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Summary. REGINNis an algorithm of inexact Newton type for the reg-
ularization of nonlinear ill-posed problems [Inverse Probletbs(1999),

pp. 309-327]. In the present article convergence is shown under weak
smoothness assumptions (source conditions). Moreover, convergence rates
are established. Some computational illustrations support the theoretical re-
sults.
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1. Introduction

In[15] we proposed and analyzed an iteration of inexact Newton type (called
REGINN) for the regularization of nonlinear ill-posed problems

(1.1) F(z) =4’

whereF' : D(F') C X — Y acts between the Hilbert spac&sandY’.
Here,D(F) denotes the domain of definition &f ands? is a perturbation
of the exact but unknown data= F'(z") satisfying

(1.2) ly — |y <.

The non-negativaoise leveb is assumed to be known.
We have been able to verify (under reasonable assumptions) that
REGINNterminates with an approximate solutiofy s, of (1.1). More-
over, there is @& € [0, 1] such that theegularization property(1.3) holds
true
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(1.3) ot — anllx = O@EHV2) ass—0
whenever the initial guesg of REGINNsatisfies thesource condition

ol — g € R((F'(xT)*F'(:BT))l/z)

which is an abstract smoothness assumption. AbsveD(F) — L£(X,Y)
is the Féchet derivative o’ which we assume to exist as a continuous
mapping. ByR(B) we denote the range of the linear operabor

In this paper we investigate the regularization poweRBGINNunder
weaker smoothness requirements. We will prove the existence of a positive
kmin < 1 such that the source condition

(1.4) zf—z€ R((F’(xT)*F’(xT))“/Q) fora x € |kmin, 1]
implies the convergence
15  [lzf —zygllx = O )/ (HR)) a5 § — 0.

The ‘smallness’ ok ,;,, depends on the degree of nonlinearityfoand the
inner regularization scheme &EGINNused to regularize the linearized
problems. The closef is to a linear mapping the smallgy,;, becomes.

This paper is structured as follows. In the next section we formulate
REGINNand recall those of its properties from [15] which we will need.
In Sect. 3 we show th& EGINNis well defined under (1.4) and terminates
with an approximation ta:". Then the regularization property (1.5) will be
verified (Sect. 4). Finally, we present numerical experiments for a param-
eter identification model problem. Here we observe an intrinsic difference
between the infinite dimensional problem and its discretization.

2. Formulation of REGINNand known results

Basically, REGINNis a Newton iteration applied to (1.1). The current ap-
proximationz,, to 21 is updated by adding a correction step .1 =
Zn+ s, Inthe ideal case we would add the exact Newton sieg 2t =z,
which solves

(2.1) F'(zp)s8 = y— F(xp) — E(zf,2,) =: by

n

where
E(w,w) :=F@) - F(w) — F'(w) (v —w)

denotes the Taylor remainder term. Equation (2.1) is a linearization of (1.1)
aboutz,, (with exact datay). The right hand sidé,, of (2.1) is not known
in general. However the perturbation

b, =y’ — Flza) with |65, —bally < 0+ [ E(al 20y
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is available.

Hence, we compute the Newton correctigras an approximate solution
of
(2.2) Fl(zn)s = ¢° — F(n).

In general, the ill-posedness of (1.1) is passed on to (2.2), see, e.g., Engl,
Hanke, and Neubauer [5, Proposition 10.1] and Hofmann and Scherzer [11]
for some precise statements.

We therefore apply a regularization scheme to (2.2) and obtain the New-
ton update
(2.3) Sp = Sny = gT(A;kz AH)AZ (y(S - F(mn))

whereA,, := F'(x,)andg, : [0,0] — R, § = ||A,||? is a piecewise con-
tinuous function. The parameter> 0 is calledregularization parameter
We restrict ourselves lmearregularization schemdsg; } <, , go :== 0,
satisfying the assumptions (2.4) below witl{t) := 1—t g,(t). There exist
positive constanté’y, C,, anda such that
sup |g-(t)] < Cyr®,  sup |p.(t)] = 1, and
(2_4) t€[0,0] t€[0,0]

sup [tp,(t)] < Cpr.
te[0,6]

Please note that the above assumption§g@h imply

(2.5) 5’9 := sup sup tlg,(t)] < 2.
reN t€[0,0]

Example 2.1.Let us look at four examples of regularization schemes satis-

fying (2.4).

