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Average-Case Analysis of Dynamic Graph Algorithms
D. Alberts' and M. R. Henzingeér

Abstract. We present a model for edge updates with restricted randomness in dynamic graph algorithms
and a general technique for analyzing the expected running time of an update operation. This model is
able to capture the average case in many applications, since (1) it allows restrictions on the set of edges
which can be used for insertions and (2) the type (insertion or deletion) of each update operation is arbitrary,
i.e., not random. We use our technique to analyze existing and new dynamic algorithms for the following
problems: maximum cardinality matching, minimum spanning forest, connectivity, 2-edge connektivity,
edge connectivityk-vertex connectivity, and bipartiteness. Given a random g@pkith mg edges ana

vertices and a sequence lofipdate operations such that the graph containgdges after operation the
expected time for performing the updates for &rig O(l logn + Z:Zl n/v/m;) in the case of minimum
spanning forests, connectivity, 2-edge connectivity, and bipartiteness. The expected time per update operation
is O(n) in the case of maximum matching. We also give improved boundséaolge and-vertex connectivity.
Additionally we give an insertions-only algorithm for maximum cardinality matching with worst-Ges¢
amortized time per insertion.

Key Words. Dynamic graph algorithm, Average-case analysis, Minimum spanning forest, Connectivity,
Bipartiteness, Maximum matching.

1. Introduction. In many applications a solution to a problem has to be maintained
while the problem instance changes increment&liynamicalgorithms incrementally
update the solution by maintaining an additional data structure. Their goal is to be more
efficient than recomputing the solution with a static algorithm after every change.

Given an undirected grap® = (V, E), a (fully) dynamic data structure allows the
following three operations:

e Insert(u, v): Insert an edge between the nadand the node.

e Deletge): Delete the edge.

e Query Output the current solution. (Depending on the the particular problem a query
might be parametrized.)
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Two nodess andv arek-edggresp k-vertey connectedor fixedk if there arek edge-
disjoint (respk vertex-disjoint) paths betweerandv. A query in the case of connectivity
(resp. 2-edge connectivity) has two parameteasidv and returns “yes” it andv are
connected (resp. 2-edge connected). In the cakeediye (respk-vertex) connectivity
a query returns “yes” if the graph ksedge (respk-vertex) connected. Anatchingis a
subset of the edge set such that no two edges are incident to the same vartednAIm
matchingis a matching of maximum possible cardinality. In the case of maximum
matching a query outputs a current maximum matching. Alternatively, a query could
also be: “Is the edgein the current graph in the current maximum matching?”

Recently, much work has been done on dynamic algorithms for various connectivity
properties [10]-[13], [17], [27]-[29]. The current best deterministic bound for main-
taining connected or 2-edge connected components of a grapfi8) [10]. The best
randomized algorithm achieve&(log? n) (resp.O(log® n)) per update [19], [18]. It is
an open problem whether the connected or 2-edge connected components of a graph
can be maintained deterministically faster tl@6,/n). A second interesting question is
whether a maximum matching can be maintained in tirfre) per update. Note that a
dynamic algorithm which executes one phase of the static algorithm described by Tarjan
in [33] for each update operation achieves an update @tm). This was used, for
example, in [2]. This is the only known improvement over recomputation from scratch
which takes timeD (,/nm) [24], [35].

We achieve better (average-case) bounds for both problems in the folloveidel of
restricted randomnegsr-mode): Given a random grapB with n vertices anan edges,
an adversary can determine whether the type of the next operation is an insertion or a
deletion. If the type is an insertion, an edge chosen uniformly from all “allowed” edges
not in G is inserted. If the type is a deletion, an edge chosen uniformly from all edges
in G is deleted. Thus, only thearameterof the next operation is chosen at random, but
not thetypeof the next operation.

The rr-model is especially suited to capture the average case in many applications,
since (1) it allows restrictions on the set of edges which can be used for insertions and
(2) the type (insertion or deletion) of each update operation is arbitraryyeandom.

1.1. Related Work Karp [20] gave a deletions-only connectivity algorithm. If the initial
graph is random and random edges are deleted, the total expected time for a sequence
of deletions isO(n? logn).

In [29] a different random input model for dynamic graph algorithms is presented,
called thefair stochastic graph procesfsgp. It assumes that the type of the next
operation as well as its parameter are chosen uniformly at random. Since the rr-model
does not make any assumptions about the distribution of the types of update operations,
it is more general than an fsgp, which assumes that insertions (deletions) occur with
probability 1/2. The algorithm, presented in [29], takes expected tidrgk log® n)
maintaining thek-vertex connected components ¢onstant) for a sequence bf>
n? log n update operations. This bound is better than our bound in the case of connectivity
if the sequence of update operations is long enough and the graphs are not dense, but
since the model is weaker, the results are incomparable.

