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On the Linear-Cost Subtree-Transfer Distance
between Phylogenetic Trees!

B. DasGupta,® X. He,? T. Jiang,* M. Li,? and J. Tromp®

Abstract.  Different phylogenetic trees for the same group of species are often produced either by procedures
that use diverse optimality criteria [16] or from different genes [12] in the study of molecular evolution.
Comparing these trees to find their similarities and dissimilarities (i.e., distance) is thus an important issue in
computational molecular biology. Several distance metrics including the nearest neighbor interchange (nni)
distance and the subtree-rransfer distance have been proposed and extensively studied in the literature. This
article considers a natural extension of the subtree-transfer distance, called the linear-cost subtree-transfer
distance, and studies the complexity and efficient approximation algorithms for this distance as well as its
relationship to the nni distance. The linear-cost subtree-transfer model seems more suitable than the (unit-cost)
subtree-transfer model in some applications. The following is a list of our results:

1. The linear-cost subtree-transfer distance is in fact identical to the nni distance on unweighted phylogenies.

2. There is an algorithm to compute an optimal linear-cost subtree-transfer sequence between unweighted
phylogenies in O(n - 29@)) time, where d denotes the linear-cost subtree-transfer distance. Such an
algorithm is useful when d is small.

3. Computing the linear-cost subtree-transfer distance between two weighted phylogenetic trees is NP-hard,
provided we allow multiple leaves of a tree to share the same label (i.e., the trees are not necessarily
uniquely labeled).

4. There is an efficient approximation algorithm for computing the linear-cost subtree-transfer distance be-
tween weighted phylogenies with performance ratio 2.
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1. Introduction. The evolution history of organisms is often conveniently represented
by trees, called phylogenetic trees or simply phylogenies. Such a tree has uniquely labeled
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Fig. 1. The two possible nni operations on an internal edge (i, v): exchange B <> Cor B < D.

leaves and unlabeled internal nodes, can be unrooted or rooted if the evolutionary origin
is known, and usually has internal nodes of degree 3. Over the past few decades, many
different objective criteria and algorithms for reconstructing phylogenies have been
developed, including (not exhaustively) parsimony [6], [9], [22], compatibility [17],
distance [10], [21], and maximum likelihood [6], [7], [1]. The outcomes of these methods
usually depend on the data and the amount of computational resources applied. As a
result, in practice they often lead to different trees on the same set of species [16]. It is
thus of interest to compare phylogenies produced by different methods, or by the same
method on different data, for similarity and discrepancy. The comparison of phylogenies
is also routinely performed in simulation studies where people analyze reconstructed
phylogenies against the true ones.

Several metrics for measuring the distance between phylogenies have been proposed
in the literature. Among these measures, the nearest neighbor interchange (nni) dis-
tance [19], [20], [25] has perhaps received the most attention. An nni operation swaps
two subtrees that are separated by an internal edge (u, v), as shown in Figure 1. The
nni operation is said to operate or perform on this internal edge. The nni distance,
Dnii(Ty, T2), between two trees T} and T3 is defined as the minimum number of nni op-
erations required to transform one tree into the other. The computational complexity of
computing the nni distance has puzzled the research community for nearly 25 years until
recently. It is shown in [3] that the nni distance is NP-hard to compute. Some efficient
logarithmic-ratio approximation algorithms for the nni distance have also been proposed
in [3] and [18].

The problem of computing distance between phylogenies also arises in a different
context. When the data is in the form of some molecular sequences of organisms and the
sequences have been subject to events such as recombination or gene conversion during
the course of evolution, the evolutionary history of the sequences cannot be adequately
described by a single tree. In an attempt to solve this problem, more general evolutionary
models have been proposed including the network model [24] and a model using a list
of phylogenetic trees [12], [13]. In the latter, every tree corresponds to a specific region
of the sequences, and each tree can be obtained from the preceding tree on the list by
transferring some subtrees from one place to another. Figure 2 shows a recombination
event between two sequences and Figure 3 shows a subtree-transfer operation and its
corresponding recombination event. The parsimony model in [12] and [13] requires
the computation of the subtree-transfer distance between two trees, i.e., the minimum
number of subtrees we need to move to transform one tree into the other. In [15] the
authors show that computing the subtree-transfer distance is NP-complete and give a
simple approximation algorithm with approximation ratio 3.

It is relevant in practice to discriminate among subtree-transfer operations as they
occur with different frequencies. For example, it is reasonable to assume that sequences
that have only diverged recently give rise to more recombinations than sequences that
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Fig. 2. Recombination event between two sequences. The genetic material (thick lines), that is in one sequence
after recombination, was in two sequences just before the recombination.

diverged many generations ago [13], [14]. In this case we can charge each subtree-
transfer operation a cost equal to the distance (number of nodes passed) that the subtree
has moved in the current tree. The linear-cost subtree-transfer distance, Dy (T}, T>),
between two trees T} and T; is then the minimum total cost required to transform 7 into
T, by subtree-transfer operations. Clearly, both subtree-transfer and linear-cost subtree-
transfer models can also be used as alternative measures for comparing phylogenies
generated by different phylogeny reconstruction methods.