1. Thechoicg,(t) = 1/(t+1/r) leads to th&ikhonov-Phillipsegulariza-
tion whereg, (A% A,) = (AL A, + r )"t andC, = C, = a = 1.
Here, REGINN (Fig. 2.1) is a variation of thé.evenberg-Marquardt
scheme, see, e.g., Hanke [8].

2. Thetruncated singular value decompositimcharacterized by, (¢) =
1/t,fort > 1/r andg,(t) = 0, otherwise. Henc&}; = C), = a = 1.

3. Ifg(t) = Z;;é(l —t)7 and||4,]| < 1then we have theandweber
regularization which is an iterative regularization technique whgre-
a =1andC, = exp(—1).

4. Other iterative regularization schemes are given bytheethodgr >
0) due to Brakhage [2], see also Hanke [7]. For scalgd that is,
I|A.|| < 1,thefunctiorny, hasthe representatign(t) = (1—]5,5”) (t)/t
whereP ") (t) = P2~ V27Y2 1 _ o)/ pP 2D (1) with PP
denoting the Jacobi polynomials. Fer> 1 we havea = 2. Explicit
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values forCy andC), are not known.

Our stable Newton-type solver for (1.1) now has the form
(2.6) Zni1 = xp + gi, (A% A AL (Y0 — F(zy), n=0,1,2,...,

with an initial guessy € D(F).

In each iteration step we determimg such that the relative (linear)
residual is smaller than a given tolerange< |0, 1]:
[Ansni, = W lly < pin [[05]ly < [[Ansnsr — 03[y,
r=1,... i, — 1.
The iteration (2.6) will be stopped bydiscrepancy principleWe choose
anR > 0 and accept that iteratey as an approximation te' that fulfills
Iy’ = F(zn)lly < RS < [ly° — Flap)lly,
k=0,...,N—1.

See Fig. 2.1 for an implementation of (2.6) based on (2.7) and (2.8).

(2.7

(2.8)

REGINN, R, {jin})
n=0, x0o==x

while  ||F(z.) —’|ly > R6 do

{ in=0
repeat
in = in+1
smin = g (F/(2n) F'(2a) ) ' (w0)" (4° = Flan)
until [ ) suio + Flan) =9 lly < o [F@n) = o°lly
Tntl = Tn + Sn,ip
n=n+1
)
T = In

Fig. 2.1. REGINN REGilarization based olN exactNewton iteration

Mainly we are interested in using iterative regularizations in the
repeat -loop of REGINN Therefore we assume that is scaled such
that
(2.9) |F'(v)|| <1 forall v e D(F).

In our analysis ofREGINNwe will heavily rely on the local prop-
erty (2.10) for the nonlinear functiof'. Let@ : X x X — L(Y) be a
mapping such that

(2.10)F"(v) = Q(v,w) F'(w) and [[I - Q(v,w)| < Cqllv—wlx
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for all v,w € B,(z"), the ball abouts" with radiusp. This is a strong
assumption which essentially forcésto be close to a linear mapping. For
instance, the Fchet derivatives of nonlinear operators with property (2.10)
have a null space which is invariantfit (1), thatisN(F'(v)) = N(F'(w))
for all v, w € B,(z"). However, surveying the recent literature on iterative
regularization techniques, see, e.g., [1,4,8-10,12,13,16,17], one gets the
impression that assumptions closely related to (2.10) are somehow necessary
to have a unified convergence theory or to carry over optimality results from
the linear to the nonlinear situation. A more detailed discussion of (2.10)
can be found in the above cited literature.

LetCg p < 1. Then, (2.10) gives

211) [[F(v) = F(w)lly = (1 = Cqp) [F'(w) (v —w)y
as well as
(2.12) ||E(v,w)|y < w|F(v) — F(w)|y foral wv,w € B(z')

wherew := Cgp/(1 — Cq p), see, e.g., [15, Sect. 3]. Note that 1 for
Cop<1/2.