The rr-model is a variation of a model for random update sequences used before in
computational geometry (see, e.g., [6], [8], [25], and [30]). Eppstein [8] considers the
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dynamic (geometric) maximum spanning tree problem and related problems for points
in the plane. Exploiting their geometry, he gives data structures with polylogarithmic
expected update times for these problems.

1.2. New Results

e Assuming that the weight of an edge is arbitrary, but fixed, we show that a modified
version of Frederickson’s topology tree data structure [12] for dynamic minimum
spanning forests has an average-case update ti@dag n+n/./m) plus amortized
constant time. The data structure needs linear space and linear expected preprocessing
time using [21]. The best worst-case update time for this probled(igh) [10].

e Dynamic connectivity, 2-edge connectivity, and bipartiteness (“Is the current graph
bipartite?”) are closely related to the dynamic minimum spanning forest problem.
They can be updated within the same bounds for space and time. In the worst case
the best deterministic bound @(,/n) [10] and the best randomized algorithms take
polylogarithmic time per update [18].

o We show that a conceptually simple dynamic algorithm for maximum cardinality
matching has an average update timeQxfn) with respect to the rr-model. The
algorithm is based on the static maximum matching algorithm described in [33]. The
space needed is linear and the preprocessing ti@¢ejgm) using [24]. Additionally
we give an insertions-only algorithm for maximum cardinality matching \@itm)
amortized time per insertion.

Inthe case dk-edge and-vertex connectivity we slightly improve the known bounds:

e Eppsteinet al. [11] describe an algorithm for dynamicedge connectivity with
worst-case update tim@(k’nlog(n/k)) using a minimum edge cut algorithm by
Gabow [15]. We show that (with a slight modification) its average-case update
time is O(min(1, kn/m)k?nlog(n/k)) plus O(k) amortized time. This gives time
O(min(1, n/m)nlogn) plus amortized constant time for constaniThe data struc-
ture is able to answer a query whether the current graple@ge connected in constant
time. The data structure nee@gm + kn) space and preprocessing time.

e \We create a dynamik-vertex connectivity algorithm, using the algorithm by Nag-
amochi and Ibaraki for finding spar&evertex certificates [26] and th® (k®n'> +
k?n?) minimum vertex cut algorithm by Galil [16]. A query takes constant time. The
average update time @(min(1, kn/m)k3n'° 4 k2n?)), which isO(min(n?, n®/m))
for constank. The preprocessing time and the space requirement is linear.

Note that our algorithms are deterministic amadrandomized (except for preprocess-
ing in the case of minimum spanning trees, but by increasing the running time by a factor
of log(log* n) the algorithm can be made deterministic). The average-case performance
of all algorithms matches the best known worst-case bounds in the case of sparse graphs,
but it is significantly better if there are more edges. In the case of dense graphs these
improvements are exponential for some of the problems.

After presenting the rr-modelin Section 2 we give a general technique for analyzing the
expected running time of an update operation using backwards analysis [31] in Section 3.
As far as we know, this is the first application of backwards analysis to dynamic graph
problems. In Section 4-9 we apply this technique to analyze the expected running time
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of dynamic algorithms for minimum spanning forest, connectivity, bipartiteness, 2-edge
connectivity, maximum matching, akdedge andk-vertex connectivity, respectively. A
preliminary version of this paper appeared in [1].

2. AModel for Random Update Sequences. To model the average case itis common
practice to consider the expected performance with respect to a “random” input. So we
have to define a probability distribution on possible updates. An update consists of two
parts, itstype i.e., either insert or delete, and pigrameter i.e., the specific edge to

be inserted or deleted. If the type and the parameter of an operation are given by an
adversary, we are in a worst-case setting. For the average-case analysis at least the edge
to be inserted or deleted should be given with some probability distribution. Now two
cases are possible: either the type of the update operation is random or net 2R 0]

studied a model in which the probability of an insertion (deletiony In contrast, we

do not make any assumptions on the distribution of types of update operations. Thus, our
analysis also applies if an adversary provides the (worst-case) types of update operations.

We adopt a generic model for random update sequences from computational geometry
(see, e.g., [6], [8], [25], and [30]). The dynamically changing object is &sehich is a
random subset of a fixed st the universe. An update is arbitrarily either a deletion of
an element o which has to be chosen uniformly at random from the elements which
are currently in the sdf, or an insertion of an element chosen uniformly at random from
the setE\ E. Since the type of an update operation is not random, the cardinalysof
also not random. Applied to the dynamic graph algorithms setting we get the following
model which we call thenodel of restricted randomness rr-model We have a fixed
set of verticesV of cardinalityn. E is a subset o(\é) calledthe set of allowed edges
and we callG = (V, E) thecurrent graph If we start with a random subset & of
cardinalitymg (for anymg) and apply a sequence of updates as described above we geta
current graph with a certain numberof edges depending on the type of updates. This
graph is with equal probability any of the possibeedge subgraphs @ = (V, E). If
E is equal to(\z’) thenG is a random graph in the well-knows,, ,, model [3].

