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Summary. REGINNis an algorithm of inexact Newton type for the reg-
ularization of nonlinear ill-posed problems [Inverse Problems15 (1999),
pp. 309-327]. In the present article convergence is shown under weak
smoothness assumptions (source conditions). Moreover, convergence rates
are established. Some computational illustrations support the theoretical re-
sults.
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1. Introduction

In [15]weproposedandanalyzed an iteration of inexactNewton type (called
REGINN) for the regularization of nonlinear ill-posed problems

F (x) = yδ(1.1)

whereF : D(F ) ⊂ X → Y acts between the Hilbert spacesX andY .
Here,D(F ) denotes the domain of definition ofF andyδ is a perturbation
of the exact but unknown datay = F (x†) satisfying

‖y − yδ‖Y ≤ δ.(1.2)

The non-negativenoise levelδ is assumed to be known.
We have been able to verify (under reasonable assumptions) that

REGINN terminates with an approximate solutionxN(δ) of (1.1). More-
over, there is aλ ∈ [0, 1[ such that theregularization property(1.3) holds
true
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‖x† − xN(δ)‖X = O(δ (1−λ)/2 ) as δ → 0(1.3)

whenever the initial guessx0 of REGINNsatisfies thesource condition

x† − x0 ∈ R
(
(F ′(x†)∗F ′(x†))1/2

)
which is anabstract smoothnessassumption.Above,F ′ : D(F ) → L(X,Y )
is the Fŕechet derivative ofF which we assume to exist as a continuous
mapping. ByR(B) we denote the range of the linear operatorB.

In this paper we investigate the regularization power ofREGINNunder
weaker smoothness requirements. We will prove the existence of a positive
κmin < 1 such that the source condition

x† − x0 ∈ R
(
(F ′(x†)∗F ′(x†))κ/2

)
for a κ ∈ ]κmin, 1](1.4)

implies the convergence

‖x† − xN(δ)‖X = O(δ (κ−κmin)/(1+κ) ) as δ → 0.(1.5)

The ‘smallness’ ofκmin depends on the degree of nonlinearity ofF and the
inner regularization scheme ofREGINNused to regularize the linearized
problems. The closerF is to a linear mapping the smallerκmin becomes.

This paper is structured as follows. In the next section we formulate
REGINNand recall those of its properties from [15] which we will need.
In Sect. 3 we show thatREGINNis well defined under (1.4) and terminates
with an approximation tox†. Then the regularization property (1.5) will be
verified (Sect. 4). Finally, we present numerical experiments for a param-
eter identification model problem. Here we observe an intrinsic difference
between the infinite dimensional problem and its discretization.

2. Formulation of REGINNand known results

Basically,REGINNis a Newton iteration applied to (1.1). The current ap-
proximationxn to x† is updated by adding a correction stepsn: xn+1 =
xn+sn. In the ideal case wewould add the exact Newton stepse

n = x† −xn
which solves

F ′(xn) se
n = y − F (xn) − E(x†, xn) =: bn(2.1)

where
E(v, w) := F (v) − F (w) − F ′(w) (v − w)

denotes the Taylor remainder term. Equation (2.1) is a linearization of (1.1)
aboutxn (with exact datay). The right hand sidebn of (2.1) is not known
in general. However the perturbation

bεn := yδ − F (xn) with ‖bεn − bn‖Y ≤ δ + ‖E(x†, xn)‖Y
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is available.
Hence,we compute theNewton correctionsn as an approximate solution

of
F ′(xn) s = yδ − F (xn).(2.2)

In general, the ill-posedness of (1.1) is passed on to (2.2), see, e.g., Engl,
Hanke, and Neubauer [5, Proposition 10.1] and Hofmann and Scherzer [11]
for some precise statements.

We therefore apply a regularization scheme to (2.2) and obtain the New-
ton update

sn = sn,r = gr(A∗
n An)A∗

n (yδ − F (xn))(2.3)

whereAn := F ′(xn) andgr : [0, θ] → R, θ = ‖An‖2, is a piecewise con-
tinuous function. The parameterr ≥ 0 is calledregularization parameter.

We restrict ourselves tolinear regularization schemes{gr}r∈N0 ,g0 := 0,
satisfying the assumptions (2.4) belowwithpr(t) := 1−t gr(t). There exist
positive constantsCg, Cp, andα such that

sup
t∈[0,θ]

|gr(t)| ≤ Cg rα, sup
t∈[0,θ]

|pr(t)| = 1, and

sup
t∈[0,θ]

|t pr(t)| ≤ Cp r−α.(2.4)

Please note that the above assumptions on{gr} imply
C̃g := sup

r∈N

sup
t∈[0,θ]

t |gr(t)| ≤ 2.(2.5)

Example 2.1.Let us look at four examples of regularization schemes satis-
fying (2.4).

1. Thechoicegr(t) = 1/(t+1/r) leads to theTikhonov-Phillipsregulariza-
tion wheregr(A∗

nAn) = (A∗
nAn + r−1 I)−1 andCg = Cp = α = 1.

Here,REGINN (Fig. 2.1) is a variation of theLevenberg-Marquardt
scheme, see, e.g., Hanke [8].

