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To be, or not to be: that is the question:
W hether "tis noblr in them ind to su er
T he slings and arrow s of outrageous fortune,
O r to take am s against a sea of troubles,
And by opposing end them ?
Ham kt (IIT, 1)

A bstract

W e argue that the tools of decision theory should be taken m ore seriously in the soeci cation
and analysis of system s. W e illustrate this by considering a sin ple problem involving reliable
com m unication, show Ing how oconsiderations of utility and probability can be used to decide
when it is worth sending heartbeat m essages and, if they are sent, how often they should be
sent.

K eyw ords: decision theory, speci cations, design and analysis of distributed system s

1 Introduction

In designing and in plem enting system s, choices m ust always be m ade: W hen should we garbage
collect? W hich transactions should be aborted (to rem ove a deadlock)? How big should the
page tabl be? How often should we resend a message that is not acknow ledged? Currently,
these decisions seem to be m ade based on intuiion and experience. However, studies suggest
that decisions m ade in this way are prone to inconsistencies and other pitfalls RS89]. Just as
we would lke to form ally verify critical program s in order to avoid bugs, we would lke to apply
form alm ethods when m aking in portant decisions in order to avoid m aking suboptin al decisions.
M athem atical logic has given us the tools to verify program s, am ong other things. T here are also
believe that these tools need to be taken m ore seriously in system s design. W e view this paper as
a rst step towards show ng how this can be done and the bene ts of so doing.

Before we delve Into the technical details, let us consider a m otivating exam ple. Suppose A lice
m ade an appointm ent w ith Bob and the two are supposed to meest at ve. A lice showsup at ve
on the dot but Bob is now here in sight. At 520, A lice is getting restless. T he question is \To stay
or not to stay?" The answer, of course, is \It depends." C karly, if Bob is an in portant business
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client and they are about to close a deal, she m ight be w illing to wait longer. O n the other hand,
if Bob is an in—law she never liked, she m ight be happy to have an excuse to leave. At a m ore
abstract level, the utility of actually having the m esting is (ox, at least, should be) an In portant
Ingredient In A lice’s calculations. But there is another In portant ingredient: lkelthhood. If A lice
and Bob m eet frequently, she m ay know som ething about how prom pt he is. D oes he typically
arrive m ore or kss on tim e (in which case the fact that he is twenty m Inutes late m ight indicate
that he is unlkely to com e at all) or is he som eone who quite offen show s up half an hour late?
N ot surprisingly, utilities and probabilities (as m easures of likelihhood) are the two key ingredients
In decision theory.

W hile thisexam plem ay seem far rem oved from com puter system s, it can actually be viewed as
capturing part of atom ic comm im ent E-K_-S_@_:{] To see this, suppose there is a coordinator p. and
tw o other processes p, and pp, working on a transaction. To com m it the transaction, the coordinator
must get a yes vote from both p; and p,. Suppose the coordinator gets a yes from p,, but hears
nothing from p,. Should it continue to wait or should it abort the transaction? The types of
Inform ation we need to m ake this decision are precisely those considered In the A liceBob exam plke
above: probabilities and utilities. W hile it is obvious that the am ount of tin e A lice should wait
depends on the situation, atom ic com m it protocols typically have a context-independent tin eout
period. If p. has not heard from all the processes by the end of the tin eout period, then the
transaction is aborted. Since the im portance ofthe transaction and the cost ofwaiing are context-
dependent, the tin eout period would not be appropriate in every case.

A lthough it is not done in atom ic comm it protocols, there certainly is an awareness that we
need to take utilities or costs into acocount elsew here In the database in:erature.:? For exam ple,
when a deadlock is detected in a database system , som e transaction (s) must be rolled back to

that \we] should roll back those transactions that will ncur the m ninum cost. Unfortunately,

the term m Ininum ocost is not a precise one." T ypically, costs have been quanti ed in this context
by considering things lke how long the transaction has been running and how much longer i is
likely to run, how m any data item s it has used, and how m any transactions w ill be involved in a

rolback. T his is precisely the type of analysis to which the tools of decision theory can be applied.
U kin ately we are Interested In when each transaction of interest w ill com plete its task. H owever,

som e transactions m ay be m ore im portant than others. Thus, deally, we would lke to attach

a utility to each vector of com pletion tines. O f course, we m ay be uncertain about the exact
outcom e (eg., the exact running tin e of a transaction). T his is one place where likelihood enters
the picture. Thus, In general, we w ill need both probabilities and utilities to decide which are the
m ost approprate transactions to abort. O f course, obtaining the probabilities and utilities m ay in

practice be di cul. Nevertheless, we m ay often be abl to get reasonable estin ates of them (see

Section EG for further discussion of this issue), and use them to guide our actions.

In this paper, we illustrate how decision theory can be used and som e of the subtlties that
arise In using it. W e focus on one sin pk problem involving reliable com m unication. For ease of
exposition, we m ake num erous sin plifying assum ption in our analysis. D egpite these sin plifying
assum ptions, we believe our results show that decision theory can be used In the speci cation and
design of system s.

W e are not the st to attem pt to apply decision theory in com puter science. Shenker and his

colleagues BB S98, B598], for exam pk, have used ideas from decision theory to analyze various

'A wareness of cost is by no means lim ited to the database community. For exam ple, a sam pling of the pa-



netw ork protocols; M icrosoft has a D ecision T heory and A daptive System s group that has success—
fully used decision theory in a num ber of applications, lncluding troubleshooting problem s w ith
printers and intelligent user nterfaces in O  ce '97. (See http://research.microsoft.com/dtas/

perspective. O ne in portant di erence between our paper and theirs is that they do not treat the
utility function asa given: Theiraim isto nd a good utility fiinction so that the routing algorithm
would exhbit the desired behavior (of avoiding the hot spot) . M ore generally, our focus on w riting
speci cations in temm s of utility, and the subtleties involved w ith the particular application we
consider here| reliable com m unication | m ake the thrust of this paper quie di erent from others
In the literature.

T he rest of thispaper isorganized as follow s. W ebrie y review som e decision-theoretic conoepts
in Section 2. In Section 3 we describe the basic m odel and introduce the com m unication problem
that serves as our running exam ple. W e show that the expected cost of even a singlke attem pt at
reliable com m unication is in nie if there is uncertainty about process failures. W e then show in
Section @ how we can achieve reliable com m unication wih nite expected cost by augm enting our

heartbeat m essages them selves com e at a cost; this cost is investigated in Section ES .Weo ersome
conclusions in Section :_é Som e proofs are relegated to the appendix.

2 A BriefD ecision Theory P rim er

The aimm of decision theory is to help agents m ake rational decisions. There are a number of
equivalent w ays of form alizing the decision process. In thispaper, we assum e that @) we have a set
O ofpossible states of the world or outcom es, (o) the agent can assign autility from R [ f1 ; 1 g
(denoted R ) to each outcom e In O, and (c) each action or choice a of the agent can be associated
wih a subset O 5 of O and a probability m easure Pry on O 5. (This is essentially equivalent to
view Ing Pz as a probability m easure on O which assigns probability 0 to theoutcomesin O  043.)

Roughly speaking, the utility associated w ith an outcom e m easures how happy the agent would
be ifthat outocom e occurred. T hus, utilities quantify the preferences ofthe agent. T he agent prefers
outcom e 07 to outcome o, i the utility of @ is higher than that of o,. The st O 5 of outcom es
associated w ith an action or choice a are the outcom es that m ight arise ifa is perform ed or chosen;
the probability m easure on O 5 represents how lkely each outcom e is if a is perform ed. T hese are
highly nontrivial assum ptions, particularly the last two. W e discuss than (and to what extent they
are attainable in practice) in Section -'_6 For now , though, we just focus on their consequences.

Recall that a mandom variabke on the sest O of outcom es is a function from O toR . Given a
random variabl X and a probabjEJ)jty m easure P r on the outocom es, the expected value of X w ith
respecttoPr,denotedEPr(X )ris ox o) VPrX = v),whereX (O) istherange ofX and X = v
denotes the set fo 2 O :X (0) = vg. W e drop the superscript Pr if it is clear from the context.
N ote that utility is Just a random variable on outcom es. T hus, w th each action or choice, we have
an associated expected utility, where the expectation is taken w ith respect to O 5 and Pry. Since
utilities can be In nie, we need som e conventions to handlke in nities in arithm etic expressions. If
x> 0,we ltx 1 = 1;ifx< 0,weltx 1l = 1 .Forallx2R,weltx+ 1 = 1.
Finally, welet 0 1 = 0. W e assum e that + and rem ain com m utative on R so this covers all
the casesbutl + ( 1 ),which we take to be unde ned.

The \rational chole" is typically taken to be the one that m axin izes expected utility. W hile
other notions of rationality are clearly possible, for the purposes ofthis paper, we focus on expected
utility m axin ization. A gain, see Section :_6 for further discussion of this issue.