A phylogeny may also have weights on its edges, where an edge weight (more popu-

(2)

One subtree
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Fig. 3. [13] Recombination event at point rp in (a) corresponds to transferring subtrec s in (b). The genetic
material (thick lines), that is in one sequence after recombination, was in two sequences just before the
recombination. The two sets of numbers (on the thick lines) correspond to the two evolutionary histories (as
shown in (b)) of two parts of the sequences. For example, in the evolutionary tree for the second parts of the
sequences (rightmost tree in (b)), a common ancestor of 53, 53, 54 is found going back in time; hence the second
number of the thick line in the second row is 3.




tis in one seguey ‘

e each subte
that the suby
Ce, DSI(Tia?“\ :,
ansform Ty

ar-Cost subty-

ing phylogenis

ght (more o~

53 4
ght part of$)

o in (b). Thegersd
nes just W"‘ ‘

itionary msmsﬁ
o second parts ¢

ne; hence theseed®

On the Linear-Cost Subtree-Transfer Distance between Phylogenetic Trees 174

larly known as branch length in genetics) could represent the evolutionary distance along
the edge. Many phylogeny reconstruction methods, including the distance and maximum
likelithood methods, actually produce weighted phylogenies. Comparison of weighted
phylogenies has recently been studied in [ 16]. The distance measure adopted is based on
the difference in the partitions of the leaves induced by the edges m both trees, and has
the drawback of being somewhat insensitive to the tree topologies [8]. Just like the nm
model {4], the linear-cost subtree-transter model can be naturally extended to weighted
phylogenies: a moving subtree is charged for the weighted distance it travels. Intuitively
this measure is more sensitive to the tree topologies than the one in [16].

In this paper we study the computational complexity and approximation algorithms
for linear-cost subtree-transfer distance on both unweighted and weighted phylogenies,
The rest of the paper is organized as follows. In Section 1.1 we show that the hinear-
cost subtree-transfer distance is in fact identical to the nni distance on unweighted
phylogenies. As a result, the complexity and approximation results for the nni distance
reported in [3] and [4] directly apply to the linear-cost subtree-transfer distance on
unweighted phylogenies too. Section 2 presents an algorithm to compute an optimal
linear-cost subtree-transfer sequence on unweighted phylogenies in time O(n - 2000y
where d stands for the linear-cost subtree-transfer distance between the trees involved.
In Section 3 we formalize the extension of the linear-cost subtree-transfer distance on
weighted phylogenies and prove the following resulis:

¢ We show that computing the linear-cost subtree-transfer distance between two weighted
trees is NP-hard, provided we allow multiple leaves of a tree to share the same label
{i.e., the trees are not necessarily uniquely labeled).

e We devise an approximation algorithm for the linear-cost subtree-transfer distance
between weighted trees with performance ratio 2.

The results presented in this paper form a part of the results in [3]. The remaining
results in [3] deal with the proof of NP-hardness of computing the nni distance for
(uniquely) labeled trees, as well as extending the nni distance for weighted phylogenies,
and will be published separately [4].

Unless otherwise mentioned explicitly, the following detinitions are used uniformly
throughout the rest of the paper. All the trees in this paper are trees with internal nodes
of degree 3 and with unique labels on leaves. We will mention it explicitly if a tree has
nonuniquely labeled leaves or unlabeled leaves. An edge of a tree 18 external if 1L 18
incident on a leaf, otherwise it is infernal. Finally, two weighted trees are considered
equal iff there is an isomorphism between them preserving topology and edge weights
{and leaf labels, if they are labeled).

L.1. Nni and Subtree-Transfer on Unweighted Phylogenies. Surprisingly. aithough
they are studied in parallel for very different reasons. we demonstrate here that the
linear-cost subtree-transfer distance and the nni distance are very closely related for
unweighted phylogenies.

LEMMA 1. The linear-cost subtree-transfer distance is identical to the nni distance on
unweighted phvlogenies.
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PROOF. Observe that an nni move is just a restricted subtree-transfer where a subtree is
only moved across a single edge. (In Figure 1 the first exchange can alternatively be seen
as moving node v together with subtree C past node u toward subtree A, or vice versa.) On
the other hand, when all internal nodes have degree 3, a subtree-transfer over a distance d
can always be simulated by a series of d nni moves. Hence the linear-cost subtree-transfer
distance is in fact identical to the nni distance on unweighted phylogenies. O

As a result, all the results on computing the nni distance reported in [3] and [4]
directly apply to the linear-cost subtree-transfer problem on unweighted phylogenies
also. In particular, this means that, for any two unweighted phylogenies T} and T5:

o Computing Dg(Ty, T) is NP-hard.
e Dy (T\, T,) can be approximated within a logarithmic factor in polynomial time.

2. An Efficient Exact Algorithm for Small Subtree-Transfer Distance. The result
in this section concerns computing Dy (Ty, T>) exactly, where T and T, are unweighted
phylogenies. In practice, the trees to be compared usually have small subtree-transfer
distances between them and it is of interest to devise efficient algorithms for computing
an optimal subtree-transfer sequence when the Dy (T3, T2) is small, say at most d. An
n%@ algorithm for this problem is trivial. With careful inspection, one can derive an
algorithm that runs in O (n%® . 29@) time. It turns out that by using the results in [23]
and [18], we can improve this asymptotically to O (n - 2214/2) time.

DEFINITION 1. Let 7; and 75 be the two trees being compared. Anedge e; € T is good
if there is another edge e; € T such that e; and e, partition the leaf labels of T} and T,
identically; e, is bad otherwise.

The proof of the following lemma can be found in [5] which deals with computing
strict consesus trees.

LEMMA 2. [5] Let T\ and T, be two trees, each with n leaves. Then the set of good
edges of Ty (with respect to T,) can be enumerated in O (n) time.

We also need the following rather straightforward observation.