2. Thetruncated singular value decompositionis characterized bygr(t) =
1/t, for t ≥ 1/r andgr(t) = 0, otherwise. Hence,Cg = Cp = α = 1.

3. If gr(t) =
∑r−1

j=0(1 − t)j and‖An‖ ≤ 1 then we have theLandweber
regularization which is an iterative regularization technique whereCg =
α = 1 andCp = exp(−1).

4. Other iterative regularization schemes are given by theν-methods(ν >
0) due to Brakhage [2], see also Hanke [7]. For scaledAn, that is,
‖An‖ ≤ 1, the functiongr has the representationgr(t) = (1−P̃

(ν)
r (t))/t

whereP̃ (ν)
r (t) = P

(2ν−1/2,−1/2)
r (1−2t)/P (2ν−1/2,−1/2)

r (1)with P
(a,b)
r

denoting the Jacobi polynomials. Forν ≥ 1 we haveα = 2. Explicit
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values forCg andCp are not known.

Our stable Newton-type solver for (1.1) now has the form

xn+1 = xn + gin(A∗
n An)A∗

n (yδ − F (xn)), n = 0, 1, 2, . . . ,(2.6)

with an initial guessx0 ∈ D(F ).
In each iteration step we determinein such that the relative (linear)

residual is smaller than a given toleranceµn ∈ ]0, 1]:

‖Ansn,in − bεn‖Y < µn ‖bεn‖Y ≤ ‖Ansn,r − bεn‖Y ,
r = 1, . . . , in − 1.(2.7)

The iteration (2.6) will be stopped by adiscrepancy principle. We choose
anR > 0 and accept that iteratexN as an approximation tox† that fulfills

‖yδ − F (xN )‖Y ≤ R δ < ‖yδ − F (xk)‖Y ,
k = 0, . . . , N − 1.(2.8)

See Fig. 2.1 for an implementation of (2.6) based on (2.7) and (2.8).

REGINN(x, R, {µn})
n = 0, x0 = x

while ‖F (xn) − yδ‖Y > R δ do
{ in = 0

repeat

in = in + 1

sn,in = gin

(
F ′(xn)∗F ′(xn)

)
F ′(xn)∗

(
yδ − F (xn)

)

until ‖F ′(xn) sn,in + F (xn) − yδ‖Y < µn ‖F (xn) − yδ‖Y

xn+1 = xn + sn,in

n = n + 1

}
x = xn

Fig. 2.1. REGINN: REGularization based onIN exactNewton iteration

Mainly we are interested in using iterative regularizations in the
repeat -loop of REGINN. Therefore we assume thatF ′ is scaled such
that

‖F ′(v)‖ ≤ 1 for all v ∈ D(F ).(2.9)

In our analysis ofREGINNwe will heavily rely on the local prop-
erty (2.10) for the nonlinear functionF . Let Q : X × X → L(Y ) be a
mapping such that

F ′(v) = Q(v, w)F ′(w) and ‖I − Q(v, w)‖ ≤ CQ ‖v − w‖X(2.10)
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for all v, w ∈ Bρ(x†), the ball aboutx† with radiusρ. This is a strong
assumption which essentially forcesF to be close to a linear mapping. For
instance, the Fréchet derivatives of nonlinear operators with property (2.10)
haveanull spacewhich is invariant inBρ(x†), that is,N(F ′(v)) = N(F ′(w))
for all v, w ∈ Bρ(x†). However, surveying the recent literature on iterative
regularization techniques, see, e.g., [1,4,8–10,12,13,16,17], one gets the
impression that assumptions closely related to (2.10) are somehownecessary
to have a unified convergence theory or to carry over optimality results from
the linear to the nonlinear situation. A more detailed discussion of (2.10)
can be found in the above cited literature.

LetCQ ρ < 1. Then, (2.10) gives

‖F (v) − F (w)‖Y ≥ (1 − CQ ρ) ‖F ′(w) (v − w)‖Y(2.11)

as well as

‖E(v, w)‖Y ≤ ω ‖F (v) − F (w)‖Y for all v, w ∈ Bρ(x†)(2.12)

whereω := CQ ρ/(1 − CQ ρ), see, e.g., [15, Sect. 3]. Note thatω < 1 for
CQ ρ < 1/2.

Based on (2.12) we are able to estimate the data error‖bεn − bn‖Y in
terms ofδ, ω, and the nonlinear defect

dn := ‖yδ − F (xn)‖Y = ‖bεn‖Y .

We have, forxn ∈ Bρ(x†),

‖bεn − bn‖Y ≤ (1 + ω) δ + ω dn := ε = ε(xn, δ).(2.13)

We quote a result from [15] which gives conditions onµn to stop the
repeat -loop.