W e can now apply these notions to the A liceBob exam pl from the introduction. One way
of characterizing the possible outcom es is as pairs m 5;m ), where m , is the number of m nutes
that A lice is prepared to wait, and my, is the tin e that Bob actually arrives. (If Bob does not
arrive at all, we takemy= 1 .) Thus, ifm, my, then Alice and Bob meet at tine m ,, In the
outcome M s;myp). Ifm , < my, then A lice keaves before Bob arrives. W hat is the utility of the
outcome M 5;m)? Alice and Bob may well assign di erent utilities to these outcom es. Since we
are interested In A lice’s decision, we consider A lice’s utilities. A very sin ple assum ption is that
there isa xed positive bene tm eetB ob to A lice if she actually m eests Bob and a cost of c-w ait
for each m Inute she waits, and that these utilities are additive. W e assum e here that cwait 0.
(In general, costs are described by non-positive utilities.) Under this assum ption, the utility of the
outcome (M 5;my) ismeetBob + mycwait ifmy; mypandm jcwait ifm, < my.

O foourse, In practice, the utilities m ight be m uch m ore com plicated and need not be additive.
Forexam ple, ifA lice hasam agazine to read, waiting forthe rst fteen m inutesm ight be relatively
painless, but after that, shem ight get Increasingly frustrated and the cost ofwaiting m ight Increase
exponentially, not linearly. The bene t to meeting Bob m ay also depend on the tim e they m eect,
Independent of A lice’s frustration. For exam pl, if they have a dinner reservation for 6 pm . at a
restaurant half an hour away, the utility of m eeting Bob m ay drop drastically after 5:30. F inally,
the utility of m 5;m ) m ight degpend on m , even ifm ; < my. For exam ple, A lice m ight feelhappier
laving at 5:15 if she knew that Bob would arrive at 6:30 than if she knew he would arrive at 5:16.

O nce A lice has decided on a utility fiinction, she has to decide what action to take. The only
choice that A licehasishow longtowai. W ith each choicem ., the set ofpossible outcom es consists
ofthose ofthe form m 5;m ), for allpossible choices ofm . T hus, to com pute the expected utility
ofthe choicem ,, she needs a probability m easure over this set of outcom es, which e ectively m eans
a probability m easure over Bob’s possible arrival tim es.

T his approach ofdeciding at the beginning how long to waitm ay seem far rem oved from actual
practios, but suppose nstead A lice sent her assistant C indy to mest Bob. Know ing som ething
about Bob’s tin eliness (or lack thereof), shem ay wellw ant to give C indy instructions forhow long
to wait. Taking the cost of waiting to be linear in the am ount of tim e that C ndy waits is now
not so unreasonable, since while C indy is tied up waiting for Bob, she is not abl to help A lice in
other ways. If C indy goes to m eest Bob frequently for A lice, it m ay m ake m ore sense for A lice jast
to tell C iIndy her utility finction, and lt C indy decide how long to wait based on the Infom ation
she acquires regarding Bob’s punctuality. O f course, once we think In termm s of A lice sending an
assistant, it isbut a am all step to think of A lice running an application, and giving the application
Instructions to help it decide how to act.

3 Reliable C om m unication

W e now consider a problem that w ill serve as a running exam ple throughout the rest of the paper.
Considera system consisting ofa senderp and a receiver g connected by an unreliable bidirectional
Iink. W e assum e that the link satis es the follow Ing properties:

T he tranan ission delay of the link is
The link can only ailby losing Wwhole) m essages and the probability of a m essage loss is

W e assum e that the tranam ission delay and the probability of m essage loss are independent of the
state ofthe system .'L‘-‘ A process is correct if it never crashes. Forx 2 fp;qg, ket 4 bethe probability

2The results of this paper hold even if these quantities do depend on the state of the link. Forexam ple, may be
a function of the num ber of m essages in transit. W e stick to the sin pler m odel for ease of exposition.



that x is correct M ore precisely, the probability of the set of runs in which x is correct). In runs
In which x is not correct, x crashes In each tim e unit w ith probability x > 0, ndependent of all
other events in the systam (such as the events that occurred during the previous tin e uni).

The assum ptions that seem s m ost reasonable to us isthat , = 4,5 0: In practice, there is
always a positive probability that a process w illcrash in any gizen round & W e allow the possibility
that y & 0 to facilitate com parison to m ost of the literature, w hich does not m ake probabilistic
assum ptions about ailire. It also m ay be a usefiillway ofm odeling the scenario n which processes
stay up forever \for all practical purposes" (for exam ple, if the system is scheduled to be taken
o -line before the processes crash).

W e want to Implam ent a reliable link on top of the unreliabl link provided by the system .
T hat is, we want to Im plem ent a reliable send-receive protocol SR using the (unreliable) sends and
receives provided by the link, denoted send and receive. SR isa pint protocol, consisting ofa SEND
protocol for the sender and a RECEWVE protocol for the receiver. SR can be initiated by eitherp or
d. A send-receive protocol is said to be senderdriven if it is iniiated by p and rweceiver-driven if
it is Initiated by g. W €b brow sing can be viewed as an instance of a receiverdriven activiy. T he
web brow ser querdies the web server for the content ofthe page.) W e assum e that sends and receives
take place at a tin e t, whilk SEND s and RECENEs take place over an interval of tim e (since, in
general, they m ay Involve a sequence of sends and receives) .

W e assum e that send and receive satisfy the follow ing tw o properties:

Ifgrcelesm attinet, then psentm attinet and m wasnot lost (sihce the link cannot
create m essages or duplicate m essages and the tranam ission delay is known to be ).

Ifp sendsm at tin e t, then w ith probability 1 ,qwillreceive m at tine t+ ; if g does
not roeivem attinet+ , gwillnever receive it.

W hat speci cation should SR satisfy? C learly we do not want the processes to create m essages out
ofwhole cloth. Thus, we certainly want the follow Ing requirem ent:

Sp. Ifq nishesRECENVIngm at tinet, then pmust have started SENDingm atsometinef t
and gmust have oeived m at some tine t?  t.

W e shall In plicitly assum e Sy w thout further com m ent throughout the paper.
T he m ore Interesting question is what liveness requirem ents SR should satisfy. Perhaps the
m ost obvious requirem ent is:

S1. If p and g are correct and SR is started wih m as the m essage, then g eventually nishes
RECEVingm .

A though S; isvery much in the spirit of typical speci cations, which focus only on what happens
if processes are correct, we would argue that it is rather uninteresting, for two reasons (which
apply equally well to m any other sin ilar speci cations). The st shows that it is too weak: If

p= q= 0, then p and g are correct (ie., never crash) with probability 0. Thus, speci cation
S1 is rather uninteresting in this case: It is saying som ething about a set of runs w ith vanishingly
an all likelhood. The second problem show s that S; is too strong: In runs where p and g are
correct, there is a chance (@bei a snallone) that the link m ay lose allm essages. In this case, g
cannot nish RECENV ingm , since it cannot receivem (as allthe m essages are lost). Thus § isnot
satis ed.

W e assum e that round k takes place between tinek 1 and k.



O f course, both of these problem s are wellknown. T he standard way to strengthen S; to deal
with the rstproblem is to require only that p and g be correct for \su ciently long", but then
we need to quantify this; it is far from clear how to do so. The standard way to dealw ith the
second problem s to restrict attention to fair runs, according to som e notion of faimess Fra8é], and
require only that g nishesRECEV ingm in fair runs. Faimess is a useful abstraction for helping
us characterize conditions necessary to prove certain properties. H ow ever, w hat m akes faimess of
practical interest is that, under reasonable probabilistic assum ptions, it holds w ith probability 1.

O ur interest here, as should be evident from the introduction, is to m ake m ore explicit use of
probability in writing a soeci cation. For exam ple, we can w rite a probabilistic speci cation lke
the follow ing:

So.limy 1 Pr(g nishesRECENVIngm no later than t tin e units after the start of SR jp and g
are up t tin e units after the start of SR) = 1.

R equiram ent S, avoids the two problem swe saw with S;. It says, In a precise sense, that ifp and
q are up for su ciently long, then g willRECEVE m with high probability where \su ciently
long" is quanti ed probabilistically). M oreover, by m aking only a probabilistic statem ent, we do
not have to worry about unfair runs: T hey occur w ith probability 0.

T he traditional approach has been to separate specifying the properties that a protocolm ust
satisfy from the problem of nding the best algorithm that m eets the speci cation. But that
approach typically assum es that properties are allornothing propositions. That is, i in plicitly
assum es that a desirable property must be true In every run (or perhaps every fair run) of a
protocol. It does not allow a designer to specify that it m ay be acosptable for a desirable property
to som etim es fail to hold, if that results in m uch better properties holding In general. W e believe
that, In general, issues of cost should not be separated from the problem of specifying the behavior
of an algorithm . A protoocol that satis es a particular traditional speci cation m ay do so at the
price ofhaving rather undesirabl behavior on a signi cant fraction of runs. For exam pl, to ensure
safety, a protoocolm ay block 20% of the tim e. There m ay be an altemate protocol that is unsafe
only 2% of the tin e but also blocks only 2% of the tine. W hether it is better to violate safety
2% ofthe tin e and liveness 2% of the tin e or to never violate safety but violate liveness 20% of
the tim e cbviously depends on the context. T he problem w ith the traditional approach is that this
com parison is never even considered (any algorithm that does not satisfy safety is autom atically
disn issed).

