
ar
X

iv
:c

s/
00

03
05

8v
1 

 [
cs

.D
C

] 
 1

3 
M

ar
 2

00
0 A Note on Knowledge-Based Programs and

Specifications

Joseph Y. Halpern∗

Computer Science Dept.
Cornell University
Ithaca, NY 14853

halpern@cs.cornell.edu
http://www.cs.cornell.edu/home/halpern

Abstract

Knowledge-based program are programs with explicit tests for knowl-
edge. They have been used successfully in a number of applications.
Sanders has pointed out what seem to be a counterintuitive property
of knowledge-based programs. Roughly speaking, they do not sat-
isfy a certain monotonicity property, while standard programs (ones
without tests for knowledge) do. It is shown that there are two ways
of defining the monotonicity property, which agree for standard pro-
grams. Knowledge-based programs satisfy the first, but do not satisfy
the second. It is further argued by example that the fact that they do
not satisfy the second is actually a feature, not a problem. Moreover,
once we allow the more general class of knowledge-based specifications,
standard programs do not satisfy the monotonicity property either.

∗Much of this work was carried out while the author was at the IBM Almaden Research
Center. IBM’s support is gratefully acknowledged. The work was also supported in part
by NSF under grant IRI-96-25901, and by the Air Force Office of Scientific Research under
contract F49620-91-C-0080 and grant F49620-96-1-0323.

http://arxiv.org/abs/cs/0003058v1
http://www.cs.cornell.edu/home/halpern


1 Introduction

Consider a simple program such as This program, denoted Pg1 for future

do forever

if x = 0 then y := y + 1 end

end.

Figure 1: The program Pg1

reference, describes an action that a process (or agent—I use the two words
interchangeably here) should take, namely, setting y to y+1, under certain
conditions, namely, if x = 0. One way to way to provide formal semantics
for such a program is to assume that each agent is in some local state, which,
among other things, describes the value of the variables of interest. For this
simple program, we need to assume that the local state contains enough
information to determine the truth of the test x = 0. We can then associate
with the program a protocol, that is, a function describing what action the
agent should in each local state. Note that a program is a syntactic object,
given by some program text, while a protocol is a function, a semantic
object.

Knowledge-based programs, introduced in [6, 7] (based on the knowledge-
based protocols of [9]) are intended to provide a high-level framework for the
design and specification of protocols. The idea is that, in knowledge-based
programs, there are explicit tests for knowledge. Thus, a knowledge-based
program might have the form where K(x = 0) should be read as “you know
x = 0”. We can informally view this knowledge-based program, denoted
Pg2, as saying “if you know that x = 0, then set y to y + 1”. Roughly
speaking, an agent knows ϕ if, in all situations consistent with the agent’s
information, ϕ is true.

Knowledge-based programs are an attempt to capture the intuition that
what an agent does depends on what it knows. They have already met with

do forever

if K(x = 0) then y := y + 1 end

end,

Figure 2: The program Pg2

1



some degree of success, having been used in papers such as [3, 8, 11, 12, 19,
17, 21, 22] both to help in the design of new protocols and to clarify the
understanding of existing protocols. However, Sanders [25] has pointed out
what seems to be a counterintuitive property of knowledge-based programs.
Roughly speaking, she claims that knowledge-based programs do not satisfy
a certain monotonicity property: a knowledge-based program can satisfy
a specification under a given initial condition, but fail to satisfy it if we
strengthen the initial condition. On the other hand, standard programs
(ones without tests for knowledge) do satisfy the monotonicity property.

In this paper, I consider Sanders’ claim more carefully. I show that it
depends critically on what it means for a program to satisfy a specification.
There are two possible definitions, which agree for standard programs. If
we use the one closest in spirit to the ideas presented in [9], the claim is
false, although it is true for the definition used by Sanders. But, even in
the case of Sanders’ definition, rather than being a defect of knowledge-base
programs, this lack of monotonicity is actually a feature. In general, we do
not want monotonicity. Moreover, once we allow a more general class of
knowledge-based specifications, then standard programs do not satisfy the
monotonicity property either.

The rest of this paper is organized as follows: In the next section, there
is an informal review of the semantics of standard and knowledge-based pro-
grams. In Section 3, I discuss standard and knowledge-based specifications.
In Section 4, I consider the monotonicity property described by Sanders, and
show in what sense it is and is not satisfied by knowledge-based programs.
I give some examples in Section 5 showing why monotonicity is not always
desirable. I conclude in Section 6 with some discussion of knowledge-based
programs and specifications.

2 Standard and knowledge-based programs: an

informal review

Formal semantics for standard and knowledge-based programs are provided
in [6, 7]. To keep the discussion in this paper at an informal level, I simplify
things somewhat here, and review what I hope will be just enough of the
details so that, together with the examples given here, the reader will be
able to follow the main points; the interested reader should refer to [6, 7]
for further discussion and all the formal details.

Informally, we view a distributed system as consisting of a number of

2



interacting agents. We assume that, at any given point in time, each agent
in the system is in some local state. A global state is just a tuple consisting
of each agent’s local state, together with the state of the environment, where
the environment consists of everything that is relevant to the system that is
not contained in the state of the processes. The agents’ local states typically
change over time, as a result of actions that they perform. A run is a function
from time to global states. Intuitively, a run is a complete description of
what happens over time in one possible execution of the system. A point is a
pair (r,m) consisting of a run r and a time m. At a point (r,m), the system
is in some global state r(m). For simplicity, time here is taken to range
over the natural numbers (so that time is viewed as discrete, rather than
continuous). A system R is a set of runs; intuitively, these runs describe all
the possible executions of the system. For example, in a poker game, the
runs could describe all the possible deals and bidding sequences.

