�j2�ZZ are in c0(2�ZZ) and are linearly independent.

Let P be the symbol of �. Then 1 is a (geometrically) simple eigenvalue of P(0).

Proof: Since b�(0) = P(0)b�(0) and b�(0) 6= 0, 1 is an eigenvalue of P(0). If, now, (1; y)

is a left-eigenpair of P(0), then y b�(sml) = yP(0)m b�(l) = y b�(l) for l 2 2�ZZ n 0 which implies

(by taking m ! 1, and using the decay conditions on b�) that yb�(l) = 0. If (1; y0) is yet another
eigenpair of P(0), then, too, y0 b� = 0 on 2�ZZn0, which implies that x b� = 0 for some non-trivial

linear combination of y; y0. However, b� are assumed to be linearly independent on 2�ZZ, hence

x = 0, i.e. fy; y0g are dependent, hence 1 is a simple eigenvalue.
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Corollary 4.9. Let � be an s-re�nable vector of L2-functions with symbol P which satis�es
conditions (i), (ii) of Theorem 4.1. Suppose that � is ordered such that the �rst entry of the left

(i.e., row) 1-eigenvector of P(0) is not zero. Assume that S(�) provides approximation order k.
Then P admits a factorization

P(u) =

�
1� e�isu

s(1� e�iu)

�k
W(su)�1Q(u)W(u);

with W a matrix of the form

W(u) =

0
BB@
1 ��2(u) : : : ��n(u)

0 (1� e�iu)k : : : 0
...

. . .
. . .

...

0 : : : 0 (1� e�iu)k

1
CCA ;

where ��j (u), j = 2; : : : ; n, are suitable trigonometric polynomials in the span of (e�iuj)k�1j=0 . More-
over, the entries of Q have the same smoothness as those of P and, in particular, Q only has

trigonometric polynomials as entries if P does. Finally, the factorization is a good factorization of
order k.

Proof: The result follows directly from the discussion preceding this theorem (with W

here being DU1). The only part that requires veri�cation is the statement concerning the correct

ordering of the elements in �, i.e., that we may replace the �rst entry of � by the superfunction

 of Result 2.3. For that, we recall from the proof of Theorem 4.12 in [BDR4] that � 2 � is

replaceable by the superfunction if, with � the canonical k-vector, the �-entry of �(0) is non-zero

(see Result 2.2). Since, by Result 2.2(iii), (1; �(0)) is a left (row) eigenpair of P(0), if follows from

the simplicity of the eigenvalue 1 of P(0) (and from the assumption we make) that the �rst entry

of �(0) does not vanish, hence that we may replace that entry by the superfunction.

Discussion: An algorithm for computing the symbol Q of F . As said before, the practical

input/output of a factorization process are the symbols P and Q (rather than the vectors � and

F ). In order to be able to compute Q from P, we only need to know the transition matrix C (in

the relation b� = (i�)�kC bF ), since Q is related to P as in (3.7). Comparing (3.7) with Corollary

4.9, we �nd that C�1(u) = (1� e�iu)�kW(u), and one can then check directly that

C =

0
BBBBB@

(1�e�i�)k ��2 : : : ��n
0 1 0 : : : 0
... 0

. ..
. . .

...
...

. . .
. . . 0

0 : : : 0 1

1
CCCCCA ;

with �j , j = 2; : : : ; n, trigonometric polynomials with spectrum in f0;�1; : : : ;�(k�1)g. In order to
determine the trigonometric polynomials � = (�2; : : : ; �n), we appeal to the general conditions on a

factorization matrix C from Theorem 3.2; speci�cally we invoke (c) there. As the superfunction in

that result we choose the canonical one (as discussed at the beginning of section 2). We will have

then (a) to �nd the canonical vector � of order k, and (b) to use the fact that �C has a k-fold zero

at the origin in order to compute the above � -polynomials.
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The second task here is straightforward: with �j := ��j , the condition about �C requires that

each �j � �j�1 has a zero of order k at the origin (j = 2; : : : ; n). Fixing j, and di�erentiating this

function m times (m = 0; : : : ; k � 1) at the origin leads to a lower triangular k � k linear system

Ax = b, with x(r) = Dr�j(0), b(m) = Dm�j(0), and A(m; r) =
�
m
r

�
Dm�r�1(0) (r = 0; : : : ; k � 1,

m � r). Note that the system is invertible since �1(0) 6= 0. One then easily �nds �j from its kth

order Taylor expansion at the origin.

The argument above shows that we do not need to �nd the canonical vector �, but only its

derivatives (up to order k � 1) at the origin. For that we invoke now part (ii) of Result 2.2.