Note that there are two ways to control the graphs in the rr-model to suit the needs
of a particular application: (1) We can prescriBeand thus, e.g., force the graph to be
bipartite, and (2) the adversary can give us an arbitrary sequence of updates, e.g., highly
regular update patterns, likénsertions] deletions] insertions, and so on.

3. Average-Case Analysis. In this section we present an abstract setting for the
average-case analysis of dynamic data structures with respect to the rr-model. We use a
technique called backwards analysis, which already lead to a variety of elegant proofs
for randomized incremental geometric algorithms, see [31] and its references.

If all updates are performed in approximately the same time bound, there is no need for
an average-case analysis. We are interested in dynamic data structures where we employ
two update algorithms: a slow algorithm that works in any case and a fast algorithm
that works only when the update operation fulfills certain conditions (that depend on
the current graph). Of course, the update algorithm applies the fast algorithm whenever
possible. To achieve a good expected time performance we show that the conditions for
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the fast algorithm are met by an update operation with a relatively high probability, i.e.,
that the probability for the slow algorithm is relatively low.

We explain the ideas for bounding the probability for the slow algorithm using the
dynamic minimum spanning tree problem as an example:

Deletions If a deletion does not remove an edge of the minimum spanning tree, the
minimum spanning tree does not change and the update can be handled quickly (as we
show in Section 4.2). Thus, if a deletion does not remove a minimum spanning tree edge,
it fulfills the conditions for the fast algorithm. The probability that a randomly chosen
edge ofG is an edge of the minimum spanning treéris— 1)/ m. Thus, the probability
that we have to use the slow algorithm(is— 1) /m.

Insertions If the minimum spanning tree is still correct after the insertion of an edge
e, then the conditions of the fast algorithm are fulfilled. If an insertion modifies the
minimum spanning tree, the newly inserted edgidther (i) connects two disconnected
pieces ofG or (ii) the cost ofeis less than the cost of an edge on the tree path connecting
the endpoints of. In both casesbelongs to each minimum spanning tre&afe. Thus,
the probability that we have to use the slow algorithm is the probability that a randomly
chosen edge not i fulfills (i) or (ii). Using the fact thatE is a random subgraph of
E and thate belongs to the minimum spanning tree®fU e, we argue below that the
probability of this case is identical to the probability that a randomly chosen edge ef
belongs to the minimum spanning tree®f) e. The latter probability ign — 1) /(m+1).

Thus, the probability that we have to use the slow algorithfnis 1)/(m + 1).

Let S denote a minimum spanning tree of the current graph. Note that we use only

two facts to bound the probability of the slow algorithm:

o If a deletion does not delete an edgeShthenSis a valid minimum spanning tree in
the new graph.

o If, after an insertionSis no longer a valid minimum spanning tree for the new current
graph, then every minimum spanning tree of the new current graph contains the new
edge.

Thus, our strategy for bounding the probability of the slow algorithm is as follows:
We choose for each grajiha set of subgraphs that we csilitable(defined below). The
suitable subgraphs @ correspond to the minimum spanning tree<=oin the above
example. The algorithm maintains a suitable subgr@piithe current graph such that
the following two conditions are fulfilled:

A. If a deletion does not delete an edgeSthenSis suitable in the new graph.
B. If, after an insertionS is no longer suitable for the new current graph, then every
suitable subgraph of the new current graph contains the new edge.

The fast algorithmis used when the update does not lead to a cha@de@onditions A
and B are fulfilled and the size of all suitable subgraphs is limited by some integer function
s(n), then we bound the probability of the slow algorithmggg) /m (resp.s(n)/(m+1))
using the same arguments as for minimum spanning trees.

Let Suitbe a function that maps every gra@hon n vertices to a subset of the set of
subgraphs o65. A setSis suitablefor G if S € Suit(G). Conditions A and B put the
following conditions orSuit, wheree is an edge not ifs:
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A’. All sets inSuit(G U {e}) that do not contaie belong toSuit(G).

B’. Ifthere exists ase$ € Suit(G) andS ¢ Suit(G U{e}), then every setiBuit GU{e})
containse.
The latter is equivalent to saying:
If Suit(G U {e}) contains a set withowg, thenSuit(G) C Suit(G U {e}).