Of major interest in this paper are the systems that we can associate
with a program. To do this, we must first associate a system with a joint
protocol. As was said in the introduction, a protocol is a function from local
states to actions. (This function may be nondeterministic, so that in a given
local state, there is a set of actions that may be performed.) A joint protocol
is just a set of protocols, one for each process.

While the joint protocol describes what each process does, it does not
give us enough information to generate a system. It does not tell us what the
legal behaviors of the environment are, the effects of the actions, or the initial
conditions. We specify these in the context. Formally, a context γ is a tuple
(Pe,G0, τ,Ψ), where Pe is a protocol for the environment, G0 is a set of initial
global states, τ is a transition function, and Ψ is a set of admissible runs. The
environment is viewed as running a protocol just like the agents; its protocol
is used to capture features of the setting like “all messages are delivered
within 5 rounds” or “messages may be lost”. Given a joint protocol P =
(P1, . . . , Pn) for the agents, an environment protocol Pe, and a global state
(se, s1, . . . , sn), there is a set of possible joint actions (ae, a1, . . . , an) that can
be performed in this global state according to the protocols of the agents and
the environment. (It is a set since the protocols may be nondeterministic.)
The transition function τ describes how these joint actions change the global
state by associating with each joint action a global state transformer, that
is, a mapping from global states to global states. The set Ψ of admissible
runs is used to characterize notions like fairness. For the simple programs
considered in this paper, the transition function will be almost immediate
from the description of the global states and Ψ will typically consist of all

3



runs (so that it effectively plays no interesting role). What will change as
we vary the context is the set of possible initial global states.

A run r is consistent with joint protocol P in context γ if (1) r(0), the
initial global state of r, is one of the initial global states in G0, (2) for all m,
the transition from global state r(m) to r(m+1) is the result of applying τ

to a joint action that can be performed by (Pe, P ) in the global state r(m),
and (3) r ∈ Ψ. A system R represents a joint protocol P in context γ if it
consists of all runs consistent with P in γ.

Assuming that each test in a standard program run by process i can be
evaluated in each local state, we can derive a protocol from the program in
an obvious way: to find out what process i does in a local state ℓ, we evaluate
the tests in Pg in ℓ and perform the appropriate action.1 A run is consistent
with Pg in context γ if it is consistent with the protocol derived from Pg.
Similarly, A system represents Pg in context γ if it represents the protocol
derived from Pg. We use R(Pg, γ) to denote the system representing Pg in
context γ.

Example 2.1: Consider the simple standard program Pg1 in Figure 1 and
suppose there is only one agent in the system. Further suppose the agent’s
local state is a pair of natural numbers (a, b), where a is the current value
of variable x and b is the current value of y. The protocol derived from Pg1
increments the value of b by 1 precisely if a = 0. In this simple case, we can
ignore the environment state, and just identify the global state of the system
with the agent’s local state. Suppose we consider the context γ where the
initial states consist of all possible local states of the form (a, 0) for a ≥ 0
and the transition function is such that the action y := y+1 transforms (a, b)
to (a, b + 1). We ignore the environment protocol (or, equivalently, assume
that Pe performs the action no–op at each step) and assume Ψ consist of all
runs. A run r is then consistent with Pg1 in context γ if either (1) r(0) is of
the form (0, b) and r(m) is of the form (0, b+m) for all m ≥ 1, or (2) r(m)
is of the form (a, b) for all m and a > 0. That is, either the x component is
originally 0, in which case the y component is continually increased by 1, or
else nothing happens.

Now we turn to knowledge-based programs. Here the situation is some-
what more complicated. In a given context, a process can determine the

1Strictly speaking, to evaluate the tests, we need an interpretation that assigns truth
values to formulas in each global state. For the programs considered here, the appro-
priate interpretation will be immediate from the description of the system, so I ignore
interpretations here for ease of exposition.

4



truth of a test such as “x = 0” by simply looking at its local state. However,
in a knowledge-based program, there are tests for knowledge. According to
the definition of knowledge in systems, an agent i knows a fact ϕ at a given
point (r,m) in system R if ϕ is true at all points in R in which i has the
same local state as it does at (r,m). Thus, i knows ϕ at the point (r,m)
if ϕ holds at all points consistent with i’s information at (r,m). The truth
of a test for knowledge cannot in general be determined simply by looking
at the local state in isolation. We need to look at the whole system. As a
consequence, given a run, we cannot in general determine if it is consistent
with a knowledge-based program in a given context. This is because we
cannot tell how the tests for knowledge turn out without being given the
other possible runs of the system; what a process knows at one point will
depend in general on what other points are possible. This stands in sharp
contrast to the situation for standard programs.

This means it no longer makes sense to talk about a run being consistent
with a knowledge-based program in a given context. However, notice that,
given a system R, we can derive a protocol from a knowledge-based program
Pgkb for process i by using R to evaluate the knowledge tests in Pgkb . That
is, a test such as Kϕ holds in a local state l if ϕ holds at all points in
R where process i has local state l. In general, different protocols can be
derived from a given knowledge-based program, depending on what system
we use to evaluate the tests. Let PgRkb denote the protocol derived from Pgkb
given system R.

We say that a system R represents a knowledge-based program Pgkb in
context γ if R represents the protocol PgRkb . That is, R represents Pgkb
if R = R(PgRkb , γ). Thus, a system represents Pgkb if it satisfies a certain
fixed-point equation.