OBSERVATION 3. Let e and e’ be two edges of a binary tree T which are not adjacent to
each other. Then performing an nni operation ¢ across e followed by an nni operation
o’ across ¢’ is the same as performing the nni operation o across ¢’ followed by the nni
operation o across e.

See Figure 4 for an illustration of the Observation 3.

THEOREM 4. Suppose that Dy(Ty, T;) < d. An optimal sequence of subtree-transfer
operations transforming Ty into Ty can be computed in O (n - 22'9/2) time.

PROOF.  Since the linear-cost subtree-transfer distance is identical to the nni distance
on unweighted trees, we choose, for convenience of understanding, to describe how to
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Fig. 4. Illustration of Observation 3. The subtrees swapped in each nni operation are shown by thick dashed
rectangles. The final trees in the two nni sequences are the same. o, 8, y, §, 7 and ¢ are subtrees. The portion
of the tree connecting e to ¢’ is shown by a dashed line.

find an optimal nni sequence (which is in fact an optimal subtree-transfer sequence). We
know that 7\ contains at least one (and at most &) bad edge. Moreover, assume that these
bad edges form ¢ connected components By, ..., B, (1 <t < d). As observed in [18],
for an optimal nni transformation, sometimes one or more nni operations are needed
across a good internal edge of 7. Consider the set of at most d — 1 good edges in T}
across which at least one nni operation is performed in an optimal nni sequence. This set
of good edges forms at most d — 1 connected components in T;. Consider any one such
connected component S. Since good edges in 77 and 7> partition the trees in a similar
manner, it is very easy to see that there must be at least one connected component B;
sharing a vertex with S.
Using this observation, we can devise the following algorithm:

Algorithm NNI-d

For every choice of integers k1, ...,k > 0,1 < i ki <ddo
For every choice of connected subgraphs Ay, ..., A, of Ty such that A;
has at most k; internal edges’ and contains the component B; do

7 Nni operations cannot obviously be performed across external edges.
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(a) (b)

Fig. S. lllustration of how Algorithm NNI-d works (d = 6,k = k2 = 3,1 = 2).

Examine all sequences of nni transformations across edges of all A;’s
such that no more than k; nni operations are performed across the edges
of A; Among all sequences examined, select the one of shortest length
that transforms 7T into T»

Figure 5 illustrates how the algorithm works. Figure 5(a) shows two bad edges o, § in
T, (shown by thick lines) forming two connected components (t = 2). In Figure 5(b) we
show one choice of two connected subgraphs containing k; and &, edges, and including
the edges « and B, respectively. For each connected subgraph, Algorithm NNI-d com-
putes all possible nni sequences such that at most three nni are performed across edges
of each connected subgraph.

Now we analyze the running time of the above algorithm. The following countings
are crucial for the analysis.

o There are at most

‘i(z‘ﬂ—l) Si(iﬁ—l) siz"*"“ ey
. 1 =1 1

i=1 i=1

choices for the integers &, ..., k;.
e Note that any connected subgraph of & edges including a fixed edge (k > 1) can be
represented by a rooted binary tree on k£ + 2 nodes (the root corresponding to the

middle of the fixed edge), hence there are at most Cyy = (1/(k + 3))(2,,::*24) < 2%

such subgraphs [2, page 262]. For k = 1, there is exactly 1 < 2% such subgraph.
Hence, it follows that the total number of choices for the subgraphs Ay, ..., A, (for

any particular value of ki, . ..., k;) is at most 2Zi=1@k) < 924,

Consider a particular choice of subgraphs Aj, Ay, ..., A, (with k1, k2, ..., k, edges,
respectively). Let My, Ma, ..., M, be the s connected components of A; UA,U---UA,.
Assume that M; has ¢; edges (Zf=1 £ = E;=1 k; < d). Notice that we are required to
perform at most £; nni operations across the edges of M;. Let m; < £; be the number
of nni operations performed across the edges of M;. Extend each M; to M; by adding
edges from T such that every degree 1 or degree 2 node of M; (thatis not a leaf of T') is
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of degree 3 in M. Notice that M; has at most £; + 3 leaves. Lemma 1 of [18] states that
the number of trees within an nni distance of m > 1 from any given tree with n leaves
is at most 3"~22*" (for m = 1, the number of such trees is obviously at most n — 3).
Hence, the total number of distinct nni operations we will need to consider for each
connected subgraph A; is at most 3¢Gi+3-2% = 3htlgdl o IB3L/2 5 | < ;< g,
and at most £; < 2'3%/2 if m; = 1. By Observation 3, nni operations across the edges
in M; can be performed independently of the nni operations across the edges of M ; for
i # j. Hence, the total number of nni operations across the edges of all M;’s is at most

2D 6 < 91342, Combining everything, the total number of nni operations we will
need to consider is at most

Number of choices for the Number of choices of Nur.nber of nni op-
integers &y, k f X Ay, Ay, ..., A foreach X erations across the
B2 B choice of ky, ka, ..., k, edges of My, M,. ..., M,

which is at most 224 x 22 x 2134/2 = 221d/2,

The set of all good edges of T can be found in O(n) time using Lemma 2, and
this time bound is also sufficient to find the connected components of good edges. Using
the adjacency-list representation of trees, updating a tree during a single nni operation
can be easily done in O (1) time, and whether two trees are isomorphic can be easily
checkedin O (n) time. Hence, this algorithm finds an optimal nni sequence in O (n-2214/2)
time. |

3. Linear-Cost Subtree-Transfer Distance on Weighted Phylogenies. In this sec-
tion we investigate the linear-cost subtree-transfer model on weighted phylogenies. Re-
call that the linear-cost subtree-transfer distance is identical to the nni distance on un-
weighted phylogenies. Below we formalize the linear-cost subtree-transfer model on
weighted phylogenies.