Based on (2.12) we are able to estimate the data @ipr- b, ||y in
terms ofé§, w, and the nonlinear defect

dy = ly* = Flza)lly = 1Bl
We have, forr,, € B,(z7),
(2.13)  ||b;, —bully £ 1+w)0 + wdy, == ¢ = e(zp,0).

We quote a result from [15] which gives conditions pp to stop the
repeat -loop.

Lemma 2.2. Let{g, },cn satisfy(2.4)and let(2.10)hold true withCq p <
1/2. Further assume thaty, € B,(z"). If R > (1 + w)/(1 — w) then the

repeat -loop of algorithmREGINNterminates for any

1 0

(2.14) Ui € |w+ ﬂ, 1].
dg

3. Towards a convergence analysis: termination dREGINN

In a first step towards a convergence analysis we shall show termination of
REGINN To this end we will show that the Newton steps;, decrease
geometrically ink, see (3.24) below. The key estimate is (3.1). The first
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relation in (2.4) and (2.5) as well as standard arguments, see, e.g., [5, 14],
lead to the norm bound

(3.1) Iskallx < 4/ CyCy il dy.

In the following subsections we therefore boupdnd the nonlinear defect
dj.

3.1. Boundingy
The analysis of this section will be rather technical. The two main results

are formulated in Lemmata 3.1 and 3.2 below.
For notational convenience we introduce the ratio

i di L
3.2 = = .
(3-2) T (s 0) (Lt w)o/dy + w

Under the hypotheses of Lemma 2,2 ,see (2.7), iswell defined ang > 1.
If ¢, > 2 then

(3.3) (e — 1) e(wg, 6) < ||pi—1(Ar Ay) Arsilly

wheres$ = zf — z;, and Ay, = F'(x;), see [15, Sect. 4].
To bound the right hand side of (3.3) we will make frequent use of the
interpolation inequality(3.4). If T € £L(X,Y’) then

34) [(T°T) x|l < [(T*T)%|L |l ™7 for 0<r<gq,

see, e.g., [5,14]. BYI'| we will denote(T*T)/2,
Assume the existence aof € X andx € [0, 1] such that

(3.5) s§ = al —z9 = |A|"w
where A = F'(af). Sinces§ = s§ — Y\ sj, = s§ — Yi_p Al
9i;(A; A3)b5, see (2.3), we obtain

k—1
(3.6) sf = |A[fw — wp with wy = > A% g; (A;A7)05
j=0

which yields

Pip—1(Ag A},) Agsy,

3.7 "
3.7) = pip—1(Ag A7) Ap|Al"w — pi, —1(Ag AL) Apwy,.
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For the following chain of inequalities we use (3.5), (2.10), (3.4), (2.4), and
the abbreviation) . . := Q (=, zx):

i, —1(Ax Ay) Ag|Al"w|ly
= |Ipi,—1(Ax Ay) Ak| Qoo k Akl w|ly

< | Qoo e Akl™ A piy—1 (A Ap) || [Jwl x
(3-8) < [ 1Qoo e Akl Af pi—1(Ar A" 1A% pir—1 (Ar ADI'" [Jwllx

< Qoo keI 1Ak AL iy —1 (Ag Ap)|I”
|| AR Ag pip—1 (A AR 72 [Jw| x
o 1+k)/2
O C5 7 | x
- (Zk; _ 1)a(1+n)/2

whereCy, is an upper bound a: [|Q(v, z)|| < Cq forallv, z € B,(z1).
We further have, by (2.10) witt;, ; = Q(z, x;),

1P, —1 (A Ay) Agwielly
—1

??‘

1Pin—1(Ak A%) Ak A gi, (A5 A7)b5|ly

<.
I
o

k‘
,_.

||p2k 1(AkAk) ngA A*ng(A A*)bEHY

<.
Il
o

T
L

1P —1 (A AR) Qg |AFI I AT g5, (A 4905y

<.
Il
o

Moreover, using (3.4), (2.10), and (2.4),
1pi—1 (A AL) Qpj | A7
= || A5 Qf pip—1(Ak AL
< OO 2| A AL Qf piy—1 (Ap AL/
= GO/ 1, AR Af piy 1 (A AL+