Lemma 2.2. Let{gr}r∈N satisfy(2.4)and let(2.10)hold true withCQ ρ <
1/2. Further assume thatxk ∈ Bρ(x†). If R ≥ (1 + ω)/(1 − ω) then the
repeat -loop of algorithmREGINNterminates for any

µk ∈
]
ω +

(1 + ω) δ

dk
, 1

]
.(2.14)

3. Towards a convergence analysis: termination ofREGINN

In a first step towards a convergence analysis we shall show termination of
REGINN. To this end we will show that the Newton stepssk,ik decrease
geometrically ink, see (3.24) below. The key estimate is (3.1). The first
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relation in (2.4) and (2.5) as well as standard arguments, see, e.g., [5,14],
lead to the norm bound

‖sk,ik‖X ≤
√

C̃g Cg i
α/2
k dk.(3.1)

In the following subsections we therefore boundik and the nonlinear defect
dk.

3.1. Boundingik

The analysis of this section will be rather technical. The two main results
are formulated in Lemmata 3.1 and 3.2 below.

For notational convenience we introduce the ratio

τk :=
µk dk

ε(xk, δ)
=

µk
(1 + ω) δ/dk + ω

.(3.2)

Under thehypothesesof Lemma2.2,ik, see (2.7), iswell definedandτk > 1.
If ik ≥ 2 then

(τk − 1) ε(xk, δ) ≤ ‖pik−1(Ak A∗
k)Aks

e
k‖Y(3.3)

wherese
k = x† − xk andAk = F ′(xk), see [15, Sect. 4].

To bound the right hand side of (3.3) we will make frequent use of the
interpolation inequality(3.4). If T ∈ L(X,Y ) then

‖(T ∗T )rx‖X ≤ ‖(T ∗T )qx‖r/qX ‖x‖1−r/q
X for 0 < r ≤ q,(3.4)

see, e.g., [5,14]. By|T | we will denote(T ∗T )1/2.
Assume the existence ofw ∈ X andκ ∈ [0, 1] such that

se
0 = x† − x0 = |A|κw(3.5)

whereA = F ′(x†). Sincese
k = se

0 − ∑k−1
j=0 sj,ij = se

0 − ∑k−1
j=0 A∗

j4
gij (AjA

∗
j )b

ε
j , see (2.3), we obtain

se
k = |A|κw − wk with wk :=

k−1∑
j=0

A∗
j gij (AjA

∗
j ) bεj(3.6)

which yields

pik−1(Ak A∗
k)Aks

e
k

= pik−1(Ak A∗
k)Ak|A|κw − pik−1(Ak A∗

k)Akwk.
(3.7)
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For the following chain of inequalities we use (3.5), (2.10), (3.4), (2.4), and
the abbreviationQ∞,k := Q(x†, xk):

‖pik−1(Ak A∗
k)Ak|A|κw‖Y

= ‖pik−1(Ak A∗
k)Ak|Q∞,kAk|κw‖Y

≤ ‖ |Q∞,kAk|κA∗
k pik−1(Ak A∗

k)‖ ‖w‖X
≤ ‖ |Q∞,kAk|A∗

k pik−1(Ak A∗
k)‖κ ‖A∗

k pik−1(Ak A∗
k)‖1−κ ‖w‖X(3.8)

≤ ‖Q∞,k‖κ ‖AkA
∗
k pik−1(Ak A∗

k)‖κ
×‖AkA

∗
k pik−1(Ak A∗

k)‖(1−κ)/2 ‖w‖X

≤ C̃κ
Q C

(1+κ)/2
p ‖w‖X

(ik − 1)α (1+κ)/2

whereC̃Q is an upper bound ofQ: ‖Q(v, z)‖ ≤ C̃Q for all v, z ∈ Bρ(x†).
We further have, by (2.10) withQk,j = Q(xk, xj),

‖pik−1(Ak A∗
k)Akwk‖Y

≤
k−1∑
j=0

‖pik−1(Ak A∗
k)Ak A∗

j gij (AjA
∗
j )b

ε
j‖Y

=
k−1∑
j=0

‖pik−1(Ak A∗
k)Qk,jAj A∗

j gij (AjA
∗
j )b

ε
j‖Y

≤
k−1∑
j=0

‖pik−1(Ak A∗
k)Qk,j |A∗

j |1+κ‖ ‖ |A∗
j |1−κ gij (AjA

∗
j )b

ε
j‖Y .

Moreover, using (3.4), (2.10), and (2.4),

‖pik−1(Ak A∗
k)Qk,j |A∗

j |1+κ‖
= ‖ |A∗

j |1+κ Q∗
k,j pik−1(Ak A∗

k)‖

≤ C̃
(1−κ)/2
Q ‖AjA

∗
j Q∗

k,j pik−1(Ak A∗
k)‖(1+κ)/2

= C̃
(1−κ)/2
Q ‖Qj,k AkA

∗
k pik−1(Ak A∗

k)‖(1+κ)/2

≤ C̃Q C(1+κ)/2
p (ik − 1)−α (1+κ)/2,
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so that

‖pik−1(Ak A∗
k)Akwk‖Y

≤ C̃Q C
(1+κ)/2
p

(ik − 1)α (1+κ)/2

k−1∑
j=0

‖ |A∗
j |1−κ gij (AjA

∗
j )b

ε
j‖Y .