Combining the two conditions finally leads to the following conditionSuit

C. Letebe an edge witle ¢ G. If Suit(G U {e}) contains a set withowg, then{S; S e
SuittG U {e}) ande ¢ S} C Suit(G) C Suit(G U {e}).

We want to analyze a dynamic algorithm which maintains a suitable subgraph along
with other information. For a current graph and a current suitable sub@aghdefine
an update to be good casdf Sis also suitable for the new current graphSlfs no
longer suitable we define the update to Head caseThe dynamic algorithm performs
an update by testing whether it is a good or a bad case and then performing the fast
update algorithm in the good case and the slow update algorithm otherwise. Instead of
repeating the average-case analysis for each dynamic graph problem in this paper, we
give one average-case analysis that applies to any dynamic graph problem for which we
can find a functiorsuitfulfilling Condition C.

We now want to derive a bound on the expected running time of one update according
to the rr-model. We do not consider the time for testing here L be the dynamic data
structure. Leg(n, m) (resp.b(n, m)) be the running time of the fast (resp. slow) update
algorithm. We assume that > s(n). Otherwise we get a bound bfn, m). First we
analyze a deletion. Léfge(n, m) be the expected running time for deleting an edge in
a randomm-element subset d. Let E be an arbitraryn-element subset dE and let
m = |E|. Fix one suitable subgrap®for E. Let T4e(E, €) be the worst-case running
time for updatingD whene € E is deleted. Since the bad case occurs ondydf S, we
get

Tgel(n, M)

> > TwelE. €

(m) ECE ecE
|E|=m

< —=— Y s(mb(n,m) + (m—s(n)g(n, m)
(m)m ECE

|E|=m

<Qb(n m) + g(n, m))

Next, we consider the insertion of an edge. Tigi(n, m) be the expected time needed to
insert a random edge if the current random graphhhastices anan edges. In analogy
to Tyel(E, ) let Tins(E, €) be the time needed to updaieif e € E\E is inserted into
E. Then we have

Tins(n, M) = Z Z Tins(E, ©),

(m m) ECE ecE\E
|E|l=m
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since every pairlE, e) is equally likely according to the rr-model. Now backwards
analysis appears on the scene. We formulate the cost in terms of the edgevbith
results by inserting into E. Choosingm elements fronE and afterward an additional
one from the remaining set is the same as choasingl elements fronk first and then
selecting one of the chosen elements. Thus, we get

1
Tins(n, M) = ————— Tins(E' — €, ©).
O = D > 2 Tl )

m+1 E'CE ecF’
|E'|=m+1

Now, we look atthe inner sum. L&' = (V, E’) and letS be a suitable subgraph f&'.
If the insertion ofe was a bad case, therhas to be contained if. Since|S| < s(n),
this happens at mostn) times. So, we get

1
—_— E s(n)b(n, m) + (m+ 1 — s(n))g(n, m)
(m+1) (m+1) E'CE

|E/|=m+1

O (ir:)b(n, m) + g(n, m)) .

Tins(n, m) S

This implies the following theorem.

THEOREM3.1. LetG be a graph on n verticeget P be a dynamic graph problem such
that a function Suit fulfilling Condition C existiet D be a dynamic data structure for
P with

e aquery time of gn, m),

e abad-case update time ofrip m),

e a good-case update time ofrg m), and

e a bound of tn, m) for testing whether an update is a good case

Then there is a dynamic graph algorithm fBwith an expected update time with respect
to the rr-model of @t (n, m) + g(n, m) +min(1, s(n)/m)b(n, m)). Its worst-case query
time is gn, m).

Note that the gap between average-case and worst-case performance is largest if the
graph is dense.

Using the same line of proof, we could also handle asymmetric update times for
insertions and deletions, e.g., the slow insertion time is not the same as the slow deletion
time. We do not include this for the sake of clarity, and since it is not needed for our
applications.

4. Minimum Spanning Forests. Frederickson [12] introduced the topology tree data
structure to maintain a minimum spanning forest dynamically. In this section we slightly
modify the topology tree data structure to give a dynamic minimum spanning forest
algorithm with good average and the same worst-case performance as the algorithm
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in [12]. This data structure is also the key data structure for the dynamic graph algorithms
described in Sections 5-7.

To apply our technique of Section 3 we cho&dt(G) to consist of all minimum
spanning trees o&. Additionally, we modify the topology trees such that updates in-
volving nontree edges take tin@(logn) plus amortized constant time for rebuilding
parts of the data structure (good case), while the time for updates involving tree edges
staysO(,/m) (bad case), which is the bound of [12]. By Theorem 3.1 this results in an
average-case update time with respect to the rr-mod€&l(of/./m + logn) expected
time plusO(1) amortized time if we consider an arbitrary but fixed weight for every
edge inG.