< Co OFF2 (i — 1)~ U072,
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so that

1Pip—1(Ax Af) Apwlly
e

D x| 1—kK *
< G X AT g (A
j=0

Finally, (3.7), (3.8), and (3.9) yield

(3.9)

W (k)

(3.10)  [lpi—1(Ax A%) Awsilly < Cu (in = D2

whereC,, = C{'%)/2 max{C}, Cq} and

k—1
(3.11) W(k) = llwllx + Y A" gi, (A Ay
j=0

We are now in a position to boung.

Lemma 3.1. Let {g, }ren, fulfill (2.4). Suppos€2.10) and let the firstn
iterates{z1,...,z,} of algorithm REGINNbe well defined and stay in
B,(z"). Moreover, let the initial guess, € B,(z) be chosen such that
(38.5)holds true for ax € [0, 1]. Then, there is a constant; such that

(:L,k’ 5)—2/((1 (14+k))

W(k ))2/( a(1+k))

T — 1

(3.12) i < Cf <

fork =0,...,n whereC; depends neither ok nor onn.

Proof. First, we consider the casg > 2. From (3.3) and (3.10) we obtain
(ik — 1)a(1+n)/2 < Cy W(k?)/(Tk — 1)/€($k,5). Sincei;, < 2 (Zk — 1)
the inequality (3.12) is established. In the casg,of 1 the trivial estimate
Tk e(xk,é) = Uk Hbs”y < Hb Hy < HAkSk;HY + E(xk,(s) together with
(2.9) and similar arguments as above readily imply (3.12). O

Now we wish to know howiV (k) behaves a& grows. Under the hy-
potheses of Lemma 3.1 we will establish the recursive bound

N
—_

(3.13) W(k) < Jwlx + C(n) Y W(j), k=0,...,n,

<
I
o

for a positive constant’(n). Inductively, (3.13) implies

W(k) < Af Jw||lx, k=0,...,n, with A, = 1+C(n).
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Our verification of (3.13) will rely crucially on the estimate (3.14) below.
Forzj, 21 € B,(z") andCqp < 1/2, see (2.10), we have

(3.14)  [[|A;|7" [Akl"]l < (1 —2Cgp)™" forall k € [0,1]
—_————
=: Ck

which was proved by Kaltenbacher in [13, Lemma 2.2].
In view of (3.11) we have to cope Wiqh]A;\I*”” 9i;(A; A7)b5]|. By the
triangle inequality and byl; s¢ = b;, see (2.1), we find

IHAZ " gi, (A3 ABS Iy < [[1AG]T" g3, (A3 A7) (b5 — b))y

3.15 o
GAS) ) s = g, (A7 A7) Aty

Each of the norms on the above right hand side will be estimated now. We
begin with
IFTAG" g, (A545) (65 — 0)ly
< | AjA; 9i (A A7 | giy (A A7 ey, 6)
< C{=0/2 of0/2 2 02 (4 )

where we used (3.4), (2.4), (2.5), and (2.13). Taking (3.12) into account
gives

A5 gs, (A A7) (05 — )y
(3.16) < GO/ (/2 o ()2 W( )1

Nextwe considelf \A;?]l*“ 9i; (A A%) Ajsslly usmg(3 6),(3.14),and (2.5):
A5 gi; (AA5) A5y
< A1 " g3, (4;47) Aj| Al wlly
I AGT i (A5A7) Ajwylly
(3.17) < IFAG 1 g, (A5 A7) AL A |71 A; 7 A7) [lwllx
I AG" gi; (A5 AT) Ajwly
< Cy O llwllx + [[1A51" g3, (4;45) Ajuwj]|y-
So we are left with the investigation of