Consider (unrooted) trees in which each edge e has a weight w(e) > 0. To ensure
feasibility of transforming a tree into another, we require the total weight of all edges to
equal one. A subtree-transfer is defined as follows. Select a subtree S of T at a given node
u and selectanedge e4 € S. Split the edge e4 into two edges eg and e7 with weights w(eg)
and w(e7) (w(eg), w(er) > 0, w(eg) + wle;) = w(es)), and move S to the common
endpoint of eg and e;. Finally, merge the two remaining edges e, and e, adjacent to u
into one edge es with weight w(es) = w(e;) + w(ez). The cost of this subtree-transfer
is the total weight of all the edges over which S is moved. Figure 6 gives an example.
The subtree S is transferred to split the edge e4 to eg and e7 such that w(eg), w(e7) = 0
and w(eg) + w(e7) = w(ey); finally, the two edges e) and e, are merged to es such that
w(es) = w(e;) + w(ey). The cost of transferring S is w(ez) + w(ez) + w(es).

3.1. Some Definitions and a Useful Lower Bound. In this section we introduce some
notations and a lower bound on the subtree-transfer distance which will be useful in
subsequent proofs. For any tree T, let E(T) (resp. V (T)) denote the edge set (resp. node
set) of T and let L(T) denote the set of leaf nodes of T. An external edge of T incident on
a leaf node a is denoted by er (a). Let Ein(T) and E.x(T) denote the set of internal and



184 B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp
e & & G &s 5 % °
AT ] EREIN
’ AY
’ \
/ \
/l \\ S
’ S \
A
(@) ®)

Fig. 6. Subtree-transfer on weighted phylogenies. Tree (b) is obtained from tree (a) with one subtree-transfer.

external edges of T, respectively. For a subset E' C E(T), define w(E') = 3,z w(e).
Define Win(T) = w(Ein(T)) and Wex(T) = w(Eexe(T)).

Consider the transformation of tree T} to tree T, (hence L(7}) = L(T3)). We partition
Eex(T}) into three subsets as follows:

Eex1,57,(Th) = {er (@) | wler (@) > w(er, (a))},
Eexi1i=1,(T1) = {er, (@) | w(er,(a)) = wler,(a)},
Eex,1,<T,(T1) = {er,(a) | w(er (a)) < wler,(a)},
Wew1,51,(T1) = Y wlen (@) —wlen(a).

er (@€Ee1 >y (Th)

Similarly, Eex (T2) can be partitioned into Eey 1,51, (12), Eex, T,=1;(T2),and Eexi, 1, <1, (T2).
WexiT, <1, (T2) is defined analogously.

LEMMA 5. Wine(T1) + Wexr 1,57, (T1) = Win(T2) + Wexe,1, <1, (T2).

PROOF.  Since W(Eex,T;>T,(T1)) = W(Eext,1,57,(12)) + Wex,1,51,(T1), we have

Wint(T1) + w(Eex,1,=T,(T1)) + W(Eexi,1, <1, (T1))
+ W(Eex 1,51, (12) + Wee 151 (T1) = w(Ty) = 1.
Similarly, we have
Wine(T2) + w(Eexi1,=7,(T2)) + W(Eex, 1,5, (T2))
+ w(Ecxt.T,<T2(Tl)) + Wext,T1<T2(T2) =w(l) = 1.
Since W(Eex,1,=T,(T1)) = w(Eex,1,=1,(T2)), the lemma follows from the above two

equations. O

We next define the notion of good edge pairs in the following:

DEFINITION 2. Lete) € Ein(Ty) and e; € Ejq(T2). Let T| and T}’ be the two subtrees
of Ty partitioned by e;. Let T; and T,’ be the two subtrees of T partitioned by e,. The

edges e and e, are called a good edge pair of Ty and T iff the following two conditions
hold:

1. L(T)) = L(T}) and L(T}") = L(T}).



On the Linear-Cost Subtree-Transfer Distance between Phylogenetic Trees 185
2. One of the following two conditions holds:

(@) w(E(TY)) < w(E(T})) < w(E(T))) + wley); or

(b) w(E(T)) < w(E(T))) < w(E(TY)) + w(ey).

The following lemma provides a lower bound on D (T, T,) when T} and T» do not
share good edge pairs.

LEMMA 6. If Ty and T, share no good edge pairs, then:

(1) Da(Ti, T2) = Win(T1) + Wexr, 57, (Th).
(2) Ds(Ty, Ta) = Win(T2) + Wet, <1, (T2).

PROOF.  We only prove (1). The proof of (2) follows from (1) and Lemma 5. For each
edge e € E(T)), we determine the minimum portion of e over which some subtrees of T}
must be transferred in order to transform T} to T5. First consider an edge e; € Ein(T}).