To guarantee that nontree edge updates are fast we make three modifications in the
topology tree data structure: (1) We add a condition to the definition resticted
partition of order k This is necessary to guarantee tfat,/m) updates are executed
before part of the data structure is rebuilt. (2) We add priority queues to the data structure
to avoid that the minimum o® (,/m) edge costs is recomputed from scratch after each
update. (3) We remove some parts of the data structure at which no new information is
stored. While the second modification leads immediately to an improvement, we show
in Section 4.4 that the first modification leads to the desired amortx@d rebuild
time per update. The third modification is necessary to speed up updates in the good
case.

Note that the running time of [12] can be reduced,/n) using improved sparsifi-
cation [10], [11]. Sparsification is a technique which was designed to reduce the number
of edges that a dynamic graph algorithm has to deal with froto O(n). This is ac-
complished by splitting the edge set into groups of size at mostn2l maintaining a
spanning tree for each group. It follows that about half of the edges belong to the span-
ning tree of a group and, thus, are expensive to update. This implies that the probablity
for a bad-case update is aboy21Hence, combining sparsification with our approach
does not improve the running time.

4.1. Data Structure We first review parts of the data structure in [12], [13], and make
some changes needed to speed up the good case. We always keep the graph connected
by dummy edges of weighto. To build a topology tree we ma@ to a graphG’ of
maximum degree 3 by replacing a vertexf G of degreed > 3 by a cycle ofd new
verticesxy, ..., Xq in G’. The edges connecting andx;,; get a weight of-co, which

implies that they always stay in the minimum spanning fore&'oThe edge connecting

Xq andx; gets a weight of 0. Edges between #i@odes are calledashededges. Every
edge(x, y) is replaced by an edge;, y;), wherei andj are the appropriate indices of

the edge in the adjacency lists foandy. Note that there ar®(m) nodes inG’ and that

the edges of a minimum spanning fores®@are a “subset” of those fdg’. We denote

by T’ the minimum spanning tree &'. We describe next how the topology tree data
structure achieve a@(,/m) time per update operation. The topology tree data structure
decomposes the vertex set®finto sets, calle@lusters The update algorithm spends

time proportional to the size dd(1) clusters plus the number of clusters. Initially the
nodes are decomposed in a roughly balanced way such that each cluster contains at most
2k nodes and there af@(m/ k) clusters, for some parameterChoosingk = ./m gives

anO(k + m/k) = O(/m) time update algorithm.
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Adding edges can increase the number of nodes in a cluster (since the cycle repre-
senting a node dB can increase), deleting nodes can decrease the number of nodes in a
cluster. By splitting and merging clusters the above roughly balanced decomposition is
maintained and, thus, every update operation takes@ngm).

We explain next the basic idea to reduce the time for updates in the good case to
O(logn) plus O(1) amortized time. Clusters aeatedand deletedin three ways:

(A) If all the nodes in a cluster have been deleted, the cluster is deleted. (B) If a cluster is
merged with another cluster, the two old clusters are deleted and a new cluster is created.
(C) If a cluster is split, the cluster is deleted and two new clusters are created. A cluster
is created(resp.deleted by an update operation if it is created (resp. deleted) while
processing the update.

Creating and deleting a cluster in Cases (B) and (C) takes @igh@. Each update
creates and deletes at most a constant number of clusters and incurs, tii&)an
rebuilding cost To achieveO(k + m/k) update time in the bad case a@logn)
update time plu® (1) amortized rebalancing time in the good case, we charge each bad-
case updat® (k) rebuilding costs and we charge each good-case u@idfeamortized
rebuilding costs as follows: If the current update is a bad case, it is chargedkis
rebuilding cost. If the current update is a good case, but one of the cluster that it deletes
was created by a bad-case update, the rebuilding cost of the current update is charged
to this bad-case update. If the current update is a good case and none of the clusters
that it deletes was created by a bad-case update, we guarant€gthaebuilds have
“contributed” to the cluster(s) deleted by the current update and amortize the rebuilding
costs of the current update over them. This adds an amor@zé&y rebuilding cost to
every update. (Allinitial clusters are considered to be created by a bad-case update, since
the cost of deleting them can be charged to the linear preprocessing time.)

For this amortization scheme to work we call some clustesgentiabnd we maintain
the following invariant:

() Every cluster created by a good-case update consists of at5kgdhodes andif
it is essentiglby at least k2 nodes

As shown below, a cluster is deleted by a good-case update only if its size is either less
thank/3 or more than R. Since each update increases or decreases the size of a cluster
by at most six nodes, it follows that in either case at |&A#%8 (namelyk/2 — k/3 or
2k — 5k/3) updates have modified the size of the deleted cluster since the creation of the
cluster. Amortizing the rebuilding costs of the good-case update over these updates adds
an amortizedD (1) rebuilding cost to every update, since each update affects the size of
only a constant number of clusters.