This definition is somewhat subtle, and determining the system rep-
resenting a given knowledge-based program may be nontrivial. Indeed,
as shown in [6, 7], in general, there may be no systems representing a
knowledge-based program Pgkb in a given context, only one, or more than
one, since the fixed-point equation may have no solutions, one solution, or
many solutions. Moreover, computing the solutions may be a difficult task,
even if we have only finitely many possible global states. There are condi-
tions sufficient to guarantee that there is exactly one system representing
Pgkb , and these conditions are satisfied by many knowledge-based programs
of interest, and, in particular, by the programs discussed in this paper. If
Pgkb has a unique system representing it in context γ, then we again denote
this system R(Pgkb, γ).

5



Example 2.2: The knowledge-based program Pg2 in Figure 2, with the
test K(x = 0), is particularly simple to analyze. If we consider the context
γ discussed in Example 2.1, then whether or not x = 0 holds is determined
by the process’ local state. Thus, in context γ, x = 0 holds iff K(x = 0)
holds, and the knowledge-based program reduces to the standard program.

On the other hand, consider the context γ′ where the agent’s local state
just consists just of the value of y, while the value of x is part of the en-
vironment state. Again, we can identify the global state with a pair (a, b),
where a is the current value of x and b is the current value of y, but now
a represents the environment’s state, while b represents the agent’s state.
We can again assume the environment performs the no–op action at each
step, Ψ consists of all runs, the transition function is as in Example 2.1,
and the initial states are all possible global states of the form (a, 0). In this
context, there is a also unique system representing Pg2: The agent never
knows whether x = 0, so there is a unique run corresponding to each initial
state (a, 0), in which the global state is (a, 0) throughout the run.

Finally, let γ′′ be identical to γ′ except that the only initial state is (0, 0).
Again, there will be a unique system representing Pg2 in γ′′, but it is quite
different from R(Pg2, γ

′). In R(Pg2, γ
′′), the agent knows that x = 0 at all

times. There is only one run, where the value of y is augmented at every
step.

This discussion suggests that a knowledge-based program can be viewed
as specifying a set of systems, the ones that satisfy a certain fixed-point
property, while a standard program can be viewed as specifying a set of
runs, the ones consistent with the program.

3 Standard and knowledge-based specifications

Typically, we think of a protocol being designed to satisfy a specification,
or set of properties. Although a specification is often written in some speci-
fication language (such as temporal logic), many specifications can usefully
be viewed as predicates on runs. This means that we can associate a set
of runs with a specification; namely, all the runs that satisfy the required
properties. Thus, a specification such as “all processes eventually decide
on the same value” would be associated with the set of runs in which the
processes do all decide the same value.2

2Of course, there are useful specifications that cannot be viewed as predicates on runs.
While linear time temporal logic assertions are predicates on runs, branching time tempo-

6



Researchers have often focused attention on two types of specifications:
safety properties—these are invariant properties that have the form “a par-
ticular bad thing never happens”—and liveness properties—these are prop-
erties that essentially say “a particular good thing eventually does happen”
[24]. Thus, a run r has a safety property p if p holds at all points (r,m),
while r has the liveness property q if q holds at some point (r,m). Sup-
pose we are interested in a program that guarantees that all the processes
eventually decide on the same value. We model this by assuming that each
process i has a decision variable xi, initially undefined, in its local state (we
can assume a special “undefined” value in the domain), which is set once
in the course of a run, when the decision is made. Given the way we have
chosen to model this problem, we would expect this program to satisfy two
safety properties: (1) each process’ decision variable is changed at most once
(so that it is never the case that it is set more than once); and (2) if neither
xi nor xj has value “undefined”, then they are equal. We also expect it to
satisfy one liveness property: each decision variable is eventually set.

We say that a standard program Pg satisfies a specification σ in a context
γ if every run consistent with Pg in γ (that is, every run in the system
representing Pg in γ) satisfies σ. Similarly, we can say that a knowledge-
based program Pgkb satisfies specification σ in context γ if every run in every
system representing Pgkb satisfies σ.

The notion of specification we have considered so far can be thought of
as being run based. A specification σ is a predicate on (i.e., set of) runs
and a program satisfies σ if each run consistent with the program is in σ.
Although run-based specifications arise often in practice, there are reason-
able specifications that are not run based. There are times that it is best to
think of a specification as being, not a predicate on runs, but a predicate on
entire systems. For example, consider a knowledge base (KB) that responds
to queries by users. We can imagine a specification that says “To a query

ral logic assertions are best viewed as predicates on trees. (See [4, 16] for a discussion of
the differences between linear time and branching time.) For example, Koo and Toueg’s
notion of weak termination [14] requires that at every point there is a possible future
where everyone terminates. In the notation used in this paper, this would mean that for
every point (r,m), there must be another point (r′,m) such that r and r′ are identical
up to time m, and at some point (r′,m′) with m′

≥ m, every process terminates. This
assertion is easily expressed in branching time logic. Probabilistic assertions such as “all
processes terminate with probability .99” also cannot be viewed as predicates on individ-
ual runs. Other examples of specifications that cannot be viewed as a predicate on runs
are discussed later in this section. Nevertheless, specifications that are predicates on runs
are sufficiently prevalent that it seems reasonable to give them special attention.

7



of ϕ, answer ‘Yes’ if you know ϕ, answer ‘No’ if you know ¬ϕ, otherwise
answer ‘I don’t know’.” This specification is given in terms of the KB’s
knowledge, which depends on the whole system and cannot be determined
by considering individual runs in isolation. We call such a specification
a knowledge-based specification. Typically, we think of a knowledge-based
specification being given as a formula involving operators for knowledge and
time. Formally, it is simply a predicate on (set of) systems. (Intuitively,
it consists of all the systems where the formula is valid—i.e., true at every
point in the system.)3

We can think of a run-based specification σ as a special case of a knowledge-
based specification. It consists of all those systems all of whose runs satisfy
σ. A (standard or knowledge-based) program Pg satisfies a knowledge-based
specification σ in context γ if every system representing Pg in γ satisfies the
specification.