By the assumption of the lemma, there is no edge e, in T, such that e; and e are a good
pair. There are two cases:

Case 1. The partition of L(T}) induced by e, is different from the partition of L(73)
induced by any edge in 7;. Then, in order to transform 7 to 7>, some leaf nodes
of T must be transferred across the entire length of e;.
Case 2. The partition of L(T;) induced by e; is the same as the partition of L(75) induced
by an edge e; in T;. Let T} and T}’ be the two subtrees of T} partitioned by e;.
Let T, and T} be the two subtrees of T, partitioned by e;, where L(T}) = L(T3)
and L(T{") = L(T}).
Case 2.1. w(E(TY)) = w(E(T|)) + w(ey). In this case, in order to transform
T{ to T,, some subtree in 7| must be transferred across the entire
length of e;.
Case 2.2. w(E(T))) = w(E(Ty)) + w(ez). This implies w(E(T})) + w(e)) <
w(E(Ty)). In order to transform 7}’ to T5', some subtree in T, must
be transferred across the entire length of e;.

In either case, some subtree of T, must be transferred across the entire length of e,
with cost w(ey).

Next consider an edge er, (@) € Eex,1,>T,(T1). In order to transform er, (a) to er, (a),
a subtree of 7; must be transferred across a portion of er, (a) of length w(er, (a)) —
w(er,(a)). Thus:
Dy (Ty, T2) = ZeeEim(T.) w(e) + ZeEEext.T|>T2(Tl)[w(eTl (a)) —w(en@)] = Win(Ty) +
Wext,Tl>T2 (Tl) O

REMARK. Assume that the given trees T; and T, are not uniquely labeled (i.e., alabel
may appear in more than one leaf). Extend the definition of good edge pairs by treatinlg
L(T) as the multiset of leaves foratree T and considering the conditions L(T}) = L(Ty)
or L(T!") = L(T,') to hold if the corresponding multisets are identical. Assume that all
the leaves are incident on zero-weight edges (i.e., Win(T1) = Win(T2) and We,u('Tl). =
Wext(T2)=0), and that T} and T share no good edge pairs. Then, in a manner very similar
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Fig. 7. The operation move(e; ,'0.2, e3). (1) 3, ea, €5 are assembled into a tree S; (2) S is moved along e; by
alength of 0.2.

to the proof of Lemma 6, one can show that Dy (71, To) = Win(71) (and that some
subtree is transfered over every internal edge of T to transform T to T3).

We say that nodes connected by zero-weight edges are equivalent and call the resulting
equivalence classes supernodes. Let ey, . .., ¢ be all positive weight edges incident to
a supernode o. With zero cost, we can reconnect the edges ey, .. ., ¢ by any subtree,
consisting of only zero-weight edges. In particular, the following observation will be
useful in our subsequent descriptions.

OBSERVATION. Let 0 be a supernode of T'. Let ey, .. ., e, be all positive weight edges
incident on o. Pick any ¢; and e;. We can assemble {ey, ..., e;} — {¢;, ;} into a single
subtree S with zero cost; and then transfer S along e; by a distance d < w(e;). The
effect of this operation is that the edges ey, . . ., ¢, are still incident on a supernode, and a
portion of ¢; of length d is moved into e;. The total cost of this operation is d. We denote
this operation by move(e;, d, e;). This operation can be implemented in O (k) time using
the adjacency-list representation of the tree (where the weight of the edge is also stored
in the adjacency list).

Figure 7 shows an example of this operation. In the figure the thin lines denote zero-
weight edges and heavy lines denote positive-weight edges.

A tree T is called a superstar if all of its internal edges have zero weight. In other
words, all external edges of a superstar T are incident to a single supernode.

3.2. AnNP-hardness Result. Itisopen whether the linear-cost subtree-transfer problem
is NP-hard for weighted phylogenies. However, we can show that the problem is NP-hard
for weighted trees with nonuniquely labeled leaves.

THEOREM 7.  Let Ty and T, be two weighted trees with (notnecessarily uniquely) labeled
leaves. Then computing D (Ty, T3) is NP-hard.

Our proof is by a reduction from the Exact Cover by 3-Sets (X3C) problem, which is
defined as follows:

Instance:§ = {s1, ..., sn},wherem = 3q,and Cy, ..., C,, where C; = {s;,, 5,5, si} € S.

Question: Are there g disjoint sets Cy;, ..., G, such that 7, C;, = §?
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Fig. 8. Trees 7| and T, used in the proof of Theorem 7. The leaf labels are shown beside the corresponding
leaves. The notations for some of the internal edges are shown beside the corresponding edges. The edge
weights are as follows: w(ey,) = w(ew,) =+ = w(e,) = wleg) = wleg,) =+ = w(eg,_,) = 1/n,
w(ey ) = wley,) =-- = wley,) = 1/3n, and all other edges have zero weights.

X3C is known to be NP-complete [11]. We will construct two trees T and 7> with
leaf labels (not necessarily unique), such that transforming from T into 7> requires
subtree-transfers of total cost exactly one iff an exact cover of S exists.

PROOF OF THEOREM 7. Assume that an instance, S = {s, 2, ..., Sy} (With m = 3¢q)
and Cy, Cy, ..., C, (with |C;| = 3), of the X3C problem is given. We construct two
weighted labeled (but not uniquely labeled) trees as shown in Figure 8. T} has n long
arms, oy, ..., o,. Io hasn — g long arms, By, ..., Bi—,, and m short arms, y1, ..., Vnm.
Each long (resp. short) arm consists of an edge of weight 1/n (resp. 1/3n), with three
leaves (resp. one leaf) labeled by the same label x (x & S), connected to it as shown in
Figure 8. For notational convenience, let ey, (resp. eg,, €,,) denote the edge of nonzero
weight in the long arm «; (resp. in the long arm B;, in the short arm y;). In T3, at the
bottom of the ith long arm «;, we attach a subtree #; consisting of three leaves, as shown
in Figure 8, labeled by the three elements s;,, s;,, and s;, of C;. At the bottom of each
long arm of T3, there are no additional subtrees attached. The labeling of the remaining
leaves of T, is as follows:

e At the bottom of the ith short arm y;, we attach a leaf labeled by s;.

o The remaining 3n — m leaf labels (each leaf label is an element of §) are associated
(in any order) with the 3n — m leaves in the middle of T, between the long and the
short arms.