We give next the exact definitions.cdusteris a set of vertices thatinduces a subgraph
of T’ that is connected. An edgeiiscidentto a cluster if exactly one of its endpoints
is in the cluster. Théree degreef a cluster is the number of tree edges incident to the
cluster. We call a clusterssentialf it has tree degree 1 or if it has tree degree 2 and is
not incident to a tree degree 3 clusterdpnamic(l, u)-partition with respect tol " is a
partition of the vertices so that

(1) each cluster with tree degree 3 has cardinality 1,
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(2) each setin the partition is a cluster with tree degre®and cardinality< u, and
(3) each essential cluster has cardinality at least

Our definition is a modification of the definition ofrastricted partition of order kn
[13]: Condition (3) is modified, since our amortized plan outline above would not apply:
in the definition of [13] it is possible that two clustefs andC, are merged and only
O(1) updates have occurred since the creatio@04ndC,. Thus, the® (k) rebuilding
costs to delet€; andC, cannot be amortized ovér (k) updates that occurred after the
creation ofC, andC..

Our algorithm maintains a dynamik/3, 2k) partition subject to invariant I.

We say clusteC; is atree neighborof clusterC; if there exists a tree edge with
one endpoint inC,; and one endpoint il€,. To initialize the partition we first use the
procedure given in [13], which finds in linear time a partition of the vertices so that

(1) each cluster with tree degree 3 has cardinality 1,

(2) each setin the partition is a cluster with tree degre®2and cardinality< k, and

(3) each essential cluster has a tree neighbor such that the combined cardinality of the
two clusters is larger thak

To fulfill (3), we join every essential cluster of size less thaB with its tree neighbor
of Condition (3) to create a cluster of size at le&stind at most /3.

Given a dynamick/3, 2k) partition, atopology treds a binary tree of dept® (logn)
whose leaves correspond to the clusters in the partition. An internal®oéia topology
tree T T corresponds to a cluster of larger size that is formed by unifying the clusters
corresponding to the leaves in the subtre€oh T T. Thelevelof a leaf is 0, the level
of an internal node is 1 plus the level of its children, which are all at the same level.

A two-dimensional topology treie a tree of depttD(logn) whose leaves are pairs
of clustersC x D. Each leafC x D is labeled with the minimum edge cost of an edge
betweerC andD or —oo if no such edge exists. Each internal node has degree at most 4
and is labeled with the minimum label of its children. See [12] for a detailed definition.

The dynamic connectivity data structure of [12] consists of

e atopologytree TT
e atwo-dimensional topology tre#rl T, and
e a dynamic tree data structure storing the minimum spanningitreéG’.

We modify the data structure as follows: (A) We omit some of the node§ df ®ith
label—oco together with their whole subtree. (This does not create problems in the query
or update algorithm of [12] since these subtrees do not store the cost of an edge, i.e., do
not contain any useful information for the algorithms.) (B) Ateach@af D of 2T T

we keep a priority queue of all nontree edges with one endpoi@tand one endpoint

in D.

4.2. Updates To update the data structure we make use of the following well-known
lemma to split a cluster of sizeinto two clusters of size at mosy2x:

LEMMA 4.1 [22]. Every n-vertex tree with degree at m@stan be split into two sub-
trees each with at mos2/3n vertices by removing one edge
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An update operation (a) tests if the good case or the bad case occurs and (b) executes
the corresponding algorithm.

(a) The dynamic tree data structure that maintaifis used (as in [12]) to decide which
case occurs.
(b) The algorithm consists of three steps:

(b1) Updating the mapping from G to’d.e.,, maintaining G as a degree3 graph
This includes adding or removing the inserted or deleted edge and additional
nodes and edges. Since it is not explicitely stated in [12], we give the details in
Section 4.3. It takes constant time per update.

(b2) Updating the dynamic restricted partition and the structure of TT 204 .

In the bad case we restore Conditions (1) and (2) as in [13], which modifies
O(1) clusters. Each of the resulting (at most constant) essential clusters of size
less thark/3 is merged with neighboring clusters until its size is at l&#3tor
itis no longer essential. If a resulting cluster contains more tharo#es, it is
split into two clusters of size at leadt/B and at mostk/3 using Lemma 4.1.

Each step take® (k) time, which gives a total time o©(k) for the bad
case. Updating T and the structure of RT whenever the dynamic restricted
partition changes is identical to [12] and takes tidé&k) per update.

The procedure for the good case is described in Section 4.4 and takes time
O(logn) plus constant amortized time.