As discussed before, the strong H(k) property implies that 1 is a simple eigenvalue of P(0).

Since �(0) is the corresponding left eigenvector, and b�(0) is the corresponding right eigenvector, it
follows that �(0) is already determined by conditions �(0)P(0) = �(0) and �(0) b�(0) = 1.

An m-fold di�erentiation of the expression �(su)P(u)� �0l�(u), followed by an evaluation at

u = 0 leads to the system

Dm�(0) (smP(0)� I) = �
mX
�=1

�
m

�

�
sm��Dm���(0)D�P(0);

and evaluation at u = �, � 2 � n f0g, to the systems

Dm�(0) (smP(�)) = �
mX
�=1

�
m

�

�
sm��Dm���(0)D�P(�):

The right hand side in each of the above systems requires the vectors Dr�(0), r = 0; : : : ; m � 1,

hence we can compute Dm�(0) recursively for m = 1; 2; : : : ; k � 1, provided that the matrices

�
I � smP(0); P

�
2�

s

�
; : : : ;P

�
2�(s� 1)

s

��

(where m > 0) do not have a common left-eigenpair (0; w). Thus, it remains only to show that

such an eigenpair (0; w) cannot exist: the re�nability of b� implies that, for each l 2 2�ZZn0,b�(l) = P(0)rlP(�)v, for suitable integer rl, � 2 �sn0, and a vector v 2 Cn; hence, if an eigenpair

(0; w) exists, it follows that w ? b�(l). Furthermore, since P(0)b�(0) = b�(0), it also follows that

w ? b�(0): This implies that b� are linearly dependent on 2�ZZ, hence that the Gramian matrix of �

is singular at the origin, contradicting thereby the strong H(k) property that we assume throughout.

Example: GHM-scaling functions. Consider again the GHM-scaling vector � = (�1; �2)
T with

symbol P as in (3.4) for s = 2. Then, with y := (1;
p
2
2
), (1; y) is a left eigenpair of P(0) hence

either entry of � is replaceable by the special superfunction  . Let us �rst compute the canonical

superfunction  0 = ��, or more precisely, the canonical �-vector � of order 2. As stated in Result

2.2 (i,ii), (�(0); D�(0)) is determined by �(0) b�(0) = 1 and

�(0)P(0) = �(0); �(0)P(�) = 0;

2D�(0)P(0)+ �(0)DP(0) = D�(0) 2D�(0)P(�)+ �(0)DP(�) = 0;
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also, �(u) = (�(0)� iD�(0)) + iD�(0) e�iu. These equalities provide with b�(0) = 1
3
(
p
2; 1)T the

vectors �(0) = (
p
2; 1) and D�(0) = i

2
(
p
2; 2) and hence �(u) = (

p
2
2
(3 � e�iu); (2� e�iu)). If

we want to replace �1 by its corresponding superfunction  =  1 (from Result 2.3), we need to

compute � 0 = ��2 . The above relations lead to

��2(0) =
1

��1(0)
��2(0) =

p
2

2
;

D��2(0) =
1

��1(0)
(D��2(0)�D��1(0)��2(0)) =

i
p
2

4

Hence, ��2 =
p
2
4
(3� e�iu). The special superfunction (of Result 2.3) corresponding to �1 is then

 1 = �1 +
p
2
4
(3�2 � �2(� � 1)).

The special superfunction  =  2 corresponding to �2 is obtained by computing ��1 . We

�nd, analogously as before, ��1(0) =
p
2 and D��1(0) = �i

p
2
2
, and hence ��1(u) =

p
2
2
(1 + e�iu).

Thus, the superfunction corresponding to �2,  2 = �2 +
p
2
2
(�1 + �1(� � 1)) is the hat function B2

(cf. Example in x3).
Note that according to Theorem 2.6  1 =  2 � �, with a suitable distribution �.

5. An application: the smoothness of univariate re�nable vectors

As mentioned before, the new factorization technique leads to numerical methods for the

computation of the smoothness exponent of each entry in a univariate re�nable vector �. This

application is the topic of the current section. We focus on the L2-smoothness parameter (aliased

as `Sobolev regularity'), which is de�ned, for a tempered distribution �, as

�(�) := supf� 2 IR : � 2 W�
2 g;

with W�
2 the usual Sobolev space. Note that we do not exclude the possibility of a negative �.