(3.9)

Finally, (3.7), (3.8), and (3.9) yield

‖pik−1(Ak A∗
k)Aks

e
k‖Y ≤ Cw

W (k)
(ik − 1)α (1+κ)/2(3.10)

whereCw = C
(1+κ)/2
p max{C̃κ

Q, C̃Q} and

W (k) := ‖w‖X +
k−1∑
j=0

‖ |A∗
j |1−κ gij (AjA

∗
j )b

ε
j‖Y .(3.11)

We are now in a position to boundik.

Lemma 3.1. Let {gr}r∈N0 fulfill (2.4). Suppose(2.10)and let the firstn
iterates{x1, . . . , xn} of algorithmREGINNbe well defined and stay in
Bρ(x†). Moreover, let the initial guessx0 ∈ Bρ(x†) be chosen such that
(3.5)holds true for aκ ∈ [0, 1]. Then, there is a constantCI such that

ik ≤ CI

(
W (k)
τk − 1

)2/(α (1+κ))

ε(xk, δ)−2/(α (1+κ))(3.12)

for k = 0, . . . , n whereCI depends neither onk nor onn.

Proof. First, we consider the caseik ≥ 2. From (3.3) and (3.10) we obtain
(ik − 1)α (1+κ)/2 ≤ Cw W (k)/(τk − 1)/ε(xk, δ). Sinceik ≤ 2 (ik − 1)
the inequality (3.12) is established. In the case ofik = 1 the trivial estimate
τk ε(xk, δ) = µk ‖bεk‖Y ≤ ‖bεk‖Y ≤ ‖Aks

e
k‖Y + ε(xk, δ) together with

(2.9) and similar arguments as above readily imply (3.12). ��
Now we wish to know howW (k) behaves ask grows. Under the hy-

potheses of Lemma 3.1 we will establish the recursive bound

W (k) ≤ ‖w‖X + C(n)
k−1∑
j=0

W (j), k = 0, . . . , n,(3.13)

for a positive constantC(n). Inductively, (3.13) implies

W (k) ≤ Λk
n ‖w‖X , k = 0, . . . , n, with Λn = 1 + C(n).
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Our verification of (3.13) will rely crucially on the estimate (3.14) below.
Forxj , xk ∈ Bρ(x†) andCQρ < 1/2, see (2.10), we have

‖ |Aj |−κ |Ak|κ‖ ≤ (1 − 2CQρ)−κ︸ ︷︷ ︸
=: CK

for all κ ∈ [0, 1](3.14)

which was proved by Kaltenbacher in [13, Lemma 2.2].
In view of (3.11) we have to cope with‖ |A∗

j |1−κ gij (AjA
∗
j )b

ε
j‖. By the

triangle inequality and byAjs
e
j = bj , see (2.1), we find

‖ |A∗
j |1−κ gij (AjA

∗
j )b

ε
j‖Y ≤ ‖ |A∗

j |1−κ gij (AjA
∗
j )(b

ε
j − bj)‖Y

+ ‖ |A∗
j |1−κ gij (AjA

∗
j )Ajs

e
j‖Y .

(3.15)

Each of the norms on the above right hand side will be estimated now. We
begin with

‖ |A∗
j |1−κ gij (AjA

∗
j ) (bεj − bj)‖Y

≤ ‖AjA
∗
j gij (AjA

∗
j )‖(1−κ)/2 ‖gij (AjA

∗
j )‖(1+κ)/2 ε(xj , δ)

≤ C̃(1−κ)/2
g C(1+κ)/2

g i
α (1+κ)/2
j ε(xj , δ)

where we used (3.4), (2.4), (2.5), and (2.13). Taking (3.12) into account
gives

‖ |A∗
j |1−κ gij (AjA

∗
j ) (bεj − bj)‖Y

≤ C̃(1−κ)/2
g C(1+κ)/2

g C
α (1+κ)/2
I

W (j)
τj − 1

.
(3.16)

Nextweconsider‖ |A∗
j |1−κ gij (AjA

∗
j )Ajs

e
j‖Y using (3.6), (3.14), and (2.5):

‖ |A∗
j |1−κ gij (AjA

∗
j )Ajs

e
j‖Y

≤ ‖ |A∗
j |1−κ gij (AjA

∗
j )Aj |A|κw‖Y

+‖ |A∗
j |1−κ gij (AjA

∗
j )Ajwj‖Y

≤ ‖ |A∗
j |1−κgij (AjA

∗
j )Aj |Aj |κ|Aj |−κ |A|κ‖ ‖w‖X(3.17)

+ ‖ |A∗
j |1−κ gij (AjA

∗
j )Ajwj‖Y

≤ C̃g CK ‖w‖X + ‖ |A∗
j |1−κ gij (AjA

∗
j )Ajwj‖Y .