Notice that knowledge-based specifications bear the same relationship
to (standard) specifications as knowledge-based programs bear to standard
programs. A knowledge-based specification/program in general defines a
set of systems; a standard specification/program defines a set of runs (i.e.,
a single system).

4 Monotonicity

Sanders [25] focuses on a particular monotonicity property of specifications.
To understand this property, and Sanders’ concerns, we first need some
definitions. Given contexts γ = (Pe,G0, τ,Ψ) and γ′ = (P ′

e,G
′
0, τ

′,Ψ′), we
write γ′ ⊑ γ if Pe = P ′

e, G′
0 ⊆ G0, τ = τ ′, and Ψ′ ⊆ Ψ. That is, in γ′

there may be fewer initial states and fewer admissible runs, but otherwise
γ and γ′ are the same. The following lemma is almost immediate from the
definitions.

Lemma 4.1: If γ′ ⊑ γ, then for all protocols P , every run consistent with
P in γ′ is also consistent with P in γ, so R(P, γ′) ⊆ R(P, γ). Similarly, for
every standard program Pg, we have R(Pg, γ′) ⊆ R(Pg, γ).

The restriction in Lemma 4.1 to standard programs is necessary. It is
not true for knowledge-based programs. The set of systems consistent with

3As the examples discussed in Footnote 2 show, not all predicates on systems can
be expressed in terms of formulas involving knowledge and time. I will not attempt to
characterize here the ones that can be so expressed. It is not even clear that such a
characterization is either feasible or useful.

8



a knowledge-based program can be rather arbitrary, as Example 2.2 shows.
This example also shows that safety and liveness properties need not be
preserved when we restrict the context. The safety property “y is never
equal to 1” is satisfied by Pg2 in context γ′ but not in context γ′′. On the
other hand, the liveness property “y is eventually equal to 1” is satisfied by
Pg2 in context γ′′ but not γ′.

Sanders suggests that this behavior is somewhat counterintuitive. To
quote [25]:

[A] knowledge-based protocol need not be monotonic with respect
to the initial conditions . . . [In particular,] safety and liveness
properties of knowledge-based protocols need not be preserved by
strengthening the initial conditions, thus violating one of the
most intuitive and fundamental properties of standard programs
[italics Sanders’].4

It is certainly true that the system representing a knowledge-based pro-
gram in a restricted context is not necessarily a subset of the system repre-
senting it in the original context. However, under what is arguably the most
natural interpretation of what it means for a program to satisfy a specifi-
cation with respect to an initial condition, a knowledge-based program is
monotonic with respect to initial conditions.

To understand why this should be so, we need to make precise what
it means for a (knowledge-based) program to satisfy a specification with
respect to an initial condition. Formally, we can take an initial condition to
be a predicate on global states (so that an initial condition corresponds to a
set of global states). An initial condition INIT ′ is a strengthening of INIT
if INIT ′ is a subset of INIT . (In logical terms, this means that INIT ′ can
be thought of as implying INIT .) A set G of global states satisfies an initial
condition INIT if G ⊆ INIT .

Suppose that we fix Pe, τ , and Ψ, that is, all the components of a
context except the set of initial global states, and consider the family Γ =
Γ(Pe, τ,Ψ) of contexts of the form (Pe,G0, τ,Ψ), where the set G0 varies over
all subsets of global states. Now it seems reasonable to say that program
Pg satisfies specification σ (with respect to Γ) given initial condition INIT if
Pg satisfies σ in every context in Γ whose initial global states satisfy INIT .

4In [9], a notion of knowledge-based protocol was introduced, and Sanders is referring
to that notion, rather than the notion of knowledge-based program that I am using here.
See [7] for a discussion of the difference between the two notions. Sanders’ comments
apply without change to knowledge-based programs as defined here.

9



With this definition, it is clear that if Pg satisfies σ given INIT , and INIT ′

is a strengthening of INIT , then Pg must also satisfy σ with respect to
INIT ′, since every context whose initial global states are in INIT ′ also has
its initial global states in INIT .

Thus, under this definition of what it means for a program to satisfy
a specification, Sanders’ observation is incorrect. However, Sanders used a
somewhat different definition. Suppose that rather than considering all con-
texts in Γ whose initial global states satisfy INIT , we consider the maximal
one, that is, the one whose set of initial global states consists of all global
states in Σ that satisfy INIT . We say that Pg maximally satisfies specifica-
tion σ (with respect to Γ) given INIT if Pg satisfies σ in the context in Γ
whose set of initial global states consists of all global states satisfying INIT .

It is almost immediate from Lemma 4.1 and the definitions that for
standard programs and standard specifications, “satisfaction with respect
to Γ” coincides with “maximal satisfaction with respect to Γ”. On the
other hand, they can be quite different for knowledge-based programs and
knowledge-based specifications, as the following examples show.

Example 4.2: For the knowledge-based program Pg2, if we take Γ to con-
sist of all contexts (Pe,G0, τ,Ψ), where Pe, τ , and Ψ are as discussed in
Example 2.2 and G0 is some subset of the global states, then, as we observed
above, Pg2 satisfies the specification “y is never equal to 1” for the initial
condition INIT 1 which can be characterized by the formula y = 0 but not
for the initial condition INIT 2 characterized by x = 0 ∧ y = 0. Similarly, if
Pg3 is the result of replacing the test K(x = 0) in Pg2 by ¬K(x = 0), then
Pg3 satisfies the liveness condition “y is eventually equal to 1” for INIT 1 but
not for INIT 2. This shows that a standard specification (in particular, one
involving safety or liveness) may not be monotonic with respect to maximal
specification for a knowledge-based program.