Let � � L2(IR) be an s-re�nable vector with mask symbol P:

b�(s�) = Pb�:
A major challenge in wavelet theory is to determine the smoothness of the functions in � using

mostly information about the mask P. It is beyond the scope of this paper to review to any

extent the enormous work that was done on this problem. We will incorporate, however, some

of the most recent results on the matter from [RS], hence need to brie
y review those particular

results. We mention that the results of that reference apply to re�nable vector functions in several

variables, however, aiming at combining those techniques with our univariate factorization results,

we describe the results of [RS] in a univariate context only.

The functions/distributions we study here are the components of a re�nable vector F , partic-

ularly that of Theorem 4.1. However, this study is only the means for �nding the smoothness of

the entries of the original re�nable �. We rely here on the facts that almost all the entries of �

coincide with those of Bk � F , and that
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Proposition 5.1. Let F be a re�nable vector of compactly supported tempered distributions with
bounded symbol P. Then, for each f 2 F , and each B-spline of order k, �(Bk � f) = �(f) + k.

We prove this result at the end of this section (since the only proof we know involves the

transfer operator, and is, surprisingly, very technical and elaborate).

The reference [RS] suggests two equivalent techniques for determining the smoothness of a

re�nable �, the transfer operator approach, and the subdivision operator approach. We

choose here to describe the problem in terms of conceptually simpler subdivision approach. (We

stress that the subdivision operator approach is not necessarily the right approach from the compu-

tational point of view.) In order to simplify the presentation, we assume throughout the remainder

of this section that the re�nable vector � is compactly supported (but not necessarily that the mask

symbol is polynomial), choose an interval [0; a] that contains supp�, and set

H := spanfu 7! e�iru : r 2 ([�a; a]\ ZZ)g:

De�nition 5.2. Let � be s-re�nable with mask symbol P. The subdivision operator is a map

T � from H� into itself de�ned by

T � : g 7!
p
s P P�D�1g;

with D�1 : g 7! g(s�), and with P the orthogonal projection onto H� (say, from L2(TT)
�)).

The techniques that use either the transfer operator iterations and/or the subdivision operator

iterations are intrinsically numerically unstable: they attempt to compute eigenvalues that are

smaller in magnitude than the spectral radius of the operator. In rough terms, there might be

three di�erent sources for this unfortunate phenomenon (i.e., that we are bound to chase a non-

dominant eigenvalue):

(i) The re�nable � consists of functions, and not merely distributions. In this case, the spectrum

of the subdivision operator contains large eigenvalues that are connected to approximation orders

/ polynomial reproduction (some of them are guaranteed to be larger than the eigenvalue we are

after). Factorization solves this problem. The problem can be solved without factorization (see

below) but at the cost of the above-mentioned numerical instability.

(ii) The shifts of � are not stable/pre-stable. This grants the subdivision operator additional

irrelevant eigenvalues (that may or may not be large), hence should be suppressed, too, if large. In

fact, [RS] is the �rst article to tackle the regularity problem without the assumption of stability.

We note that in one variable a factorization method (of a completely di�erent nature compared to

the one here or that in [P]) can still be used to overcome that particular problem (cf. [R3] for a

discussion of that other factorization technique in the univariate scalar case).

(iii) The attempt to �nd separate regularity estimates for each of the entries in �. At the time

this article is written, we know of no method (even in one dimension) for avoiding this problem.

When reading the two results below, it is useful to keep in mind the following picture: the

use of the Gramian in these results is the way one suppresses (at least in theory) the eigenvalues

that arise from instability (cf. (ii) above). The use of the trigonometric polynomial u below is the

way one suppresses the eigenvalues that arise from the positive smoothness of the entries of � (cf.

(i) above). Finally, componentwise estimates of the smoothness are obtained by choosing di�erent

initial seeds.

We quote now two di�erent results from [RS]: the �rst concerns the smoothness of L2-re�nable

�, and the second concerns the smoothness of � whose entries are not in L2. We recall the notion

of the Gramian as de�ned in De�nition 1.4, and the notions of stability and pre-stability of the

shifts of � (cf. x2).
In what follows the GramianG is considered pointwise as a quadratic form, i.e., given v : TT!

C�, the notation G(v) stands for the (scalar) function t 7! v�(t)G(t)v(t).
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Result 5.3. Let � � L2 be s-re�nable with mask P and Gramian G. For � 2 �, let 1� 2 IR� be
the vector whose �-entry is 1 and the other entries are zero. Finally, let u(t) := (1� e�it)2k, with
k any positive integer that exceeds the regularity parameter of �. Then:

(I) De�ne a(k; �) := kG(u T �k(1�))k1=kL1(TT)
, and �nd a(�) := lim supk!1 a(k; �). Then the regu-

larity parameter �(�) of � is �(�) = � logs a(�)

2
.