So we are left with the investigation of

‖ |A∗
j |1−κ gij (AjA

∗
j )Ajwj‖Y

= ‖ |A∗
j |1−κ gij (AjA

∗
j )Aj

j−1∑
r=0

A∗
r gir(ArA

∗
r) bεr‖Y
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≤
j−1∑
r=0

‖ |A∗
j |1−κ gij (AjA

∗
j )Aj A∗

r gir(ArA
∗
r) bεr‖Y

=
j−1∑
r=0

‖ |A∗
j |1−κ gij (AjA

∗
j )Aj |Ar|κ(3.18)

×|Ar|−κ A∗
r gir(ArA

∗
r) bεr‖Y

≤
j−1∑
r=0

‖gij (AjA
∗
j ) |A∗

j |1−κ Aj |Ar|κ‖

×‖ |A∗
r |1−κ gir(ArA

∗
r) bεr‖Y

(�)
≤

j−1∑
r=0

‖gij (AjA
∗
j ) |A∗

j |2‖ ‖ |Aj |−κ |Ar|κ‖

×‖ |A∗
r |1−κgir(ArA

∗
r) bεr‖Y

≤ C̃g CK

j−1∑
r=0

‖ |A∗
r |1−κ gir(ArA

∗
r) bεr‖Y .

The inequality marked with(1) may be proved using the spectral represen-
tation ofAj .

Now we collect the pieces. By (3.17), (3.19), and (3.11),

‖ |A∗
j |1−κ gij (AjA

∗
j )Ajs

e
j‖Y ≤ C̃g CK W (j)

which, together with (3.15) and (3.16), yields

‖ |A∗
j |1−κ gij (AjA

∗
j )b

ε
j‖Y ≤ CW,j W (j)

with CW,j := C̃g CK +
C̃

(1−κ)/2
g C

(1+κ)/2
g C

α (1+κ)/2
I

τj − 1
.

(3.19)

We formulate our findings with all the technical hypotheses in the following
lemma. Its proof is an immediate consequence of (3.19) and (3.11).

Lemma 3.2. Let {gr}r∈N0 fulfill (2.4). Suppose(2.10)and let the firstn
iterates{x1, . . . , xn} of algorithmREGINNbe well defined and stay in
Bρ(x†). Moreover, let the initial guessx0 ∈ Bρ(x†) be chosen such that
(3.5)holds true for aκ ∈ [0, 1].
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If CQ ρ < 1/2 then

W (k) ≤ Λk
n ‖w‖X , k = 0, . . . , n,

with Λn = 1 + C̃g CK +
C̃

(1−κ)/2
g C

(1+κ)/2
g C

α (1+κ)/2
I

tn − 1

(3.20)

wheretn = min{τ0, . . . , τn} > 1.

3.2. Termination ofREGINN

Under reasonable technical assumptions all Newton iterates stay inBρ(x†)
andREGINNterminates with an approximationxN(δ) to x†.

Theorem 3.3. Let{gr}r∈N satisfy(2.4)and let(2.10)hold truewithCQ ρ <
1/2. Letτ > 1 and set

Λ = 1 + C̃g CK +
C̃

(1−κ)/2
g C

(1+κ)/2
g C

α (1+κ)/2
I

τ − 1
.

Suppose that(2.12)is satisfied with

ω <
η

η + (1 + τ)
where η · Λ < 1

(this will be true, for instance, ifρ is sufficiently small).
Assume that the starting guessx0 ∈ Bρ/2(x†) is chosen such that the

source condition(3.5) applies forκ ∈ ] log1/η Λ, 1] and that the product

‖w‖X ‖yδ − F (x0)‖Y is sufficiently small. Ifδ > 0 and

R ≥ τ (1 + ω)
η − ω (η + (1 + τ) )

and

µk ∈
[

τ

(
ω +

(1 + ω) δ

dk

)
, η − (1 + η)ω

]

for k ≥ 0 then there is anN(δ) ∈ N such that all Newton iterates
{x1, . . . , xN(δ)} are well defined and stay inBρ(x†). Moreover, the final
iteratexN(δ) satisfies the discrepancy principle(2.8)and, ford0 > R δ,

N(δ) ≤ �logη(R δ/d0)� + 1.(3.21)

Here,�t� ∈ Z for t ∈ R denotes the greatest integer:�t� ≤ t < �t� + 1.
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Proof. We will prove Theorem 3.3 by induction. Therefore, assume that,
for n ∈ N0, the iterates{x0, . . . , xn} are well defined under the hypotheses
of Theorem 3.3 and stay inBρ(x†). We then have that

dk = ‖yδ − F (xk)‖Y ≤ ηk ‖yδ − F (x0)‖Y = ηk d0
for k = 0, . . . , n.

(3.22)

This follows fromF (xj+1) − yδ = Ajsj,ij + F (xj) − yδ + E(xj+1, xj),
j = 0, . . . , n − 1, which yields

‖F (xj+1) − yδ‖Y
≤ µj ‖F (xj) − yδ‖Y + ω ‖F (xj+1) − F (xj)‖Y
≤ µj ‖F (xj) − yδ‖Y + ω (‖F (xj+1) − yδ‖Y + ‖F (xj) − yδ‖Y ).

Hence,
dj+1

dj
≤ µj + ω

1 − ω
≤ η for j = 0, . . . , n − 1(3.23)

which implies (3.22) inductively.
If dn ≤ R δ the iteration will be stopped by (2.8) withN(δ) = n.