W hilewebelieve S, isabetter speci cation ofwhat isdesired than S, it is stillnot good enough
for our purposes, since it does not take costs nto account. W ithout costs, we still cannot decide if
it is better to violate liveness 20% of the tin e or to violate safety 2% of the tin e and liveness 2%
ofthetime. Asa st step to thinking in temn s of costs, consider the ollow Ing speci cation:

S3. For each m essagem , the expected cost of SR fm ) is nite.

A s stated, S3 isnot wellde ned, since we have not speci ed the cost finction. W e now consider a
particularly sin ple cost function, m uch in the spirit ofthe A liceB ob exam ple discussed in Section ::2 .
Let SR be a send-receive protocol. Its outcom es are just the possible runs or executions. W e want
to associate w ith each run its utility. T here are two types of costs we w ill take into acocount: sending
m essages and waiting. T he intuition is that each attem pt to send a m essage consum es som e system
resources and each tin e unit spent waiting costs the user. T he total cost is a weighted sum of the
two.

M ore precisely, ket c—send and c-wait be constants representing the cost of sending a m essage
and of waiing one tin e unit, respectively. G iven a run r, ket # -send (r) be the number (possbly



1 ) of sends done by the protocol in run r. W e now want to de ne twait (r), which ntuitively
is the am ount of tim e g spends waiting to RECEWVE m . W hen should we start counting? In the
A liceBob exam ple, it was clear, since A lice starts waiting for Bob at 500. W e do not want to
start counting at a xed tim e, shce we do not assum e that the processes w ill start their protocol
at a particular tine. W hat we want is to start at the tine when SR is Invoked. W hen do we
stop counting, assum Ing we started? If there are no process crashes, then we stop counting when g

nishesRECEN ingm . W hat ifthere are process crashes? In tradiional speci cations (such as g),
the protocolhas no obligations once a process fails. To facilitate com parison between our approach
and the traditional approach, we stop counting at the tin e of a process crash if i happens before
g nishesRECEVIngm . Note that gm ay never nish RECEWV ing if a process crashes.)

Let t; be the tine SR is Invoked. (If no such tin e exists, we let twait (r) = 0. Let &, be
the tine p crashes (f = 1 if p does not crash); ket ty be the tine g crashes (g = 1 if g does
not crash); ket tr bethetineq nishesRECENIgm ( = 1 ifgdoesnot nish). Finally ket
twait (r) = maxfm inft,;ty;trgitsg t. W e take the (total) cost of run r to be

Co (r) = # —send (r)c—send + twait (r)c-wait:

N ote that ¢y is a random variable on runs. If ¢y (r) captures the cost of run r (as we are assum ing
here it does), then S3 saysthat wewant E (cg) = E # -send)c-send + E (twait)cwait to be nite.

Note that, if SR is not invoked In a run r, then ¢y (r) = 0. Since we are interested in the
expected cost of SR, we consider only runs n which SR is actually invoked. A lso, sihce we are
Interested In the expected cost of a singke invocation in this (and the next) section, we assum e for
ease of exposition that the protocol is invoked at tine 0 (so twait (r) = m Inft,;ty;teg) throughout
these two sections w ithout further com m ent.

P roposition 3.1: S, and S3 are incom parabk under cost fiinction cg.

P roof: Suppose = 4= 1. Consider a send—receive protocol SRp In which p sendsm in every
round until it receives ack m ), and g sends is kth ack m ) N K younds after receiving m for the
kth tine, where N > 1. Recallthat is the probability of m essage loss.) It is easy to see that
SRp satis es S . W e show that it does not satisfy S3 by showing thatE @# -send) = 1 .

T he basic idea is that g is not acknow ledging the receipt ofm in a tim ely fashion, so p w ill send
toom any copiesofm . Let Ay = fr :d's stk acksare ost and the (k+ 1)st ack m akes i in rg;
ktA, = fr :allofg’sacksare Iostg. Note that Pr@y) = k a yand Pr@; )= 0 (sowe can
gnore runs n A1 Pr the purpose of com puting expected cost, sihce we adopted the convention
that 0 1 = 0).Notealso thatE (#f send j3) N ¥, since p cannot possbly get ts st ack (m )
beforetineN ¥ in runsin Ay . Thus

®
E (# -send) = E @ -send jAK)Pr@y) Nk RFa o)
k=0 k=0
It is clear that the Jast sum isnot nite, shnce N > 1; thusthe algorithm fails to satisfy Ss.

Suppose = = 0. Consider the trivial protocol (ie. the \do nothing" protocol). In a
round in which both p and g are up, one of p or g will crash in the next round w ith probability

= + g p g- So the probability that the rst crash happensattinek is (1 ¥ . Thus

P
one of them isexpected to crash at time



P
(Here and elsewhere In this paper we use the welltknown fact that }lFokxk = %X)Z o) Thus,

E (co) = L cwait for the trivial protocol, so the trivial protoool satis es S, although it clearly
does not satisfy S, .1

T he follow Ing theorem characterizes when S3 is in plem entable w ith respect to the cost function
Cp . M oreover, i show sthat w ith this cost function, when S; issatis able, there are In fact protocols
that satisfy S3 and S, sin ulaneously.

Theorem 3.2: Under cost function ¢y, there is a send-receive protocol satisfying S3 i = 0 or
g=0or g=1lor p=1.Morover, if = 0or 4= 0or g= lor =1, then there isa
send-receive protocol that satis es both S, and S3.

P roof: Suppose 4= lor = 0.Considerthe (senderdriven) protocolSR; in which p sendsm to
guntilp receves an ack m ) from g, and g sends ack (m ) whenever it receivesm . SR, starts when
P wstsendsm and g nishesRECENingm when i rst roeivesm . To see that SRis correct,
rst consider the case that = 1. LetC, = fr :p receivesack m ) at least once from g in rg. Let
N1 (r) = kg ifthe k1th copy of m isthe rst received by g and ket Ny (r) = ky ifthe koth copy ofm
is the one whose corresponding ack m ) isthe rst received by p.
Since the probability that the 1ink m ay drop a particular m essage is ,

. ® k 1 1 ® k1 1
E N JCp)= k a )= —— k ©= 7 2=1
k=1 k=1 ( )
An analogous argum ent showsthat E N, jCp,) = (1—1)2 Note that twait(r) = N1 (r) + 1 for
r2 Cp,0FE (twait jCp) = E N1 JCp)+ ( 1) = ﬁ‘l’ 1. M oreover, since p stops sending m

when it receives ack m ) from g, f willstop 2 roundsafter the N, (r)th send ofm in run r. Thus
(1—1)2+2 1 isthenum beroftin esp isexpected to sendm in runsofC,. W eexpect 1 ofthese to
be successfin], so the num beroftin es g isexpected to send ack (m ) isatm ost (11 )+ @2 1)@ ).
(T he actual expected value is slightly less since gm ay crash shortly after sending the rstack )
received by p .n runs ofCp). W e conclude that E (# —send jCp) ﬁ + (1—1)2 + 2 1e ).
ThusE (cp jJCp) is nite, since both E # —send J&) and E (twait jC,) are nite.

Wenow tum to E (¢ jCp). W e  rstpartition G, into two sets:

F = fr :p crashes before receiving an ack m ) from gg and
E, = fr :p does not crash and does not receive ack m ) from gg.

Note that PrF,) = O and PrE:) = 1 Pr(Cyp). Wemay ignore runs of F', for the purposes of
com puting the expected cost since we adopted the convention that 0 1 = 0. In runsr of F,
twait (r) is at m ost the tin e it takes for p to crash, which is expected to occur at tim e ! © Thus

P

E cwai jFq1) < ip.Furthemore,jfp crashesattinet. in r2 Fq, i sendsm exactly t. tin es in
r (sihce p does not receive ack m ) in runsofF4). In that case, g sends ack m ) at m ost t. tin es.

So # —send (r) 2t. ifp crashesat tinet. m r2 F1. ThusE @ —send jF;) < % It follow s that

E (co jC_p) is nie.Sihceboth E (@ jCp ) and E (cq jC_p) are nie,E (@) is nite; so SR satis es
S3. To see that the protoocol satis es S, note that fort , the probability that g doesnot nish
RECEN ingm by tin e t given that both p and qare stillup is * . Thus$S, isalso satis ed.

Now consider the case that , = 0. Note that in this case, p is expected to crash at tine = pp .