(b3) Updating the labels 02T T and the dynamic treé&or a bad-case update the
algorithm consists of the algorithm in [12] plus the obvious updates of the
priority queues.

In the good case, lgk, y) be the edge that is updated, &tbe the cluster
containingx, and letD be the cluster containing The cost of(x, y) is added
or removed from the heap @& x D. If min(C, D) changes, this change is
propagated up the tre§ X', updating the labels of the ancestors ®f2 Since
2T T has deptlO(logn), this takes timeD (logn).

Summing the time for steps (a)—(b3) gives a total timeOgk) for the bad case and
O(logn) plus O(1) amortized time for the good case.

4.3. Updating the Mapping from G to ‘Gn the Good Case We describe only the
insertion of an edgéx, y)—a deletion is the inverse operation. We first update the
node(s) representingand the node(s) representiggand then we add the appropriate
edge.

Letd be the degree of before the insertion. We call the node representingthat
will be incident to the new edge. To update the node(s) represexntthg algorithm
considers three cases:

d < 3: Setx’ = x, since the node representirdgs unchanged.

d = 3: Replace the node representingy four nodes that are put into the same cluster
asx and setx’ = xs. (In the case of a deletioxy andx, belong to the same
clusterC in the good case. We replage to x4 by a new nodex which is put
into C. This does not change the tree degree of any cluster.)

d > 3: Add a new nodeq,; betweenxy andx; in the cycle representing in G’ and
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add the nodey. 1 to the cluster oky. Setx’ = Xq,1. (In the case of a deletion
the nodex; that is incident tax, y) is removed and; _; andx;,; are connected.
This does not change the tree degree of the cluster contaijrsince either

Xi—1 Or Xj+1 must belong to the cluster a&f in the good case.)

The nodey is processed in the same way. Finally a new eddey’) is added tdG'.
Note that updating the mapping takes constant time and in the good case leaves the
tree degree of all clusters unchanged.

4.4, Updating the Dynamic Partition and the Structure of T T &Adr inthe Good Case
The insertion or deletion of a node @ might invalidate the partition by violating some

of the conditions of the dynamic restricted partition. We restore Conditions (1)—(3) in
this order such that fixing Condition (i) far= 2 or 3 does not disturb the previously
restored conditions.

Condition(1). Every tree-degree-3 clust€rwith more than one node consists of at
most four nodes, one with tree degree 3 and three with tree degree 2. To restore Con-
dition (1), C is split: The tree-degree-3 node forms a new tree-degree-3 cluster. The
remaining nodes are added to tree neighbo¥sS wfith tree degree 1 or 2, if this is pos-
sible. Otherwise, they are grouped into up to two clusters of constant size. See Figure 1.

Condition(2). If the cardinality|C| of a clusterC is larger than R, the cluster is split
using Lemma 4.1.

Condition(3). An essential cluster of size less tHgf3 is called aviolatedcluster. A

good update can create at most two violated clusters, namely during an edge deletion.
Restoring Conditions (1) and (2) does not create a violated cluster. Thus, in the good case
the violated clusters have size at lelas3 — 6 and merging each violated cluster with a

tree neighbor will result either in a cluster of size at ldg/& (if merged with another
essential or violated cluster) or in a nonessential cluster (if merged with a nonessential

Fig. 1. Restoring Condition (1). Bold edges represent tree edges, dotted ellipses represent clusters.
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cluster). If the cardinality of a new cluster is larger tha 3, this cluster is split using
Lemma 4.1.

The Structure of TT an2lT T. We updatd T asin[12]. If Conditions (2) or (3) had to
be restored (i.e., the update already spg@(¥) time), we update 2T as in [12]. If only
Condition (1) had to be restored (i.e., the update spent©iily time so far), the update
added at most six constant-size clusters. For each such dilisted each neighbaz’
of C we add a lea€ x C’ and its appropriat® (logn) ancestors to2T. Note that we
add a total ofO(logn) nodes instead of a le&f x D for everyother clusteD and all
the ancestors of these leaves. However, the omitted noddsiof@uld be labeled with
—oo and form subtrees of 2T. Thus, the resulting treel2l agrees with our modified
definition of 2T T.

LEMMA 4.2. The updating algorithm maintains invariant |

PrROOF We have to show that every cluster created in the good case has size at most
5k/3 and, if it is essential, at lealsf2. The good-case update algorithm creates clusters
when restoring Conditions (1)—(3). We check below that the invariant is maintained in
every step.

When restoring Condition (1), no essential clusters are created and each created
cluster has constant size. When Condition (2) is restored, the cardif@lityf the
deleted cluste€ is larger than R and at most R + 6. Thus, the resulting clusters have
size at most A3k + 4 and at leasti/3 + 1. When Condition (3) is restored, each new
essential cluster has size at lela& and at mostR+ k/3 — 1. If it is larger than &/3 it
is split, resulting in two clusters of size at mogB22k + k/3 — 1) < 5k/3 and at least
1/3(5k/3) = 5k/9 > k/2. Thus, in each of the three cases invariant | is maintairied.