Otherwise,dn > R δ and we show that the interval determiningµn is not
empty. The bound onω implies that the denominator of the lower bound of
R is positive. The lower bound onR guarantees thatτ(ω +(1+ω)δ/dn) <
τ(ω + (1 + ω)/R) < η − (1 + η)ω.

According to Lemma 2.2,in and thus the Newton stepsn,in are well
defined. By (3.1), (3.12), and (3.20),

‖sn,in‖X ≤
√

C̃g Cg iα/2n dn

≤
√

C̃g Cg Cα
I

(
W (n)
τn − 1

)1/(1+κ)

ε(xn, δ)−1/(1+κ) dn

≤
√

C̃g Cg Cα
I

( ‖w‖X
τn − 1

)1/(1+κ)

Λn/(1+κ)
n ε(xn, δ)−1/(1+κ) dn.

The lower bound on theµk’s yieldsτk ≥ τ > 1, k = 0, . . . , n, cf. (3.2), that
is,Λn ≤ Λ. Moreover,dn/ε(xn, δ) ≤ 1/(τ ω). Taking (3.22) into account
we obtain

‖sn,in‖X ≤ CS ‖w‖1/(1+κ)
X d

κ/(1+κ)
0 σ(κ)n(3.24)

whereCS =
√

C̃g Cg Cα
I /((τ − 1) τ ω)1/(1+κ) and

σ(κ) := (Λ · ηκ)1/(1+κ) < 1(3.25)
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(note thatσ(κ) is smaller than1 sinceκ > log1/η Λ). Now, let‖w‖X d0 be
small enough such that

a(δ) := CS ‖w‖1/(1+κ)
X ‖F (x0) − yδ‖κ/(1+κ)

X/
(1 − σ(κ) ) ≤ ρ/2.

(3.26)

Then, the new iteratexn+1 = xn + sn,in = x0 +
∑n

k=0 sk,ik is inBρ(x†):

‖x† − xn+1‖X ≤ ‖x† − x0‖X +
n∑

k=0

‖sk,ik‖X ≤ ρ/2 + a(δ) ≤ ρ.

Further,dn+1 ≤ ηn+1 d0. This completes the inductive step, thereby fin-
ishing the proof of Theorem 3.3. ��

Our next result shows that the reduction ratedk+1/dk for the nonlinear
residuals approximates the toleranceµk as the iteration progresses.

Corollary 3.4. Adopt theassumptionsof Theorem3.3. Then, fork = 0, . . . ,
N(δ) − 1,

‖yδ − F (xk+1)‖Y
‖yδ − F (xk)‖Y ≤ min

{ µk + ω

1 − ω
, µk + CD σ(κ)k

}

whereCD = CQ CS ‖w‖1/(1+κ)
X ‖yδ − F (x0)‖κ/(1+κ)

Y and σ(κ) is from
(3.25).

Proof. In view of (3.23) it suffices to verify thatdk+1/dk ≤ µk+CD σ(κ)k.
The estimatedk+1 < (CQ ‖sk,ik‖X + µk) dk was shown in the proof of
Corollary 4.7 in [15]. Now, the assertion follows from (3.24). ��

4. Convergence analysis

In this section we will verify the regularization property of algorithm
REGINN, that is, the convergence ofxN(δ) to x† under the hypotheses of
Theorem 3.3. To this end we study

‖x† − xk‖2
X = 〈se

k, se
k〉X

(3.6)
= 〈se

k, |A|κw〉X −
k−1∑
j=0

〈se
k, A∗

j gij (AjA
∗
j )b

ε
j〉X .

(4.1)
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Ideas used before lead us to

|〈se
k, |A|κw〉X | = |〈se

k, |Q∞,kAk|κw〉X | ≤ ‖ |Q∞,kAk|κse
k‖X ‖w‖X

≤ ‖ |Q∞,kAk|se
k‖κX ‖se

k‖1−κ
X ‖w‖X

≤ C̃κ
Q ‖Aks

e
k‖κY ‖se

k‖1−κ
X ‖w‖X .

Note thatA∗
j gij (AjA

∗
j )b

ε
j ∈ D(|Aj |−κ). Hence,

|〈se
k, A∗

j gij (AjA
∗
j )b

ε
j〉X |

= |〈|Aj |κse
k, |Aj |−κ A∗

j gij (AjA
∗
j )b

ε
j〉X |

≤ ‖ |Aj |κse
k‖X ‖ |Aj |−κ A∗

j gij (AjA
∗
j )b

ε
j‖X

≤ ‖ |Qj,kAk|se
k‖κX ‖se

k‖1−κ
X ‖ |A∗

j |1−κ gij (AjA
∗
j )b

ε
j‖Y

≤ C̃κ
Q ‖Aks

e
k‖κY ‖se

k‖1−κ
X ‖ |A∗

j |1−κ gij (AjA
∗
j )b

ε
j‖Y .

Recalling (3.11) the latter two displayed inequalities together with (4.1)
result in

‖se
k‖2

X ≤ C̃κ
Q W (k) ‖Aks

e
k‖κY ‖se

k‖1−κ
X .

Thus, we end up with

‖se
k‖X ≤ C̃

κ/(1+κ)
Q W (k)1/(1+κ) ‖Aks

e
k‖κ/(1+κ)

Y .(4.2)

We are now well prepared for our convergence result.