Thus, E (twait) < ip and E (# —send) < % (for the sam e reason as above), regardless of w hether g
is correct. ThusE (cg) isagain nie. The argum ent that S is satis ed is the sam e as before.



Now suppose = lor 4= 0. These cases are som ew hat analogous to the ones above, except
we need a receiverdriven protoool. Consider a protocol SR, in which g querdes p in every round
until it gets a m essage from p. M ore precisely, et req denote a request m essage. g sends req to
P every tin e unit until i receivesm and p sendsm every tin e it receives req. SR, starts when g
sndsthe rstreq and g nishesRECEN Ingm when g receivesm forthe rsttime. By reasoning
sim ilar to the previous cases, we can show that E (# -send) and E (twait) are both nite (s0 & is
satis ed) and that $ is satis ed.

W e now tum to the negative resul. It tums out that the negative result ism uch m ore general
than the positive resul. In particular, i holds for any cost function w ith a certain property. In
the Hlow ing, we use g=) f to denote that ffg(x) = 1 then £ &)= 1 .

Lemm a 3.3: Let c(r) be a cost finction such that twait (r) =1) c(r) and # —send (v) =1) c). If
0< p<land0< 4< 1, then for any send-receive protocwl SR, Pr(fr :c(r) = 1 g) > 0.

P roof: Suppose SR is a send-receive protocol for p and g. Let R1 = fr : g crashes at tine 0
and p is correct in rg. Note that p will do the sam e thing in all runs in R,: E ither p stops
sending after som e tim e t or p never stops sending. Ifp never stops, then # send(xr) = 1 forall
r 2 R1. Since, by assum ption, # -send (r) =l) c(),wehavethatc(@x)= 1 foreach r2 R;. Since
PrR,)= @ q) ¢> O,wearedone. Now supposep stops sending affertinet. LetR, = fr :p
crashes at tin e 0 and g is correct in rg. N ote that gw illdo the sam e thing in allrunsofR 5 : E ither
g stops sending after som e tin e t° or g never stops sending. If g never stops, then c(r) = 1 forall
r2RzandPrRy)= 4 p) p> 0,50 again we are done. F nally, suppose that q stops sending
at tine t .n runs of R,. Let tP= 1+ maxft;t%. Consider R5 = fr : both processes are correct
and allm essages up to tin e t¥ are lost in rg. Then twait () = 1 forallr 2 R5. By assum ption,
twait (r) =l) c),soc)=1 forallr2 R3.Letn, and nq be the number of invocations of send
by p and g, respectively, n runs of R3 (note that p and g do the sam e thing iIn all runs ofR3).
Then PrR3) = g "°"" > 0, compkting the proof.l (Lemma 3.3)
Clearly # -send (x) =) g (r) and twait (r) =1) Co (r),soLanma'_-_.i applies in m ediately and we
are done.l (T heorem ::3-.5)

2

O f course, once we think in temm s of utility-based speci cations lke S, we do not want to
know just whether a protocol inplem ents S3; we are In a position to com pare the perform ance
ofdi erent protocols that in plem ent & (or of variants of one protocol that all m plem ent S3) by
considering their expected utility. Let SR, and SR, be generalizations (in the sense that they send
m essages every rounds, where need notbe 1) ofthe senderdriven and receiver-driven protocols
from Theorem 3.J, respectively. Let SRy denote the trivial (ie., \do nothing") protocol. W e use
E SR to denote the expectation operator determm ined by the probability m easure on runs induced

by using protocol SR. Thus, for exam plk, E SR, (# —send) is the expected num ber of m essages sent
by SRg. If = 4= 0,then SR, SR,, and SRy, all satisfy S3 (although SRy does not satisfy S»).
W hich isbetter?

In practice, process failures and link failires are very unlkely events. W e assum e In the rest of
the paper that ,, 4, and are all very amall, so that we can ignore sum s of products of these
tem s (with coe cientslke 2 2, ,etc.).Oneway to form alize this is to say that products volving

pr gqrand areO (") tem sand 2 2, ,etc,are0 (1) tems.Wewritety t if3 tHJjiso ™).
N ote that we do notassumeexpressjonshke—z and—;I are an all. i

For the ollow Ing result only, we assum e that not only are pand 40 ("), they are also (");"3

so that inp or iq ismuliplied by an expression that is O ("?), then the resul is O ("), which can

iR ecall that x is M i xisO (") and xt iso ().



then be ignored.
P roposition 3.4: If ,= 4= 0,then

ESRe wait) = ‘2t e 29 gSRe @ eeng) = 0,

pt @ paq 1 m
ESR: twait) E SRs @# —send) Llp” + 212— ,
m

E SR, (twait) 2, E SR, (# —send) {+Dp + 2 2

q

P roof: The relatively straightforward (out tedious!) calculations are relegated to the appendix.ll

N ote that the expected cost of m essages for SR is the sam e as that for SR, except that the
rolesof , and 4 are reversed. T he expected tin e cost of SR, isroughly higher than that of SR,
because gcannot nish RECEN ingm beforetime 2 with a receiverdriven protocol, whereasgm ay

nish RECEVihgm asearly as wih a senderdriven protocol. T his says that the choice between
the sender-driven and receiver-driven protocol should be based largely on the relative probability of
failire of p and g. Ikt also suggests that we should take very large to m inim ize costs. (Intuitively,
the larger is, the lower the m essage costs In the case that g crashes before acknow ledging p’s
m essage.) This conclusion (Which m ay not seem so reasonable) is essentially due to the fact that
we are exam ining a single nvocation of SR In isolation. A swe shall see In Section :-5, this conclusion
isno longer jasti ed once we consider repeated Invocations of SR. F inally, note that if the cost of
m essages is high and waiting is cheap, the processes are better o  (@ccording to this cost function)
using SRyy .

T hus, as faras Sz is concemed, there are tin eswhen SRy, isbetter than SR, orSR,.. How much
of a problem is it that SRy, does not satisfy S,? Our clain is that if this desideratum (ie., Sy) is
In portant, then i should be re ected in the cost function. W hik the cost finction in our exam ple
does take iInto account waiting tin e, it does not penalize it su ciently to give us S, . It is not too
hard to nd a cost function that captures S,. For exam ple, suppose we take ¢ (r) = N F7at@®),
whereN (1 o gt p g)> L.

P roposition 3.5: Under cost function c¢;, S3; Implies S,.

P roof: Suppose SR is a protocol that does not satisfy S,; we show it does not satisfy S3 (under

cost fnction ¢;). Let Cy (£) and C4 () consist of those runs of SR where p and g, respectively, are

up for t tin e units after the start of SR (and perhaps longer). Let Ry (t) consist of the runs of

SR where g nishesRECEN ingm no later than tim e t units after the start of SR. Sinhce SR does

not satisfy S,, there exists " > 0 and an increasing iIn nite sequence of tim es §;t;:::, such that

PrRq(t) jCp i)\ Cqty)) > "foralli. W econsiderthecase = 4= land , ¢< 1 separately.
Suppose = 4= 1.ThenPrCp()\ Cq@) = 1forallt. So

Pritwait> ;) = PrRq () = PrRq () jCp () \ Co)) > "
T
foralli. LetV;= fr:twait(r)> tigandVy = fr:twait@)= 1 g. Note thatV, = LoViand
that V; Vyp or > i. ThusPr({Vy; ) = Pr( %:OV1)> ".S0E (1) Priv; N =1 .

Now wetum to thecasethat , < 1.LetW (t) = fr :twait(r) = tg. Note that twait(r) =
ti+ 1 orallrunsr2 Rq) \ Cp i+ 1)\ Cp (ts) \ Cq (). Thus,

Pr@ (+ 1) 3Cp ) \ Cq)) PrCp+ 1)\ Rq(t) JCp ) \ Cqlt)):

G ven our independence assum ptions regarding process failires,

PrCp+ 1)\ Rgf) JCpi) \ Cqlty)) = PrCpi+ 1) JCp())PrRyg() JCp ) \ Cqlti))
> (1

w.

P)P'
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A sin flar argum ent (exchanging the roles of C, and C4) show s that

Pr@W G+ 1) JCp@m) \Cq@)) > @ q) g™

So 2
E (1) Pr@ (k)N *
k=0
%
Pr@ 4+ 1))N &+t
;.é:_O
Pr@ (+ 1)\ Cpt) \ Col))N &FF
)igo
= Pr@ (+ 1) 3Cp(t) \ Cq))PrCp ) \ Cqlt))N 5F1
- XL t t+1
> maxfl ) pill g 9" @, gt p QENET:

=0

Since (1 o gt p )N > 1 by assumption, we are done. 1

The m oralhere is that S3 gives us the exibility to specify what really m atters in a protocol,
by approprately describing the cost function. W e would lke to rem ind the reader that the cost
functions are not ours to choose: They re ect the user’s preferences. (T hus we are not saying that
c; isbetter than ¢y or vice versa, since each user is entitled to her own preferences.) W hat we are
really saying here is that if S, m atters to the user, then her cost function would force S3 to Inply
Sy | in particular, her cost finction could not be ¢g.