Example 4.3: Consider the standard program Pg1 again, but now consider
a context where there are two agents. Intuitively, the second agent never
learns anything and plays no role. Formally, this is captured by taking the
second agent’s local state to always be λ. Thus, a global state now has the
form (〈a, b〉, λ). We can again identify the global state with the local state of
the first agent (the one performing all the actions). Thus, abusing notation
somewhat, we can consider the same set of contexts as in Example 4.2. Now
consider the knowledge-based specification K2(y = 0). This is true with

10



respect to Γ for the initial condition INIT 1 but not for INIT 2. This shows
that even for a standard program, a knowledge-based specification may not
be monotonic with respect to maximal satisfaction.

Example 4.4: In the muddy children problem discussed in [10], the father
of the children says “Some [i.e., one or more] of you have mud on your fore-
head.” The father then repeatedly asks the children “Do you know that
you have mud on your own forehead?” Thus, the children can be viewed
as running a knowledge-based program according to which a child answers
“Yes” iff she knows that she has mud on her forehead. The father’s initial
statement is taken to restrict the possible initial global states to those where
one or more children have mud on their foreheads. It is well known that,
under this initial condition, the knowledge-based program satisfies the live-
ness property “all the children with mud on their foreheads eventually know
it”. On the other hand, if the father instead gives the children more initial
information, by saying “Child 1 has mud on his forehead” (thus restricting
the set of initial global states to those where child 1 has mud on his fore-
head), none of the children that have mud on their forehead besides child
1 will be able to figure out that they have mud on their forehead. Roughly
speaking, this is because the information available to the children from child
1’s “No” answer in the original version of the story is no longer available
once the father gives the extra information. (See [6, Example 7.25].) This
problem is not an artifact of using knowledge-based programs or specifica-
tions. Rather, it is really the case in the original puzzle that if the father
had said “Child 1 has mud on his forehead” rather than “Some of you have
mud on your foreheads”, the children with mud on their foreheads would
never be able to figure out that they had mud on their foreheads. Sometimes
extra knowledge can be harmful!5

As should be clear from the preceding discussion, there are two notions of
monotonicity, which happen to coincide (and hold) for standard programs
and specifications, but differ if we consider knowledge-based programs or
knowledge-based specifications. For knowledge-based programs and speci-
fications, the first notion of monotonicity holds, while the second (mono-
tonicity with respect to maximal satisfaction) does not. Monotonicity is

5Another example of the phenomenon that extra knowledge can be harmful can be
found in [20]. This is also a well-known phenomenon in the economics/game theory
literature [23].

11



certainly a desirable property—for a monotonic specification and program,
once we prove that the specification holds for the program for a given initial
condition, then we can immediately conclude that it holds for all stronger
specifications. Without monotonicity, one may have to reprove the prop-
erty for all stronger initial conditions. Maximal satisfaction also certainly
seems like a reasonable generalization from the standard case. Thus, we
should consider to what extent it is a problem that we lose monotonicity
for maximal satisfaction when we consider knowledge-based programs and
specifications.

Of course, whether something is problematic is, in great measure, in the
eye of the beholder. Nevertheless, I would claim that, in the case of maximal
satisfaction, the only properties that are lost when the initial condition is
strengthened are either unimportant properties, or properties that, roughly
speaking, ought to be lost. More precisely, they are properties that happen
to be true of a particular context, but are not intrinsic properties of the pro-
gram. The examples and the technical discussion below should help to make
the point clearer. Thus, this lack of monotonicity should not be viewed as a
defect of knowledge-based programs and specifications. Rather, it correctly
captures the subtleties of knowledge acquisition in certain circumstances.

5 Some examples

Consider again the program Pg2. It can be viewed as saying “perform a
sequence of actions (continually increasing y) if you know that x = 0”. In
the system R(Pg2, γ

′), the initial condition guarantees that the agent does
not know the value of x, and thus nothing is done. The strengthening of
the initial condition to x = 0 ∧ y = 0 described by γ′′ guarantees that the
agent does know that x = 0, and thus actions are performed. In this case,
we surely do not want a safety condition like “y is never equal to 1”, which
holds if the sequence of actions is not performed, to be preserved when we
strengthen the initial condition in this way. Similarly, for the program Pg3
defined in Example 4.2, where the action is performed if the agent does
not know that x = 0, we would not expect a liveness property like “y is
eventually equal to 1” to be preserved.

Clearly, there are times when we would like a safety or a liveness prop-
erty to be preserved when we strengthen initial conditions. But these safety
or liveness properties are typically ones that we want to hold of all systems
consistent with the knowledge-based program, not just the ones represent-

12



ing the program in certain maximal contexts. The tests in a well-designed
knowledge-based program are often there precisely to ensure that desired
safety properties do hold in all systems consistent with the program. For
example, there may be a test for knowledge to ensure that an action is per-
formed only if it is known to be safe (i.e., it does not violate the safety
property). It is often possible to prove that such safety properties hold in
all systems consistent with the knowledge-based program; thus, the issue of
needing to reprove the property if we strengthen the initial conditions does
not arise. (See [6, pp. 259–270] for further discussion of this issue.)

In the case of liveness properties, we often want to ensure that a given
action is eventually performed. It is typically the case that an action in
a knowledge-based program is performed when a given fact is known to be
true. Thus, the problem reduces to ensuring that the knowledge is eventually
obtained. As a consequence, the knowledge-based approach often makes it
clearer what is required for the liveness property to hold. One example of
how safety properties can be ensured by appropriate tests for knowledge and
how liveness properties reduce to showing that a certain piece of knowledge
is eventually obtained is given by the knowledge-based programs of [12]. I
illustrate these points here using a simpler example.