Note that Wi (T)) = Wi (T2) = 1 and Wex(T1) = Wex(T2) = 0. Also, notice that
the trees Ty and T, are not uniquely labeled. The following lemma proves the correctness
of the NP-hardness reduction.

LEMMA 8. Dy (T\, T») = 1 iff there is a solution of the X3C problem.
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The following lemma is needed in the proof of Lemma 8.

LEMMA 9. Du(T),T;) > 1. Moréover, if Dg(T1, T2) = 1, then, over any portion of
any of the edges ey, exactly one subtree-transfer takes place.

PROOF.  We first verify that every edge e,, of T} is not a good edge pair with any edge of
T,. Consider the edge e,, (1 < i < n). This edge partitions 7} into two trees T| and T},
where L (T) consists of six leaves labeled with s;,, s, 5i, X, X, X and L(T\") consists of
the remaining leaves of T;. Also, note that w(E(T))) = 0 and w(E(T}")) = 1 — 1/n.
Consider any edge e € T partitioning 7, into two trees T, and T,’. Since both the
conditions L(T{) = L(Tz’) and L(T}") = L(T,") must be satisfied for ey, to be a good
edge pair with e, the only possibility for the edge e is to be the zero-weight edge between
e,, and e,,. However, in that case, w(E (7)) = 1/n and w(E(T})) = 1 — 1/n. Then,
clearly both w(E(T3)) > w(E(T})) and w(E(T})) = w(E(T))) + w(ey,) are true.
Hence, ¢,, is not a good edge pair with e.

Hence, from the Remark following the proof of Lemma 6, some subtree is transferred
over every internal edge e,, of Tj, and we get

n
Dy(T1, Ta) = ) _wleq) = 1.
i=1
The remaining part of the lemma is now straightforward. Assume that over a portion y of
some ey, , more than one subtree is transfered (0 < w(y) < w(ey,)). Then Dy (T1, T2) >
Y wley) +wy)=14+w(y) > 1. a

PROOF OF LEMMA 8. Suppose that there is an exact cover of S, say (without loss of
generality) Cy, ..., C,. Then we transform T} to T3 in the following manner:

o First we consider the corresponding long arms «p, . . ., o, in T} and move the leaves of
each subtreet; (j =1, ..., ¢) upin the following way as shown in Figure 9. Without
loss of generality, we describe the procedure for «; only. Leave one of the three leaves,
say s1,, with a leaf x at the bottom, and move the subtree containing the other two
leaves sy, and sy, together with two leaves labeled x up by a distance 1/3n (remember
that we can use zero-weight edges to assemble many subtrees at a given node into one
subtree with zero cost). Now leave one of these two leaves, say sy, with a leaf labeled
x there, and move the subtree containing leaves s, and s, together with two leaves
labeled x up by a distance 1/3n. Finally, move the subtree containing the leaf s, and
a leaf labeled x and the subtree containing the leaf s;, and a leaf labeled x together
up by a distance 1/3n. After this, we have created all the short arms of T3, but not
necessarily in the correct order. After some rearrangements of the short arms of total
cost zero (since we move subtrees across zero-weight edges), we can create the short
arms of T, in the correct order.

e Foreach C; not in the cover, we simply move the subtree containing the three leaves of
the subtree 7, up by a distance 1/n (see Figure 10). This already creates the remaining
long arms of T;. Now, with some extra rearrangements of total cost zero, we can create,

in correct order, the leaves in the middle part of T, between the long and the short
arms.
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Fig. 9. Moving leaves of the long arm «;.

Hence, our conversion of Tj to T; is complete. The total cost of conversionisg - 1/n +
(n—gq)-1/n =1, as promised.

Conversely, assume that there is no exact cover of S. Then, by Lemma 9, if D (T, T2)
= 1, then over any portion of any of the edges ¢,,, at most one subtree transfer takes
place. However, in that case, the only possible way to create the m short arms of 73 is to
use exactly ¢ long arms in T}, which means there was an exact cover of S. O

REMARK. Since the X3C problem is NP-complete even if each element occurs in at
most three sets [11], it follows that Theorem 7 holds even if every label, except only one
label (label x in the proof), occurs in at most three leaves.

S N
1 s 1
1S, '3
Iin /n
— X
L X — X
— X — X
/< ) "
Iy
S s '
SR

Fig. 10. Moving leaves of the long arm ¢ for every C not in cover.




190 B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp

3.3. An Approximation Algorithm. In this section, we prove the following theorem.

THEOREM 10. For any two (uniquely-labeled) weighted phylogenies Ty and T,
Dy (T, T2) can be approximated to within a factor of 2 in 0 (n?) time.

We are now ready to describe our algorithm. First we consider the special case when
T, and T; do not have any good edge pairs. Algorithm DST, as described below, approx-
imates Dg (T, T») to within a factor of 2. The algorithm transforms 7 into a superstar
T| (by moving the weight of internal edges into external edges). Similarly, the algorithm
transforms T into a superstar T;. The transformations are chosen to make T/ coincide
with 7. To transform T} to T», we first transform T} to 7{(= T,) and then transform
this to T». Let T (resp. T,) denote the tree during the transformation of 7y (resp. T2). T{
(resp. Ty) is initialized to be T} (resp. T>).