A" g5, (A5 AF) Ajw;ly
j—1
= [11A51" " g4, (A5A5) A5 > AF g, (AL AT) Billy
r=0
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h.
[y

|| [AG177 g1, (A A7) Ay AL gi, (A AT) bl

A
{ngh

Q.
—

(3.18) || A5 g3, (A5 A7) Aj A

[
';'M

x| Ay

AL i (AP AT) BEly

h.
,_\

<legz (A AS) | A7 A A
r=0

|| AR " gi, (ArAF) b2y

() 2

<Y llgi, (AGAD) LA A% A7)
r=0

|| A gi, (Ar AL By

j—1
< Cy Cc Y AT ™" iy (AL AT By
r=0

The inequality marked witkix) may be proved using the spectral represen-
tation of A;.
Now we collect the pieces. By (3.17), (3.19), and (3.11),

A1 g, (A, 47) Ajsilly < Cy Cr W(5)
which, together with (3.15) and (3.16), yields
IAG1 g3, (A ADb Iy < Cwy; W(5)

(3.19) B OU=r)/2 (148) /2 o (14) /2
with Cw; == Cy Cx + g gr . U
i —

We formulate our findings with all the technical hypotheses in the following
lemma. Its proof is an immediate consequence of (3.19) and (3.11).

Lemma 3.2. Let {g, },en, fulfill (2.4). Suppos&2.10)and let the firstn
iterates{z1,...,z,} of algorithm REGINNbe well defined and stay in
B,(z"). Moreover, let the initial guess, € B,(z') be chosen such that
(3.5)holds true for ax € [0, 1].
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If Cqp < 1/2then

Wi(k) < AF |w|lx, k=0,...,n,

(3.20) _ ~(1—=r)/2 ~(14£K)/2 ~a (14k)/2
WithAn:1+CgCK+Cg C‘; 101

wheret,, = min{r,...,7,} > 1.

3.2. Termination oREGINN

Under reasonable technical assumptions all Newton iterates stay(ir)
andREGINNterminates with an approximationy s to zf.

Theorem 3.3. Let{g, },cn satisfy(2.4)and let(2.10)hold true withC p <
1/2. LetT > 1 and set

B ~(1-r)/2 ~(14K)/2 ~a(1+k)/2
A:1+CQCK+CQ Cs i .

T—1
Suppose thaf2.12)is satisfied with
1
< —— where n-A <1
Ny G "

(this will be true, for instance, i is sufficiently small).
Assume that the starting guesg < Bp/g(.iUT) is chosen such that the
source condition(3.5) applies forx € ]log; ,, 4,1] and that the product

|wllx l|ly® — F(x0)]||y is sufficiently small. I§ > 0 and

T(l+w)
B omran)

i € [T <w+(1+w)5>,77—(1+77)w}

and

dp,
for £ > 0 then there is anNV(d) € N such that all Newton iterates
{z1,...,2N(5)} are well defined and stay iB, (). Moreover, the final

iteratez v (5) satisfies the discrepancy princip(2.8) and, fordy > R4,
(3.21) N(9) < [log,(Rd/do)] + 1.

Here, |t| € Z for t € R denotes the greatest integer:| <t < |t| + 1.
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Proof. We will prove Theorem 3.3 by induction. Therefore, assume that,
for n € Ny, the iterategxo, . . ., z,,} are well defined under the hypotheses
of Theorem 3.3 and stay iR, (). We then have that

di = 6— < — — kd
(3.22) kforHyk (() )HY n* Iy’ — F(zo)lly = 0" do

This follows fromF (1) —y‘S = Ajsji, + F(zj) —y° + E(zj41, ;)
Jj=0,...,n— 1, whichyields

|F(zjt1) — |y
<15 [|F(z5) = °lly + w |F(zj51) — F(zj)lly
< ;i 1F(z;) = ¥°lly + w (|1F(j41) — ¥y + 1 F(z5) — ¥ llv).

Hence,

(3.23) dis1 o Hitw
dj 1—w

which implies (3.22) inductively.