4 U sing H eartbeats

W e saw iIn Section :3 that S3 is not in plem entable if we are not certain about the correctness of
the processes (ie., if the probability that they are correct is strictly between 0 and 1) and the
cost function c(r) has the property that # -send (r) =l) c () and twait (r) =l) c(). Aguilera,

using heartieat m essages. Inform ally, a heartbeat from process i is a m essage sent by i to all other
processes to tellthem that it isstillalive. ACT show that there is a protocolusing heartbeats that
achieves quiescent reliable com m unication; ie. In every run of the protocol, only niely m any
m essages are required to achieve reliable com m unication (not counting the heartbeats). M oreover,
they show that, In a precise sense, quiescent reliable com m unication is not possibl if we are not
certain about the correctness ofthe processes and com m unication isunreliable, a resultm uch in the
spirit of the negative part of T heorem B-_.ZIE In this section, we show that (using the cost function
Cp) we can use heartbeats to inplm ent S3 orallvaluesof , and 4.

For the purposes of this paper, assum e that processes send a m essage we call hbm sg to each
other every tim e units. P rotocol SRy, In Figure Q: is a protocol for reliable com m unication based
on ACT'’s protocol. (It is not as general as theirs, but i retains all the features relevant to us.)
Brie y,what happensaccording to this protocol is that the failure detector layer of g sends hbm sg
to the corresponding layer of p periodically. Ifp wants to SEND m , p chedks to see if any {new)

SACT actually show that their in possibility resul holds even ifthere isonly one process failure, only niely m any
m essages can be lost, and the processes have access to S (a strong failire detector), which m eans that eventually
every faulty process is pem anently suspected and at least one correct process is never suspected. Them odelused by
ACT issomewhat di erent from the one we are considering, but we can easily m odify their resultsto t ourm odel
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T he sender’s protocol (SEND ): T he receiver’s protocol RECENVE):

1. while : recefe(@ck m )) do 1. while true do

2. if receive (hbm sg) then 2. if recefe m ) then
3. send (m ) 3. send @ck m ))
4. 4.

5. od 5. o0d

Figure 1: P rotocol SRy,

hbm sg has arrived; if so, p sendsm to g, provided it has not already received ack m ) from g; g
sendsack (m ) every tim e it receivesm and q nishesRECENV ingm the rsttime it receivesm . Note
that g does not send any hbm sgs as part of SRy,. That is the pb of the aiiredetection layer,
not the b of the protocol. W e assum e that the protocol is built on top of a failure-detection
service.) The cost function of the previous section does ot count the costs of hbmsgs. That is,
since # —send (r) is the num ber ofm essages sent by the protoco], ¢g (r) isnota ected by the num ber
ofhbm sgs sent in run r. Tt is also worth noting that this is a senderdriven protoco], quite like that
given in the proof of Theorem 322 It is straightforward to also design a receiver-driven protocol
using heartbeats.

W e now want to show that SRy, In plem ents S; and get a good estin ate of the actual expected
cost.

Theorem 4.1:Under cost function ¢y, P rotocol S{{hb(nsau's es S3. M orover, E (twait) 2 and
E @#-snd) 2 % ,sothatE () 2 cwait+ 2 2 c-send.

P roof: Using argum ents sin ilar o jhose of the proof of P roposition 34, we can show that
E cwait) 2 andE # =end) 2 2 . W e Jkave details to the reader. 1

The analysis of SRy, is much lke that of SR, in P roposition -_3-_11 Indeed, in the case that
p= g= 0,the two protocols are aln ost identical. The waiting tim e is roughly m ore for SRy,
since p does not start sending until it receives the st hbmsg from g. On the other hand, we
are better o using SR, if g crashes before acknow ledging p’s m essage. In this case, with SR,
P continues to send until it crashes, whilk w ith SRy, i stops sending (sihce i does not get any
hbmsgs from q). This lads to an obvious question: Is it really worth sending heartbeats? O f
course, ifboth , and 4 are between 0 and 1, we need heartbeats or som ething lke them to get
around the in possibility resul of T heorem 5;2 Butif = 4= 0,then we need to look carefully
at the relative size of c-send and c-wait to decide which protocolhas the lower expected cost.

T his suggests that the decision ofw hetherto In plem ent a heartbeat lJayerm ust take probabilities
and utilities seriously, even if we do not count either the overhead of building such a layer or the
cost of heartbeats. W hat happens if we take the cost of heartbeats into acocount? This is the
sub gct of the next section.

®The reader m ight notice thatI td“:e runs induced by this protocol actually resem ble those of the receiver-driven
protocol in the proof of Theorem 84 (iff we identify hbmsg wih req). The di erence is that in the receiverdriven
protocol in the proof of T heorem 3 _.2, the protocol for the receiver actually Sends the regs whereas here the hbm sgs
are sent not by the protocolbut by an underlying heartbeat layer, independent of the protocol.
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5 The Cost of H eartbeats

In the previous section we showed that S3 is achievable w ith the help of heartbeats. W hen we
com puted the expected costs, however, we did so w ith the cost fiunction ¢y, which does not count
the cost of heartbeats. W hik som eone who takes the heartbeat layer for granted (such as an
application program m er or end-user) m ay have ¢y as their cost fiinction, som eone w ho has to decide
w hether to in plem ent a heartbeat lJayer or how frequently heartbeats should be sent (such as a
system designer) is lkely to have a di erent cost ﬁmct’jon| one which takes the cost of heartbeats
into acoount.

A's evidence of this, note that i is inm ediate from Theorem 4.1 that under the cost finction
Co, the choice of thatm Inin izes the expected cost isclearly atmost 2 + 1. Intuitively, ifwe do
not charge for heartbeats, there is no Incentive to space them out. On the other hand, if we do
charge for heartbeats, then typically we w illbe charging for heartbeats that are sent long after a
given invocation of SRy, has com pleted.

The whol point of having a heartbeat layer is that heartbeats are m eant to be used, not jast
by one invocation of a single protocol, but by m ultiple invocations of (possibly) m any protocols.
W e would expect that the optin al frequency of heartbeats should depend in part on how often the
protocols that use them are invoked. T he picture we have is that the SRy, protocol is invoked from
tin e to tin e, by di erent processes in the system . It m ay well be that various invocations of it
are running sim ultaneously. A 1l these invocations share the heartbeat m essages, so their cost can
be spread over all of them . If invocations occur often, then there willbe few \wasted" heartbeats
betw een Invocations, and the analysis ofthe previous subsection gives a reasonably accurate reading
of the costs nvolved. O n the other hand, if is gn all and invocations are Infrequent, then there
willbem any \wasted" heartbeats. W e would expect that if there are infrequent invocations, then
heartbeats should be spaced further apart.

W e now oconsider a setting that takes this into account. For sin plicity, we continue to assum e
that there are only two processes, p and g, but we now allow both p and g to invoke SRy. (It is
possble to do this wih n processes and m ore than one protocol, but the twoprocess and sihgl
protocol case su  ces to illustrate the m ain point, which is that the optinal should depend on
how often the protocol is Invoked.) W e assum e that each process, whilk i is running, invokes SRyp
w ith probability ateach tin e unit. T hus, nfom ally, at every round, each running prooess tosses
a coin w ith probability of of Janding heads. If it Jands heads, the process then invokes SRy, w ith
the other as the recipient. (N ote that we no longer assum e that the protoool is Invoked at tim e 0
In this section.)

Roughly speaking, In com puting the cost of a run, we consider the cost of each Invocation of
SRyp together w ith the cost of all the heartbeat m essages sent In the run. O ur interest w ill then be
In the cost per invocation of SRyy,. Thus, we apportion the cost of the heartbeat m essages am ong
the nvocations of SRy,. If there are relhatively few invocations of SRy, then there willbe m any
\w asted" heartbeat m essages, w hose cost w ill need to be shared am ong them .

For sin plicity, let us assum e that each tim e SRy, is Invoked, a di erent m essage is sent. (For
exam ple, m essages could be num bered and inclide the nam e of the sender and recipient.) W e say
SRypfm ) is invoked at time ty In r ifat tine t; som e process x  rst executes line 1 of the code
of the sender w ith m essage m . This invocation of SRy, com pktes at tin e t, if the last m essage
associated w ith the Invocation (either a copy ofm or a copy ofack m)) issent at time tp. Ifx
received the last heartbeat m essage from the receiver before invoking SRy, ), we take b, = g
(that is, the Invocation com pletes as soon as it starts in this case).