Suppose we have a network of n processes, connected via a communi-
cation network. The network is connected, but not necessarily completely
connected. For simplicity, assume each communication link is bidirectional.
We assume that all messages arrive within one time unit. Each process
knows which processes it is connected to; formally, this means that the local
state of each process includes a mapping associating each outgoing link with
the identity of the neighbor at the other end. We also assume that each
process records in its local state the messages it has sent and received. We
want a program for process 1 to broadcast a binary value to all the pro-
cesses in the network. Formally, we assume that each process i has a local
variable, say xi, which is intended to store the value. The specification that
the program must satisfy consists of three properties. For every run, and
for all i = 1, . . . , n, we require the following:

1. xi changes value at most once,

2. x1 never changes value, and

3. eventually the value of xi is equal to that of x1.

Note that the first two properties are safety properties, and the last is a
liveness property.

13



A simple standard program that satisfies this specification is for process
1 to send v, the value of x1, to all its neighbors; then the first time process
i (i 6= 1) gets the value v, it sets xi to v and sends v to all its neighbors
except the one from which it received the message. Process i does nothing
if it later gets the value v again. This program is easily seen to satisfy the
specification in the context implicitly described above. We remark that, in
principle, we could modify the first property to allow x1 to change value
a number of times before finally “stabilizing” on a final value. However,
allowing this would only complicate the description of the property, since
we would have to modify the third property to guarantee that the value of
xi after stabilizing is equal to that of x1. We return to this point below.

The behavior of each process can easily be captured in terms of knowl-
edge: When a process knows the value of x1, it sends the value to all its
neighbors except those that it knows already know the value of x1. Let
Ki(x1) be an abbreviation for “process i knows the value of x1”. (Thus,
Ki(x1) is an abbreviation for Ki(x1 = 0) ∨ Ki(x1 = 1).) Similarly, let
KiKj(x1) be an abbreviation for “process i knows that process j knows the
value of x1.” Then we have the joint knowledge-based program DIFFUSE =
(DIFFUSE1, . . . ,DIFFUSEn), where DIFFUSEi, the program followed by pro-
cess i, is

do forever

if Ki(x1)
then

xi := x1;
for each neighbor j of i
do

if ¬KiKj(x1) then send the value of x1 to j end

end

end

end.

By considering this knowledge-based program, we abstract away from the
details of how i gains knowledge of the value of x1. If i = 1, then presumably
the value was known all along; otherwise it was perhaps acquired through
the receipt of a message. Similarly, the fact that i sends the value of x1 to
a neighbor j only if i doesn’t know that j knows the value of x1 handles
two of the details of the standard program: (1) it guarantees that i does
not send the value of x1 to j if i received the value of x1 from j, and (2) it
guarantees that i does not send the value of x1 to its neighbors more than

14



once.6 Finally, observe that DIFFUSE is correct even if messages can be
lost, as long as the system satisfies an appropriate fairness assumption (if a
message is sent infinitely often, it will eventually be delivered).7 In this case
process i would keep sending the value of x1 to j until i knows (perhaps by
receiving an acknowledgment from j) that j knows the value of x1. The fact
that DIFFUSE is correct “even if messages can be lost” or “no matter what
the network topology” means that the program meets its specification in a
number of different contexts.

This knowledge-based program has another advantage: it suggests ways
to design more efficient standard programs. For example, process i does
not have to send the value of x1 to all its neighbors (except the one from
which it received the value of x1) if it has some other way of knowing that
a neighbor already knows the value of x1. This may happen if the value
of x1 has a header describing to which processes it has already been sent.
It might also happen if the receiving process has some knowledge of the
network topology (for example, there is no need to rebroadcast the value of
x1 if communication is reliable and all processes are neighbors of process 1).

Returning to our main theme, notice that in every context γ consistent
with our assumptions, in the system(s) representing DIFFUSE in γ, the three
properties described above are satisfied: xi changes value at most once in
any run, x1 never changes value, and eventually the value of xi is equal to
that of x1. Notice also the role of the test Ki(x1) in ensuring that the safety
properties hold. As a result of the test, we know that xi is not updated
until the value of x1 is known; when it is updated, it is set to x1. This
guarantees that x1 never changes value, and that xi changes value at most
once and, when it does, it is set to x1. All that remains is to guarantee that
xi is eventually set to x1. What the knowledge-based program makes clear
is that this amounts to ensuring that all processes eventually know the value
of x1. It is easy to prove that this is indeed the case.

It is also easy to see that there are other properties that do not hold
in all contexts. For a simple example, suppose that n = 3, so there are

6This argument depends in part on our assumption that process i is keeping track of
the messages it sends and receives. If i forgets the fact that it received the value of x1

from j then (if i follows DIFFUSEi), it would send the value of x1 back to j. Similarly,
if i receives the value of x1 a second time and forgets that it has already sent it once
to its neighbors, then according to DIFFUSEi, it would send it again. In addition, the
assumption that there are no process failures is crucial.

7Note that this fairness assumption can be captured by using an appropriate set Ψ
(consisting only of runs where the fairness condition is satisfied) in the context.