If d, < Ré the iteration will be stopped by (2.8) with'(§) =
Otherwised,, > RJ and we show that the interval determining is not
empty. The bound ow implies that the denominator of the lower bound of
R is positive. The lower bound oR guarantees that(w + (1 +w)d/dy,) <
Tw+1+w)/R)<n—(1+nw

According to Lemma 2.2j,, and thus the Newton step, ;, are well
defined. By (3.1), (3.12), and (3.20),

Isn.i, |l x </ CgCy i/ dy,
— 1/(1+k)
<\ Gy Gy CF < W(ni > e(wy,6) /0T g,
Tn —

~ 1/(1+~)
< \/CgC—gC? (%) AR (g §)~1/AtR) g

The lower bound on thg,'syieldst, > 7> 1,k =0, ..., n, cf. (3.2), that
is, A, < A. Moreoverd,,/s(zy,0) < 1/(7w). Taking (3.22) into account
we obtain " )

(3.24) [ninllx < Cs [l X dy/ 0 g (r)”

whereCs = 1/ C, C, C® /((r — 1) 7w)"/) and

(3.25) o(k) = (A0

<n forj=0,....n—1
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(note thatr () is smaller thari sincex > log; /,, A). Now, let|jw||x do be
small enough such that

a(6) := Cs [[w]| X | F (o) — |5/

(3.26) /U—d@)Spﬂ-

Then, the new iterate,, 1 = @, + Sni,, = To + Y 4o Sk.iy 1S IN By(x1):
n
2" = zngallx < llaf = aollx + D sk llx < p/2 + a(d) < p.

k=0

Further,d,,,1 < n™*! dy. This completes the inductive step, thereby fin-
ishing the proof of Theorem 3.3. O

Our next result shows that the reduction rédte /dj for the nonlinear
residuals approximates the tolerangeas the iteration progresses.

Corollary 3.4. Adoptthe assumptions of Theor8 Then, foik =0, ...,
N(0) -1,

1y° — F(zps1) |y - {Mker k
< , C }
WP Faply = ™o e T O ols)

whereCp = Cq Cs |[w||Y ™ [|ly? — F(20) /™ and o (k) is from

(3.25)

Proof. Inview of (3.23) it suffices to verify thaty . /dy < px+Cp o (k).
The estimatel, .1 < (Cq ||ski.|lx + ) di was shown in the proof of
Corollary 4.7 in [15]. Now, the assertion follows from (3.24). O

4. Convergence analysis

In this section we will verify the regularization property of algorithm
REGINN that is, the convergence afy ;) to z' under the hypotheses of
Theorem 3.3. To this end we study

lz" = zxll% = (st sk)x

k—

4.1 (3.6) , o e " N

SO e X%J%AAW
j=

,_n
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Ideas used before lead us to

(ks [A["w) x| = [{sks |QoorAk|"w) x| < || |Qoo kAk|"sllx lwl]lx

Qoo e AxlsklI% skl llwllx

IN

IA

CH I1ARsZIF st ™ llwllx
Note thatA} g;; (A;A7)bs € D(|A;/7"). Hence,
[(sk, A 9i;(A; A7)b5) x|
= [{145]% sk, [4;517" AF i, (A A7)65) x|
< A "sillx 114517 AT gi, (A5 A7)05 ] x
< 1 1QjwArlskll% IsEI" 1A g3, (A; 4505y
< O I Awsill§ 1515 1A gi; (A A7)0 [y

Recalling (3.11) the latter two displayed inequalities together with (4.1)
resultin

Isil% < Co W(k) [Arsill¥ llsillx ™
Thus, we end up with
(42)  llstllx < GO W)Y | Ay /0.
We are now well prepared for our convergence result.
Theorem 4.1. Adopt the assumptions of Theoréh3, especially let the
source condition(3.5) hold for k €] logy /A, 1]. Further, suppose that
a(0) < p/2, cf.(3.26)
If do = ||y® — F(zo)|ly > R > 0 (for instance,F(zo) # y and §
sufficiently small) then
4.3) 2T — zyellx = O@F B /R8s 5 — 0.
In the noise free situatiom, = 0, we have that

(4.4) 2" — z1]|x = O(c(r)¥) ask — oo

with o (k) < 1 from (3.25)
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Proof. Note thatthe elements of the Newton sequence producR&BINN
depend om, that is,z;, = x9, k = 1,..., N(§). Sincea(0) < p/2 there
exists & > 0 such that(s) < p/2forall 0 < § <4, ie,{z{ |0 < <
0, k=1,...,N(0)} C B,(x"). We infer from (4.2), (2.11), (1.2), and
(2.8) that

|zt — zn sl x
G/ (14R)