T he processes w ill (eventually) stop sending m or ack m ) if either process crashes or if the
sender receves ack m ). Thus, w ith probability 1, all invocations of SRy, w illeventually com plete.
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Let # -SR (r;t) be the num ber of invocations of SRy, that have com pleted by tin et in r; et c-SR (1;t)
be the cost of these Invocations. Let c-hbm sg (r;t) be the cost of sending hbmsg up to tine t in
r. This is sin ply the number of hbmsgs sent up to tine t Which we denote by # -hbmsg (r;t))
multiplied by c-send. Let c®®(r;t) = ¢8R (r;t) + c-hbmsg (r;t) . Finally, ket

total
c it
c®9 (r) = lim sup#;
01 #FSR@;yb)+ 1

where \lim sup" denotes the lim it of the suprem um , that is,

total
c r;t) o
@)= Im sup _c @y U
tollottD#_SR(r;t)‘l'l

Thus c®9 (r) is essentially the average cost per invocation of SRy, taking heartbeats into acocount.
W e write \lin sup" instead of \lin " sihce the lin it m ay not exist in general. (H owever, the proof
of the next theoram shows tll;laijn ﬁc}l's, ijth probability 1, the 1m it does exist.) For the follow ing
resul only, we assum e that p and garealso O (").

Theorem 5.1: Under the cosf ﬁ:%]ctjon c®™9, P rotocol SRy, satis es S3. Furthem ore, E (c®V9)

(@  pd Q)+ pq 2 % cend+ 4 Tl cwatt + +csend, where 0< < 1.

P roof: See the appendix.l

N ote that w ith this cost function, we have a real decision to m ake In term s of how frequently
to send heartbeats. A sbefore, there is somebene ttomaking > 2 : im inin izes the numberof
redundantm essages sent w hen SRy, is nvoked (that is, m essages sent by the senderbefore receiving
the receiver’s acknow ledgm ent). A lso, by m aking larger we w ill send fewer heartbeat m essages
between invocations of SRy,. O n the other hand, ifwem ake too large, then the senderm ay have
to wait a long tin e after nvoking SRy, before it can send a m essage to the receiver (sihce m essages
are only sent upon receipt of a heartbeat). Intuiively, the greater cwait is relative to c-send, the
anallerwe should make . Clarly wecan nd an optin alchoice for by standard calculus.

In the m odel just presented, if c-wait is lJarge enough relative to c-send, we will take to be
1. Taking this an allis ckarly nappropriate once we consider a m ore re  ned m odel, w here there
are bu ersthatmay over ow . In this case, both the probability ofm essage loss and the tin e for
m essage delivery w ill depend on the num ber of m essages in transit. T he basic notions of utility
still apply, of course, although the calculationsbecom e m ore com plicated. T his jist em phasizes the
cbvious point is that In deciding what value (or values) should have, we need to carefully look at
the actual system and the cost function.

6 D iscussion

W e have tried to argue here for the use of decision theory both in the speci cation and the design
of system s. O ur (@dm ittedly rather sin ple) analysis already show s both how decision theory can
help guide the decision m ade and how m uch the decision dependson the cost function. N one ofour
results are deep; the cost function jist m akes precise what could already have been seen from an
Intuitive calculation. But this is precisely the point: By w riting our speci cation in tem s of costs,
we can m ake the ntuitive calculations precise. M oreover, the speci cation forces us to m ake clear

B y adding 1 to the denom inator, we guarantee it isnever 0; adding 1 also sin pli esone ofthe technicalcalculations
needed in the proof of T heorem :5_3._],'
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exactly what the cost function is and encourages the elicitation of utilities from users. W e believe
that these are both in portant features. It is in portant for the user (and system designer) to spend
tin e thinking about what the In portant attributes of the system are and to decide on preferences
between various tradeo  s.

A possblk future direction is to study standard problem s in the literature (eg. Consensus,
Byzantine A greem ent, Atom ic Broadcast, etc.) and recast the speci cations in utility-theoretic
temm s. One way to do this is to replace a liveness requirem ent by an unbounded increasing cost
function Which is essentially the \cost of waiting") and replace a safety requirem ent by a large
penaly. Once we do this, we can analyze the algorithm s that have been used to solve these
problem s, and see to w hat extent they are optin algiven reasonable assum ptions about probabilities
and utilities.

W hile we believe that there is a great deal of bene t to be gained from analyzing system s in
term s of utility, it is quite often a nontrivialm atter. Am ong them ost signi cant di culties are the
follow ing:

1. W here are the utilities com ing from ? It is far from clear that a user can or is w illing to assign
a realvalued utility to all possible outcom es in practice. T here m ay be com putational issues
(for exam ple, the set of outocom es can be enom ous) as well as psychological issues. W hilke
the agent m ay be prepared to assign qualitative utilities like \good", \fair", or \bad", he
m ay not be prepared to assign 20:7. W hil to som e extent the system can convert qualitative
utilities to a num erical representation, this conversion m ay not precisely captures the user’s
intent. T here are also nontrivial user-interface issues involved in eliciting utilities from users.
In Iight of this, we need to be very carefuil if resuls depend in sensitive ways on the details
of the utilities.

2. W here are the probabilities com ng from ? W e do not expect users to be experts at proba—
bility. Rather, we expect the system to be gathering statistics and using them to estin ate
the probabilities. O f course, som eone still has to tell the system what statistics to gather.
M oreover, our statistics m ay be so sparse that we cannot easily obtain a reliabl estin ate of
the probability.

3. W hy is it even appropriate to m axin ize expected utility? There are tines when i is far
from clear that this is the best thing to do, especially if our estin ates of the probability
and utility are suspect. For exam ple, suppose one action has a guaranteed utility of 100 (on
som e appropriate scale), whilk another has an expected utility of 101, but has a nontrivial
probability ofhaving utility 0. Ifthe probabilities and utilities that were used to calculate the
expectation are reliable, and we anticipate perform ing these actions frequently, then there is
a good case to bem ade for taking the action w ith the higher expected utility. O n the other
hand, if the underlying num bers are suspect, then the action wih the guaranteed utility
m Ight wellbe preferable.

W e see these di culties not as ones that should prevent us from using decision theory, but
rather as directions for further research. It m ay be possbl in m any cases to leam a user’s utility.
M oreover, we expect that in m any applications, except for a an all region of doubt, the choice of
w hich decision to m ake w illbe quite robust, in that perturbations to the probability and utility w ill
not change the decision. Even in cases w here perturbations do change the decision, both decisions
w illhave roughly equalexpected utility. T hus, as long asw e can get som ew hat reasonable estin ates
of the probability and utility, decision theory m ay have som ething to o er.

A nother in portant direction for research is to consider qualitative decision theory, where both
utility and likelhhood are m ore qualitative, and not necessarily real numbers. This is, n fact,
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an active area of current research, as http: //www.medg.lcs.mit.edu/qdt/bib/unsorted.bib (@
bibliography of over 290 papers) attests. N ote that once we use m ore qualitative notions, then we
m ay not be able to com pute expected utilities at all (since utilities m ay not be num eric) lt alone
take the action w ith m axin um expected utility, so we w ill have to consider other decision rules.

Finally, wem ight consider w hat would be an appropriate lJanguage to specify and reason about
utilities, both for the user and the system designer.

W hilke it is clear that there is still a great deal of work to be done in order to use decision-—
theoretic techniques in system sdesign and speci cation, we hope that this discussion has convinced
the reader of the utility of the approach.

A cknow ledgm ents

W e thank Sam Toueg for num erous discussions regarding heartbeats and Jin G ray for giving us
som e Insight on costs In database com putations and for pointing out the use of costs in deadlock
detection. W e also thank the anonym ous referees for their helpfiil com m ents.

A ppendix: P roofs

W e present the proofs of P roposition 3.4 and Theorem 5.1. W e repeat the statem ents of the resuls
for the convenience of the reader. R ecall that for P roposition 3.4, we are assum ing that pand g
are both ("), and that for T heorem :_5-_.-1., we are assum ing that _p and _q areboth O (").

P roposition 3.4: If = 4= 0, then

E SR (twait) = 1 (et g pal q), E SRe # —=end) = 0,

pt @ pa 1 m
ESRs cwait) ESRe (# senq) Ly 2. &,
m
E SRr (t_‘WaJt) 2 ’ E SRr (# —Send) & + 2 2
a

P roof: For SRy, note that # -send(x) = 0 forallr, so E SRer # —=end) = 0. W e also have that
twait (r) is the tin e ofthe st crash In r. Since the probability of a crash during a tin e unit is

= p+ g4 p gr We have that the expected tim e of the rst crash, and hence ESRe (twait), is
xlk(1 o al ) _1 _1 (pt g pd,
For SR,, we st show that ESRs (t-wait) .Since = 4= 0,Pr(twait(x)=1 )= 0, thus

P
E SRs (twait) = }1{= 1 kPrwait = k). W e break the sum into three pieces,

x 1
kPrwait= k),
k=1

Pr(twait= ), and

®
kPrtwait = k),

k= +1
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and analyze each one separately.
For the rst part, note that the only way that twait = k for 1 k < is for there to be a
crash before . Thus

Pricwait=k)= (I )@ D(p+ ¢ p @< p+ g
It follow s that
x 1 x 1 ( 1)
kPritwait= k)< (p+ o k= (p+ g———— O:
k=1 k=1 z

Thuswem ay drop the zrstpart.
For the second part, note that twait = ifp and gareup until and g received the st copy
ofm psent. Wemay also have twait = ifone ofp orgcrashesat tine . Thus,

Pritwait= ) (@1 @ ) @ ) 1;

so the second part is
Finally, for the third part, ifk > ,then k hastheform + a + b,wherea 0and0 b<

@nd a+ b > 0). Iftwait = k = + a + b, then a+ 1 messages are lost by the link, so
Prtwait = k) atl a straightforw ard calculation show s that
® x 1
kPrtwait= k) = ( + b)Prtwait= + b)
k= +1 b=1
* x1
+ (+a +b)Prtwait= + a + b)
a=1b=0
(+ @+ 1)) &t
a=0
((a+ 1) 2+ ) a+ 1
a=
#® b3
. a ®+ a
a=1 a=1
0:
Thus, we can also ignore the third part. Thisgives us E SR, (twait)) , as desired.