Theorem 4.1. Adopt the assumptions of Theorem3.3, especially let the
source condition(3.5) hold for κ ∈ ] log1/η Λ, 1]. Further, suppose that
a(0) < ρ/2, cf. (3.26).

If d0 = ‖yδ − F (x0)‖Y > R δ > 0 (for instance,F (x0) /= y and δ
sufficiently small) then

‖x† − xN(δ)‖X = O(δ (κ−log1/η Λ)/(1+κ) ) as δ → 0.(4.3)

In the noise free situation,δ = 0, we have that

‖x† − xk‖X = O(σ(κ)k) as k → ∞(4.4)

with σ(κ) < 1 from (3.25).
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Proof. Note that theelementsof theNewtonsequenceproducedbyREGINN
depend onδ, that is,xk = xδk, k = 1, . . . , N(δ). Sincea(0) < ρ/2 there
exists aδ > 0 such thata(δ) ≤ ρ/2 for all 0 < δ ≤ δ, i.e.,{xδk | 0 < δ ≤
δ, k = 1, . . . , N(δ) } ⊂ Bρ(x†). We infer from (4.2), (2.11), (1.2), and
(2.8) that

‖x† − xN(δ)‖X

≤ C̃
κ/(1+κ)
Q

(1 − CQ ρ)κ/(1+κ) W (N(δ))1/(1+κ) ‖y − F (xN(δ))‖κ/(1+κ)
X

≤ C̃
κ/(1+κ)
Q (R + 1)κ/(1+κ)

(1 − CQ ρ)κ/(1+κ) W (N(δ))1/(1+κ) δκ/(1+κ)

≤ C̃
κ/(1+κ)
Q (R + 1)κ/(1+κ)

(1 − CQ ρ)κ/(1+κ) ‖w‖1/(1+κ)
X ΛN(δ)/(1+κ) δκ/(1+κ).

For the last inequality we used (3.20) withk = n = N(δ) andΛN(δ) ≤ Λ.
SinceN(δ) ≤ logη(R δ/d0) + 1, see (3.21), we obtain thatΛN(δ) ≤

ΛΛlogη(Rδ/d0) = Λ (R δ/d0)logη Λ. Further,logη Λ = − log1/η Λ which
verifies (4.3).

In the noise free situation under the assumptions of Theorem 3.3 the
Newton sequence{xk}k∈N0 is well defined and infinite. The convergence
result (4.4) follows immediately from (4.2) and (3.22). ��

5. Computational illustrations

Some numerical experiments shall illustrate themode of action ofREGINN.
We will realize an essential difference between the infinite dimensional
setting and the finite dimensional computations.

We like to reconstructc in the2D-elliptic problem

−∆u + c u = f in Ω

u = g on∂Ω
(5.1)

from the knowledge ofu in Ω = ]0, 1[2 where∆ is the Laplacian. Further,
f ∈ L2(Ω) andg is the trace of a function inH2(Ω). Let F : D(F ) →
L2(Ω) be the operator mapping the parameterc to the solutionu of (5.1).
Here,D(F ) = {c ∈ L2(Ω) | ‖c− c̃‖L2 ≤ β for somẽc ≥ 0} for a positive
β small enough, see Colonius and Kunisch [3, Lemma 2.1].

Identifying c thus reduces to solve the nonlinear problem

F (c) = u.(5.2)
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If u has no zeroes inΩ then (5.2) admits a unique solutionc† which does not
depend continuously on the data. Hanke, Neubauer, and Scherzer have been
able to verify (2.10) in the vicinity of anyc ∈ D(F ) such thatF (c) > 0 a.e.,
see [10, Example 4.2]. The abstract smoothness condition (1.4) forκ = 1
may be formulated as

(c† − c0)/F (c0) ∈ H2(Ω) ∩ H1
0 (Ω),(5.3)

especially,(c† − c0)|∂Ω = 0, see [15].
For our computations we discretize (5.1) by finite differences w.r.t. the

grid points(xi, yj) = (ih, jh) ∈ Ω, 0 ≤ i, j ≤ n + 1, wheren ∈ N and
h = 1/(n + 1) is the discretization step size. A lexicographical ordering of
the grid points yields then2 × n2-linear system

(A + diag(c))u = f

whereA approximates−∆ and diag(c) = diag(c1, . . . , cn2) is the diagonal
matrix with entriesc)(i,j) = c(xi, yj). By ? : {1, . . . , n}2 → {1, . . . , n2}
we denote the lexicographical ordering. The details of finite differences can
be found, e.g., in Hackbusch [6].

In the discrete situation we wish to recoverc fromu. The corresponding
nonlinear equation is

F(c) = u(5.4)

with F : R
n2 → R

n2
defined byF(c) = (A + diag(c))−1 f . The function

F is differentiable with Jacobian

F′(c) = −(A + diag(c))−1diag(F(c)).

In our numerical experiments below we identify the parameterc†(x, y) =
1.5 sin(4π x) · sin(6π y) + 3 ((x− 0.5)2 +(y − 0.5)2)+ 2. Further,f and
g are such thatu(x, y) = 16x (x − 1) y (1 − y) + 1 is the solution of (5.1)
w.r.t. c†.