15



three processes in the network. Suppose that there is a link from process
1 to process 2, and a link from process 2 to process 3, and that these are
the only links in the network. Moreover, suppose that the network topology
is common knowledge. Given these simplifying assumptions, a process i’s
initial state consists of an encoding of the network topology, its name, and
the value of xi. Now consider two contexts: in context γ1, there are 8 initial
global states, in which (x1, x2, x3) take on all values in {0, 1}3; in γ2, there
are 4 initial global states, in which (x1, x2, x3) take on all values in {0, 1}3

such that x1 = x3. Intuitively, in context γ2, process 3 knows the value
of x1 (since it is the same as the value of x3, which is part of process 3’s
initial state), while in γ1, neither process 2 nor process 3 know the value
of x1. Let R1 = R(DIFFUSE, γ1) and let R2 = R(DIFFUSE, γ2). It is not
hard to see that R1 has eight runs, one corresponding to each initial global
state. In each of these runs, process 1 sends the value of x1 to process 2 in
round 1; process 2 sets x2 to this value in round 2 and forwards the value to
process 3; in round 3, process 3 sets x3 to i (and sends no messages). (Note
that, formally, round k takes place between times k − 1 and k.) Similarly,
R2, has four runs, one corresponding to each initial global state. In these
runs, process 3 initially knows the value of x1, although process 2 does not.
Moreover, process 2 knows this. Thus, in the round of the runs in R2, both
process 1 and process 3 send the value of x1 to process 2. But now, process
2 does not send a message to process 3 in the second round.

As expected, we can observe that not all liveness properties are pre-
served as we move from R1 to R2. For example, the runs in R1 all satisfy
the liveness property “eventually process 2 sends a message to process 3”.
Clearly the runs in R2 do not satisfy this liveness property. This should
be seen as a feature, not a bug! There is no reason to preserve the sending
of unnecessary messages. The extra knowledge obtained when the initial
conditions are strengthened may render sending the message unnecessary.

6 Discussion

When designing programs, we often start with a specification and try to find
an (easily-implementable) standard program that satisfies it. The process
of going from a specification to an implementation is often a difficult one. I
would argue that quite often it is useful to express the properties we desire
using a knowledge-based specification, proceed from there to construct a
knowledge-based program, and then go from the knowledge-based program

16



to a standard program. While this approach may not always be helpful
(indeed, if a badly designed knowledge-based program is used, then it may
actually be harmful), there is some evidence showing that it can help.

The first examples of going from knowledge-based specifications to (stan-
dard) programs can be found in [1, 3, 15] (although the formal model used
in [1, 15] is somewhat different from that described here). The approach
described here was used in [12] to derive solutions to the sequence transmis-
sion problem (the problem of transmitting a sequence of bits reliably over
a possibly faulty communication channel). All the programs derived in [12]
are (variants of) well-known programs that solved the problem. While I
would argue that the knowledge-based approach shows the commonality in
the approaches used to solve the problem, and allows for easier and more
uniform proofs of correctness, certainly this example by itself is not convinc-
ing evidence of the power of the knowledge-based approach.

Perhaps more convincing evidence is provided by the results of [3, 11,
21], where this approach is used to derive programs that are optimal (in
terms of number of rounds required) for Byzantine Agreement and Eventual
Byzantine Agreement. In this case, the programs derived were new, and it
seems that it would have been quite difficult to derive them directly from
the original specifications.

Knowledge-based specifications are more prevalent than it might at first
seem. We are often interested in constructing programs that not only sat-
isfy some safety and liveness conditions, but also use a minimal number of
messages or rounds. As we have already observed, specifications of the form
“do not send unnecessary messages” are not standard specifications; the
same is true for a specification of the form “halt as soon as possible”. Such
specifications can be viewed as knowledge-based specifications. The results
of [3, 11, 21] can be viewed as showing how knowledge-based specifications
arise in the construction of round-efficient programs. The tests for knowl-
edge in the knowledge-based programs described in these papers explicitly
embody the intuition that a process decides as soon as it is safe to do so.

Similar sentiments about the importance of knowledge-based specifica-
tions are expressed by Mazer [18] (although the analogy between knowledge-
based programs and knowledge-based specifications is not made in that pa-
per):

Epistemic [i.e., knowledge-based] specifications are surprisingly
common: a problem specification that asserts that a property
or value is private to some process is an epistemic specifica-

17



tion (e.g., “each database site knows whether it has committed
the transaction”). We are also interested in epistemic proper-
ties to capture assertions on the extent to which a process’s lo-
cal state accurately reflects aspects of the system state, such as
“each database site knows whether the others have committed
the transaction”.

For another example of the usefulness of knowledge-based specifications,
recall our earlier discussion of the specification of the program for broadcast-
ing a message through a network. If we replace the liveness requirements
by the simple knowledge-based requirement “eventually process i knows the
value of x1”, we can drop the first property (that xi changes value at most
once) altogether. Indeed, we do not have to mention xi, i 6= 1, at all.
The knowledge-based specification thus seems to capture our intuitive re-
quirements for the program more directly and elegantly than the standard
specification given.

A standard specification can be viewed as a special case of a knowledge-
based specification, one in which the set of systems satisfying it is closed
under unions and subsets. It is because of these closure properties that we
have the property if a standard program satisfies a standard specification
σ in a context γ, then it satisfies it in any restriction of γ. Clearly, this is
not a property that holds of standard programs once we allow knowledge-
based specifications. Nevertheless, as the examples above suggest, there
is something to be gained—and little to be lost—by allowing the greater
generality of knowledge-based specifications. In particular, although we do
lose monotonicity, there are other ways of ensuring that safety and liveness
properties do hold in the systems of interest.

By forcing us to think in terms of systems, rather than of individual runs,
both knowledge-based programs and knowledge-based specifications can be
viewed as requiring more “global” thinking than their standard counterparts.
The hope is that thinking at this level of abstraction makes the design and
specification of programs easier to carry out.

We still need more experience using this framework before we can de-
cide whether this hope will be borne out and whether the knowledge-based
approach as described here is really useful. Sanders has other criticisms of
the use of knowledge-based programs that I have not addressed here. Very
roughly, she provides pragmatic arguments that suggest that we use predi-
cates that have some of the properties of knowledge (for example Kϕ ⇒ ϕ),
but not necessarily all of them. This theme is further pursued in [5]. While I

18



believe that using predicates that satisfy some of the properties of knowledge
will not prove to be as useful as sticking to the original notion of knowledge,
we clearly need more examples to better understand the issues.