Now ket ustum to ESRs # -send). Let us say that a send is successfiil 1 the link does not
drop the m essage (which could be an ack). Consider the set of runsA = fr : q successfully sends
ack ) before crashing in rg. Roughly speaking, what happens is that in runs ofA ,p is receives
ackm) attine 2 wih probability 1. In themeantine, p has sentm exactly 2 tineswith
probabiliy 1. W ih probability 1, aJl of these are received by g; g In tum acknow ledges all
copies and thusE SRs (# —send jA) 2 Z ; that is why this tem appearsanSRs # -send). Tn A,
the expected value of # -send is very large, sihce p will send m until it crashes, so despite the low
probability of A, it contributes the tem Llp)q.w enow tum to the details.

We rstoomputePr@). Note that gcan send ack m ) only at tin es of the form + k . Let
By = fr :g sends the rsts;coess%llack(m) attine + k g. Note thatA = i:oBk and that
Bi\Bj= ; ifi$ j. ThusPr@)= }lFOPrCBk).Sjnoeqsendsthe rst successfiilack (m ) attine

+ k In munsofBy,pmust (successfully) sendm attinek in runsofBy. Thus

Pr@y)= 1 pfta o Frte Hea )%

17



The rstfactorre ectsthe factthatpmusthavebeen up attinek (to sendm ) whilke the second
factor re ects the fact that qmust have been up at tine + k (to roefve m and send ack m )).
The third factor re ects the fact that the previous k attem pts have failed: eitherm was lost or the
corresponding ack m ) was lost, which occurs w ith probability ( + (1 ) )= 2 2. The nal
factor re ects the fact that the (k + 1)st attem pt sucoeeded: both m essages got through. So

%
Pr@a) = PrBy)

k=0

%
_ a p)k *1g B Tkl 2yk (1 )2

k=0

+1 2Xl k k 24k
= 0 0 9fta ) oa pfa gfe )
k=0 1

= @ e 9 tta )

1 @ e g9e %)
= 0 0 g ta Hr@+2)+0M)
(+1) g+ 0 (")

I
=
ho]

W e now want to oomputeESRs # —send jA ). Again, we break ESRs (# -send JjA ) into three pieces,

2d2ie 1
kPr@# -send= k jA),
k=0
1l m 1l m
2% Pr@#-send=2 2 jA),and

b3
kPr@# send= k jA),
k=2d%et+1
and com pute each part separately. 1 m
Note that Pr@# -send= k jA) pt gt fork<2 z , sSince either a process crashed or a
m
m essage is lost. T hus the rstpartjsnomorethanzz— (pt gt ) 0,s0owemay ignore i.

For the second part, we have
1 m

Pr(# -end = 2 2 jA) (1 p)2 +l(l q)d,z—e+ +l(l )dz—e+l 1;
1l m
since ifp isup at tine 2 , g isup at’%'me Z 4 ,a]lofp’ssendsgoltthrough, and g's st
m m
ack m ) got through, then # -send = 2 2 ; thus the second part is 2 2 | Wenow tum our

attention to the last part.
N ote that p sends at least halfthem essages in every run r wWhetherr2 A orr2 A ). Note also

that, affer the rst successfilattempt (that is, afterthe rstm essage sent by p which js received by

g whose corresponding acknow ledgm ent is not lost by the link), p w ill send at m ost 2 m essages,

since p would stop sending 2 tim e unitsafterthe st successfulattem pt (either because preqeived

ack m ) orp crashed). Combining the ablove ’c/v'lo cbservations, we see that if # —sen(% r)= 2 2 4k
m m m

k

fork > 0, then pmust have sent at least 2 4 5 Mmessages and there are at least

% unsucoessfiil
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1l m

attempts in r. Thus, Pr@# -send = 2 2 +x JA) 2 2)d§e_ So we have
® ® k
kPr@# send= k jA) k@2 2ydze
k=2d%et+1 k=2d%et+1
b3
= (Rk+ 1)+ (k+ 2))@ 2yl
k=ci-e
P
= @k + 3) 2 Zykt
k=di-e
0:

1l m
So we m ay ignore the last part as well. Thus E SRs # —send jA) 2 £ . Shee Pr@) 1, we
1l m

have E SR. # —send jJA)Pr@) 2 2

W e now fcus on ESRs (# -send jX)Pr(X). Recall that orr 2 A, g fails to successfully send
ack m ) in r. Consider the follow ing three sets Which is a partition of the set ofall runs):

C = fr :pcrashesat tine 0 In rg,
G = fr :p doesnot crash at tin e 0 and g crashes at orbefore tine 1n rg, and

G = fr :p doesnot crash at tin e 0 and g does not crash at orbefore time in rg.
W e now show that these are their probabilities:

PrG \A)= o,

Pr\A)= (1 @ @ ¢ FH=(+1) 4+0 ("), and

PrG\A)= 0 (").

First note that Pr(C1) = , and Pr(Cy) = (1 )@ @ q) hy = (+ 1) qt O "?).
Furthemore, C; [ Cy X, since if r 2 Cq, [ C,, g does not send ack m ) sucoessfully before
crashJ'ng.ThusPr(Cl\K)= pa.ndPr(Cz\X)= (+1) 4+0 ("2).Sjnoe, as we showed earlier,
Pr@)=1 , (+1) q+0 (%), talo DlowsthatPrCs3\A)= 0 (").

N ow thatwehavePr(Ci\X),letustumtoESRS # -send jC;\ A).Note that orr2 A, p will
send m essages until it crashes. Forr 2 C1, p crashes iInm ediately, so # -send(x) = 0 forr2 C,. For
r 2 C,, g crashesbefore it can possbly send any m essages, so all the m essages are sent by p. Thus

Pr@send=k jCo)= 0 % P 'a a )

shcepmustbeup attine k 1) and crash beforetinek to sendm exactly k tim es. So

_ ?
ESRs () send jC, \ A) = ke % P*a oa o)
k=1
1 1 a b
B L B L R
@ p) k=1
o aoa a p) ey
T 5 @ a )2
= 1 p
1 @ )
= —+0(@):
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. 1 1 _ 1 1 _ 0 ("?) . .
The O (l) tem is there because —p ﬁ = —p Tp("z) = w ’ which is
O (1), shcewe assum ed that , is (") for this proposition.

Forr2 Cs\A,gm ight sesndm essages (none ofw hich, however, w illget through). LetEy = fr 2

Ci\nX:pcrashesa&t%@ekg.WehavePr(E@ @ p)k p.Fu]:themlore,ESRs # -send JEy)

2 k , since p sends k m essages in E and g sends at m ost that m any m essages. So we have

ESRs ¢ —send §C3 \ A) ESRs ¢ —send JEL)PrEy)

k=1
3 lm
250 pfp
k=1
2
2E+1 a0 f,
k=1
2pXL k ® k
= 22 xa +2, a )
5 5:1 k=1
p p
- B _Pioa )
P
2
= —+0@1)
p
Since we assumed that [ is ("),ESRS (#—sende3\X)Pr(C3\X) = O (M. Recall that

ESRs (# send §C; \ A) = 0, =0

ESRs # send jA)Pr@) ESRs @ -send JC, \A)Pr(C, \ A) L+ g,

P
+1 1om
ThjsgjvesusESRs # —send) (7[)“‘ + 2 2 asdesired.
T he reasoning for the SR, case is sin ilar to the SR case. The only majprdi erence is that g
cannot possbly nish RECENingm beforetine 2 . W e leave details to the readerll

Theorem 5.1: Under the cost fijpction ¢*¥9, P rotocol SRy, satis es S3. Furthem ore, E (¢*79)

(@ p) @ ¢+t p g 2 % ceend+ + Tl cwait + *csend, where 0< < 1.