The perturbed right hand sideuδ of (5.4) is uδ = u + δ v. Here,
u)(i,j) = u(xi, yj) andv = z/‖z‖h with z being a vector with random
entries uniformly distributed in[−1, 1]. Hence,‖u−uδ‖h = δ measured in
the weighted Euclidean norm‖ · ‖h = h ‖ · ‖2 onR

n2
which approximates

theL2(Ω)-norm.
The scaling requirement (2.9) will be satisfied forF′ providedck ≥ 0

for all k andh < 1, see [15, Sect. 7]. We are thus allowed to use theν-
method,ν = 1, as inner regularization scheme. The tolerances{µk} are
adapted dynamically during the iteration based on the strategy from [15,
Sect. 6] with parametersµstart = 0.1, µmax = 0.999 andγ = 0.9. The
results presented below are based on the parameterR = 3, see (2.8), and
the discretization step sizeh = 1/50.
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We ranREGINN on (5.4) with three different starting vectorscm0 ,
(cm0 ))(i,j) = cm0 (xi, yj),m = 1, 2, 3, where

cm0 (x, y) = 3 ((x − 0.5)2 + (y − 0.5)2) + 2 + 3 dm(x) dm(y),
m = 1, 2,

c3
0(x, y) = c1

0(x, y) + random(x, y).

The functions

d1(t) = 5 ·




t : 0 ≤ t ≤ 1/2
1 − t : 1/2 < t ≤ 1

0 : otherwise

and d2(t) =
√

10 ·




t : 0 ≤ t ≤ 1/2
2 (1 − t) : 1/2 < t ≤ 1

0 : otherwise

determine the smoothness ofcm0 : c1
0 ∈ Hs(Ω) and c2

0 ∈ Hs−1(Ω) for
any s < 3/2. The third initial guessc3

0 has no smoothness at all because
random(·, ·) is a uniformly distributed random variable with values in[0, 1].

Observe that(cm0 − c†)|∂Ω = 0 for m = 1, 2, 3. However, no starting
guesscm0 satisfies (5.3). Therefore, we expect that (c† is c† evaluated at the
grid points)

‖cN(δ) − c†‖h = O(δr) as δ → 0(5.5)

wherer is clearly smaller than1/2 and we expectr to increase with the
smoothness ofcm0 .
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Fig. 5.1. Relative errors vs. noise levelδ (dashed line with�: c1
0, solid line with•: c2

0,
dotted line with�: c3

0)

Figure 5.1 displays the relative errors‖cN(δ) − c†‖h/‖c†‖h for δ ∈
{10−(k+1)/2 | k = 3, . . . , 12} and for the initial vectorscm0 , m = 1, 2, 3
(the standardizations of thecm0 ’s guarantee initial errors‖cm0 − c†‖h of
comparable magnitude). As long as the noise dominates the discretization
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error, that is,δ ≥ 10−4, thedecay ratesbehaveexactly asexpected.However,
as soon asδ is smaller than the discretization error, we basically solve
a discrete noise free problem and the errors decrease with optimal order
r = 1/2.

Do the computational results forδ < 10−4 contradict our theoretical
results?Theanswer is: no! If thenoise level is toosmall thefinitedimensional
problem cannot be considered anymore a model for the underlying infinite
dimensional setting.

In the latter situationwe have to interpret (5.4) completely from the finite
dimensional point of view. Now,R((BtB)κ/2) = N(B)⊥ for any matrixB
and anyκ > 0. SinceN(F′(c†)) = {0} we thus have the source condition

c† − cm0 ∈ R
(
(F′(c†)tF′(c†))1/2

)
= R

(
F′(c†)t

)
, m = 1, 2, 3.

Theorem 4.1 tells us to expect (5.5) withr near1/2 for δ small enough.
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Fig. 5.2. The overall number
∑N(δ)−1

k=0 ik of inner iteration steps vs. noise levelδ (dashed
line with �: c1

0, solid line with•: c2
0, dotted line with�: c

3
0)

Even forδ small, a smooth initial guess pays. The increasing roughness
of the starting iterates can be realized not only in the increasing error value
for fixed δ (Fig. 5.1) but also, even more pronounced, in the increasing
numerical effort to computecN(δ). In Fig. 5.2 we plotted the overall number

Sδ :=
∑N(δ)−1

k=0 ik of inner iteration steps vs.δ. The numerical value ofSδ
is a reliable measure for the computational work. Forδ small, the rougher
the initial errorc† − cm0 becomes, the more computer time is needed to
terminateREGINN.

This behavior is supported by the theory. We have thatc† − cm0 =
F′(c†)twm where

wm = − (A + diag(c†))diag(F(c†))−1 (c† − cm0 ).

The norm‖wm‖h enters our upper bound forik crucially, see [15, Lem-
mata 4.4 and 4.5] and compare Lemma 3.1. Recall thatA approximates the
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Laplacian differential operator. Hence,‖wm‖h grows with the roughness of
c† − cm0 .
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