=T C% p)l (1) W(N@)Y ) |y = Faye) |50

55/(1+H) (R + 1)H/(1+n)

: (1= Cgq p)r/(+m) (N (@) g/

545/(1%) (R + 1)%/(+r)

<
= (1= G p) /)

For the last inequality we used (3.20) with= n = N(6) and A5 < A.
Since N (6) < log,(Rd/do) + 1, see (3.21), we obtain that"(®) <
AN B3 D) — A (R§/dy)=n . Further,log, A = —log, ;, A which
verifies (4.3).
In the noise free situation under the assumptions of Theorem 3.3 the
Newton sequencézy }ren, IS well defined and infinite. The convergence
result (4.4) follows immediately from (4.2) and (3.22). O

[w Hl/ (1+r) AN(8)/(1+r) gr/(1+n)

5. Computational illustrations

Some numerical experiments shall illustrate the mode of acti®EGINN
We will realize an essential difference between the infinite dimensional
setting and the finite dimensional computations.

We like to reconstruct in the 2D-elliptic problem

—Au + cu = f in{?

5.1
®-1) u =g onaos?

from the knowledge ofi in 2 =)0, 1[2 whereA is the Laplacian. Further,
f € L?(0) andyg is the trace of a function i#/?(£2). Let F' : D(F) —
L?(£2) be the operator mapping the parametés the solutionu of (5.1).
Here,D(F) = {c € L?(2) ||[c—¢||;2 < 3 for somec > 0} for a positive
6 small enough, see Colonius and Kunisch [3, Lemma 2.1].

Identifying ¢ thus reduces to solve the nonlinear problem

(5.2) F(c) = u.
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If w has no zeroes if? then (5.2) admits a unique solutiehwhich does not
depend continuously on the data. Hanke, Neubauer, and Scherzer have been
able to verify (2.10) in the vicinity of any € D(F') such that’(c¢) > 0 a.e.,

see [10, Example 4.2]. The abstract smoothness condition (1.4)fond

may be formulated as

(5.3) (! — co)/F(co) € H*(£2) N Hy(92),

especially(c’ — ¢g)]ao = 0, see [15].

For our computations we discretize (5.1) by finite differences w.r.t. the
grid points(z;,y;) = (ih,jh) € 2,0 < 4,5 < n+ 1, wheren € N and
h =1/(n+ 1) is the discretization step size. A lexicographical ordering of
the grid points yields the? x n2-linear system

(A +diagc))u = f

whereA approximates- A and diagc) = diag(cy, . . ., c,2) is the diagonal
matrix with entriesc,(; ;) = c(zi,y;). By € : {1,...,n}* — {1,...,n%}
we denote the lexicographical ordering. The details of finite differences can
be found, e.g., in Hackbusch [6].

In the discrete situation we wish to recovdrom u. The corresponding
nonlinear equation is
(5.4) F(c) = u

with F : R"” — R™ defined byF(c) = (A + diag(c))" f. The function
F is differentiable with Jacobian

F/(c) = —(A +diagc)) 'diagF(c)).

In our numerical experiments below we identify the parameter, i) =
1.5 sin(4r ) -sin(6w y) + 3 ((x —0.5)%2 + (y — 0.5)%) + 2. Further,f and
g are such thati(z,y) = 16z (x — 1) y (1 — y) + 1 is the solution of (5.1)
w.r.t. ¢l

The perturbed right hand side’® of (5.4) isu’ = u + §v. Here,
wy; ) = u(zi,y;) andv = z/||z|, with z being a vector with random
entries uniformly distributed if-1, 1]. Hence||u — u®||;, = 6 measured in
the weighted Euclidean norfp ||, = i - || on R which approximates
the L2(£2)-norm.