P roof: Roughly speaking, the rst summ and corresoonds to the expected per-invocation cost of
the protoool and the second corresponds to the expected per-invocation cost of the heartbeats. To

do the analysis carefully, we divide the set of runs Into three subsets:

B

fr :one process is correct and the other eventually crashes in rg,

F, = fr :both processes are correct In rg, and
Fy = fr :both processes eventually crash in rg.
T hese are their probabilities:
PrE)= (@ at g p)r

Pr®) = P qland
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PrE)= (I o0  o.

Forr 2 F,, we expect the lone correct process to invoke SRy, In  niely often. A llbut nitely m any
of these invocations w ill take place after the other process crashed. Thus the average cost of an
Invocation in rwillbe 0. Forr 2 F,, on the other hand, both processes are expected to invoke SRy,
In niely offen and the average cost of the nvocation in r is expected to be close to the expected
cost of a single invocation of SRy,. T he com putation of the expected cost of an invocation in a run
In F3 ism ore delicate. W e now exam ine the details.

Let G, be the subset 0of F; consisting of runs r In which the correct process tries to invoke the
protocolin nitely often. Clearly Pr(G; jF1) = 1, since the protocol is invoked w ith probability
at each tin e unit. M oreover, foreach mun r 2 G 1, we have

c-8R (r;t) _
ttl # SRt + 1

r

since there are only nitely m any com plete nvocations w ith non—zero cost and there are in niely

m any com plete invocations. Thus, E 9 jF1) = 0.
Let G, be the subset of F'y where there are n nitely m any invocations of SRy,. Clearly
PrG, jFy) = 1. Let Z2 = 2 2 c-send + + Tl cwait. By the Law of Large Num bers,

for aln ost all runs r of G ;, the analysis of P roposition 34 show s that

c-8R (r;t)
tt1 #-SR(;h) + 1

(N ote that we have + Tl instead of2 asin Theorem #%.2. This isbecause in the current setting,
the expected am ount of tim e elapsed between the start of an invocation and the arrivalofthe rst
hbmsg is 71 . In the setting of T heorem :{I_.-]:, however, the rst hbmsg cannot arrive until tim e
, since the invocation starts at timne 0 and the rst hbmsg is sent at time 0. Note that in both
cases, the expected tin e of waiting is plus the expected tin e elapsed between the start of the

nvocation and the arrival of the next hbmsg.) ThusPrc®™9 () 7z jFy)= 1.
W e now tum our attention to F3. Let F3 (g ;t;4;1;13) be a subset of F3 with the follow Ing

properties:
the st crash in r happens at tim e,
the second crash in r happensat tine t,
the num ber of invocations starting beforetinet 3 is i,
the num ber of invocations starting between tinest 3 and g + is iy, and
the num ber of invocations starting aftertinet+ isis.

Tt is clear that each of these sets are m easurable. (Som e of them are em pty, so they will have
probability 0; we could introduce restrictions to rule out the em pty ones, but kaving them 1n is
not a problem .)
Suppose F3 (t;tr;ii;1513) isnot empty. Then
L+ (Citidiki)i

E 9 §F5 (gt siasi Z;
( JF3itiiriiiz)) Lt bt Ll ;

where 0 < (t1;t%71451513) < 1. Roughly soeaking, the expected cost of an invocation in the 1rst
group is Z, sihce if no m essages are lost (which happens w ith probability 1), the num ber of
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1l m

m essages sent is exactly 2 2 and the tine of waiting is between and + 1, depending

on when the st hbmsg arrives after the invocation starts. If no m essages are lost, a hbmsg
is received every  tim e units, so the wait for a hbmsg is Tl on average. Thus the st group
of invocations contrbute i1Z to cSR (r), on average. A s for the second group, they contrbute
som ething less than i;Z to ¢S8R (r) on average; In m any of these Invocation, the rst process crash
(which happensatmost 3 + afterthebeginning ofan invocation in the second group) m ay reduce
the tin e of waiting or the num ber ofm essages sent. T hat iswhy we have a m ultiplicative constant
(t1;71153513) In front of i, . The Jast group of invocations all have zero cost, since by the tim e
they started, the surviving process (which m ust be the invoker) w ill never receive any new hbm sgs
from the crashed process; so the tin e of waiting and the num ber of m essages sent are both zero.
Thuswe have

X
E 9 4F3) = E 9 JF3(ite;iidiis)) PrEs (ite;diiiis))
it i e ids
I+ (Criteidisiiiz)iz L.
Z Pr G ,or1512513)):
Lt b+ bt EF3(it;i;i;iz))

e id 7o i

Let X
I+ (Esriirisis)ip L.
= Pr t,9r151;13)):
Rt bt bl EF3(itprii;iz;i3))

t e i1 72 i3
Clkarly < landE ®9 jF3) 7 , as desired.
Now we tum to the expected heartbeat costs per nvocation. Each process w ill send a hbm sg

every tine units for as Iong as it is up. So jfjnraprooessjsu}i) at tine t, then it sent
m

hbmsgsin rup to tin e t. Supposer2 F,. Then, # -hbmsg (r;t) = 2 t , and by the Law of Large
Numbers, forall > 0,

Pr hq # SR (r;t) 2t j t ‘Fz =1:
t!

T hus,
# -hbm sg (r;t) 1

r Iim —————— = — ‘ F, = 1:
'l # -SRIy + 1
Next, suppose r 2 F1. Then one of the processes will send only nitely many hbmsgs and
nvoke SRy, niely often. T hus after the crash, we have
1lm
# -hbmsg (;t) * +H )
# SR+ 1 Lo+ L+ 1"

where H is the number of tin es the crashed process sends hbmsg in r, I; is the number of tin es
the crashed process Invoked SRy, in r, and I, is the num ber of tim es the live process Invoked SRyp
in r.Forall > 0,we have that

P Iin t ] t | F = 1:
r m b ] ‘1

T hus,
# hbmsg () 1

Pr — = =
tt1 # SRyt + 1

Fo= 1:
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Finally, consider the set F'3, where both processes crash. Agaln, the situation here is m ore
com plicated, since there are only nitely m any com plete invocations and hbmsgs in each run, so
we cannot resort to the Law of Large Num bers. Let F3 (j;k) be the set of muns where p crashes at
tine j and g crashes at tine k. C learly PrEs (jik), jF3) = @ )’ @ o) p 4 and the number
of heartbeats sent in runs of F3 (j;k) is I 4+ k| Let# Shbmsg®9(r) = limy 1 th_ggi(i{f{u

O bserve that

Im 1m |
¥k do4+ ko
E # -hbmsg™™? jF3 (jik)) = EE——
. i+ 1 i
0 m lkm '
3 k o+ k . !
= * X i+1(1 )j+k ; Jtk+1
l(JII; kD, i+ 1 |
3 k k+ 1 . !
_ * X iq yIrEEL i j+ k+1
+ k+ ;
l(j.m kl I]ﬁ) =1 L
i 4 k

= 0 a )T

Thus,

E ¢ hbmsg®9 jF3 (3;k)) PrEs (3;k))

J* 1m 1m
J k

E (# -hbmsg®? jF3)

x 2+ = _ _
= —— 1 @ H)hHa e 9f p g
i+ k+ 1
Jik {jm lm)
= —a ia 8
G+ k+ 1)( 2 @ pa
Jik lm 1m
X Pk + k+ 1 ' k
(j+k+1)( )? T 7@ Pf b q
Jik
N ote that l1m 1m
34k
— 0V <L
g+ k+ 1)

for som e constant L1 (roughly i) . Thus the second sum m and above is bounded above by

X . L 1 )
L 1 1 1 il 1 ko= e
b gl >j;k(< ya i@ a9 Sy er—
Llpq(l ).
2 4
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whichjso("2).Thuswecanjgnoretheseoondslmmand.TakjngL(j;k)= i 4 Kk 3+k+l,we
get that 1m 1m
E # hbmsg®9 jF — Ja
( g™’ JF3) " Gt K+ l)( p)” ( 9" paq
X 1 5 .
= — p)” (@ a paq
Jik
X L (3ik) -
+ @ —— Ta k
Jarrs ST UL
1 1X L (Jik) ;
= —+- ——qa Ta ko q
kj+k+l( p) @ P a
r —
It clearly su ces to show that the second summ and above is O (). Note that —— 3+k+1 < p if
p—
j > P=,sm1]ar]y, 3+k+1 < g ifk > P— Finally, it is clear that +k+1 1 for all j;k 0.

Ca]lthe second summ and above S. Since L (j, ) < 2, we have that

qa— X X .
s 2 5 S S

= K

q_—_x ?x ]

+2 g @ e 9f pq
J k> e

X X a

+ 2pq

'p—kp—

2(p +2 pq:

p— j Sp—
Since we assum ed that p and q are both O (") for this theorem , the second sum m and above
isO (). Thus, E (# hbmsg®9 jF3) L1 &t pllowsthatE ¢ hbm sg’9) L, as desired . 1
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