Algorithm DST

Step 0. Initialize T} = Ty and T, = T».

Step 1. While 7} is not a superstar yet and there is an external edge
er;(a) = (a,u) in T/ such that w(er;(a)) < w(er;(a)), do:

o Let ¢; be any positive weight internal edge of T} incident on the
supernode containing u. Letd =min{w(e;), [w (eTz' (a))——w(eTlf (a)l}.

e Perform the operation move(ey, d, er{(a)) in T{. (Note: after this
move operation, either the entire length of e; is moved into er; (a) or
w(er;(a)) = w(er;(a)).)
(Note: after the loop terminates, either T} is a superstar or w(eT{ (a)) >
w(erzf (a)) for all leaf nodes a. Also we perform subtree-transfer only
on internal edges of T;.)

Step 2. Similar to Step 1, with the roles of T} and T, swapped.

Step 3. We transform T} and T, into two superstars such that w(er (a)) =
w(eTzz (a)) for all leaf nodes a. There are two possible cases as follows.
Case 3.1. w(eT; (@) = wler (a)) for all leaf nodes a. Perform the

following loop to transform both 7} and 7} into superstars. During the
execution of the loop, we maintain the condition w(eT( (a)) =
w(er;(a)) for all leaf nodes a (this condition implies that 7} is a
superstar iff T, is a superstar).
Repeat
Pick any edge e (a) = (a, uy) in Tj. Suppose that the corre-
sponding edge erz'(a) in T2’ is (a, up). Let e; be any positive
weight internal edge of T} incident on the super-node containing
uj. Let e, be any positive weight internal edge of T, inci-
dent on the supernode containing u,. Let d = min{w(ey),
w(ey)}. In T} perform the operation move(ey, d, er/(a)). In T,
perform the operation move(ez, d, er; (a)). (After this, we have
moved the entire length of either e; or e; into external edges.)
Until both T and T, are superstars.
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lowmg theore, (Note: during this step we perform subtree-transfer only on internal
edges of T\ and T>.)

Case 3.2. There exists a leaf node a such that w(er (a)) # wie r;(a))
This can happen only if both 7| and T, are superstars a Iready. Wz
need to make w(er (a)) = wwr {a@)) for all leaf nodes a. This is
done as follows. Parmmn L(T} into three subsets A, B, and C

enies Tl and}a
e. .

- Special case yi, as follows: A (resp. B, C) is the set of leaf nodes a (resp. b, ¢)

sed below, o, such that w(er; (a)) = w(er;(a)) (resp. u»(_eyﬁ})} < uzr(effé{h}},
T into a supergy, wier; (¢)) > w(er;(c))).
larly, the algorigy, Repeat
' make T} cofpig, Pick any edge er;(b) with b € B and er(c) withc € C. Lu
ind then, transiory d = min{{w(er;(c)) —wler;(c))], [wler, (6) — wler, (BN} 1
of Ty (resp. LI T/, perform move(er; (c), d. er;(b)). Then:

o Ifd = w(e-f:v (b)) — w(er{(b)), remove b from B and put b

into A.
o Ifd = w(er (c)) — w(e;r:u(c}), remove ¢ from C and put ¢
into A.

‘ternal edge o If d = wler;(c)) — wler(c)) = wler (b)) — wier (b)),
: remove b from B; remove ¢ from C: put both b and ¢ into A.
dentonthe Until B = C = 6.
w(eT{ @] Step 4. Now both T} and 7, are superstars and wler (@) = wier(a)
e: after this , for all leaf nodes a. We adjust the topology of the supernodes of 7} and
1o er/(a) or T, so that 7} and 75 are identical.
'”(eT,'(a)) 2 LEMMA L1. Assume that T, and T» do not share any good edge pairs. Then Algo-
ransfer only rithm DST approximates Dy(Ty, T») to within a factor of 2 in O(n?) time.
d. PrROOE.  We analyze the cost and running time of each step of the algorithm. We use
vier; (@) = the adjacency-list representation of a tree. Steps 0 and 4 incur no costs and can be
 as follows. easily implemented in O (n) time. During Steps 1, 2, and 3.1, we only transfer subtrees
Perform the across internal edges of 7y and T». Over any portion of such an edge e, at most one
. During the ‘ subtree-transfer operation occurs. So the total cost of these steps is bounded above by
(@) = Wooi(Ty) + Win(T2). Moreover, it is easy to see that at most O (n) moves are performed
that T} is a during Steps 1, 2, and 3.1, and since each move operation can be implemented in O(n)

time, the total time for all these steps is at most O (n*).
Next, consider Step 3.2. Before the repeat loop is entered, for any ¢ € C, we have:

i the C(?Itre- e wier{(c)) = w(er (¢)). (This is because no additional weight is moved to the edge
:2:)&223;; er:(c) during Steps 1 and 2.)

of Tz’ inci- ° u'(er(c)} > wler(c)).

min{w(ey), During Step 3.2 we only transfer subtrees across the edges er; (¢) for¢ € C. Fix such an
(a)). InT) edge Note that any portion of er;(c) is traversed at most once during Step 3.2. Once the
riis, we have length of er; (c) isreduced to u)(er (¢)), ¢ is removed from C. So the portion of er () tra-
nal edges.) versed dunng Step 3.21is wer; (c}) —w(er; (0)) = w(er (0) —wler:(e)) = u'(e; (c))—

wier,(¢)). So the total cost of Step 3.2 1s at most y__.c[wler; (©) = w (er;(eN] =
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> eeclwler (€)) = wler(c))] < Wex,t,>T,(T1). Also, we perform at most O (n) move
operations during Step 3.2, and hence this step can also be implemented in O (n?) time.