Besides more examples, as pointed out by Sanders [25], it would also
be useful to have techniques for reasoning about knowledge-based programs
without having to construct the set of runs generated by the program. In
[6], a simple knowledge-based programming language is proposed. Perhaps
standard techniques for proving program correctness can be applied to it
(or some variant of it). A first step along these lines was taken by Sanders
[25], who extended UNITY [2] in such a way as to allow the definition
of knowledge predicates (although it appears that the resulting knowledge-
based programs are somewhat less general than those described here), and
then used proof techniques developed for UNITY to prove the correctness
of another knowledge-based protocol for the sequence transmission problem.
(We remark that techniques for reasoning about knowledge obtained in CSP
programs, but not for knowledge-based programs, were given in [13].) Once
we have a number of examples and better techniques in hand, we shall need
to carry out a careful evaluation of the knowledge-based approach, and a
comparison of it and other approaches. I believe that once the evidence is in,
it will show that there are indeed significant advantages that can be gained
by thinking at the knowledge level.

Acknowledgments: I would like to thank Ron Fagin, Yoram Moses, Bev-
erly Sanders, and particularly Vassos Hadzilacos, Murray Mazer, Moshe
Vardi, and Lenore Zuck for their helpful comments on earlier drafts of the
paper. Moshe gets the credit for the observation that knowledge-based pro-
tocols do satisfy monotonicity. Finally, I would like to thank Karen Seidel
for asking a question at PODC ’91 that inspired this paper.

References

[1] F. Afrati, C. H. Papadimitriou, and G. Papageorgiou. The synthesis of
communication protocols. Algorithmica, 3(3):451–472, 1988.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, Reading, Mass., 1988.

[3] C. Dwork and Y. Moses. Knowledge and common knowledge in a
Byzantine environment: crash failures. Information and Computation,
88(2):156–186, 1990.

19



[4] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” re-
visited: on branching versus linear time temporal logic. Journal of the
ACM, 33(1):151–178, 1986.

[5] K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the
logic of local propositions. In I. Gilboa, editor, Theoretical Aspects of
Rationality and Knowledge: Proc. Seventh Conference. Morgan Kauf-
mann, San Francisco, Calif., 1998.

[6] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, Mass., 1995.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based
programs. Distributed Computing, 10(4):199–225, 1997.

[8] V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment
protocols. In Proc. 6th ACM Symp. on Principles of Database Systems,
pages 129–134, 1987.

[9] J. Y. Halpern and R. Fagin. Modelling knowledge and action in dis-
tributed systems. Distributed Computing, 3(4):159–179, 1989. A prelim-
inary version appeared in Proc. 4th ACM Symposium on Principles of
Distributed Computing, 1985, with the title “A formal model of knowl-
edge, action, and communication in distributed systems: preliminary
report”.

[10] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549–587, 1990. A
preliminary version appeared in Proc. 3rd ACM Symposium on Princi-
ples of Distributed Computing, 1984.

[11] J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of even-
tual Byzantine agreement. In Proc. 9th ACM Symp. on Principles of
Distributed Computing, pages 333–346, 1990.

[12] J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way:
knowledge-based derivations and correctness proofs for a family of pro-
tocols. Journal of the ACM, 39(3):449–478, 1992.

[13] S. Katz and G. Taubenfeld. What processes know: definitions and
proof methods. In Proc. 5th ACM Symp. on Principles of Distributed
Computing, pages 249–262, 1986.

20



[14] R. Koo and S. Toueg. Effects of message loss on the termination of dis-
tributed programs. Information Processing Letters, 27:181–188, 1988.

[15] R. Kurki-Suonio. Towards programming with knowledge expressions.
In Proc. 13th ACM Symp. on Principles of Programming Languages,
pages 140–149, 1986.

[16] L. Lamport. “Sometimes” is sometimes “not never”: on the temporal
logic of programs. In Proc. 7th ACM Symp. on Principles of Program-
ming Languages, pages 164–185, 1980.

[17] M. S. Mazer. A link between knowledge and communication in faulty
distributed systems. In R. Parikh, editor, Theoretical Aspects of Rea-
soning about Knowledge: Proc. Third Conference, pages 289–304. Mor-
gan Kaufmann, San Francisco, Calif., 1990.

[18] M. S. Mazer. Implementing distributed knowledge-based protocols.
Submitted for publication, 1991.

[19] M. S. Mazer and F. H. Lochovsky. Analyzing distributed commitment
by reasoning about knowledge. Technical Report CRL 90/10, DEC-
CRL, 1990.

[20] Y. Moses, D. Dolev, and J. Y. Halpern. Cheating husbands and other
stories: a case study of knowledge, action, and communication. Dis-
tributed Computing, 1(3):167–176, 1986.

[21] Y. Moses and M. R. Tuttle. Programming simultaneous actions using
common knowledge. Algorithmica, 3:121–169, 1988.

[22] G. Neiger and S. Toueg. Simulating real-time clocks and common
knowledge in distributed systems. Journal of the ACM, 40(2):334–367,
1993.

[23] A. Neyman. The postive value of information. Games and Economic
Behavior, pages 350–355, 1991.

[24] S. Owicki and L. Lamport. Proving liveness properties of concur-
rent programs. ACM Trans. on Programming Languages and Systems,
4(3):455–495, 1982.

[25] B. Sanders. A predicate transformer approach to knowledge and
knowledge-based protocols. In Proc. 10th ACM Symp. on Principles

21



of Distributed Computing, pages 217–230, 1991. A revised report ap-
pears as ETH Informatik Technical Report 181, 1992.

22