The scaling requirement (2.9) will be satisfied #'rprovidedc;, > 0
for all k andh < 1, see [15, Sect. 7]. We are thus allowed to useithe
method,r = 1, as inner regularization scheme. The toleranges} are
adapted dynamically during the iteration based on the strategy from [15,
Sect. 6] with parameterggst.,t = 0.1, pmax = 0.999 and~ = 0.9. The
results presented below are based on the paranketer3, see (2.8), and
the discretization step size= 1/50.
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We ran REGINNon (5.4) with three different starting vectorg’,
(cg‘)g(m) = cg'(z4,y5), m = 1,2,3, where

' (z,y) =3 ((x — 0.5)* + (y — 0.5)*) + 2 + 3dpm(x) dm(y),
m=1,2,

cy(z,y) = cg(z,y) + randonfz,y).

The functions

t 2 0<t<1)/2

di(t)=5-{1—-t : 1/2<t<1

0 :  otherwise
t : 0<t<1/2
and do(t) =V10-¢2(1—t) : 1/2<t<1
0 :  otherwise

determine the smoothness @f: ¢; € H*(2) andc3 € H () for

any s < 3/2. The third initial guesg} has no smoothness at all because

randont-, -) is a uniformly distributed random variable with valuegini].
Observe thatcl* — cf)|sn = 0 for m = 1,2,3. However, no starting

guess® satisfies (5.3). Therefore, we expect thaltié ' evaluated at the

grid points)

(5.5) len) —cllln =0(@") asé—0

wherer is clearly smaller thari /2 and we expect to increase with the
smoothness off’.

S L
\G"‘\“I:T'\‘Qh .......
10! b S S
S~ g
1072 - \:‘ .
N N
)

1073 6

0 107 1074 o n

Fig. 5.1. Relative errors vs. noise levél(dashed line witho: cg, solid line withe: c3,
dotted line withx: c3)

Figure 5.1 displays the relative erroffsy s — c'||n/||c'[|5 for 6 €
{10~+D/2 | = 3,... 12} and for the initial vectorg]’, m = 1,2,3
(the standardizations of thé’s guarantee initial errorgcy® — cf||; of
comparable magnitude). As long as the noise dominates the discretization



364 A. Rieder

error, thatis§ > 104, the decay rates behave exactly as expected. However,
as soon a® is smaller than the discretization error, we basically solve
a discrete noise free problem and the errors decrease with optimal order
r=1/2.

Do the computational results for < 10~ contradict our theoretical
results? The answeris: no! Ifthe noise level is too small the finite dimensional
problem cannot be considered anymore a model for the underlying infinite
dimensional setting.

In the latter situation we have to interpret (5.4) completely from the finite
dimensional point of view. NovR((B*B)*/?) = N(B)~ for any matrix3
and anyx > 0. SinceN(F’(c")) = {0} we thus have the source condition

f—cle R((F’(CT)tF'(c’f))l/?) - R(F'(CT)t), m=1,2,3.

Theorem 4.1 tells us to expect (5.5) witmearl /2 for 6 small enough.

108
...... NPT
e s s s e e S ke
w1 :
..,.vk"' ‘Q————Q
10* — =
P g
v I
-4 1,.1-"
102 — ,—
B A ..‘(.v'
10
0
1072 1073 1074 10-5 Lo

Fig. 5.2. The overall numbe[fc\]:(g)’1 ix Of inner iteration steps vs. noise leve{dashed
line with o: ¢}, solid line withe: c2, dotted line withx: c)

Even foré small, a smooth initial guess pays. The increasing roughness
of the starting iterates can be realized not only in the increasing error value
for fixed ¢ (Fig. 5.1) but also, even more pronounced, in the increasing
numerical effort to computey ). In Fig. 5.2 we plotted the overall number

Ss 1= Z,]j:(g)*l i, of inner iteration steps vé. The numerical value of;
is a reliable measure for the computational work. &emall, the rougher
the initial errorc’ — c{’ becomes, the more computer time is needed to
terminateREGINN

This behavior is supported by the theory. We have tat cyl =
F/(ch)tw™ where

w™ = — (A + diagch)) diagF(ch)) ! (cf — ).

The norm||w™||;, enters our upper bound fag crucially, see [15, Lem-
mata 4.4 and 4.5] and compare Lemma 3.1. RecallAhapproximates the
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Laplacian differential operator. Hendpy™ ||, grows with the roughness of
T _ ~m
C Cp -
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