(II) De�ne aI(k; �) := ku T �k(1�)k1=kL2(TT)
, and �nd aI(�) := lim supk!1 aI(k; �). Then the regu-

larity parameter �(�) of � satis�es �(�) � � logs aI(�), and equality holds if the shifts of �
are L2-stable.

Result 5.4. Let � be an s-re�nable vector of distributions. Let � be a \su�ciently smooth"

compactly supported function, for which � � � � L2, and let G be the Gramian of � � �.
(I) Set b(k; �) := kG(T �k(1�))k1=kL1(TT)

, and let b(�) := lim supk!1 b(k; �). Then the (negative)

regularity parameter of � is � logs b(�)

2
.

(II) Set bI(k; �) := kT �k(1�)k1=kL2(TT)
, and let bI(�) := lim supk!1 bI(k; �). Then the regularity

parameter �(�) of � satis�es �(�) � � logs bI(�), and equality holds if the shifts of � are

pre-stable, provided � 2 L2.

We want to apply the Result 5.4 for estimating the regularity parameter of the entries � of �

separately. Invoking our results of x4, the procedure is as follows: For a re�nable function vector

� with given mask symbol P and approximation order k, we �rst choose an appropriate good

factorization process � 7! F of order k and then compute the (negative) regularity parameter of

the entries Dk�, � 2 � of F (recall that all the functions in the vector F , with the exception of

one, are of this form).

Example: GHM-scaling functions. Let us compute the regularity parameter of the �rst entry

�1 of GHM-scaling function � = (�1; �2)
T . From the example in x3, we recall that � 7! F with

F = (D2�1; �) (with � the Dirac distribution) is a good factorization process and F is re�nable

with

Q(u) =
1

5

�
�2(1 + e�iu) 8

p
2(1� e�iu)2

0 5

�
:

Numerical computation of �k(�1) := � log2 bI(k; �1) + 2 with

bI(k; �1) = k2k=2Q�Q�(2�) : : :Q(2k�1�)(1�1)k
1=k

L2(TT)

then gives e.g. �30(�1) = 1:404585; �50(�1) = 1:442751; �100(�1) = 1:471375; �200(�1) = 1:485687,

�500(�1) = 1:494275; �1000(�1) = 1:497138.

The computation suggests that indeed the regularity parameter �(�1) is not greater then 1:5.

On the other hand, a computation of the regularity parameter of �1, �2 together (with the approach

by transfer operator, see e.g. [J], Example 4.2) gives the Sobolev regularity parameter 1:5.

Proof of Proposition 5.1. The fact that �(Bk � f) � �(f)+k is trivial: Dk(Bk � f) = rkf , and

obviously �(rkf) � �(f). The re�nability assumption plays no role here.

For the converse we let T be the transfer operator de�ned as follows: let F be re�nable with

mask Q. Then T is de�ned on all F � F matrices H whose entries are in L2(TT) as

TH :=

s�1X
m=0

(QHQ�)(
�+ 2�m

s
):
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Section 3 of [RS] proves that if � is a su�ciently smooth compactly supported function with mean-

value 1, and if u is a 2�-periodic function which vanishes at the origin to a `high enough' order,

and is positive in some punctured neighborhood of the origin, then, with G� the Gramian of � �F ,
and with g�;m the �-diagonal entry of Tm(uG�), we have that

�(�) = �
logs lim supm!1 kg�;mk1=mL1(TT)

2
:

With loss, we assume that � is of the form � = Bk � �0, with �0 some other `su�ciently smooth'

molli�er.

Now, suppose that we replace F by � := Bk � F , and set out to �nd the smoothness of the

entries of � using the above recipe. Since of �0 � � = � � F , we may still use the same Gramian

G� as before. As the other molli�er u0 we choose u0 = sin(�=2)2ku, with u the function used in the

F -process. Let P be the symbol of �, then

PHP� =

�
sin(s � =2)
s sin(�=2)

�2k

QHQ�:

This implies, with T1 the transfer operator associated with �, that

T1(u
0G�) = s�2k sin2k(�=2)T (uG�);

hence that

Tm
1 (u0G�) = s�2km sin2k(�=2)Tm(uG�);

Finally, since F and � are compactly supported, [RS] shows that the matrices Tm
1 (u0G�) and

Tm(uG�), m = 1; 2; : : : all lie in some �nite dimensional space. Since all norms are equivalent on

�nite dimensional spaces,

lim sup
m!1

kg�;mk1=mL1(TT)
= lim sup

m!1

�Z
TT

sin2k(�=2)g�;m
�1=m

:

The result now follows.
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