Thus the total cost of the algorithm is bounded above by Win(T1) + Win(T2) +
Wexe,1,>T, (T1), which is at most 2D (T}, T2) by Lemma 6. O

Next we consider the general case when 7, and T, may share some good edge pairs.
First we show how to find all good edge pairs efficiently.

LEMMA 12. Let Ty and T5 be two trees, each with n leaves. Then the set of good edges
of Ty (with respect to T,) can be enumerated in O (n?) time.

PROOF. First wecalculate, forevery edge e of either T or T», w(E (T11)) and w(E (T12))
where Ty, and T} are two subtrees at the two endpoints of e. This can be trivially done in
O (n*) time. Next we ignore condition 2 of the definition of good edge pairs (Definition 2),
and find all those edge pairs of T} and T, which satisfy only condition 1 of this definition.
This can be done in O (n) time by Lemma 12. Finally, for every such edge pair which
satisfies condition 1 of this definition, we check if it satisfies condition 2 of the definition
also. This takes O (n?) time. O

We now show how to apply Algorithm DST to achieve an approximation ratio of 2
when T and T, may share some good edge pairs. Let K be the number of good edge pairs
in T} and T». Our algorithm is by induction on K. If K = 0, Algorithm DST works by
Lemma 11. Suppose K > 0. Lete; = (11, v;) € E(Ty) and e; = (ua, v2) € E(T) be a
good edge pair. Let T} and T’ be the two subtrees of T partitioned by e;. Let T and T’
be the two subtrees of T, partitioned by e, where L(T)) = L(T3) and L(T|") = L(T}).

Assume w(E(T))) < w(E(T)) < w(E(T)))+w(e;). (The other case can be handled
in a similar way.) Add a new edge (u;, x) to 7| and assign w((u;, x)) = w(E(T3)) —
w(E(T])). Add a new edge (x, vy) to T} and assign w((x, v)) = w(e;) — w((u;, x)).
Add a new edge (1, x) to T, and assign w((uz, x)) = 0. Add a new edge (x, v2) to T’
and assign w((x, v2)) = w(ey). (See Figure 11). Note that the weights of all new edges
are nonnegative.

Now we have L(T|) = L(T;) and w(T}) = w(T,). We can normalize the weights of
T} and T} such that their sum is one. By induction hypothesis, we can transform 7 to 7,
with cost at most 2D«(T}, T,). Similarly, we can transform 7|’ to T, with cost at most

Fig. 11. Cut each of 7} and T into two smaller trees.
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Fig. 12. A counterexample to the entangle conjecture.

2Dg(T{', T,"). Combining the two transfer sequences, we can transform T to T, with

cost at most 2Dy (T, T5). The complete algorithm takes O (n?) time. This completes the
proof of Theorem 10.

REMARK. Naturally, one may try to investigate if the performance ratio of 2 in The-
orem 10 can be further improved. For this purpose, note that in some cases, the lower
bounds of Lemma 6 are rather weak, for instance if two trees have four leaves each,
differently partitioned over the single internal edge of weight one, with all four external
edges having zero weight. The transformation cost in this case is two, whereas the above
only shows a lower bound of one. The internal edges of these two trees could be said
to be entangled, since they partition the leaves in sets none of which is contained in an-
other. So one must bring the various leaves together first, and after repartitioning, move
them apart again. This led us to the following conjecture: Disjoint pairs of entangled
edges contribute at least their sum of weights to the optimal cost. However, the trees in
Figure 12 provide a counterexample (external edges have zero weight), in that the edge
pairs {x, w} and {y, z} are both entangling, yet the distance between T} and T is less
than the sum weight of these four edges.

4. Discussion and Open Problems. These results have been obtained as a part of our
larger project of building a comprehensive software package for comparing phylogenetic
trees.

One may wonder why we could obtain a factor 2 approximation for the linear-cost
subtree-transfer distance on weighted phylogenies, where we could getonly alog n factor
approximation for unweighted phylogenies. However, notice that all intermediate trees
in the unweighted case are also binary trees, whereas in the weighted case, intermediate
trees of high degree may be produced (e.g., by allowing zero length edges). In other
words, in the weighted case, the topology of an intermediate tree may be considerably
different from the given trees, and in fact, we do utilize this to get a factor 2 approxima-
tion. Consequently, the distance may vary considerably depending on whether we are
considering unweighted or weighted phylogenies. For example, consider unweighted
trees with n labeled leaves, and weighted trees with n labeled leaves where the weight of
every internal edge is 1/(n — 3) and the rest of the edges have zero weights. Assume also
the two (unweighted or weighted) trees involved in the distance calculation share no good
edge pairs (Definition 1 or 2, as appropriate). In the unweighted case, it is known that
there are two trees which are at a distance of Q(n logn) [23]. However, in the weighted
case, our factor 2 approximation algorithm and the lower bounds in Lemma 6 imply that
any two trees are at a distance of at most O(1).
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Several open questions still remain and may be worth pursuing further:

1. Is the linear-cost subtree-transfer problem NP-hard when the trees are (uniquely)
labeled and weighted?

2. Can we approximate the linear-cost subtree-transfer distance for weighted phyloge-
nies with a ratio better than 2?
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