Next we analyse the running time of updating the dynamic partition and the structure
of TT and ZI' T in the good case. If only Condition (1) is restored, it takg4) time to
restore Condition (1), and tim@ (logn) to update the structure fT and 2I' T.

If either Conditions (2) or (3) are restored, it takes tidk) to restore the conditions
and updatd T and 2T T. In both cases if (one of) the deleted cluster(s) were created by
a bad-case update, k) rebuilding cost are charged to this bad-case update. Only if
(all) the deleted cluster(s) were created by a good-case update(kheebuilding cost
are amortized over previous updates: If Condition (2) is restored, the deleted cluster(s)
consisted of at most& 3 nodes at creation (by Invariant I) and now contains more than
2k nodes. If Condition (3) is restored, the deleted essential cluster(s) consisted of at least
k/2 nodes at creation (by Invariant I) and now contains lesskjiamodes. As described
before, each update operation increases or decreases the size of a constant number of
cluster by at most six nodes. Thus, in either case at leds update operations must
have increased (resp. decreased) the size of the deleted cluster(s). Amortizdgsthe
rebuilding cost over these updates gives an amortized constant rebuilding cost per update.

4.5. Final Result Choosingk = O(4/m) gives a data structure that fulfills the follow-
ing lemma, using the linear expected time algorithm for minimum spanning trees [21]
during preprocessing.
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LEMMA 4.3. There exists a data structure that maintains a minimum spanning forest
of a graph with any real-valued cost-function on the edddé® data structure can be
updated in time @,/m) if a tree edge is inserted or deleted and in timé@n) plus

O(1) amortized time if a nontree edge is inserted or delefde data structure needs
linear space and linear expected preprocessing time

If the weight for every edge i is arbitrary but fixed we can apply Theorem 3.1 to
analyze the expected time per operation, ignoring the cost of rebuilds. Since we showed
before that the total time spent for rebuilds duringpdates iO(l), this implies the
following result.

THEOREM4.4. There exists a data structure for maintaining a minimum spanning forest
such that for any | the expected time for a sequence of | updates starting with a random
subgraph ofG of size rg for any my is O( logn + Zli=1 n/v/m,), where m is the
number of edges in G after operation i

5. Connectivity. To maintain connectivity dynamically the algorithm by Frederickson

in [12] assigns cost 1 to edges in the current graphs and connects different connected
components by cost 2 (dummy) edges. Queries can be answered in worst-case logarith-
mic time using the dynamic tree data structure represefitinglowever, Frederickson
describes an additional data structure which allows constant-time connectivity queries.
Its update time is dominated by the update time of the dynamic minimum spanning
forest data structure. Using the same approach with the minimum spanning forest data
structure presented in the previous section gives the following result.

THEOREMb5.1. There exists a data structure that answers connectivity queries in con-
stant time and that can be updated in total expected tingeld@n + > ";_, n//m;)
during a sequence of | update operations starting with a random subgraphobfsize

mg for any my, where m is the number of edges in G after operation i

6. Bipartiteness. In this section we analyze the average-case performance of an al-
gorithm for dynamic bipartiteness due to Eppstefiral. [10], [11]. As in Section 5, we
give each edge cost 1 and connect different connected components by dummy edges of
cost 2. The basic idea is to maintain a spanning Tred the graphG and additionally
to maintain the parities of the cycles which are induced by the nontree edges. The graph
is bipartite if and only if no nontree edge induces an odd cycle.

As in Section 4, we choosBuit(G) to consist of all minimum spanning trees of
G. The minimum spanning tre€ of G is maintained by creating a degree-3 gr&ph
and maintaining the minimum spanning tréeof G’ using a topology tre@ T and a
two-dimensional topology treerZT.

6.1. Data Structure For a nontree edgelet A, denote its induced cycle. Léiu, v)
be the distance of the verticasandv in T, i.e., dashed edges (introduced to satisfy the
degree constraints) are not countech@undary vertexf a cluster is an endpoint of a



Average Case Analysis of Dynamic Graph Algorithms 45

tree edge connecting the cluster with a different cluster at the same level of the topology
tree. The data structure in [11] consists of

1. the MSTT/,

2. atopology tred T where we store at each no@ethe distances between every pair
of boundary vertices of, and

3. the corresponding two-dimensional topology tr@el2 The nodes of 2T are aug-
mented with the following labels:

Associated with each node off I are up to two edges which represent the two

parity classes. These are called$kéected edgeBor each selected edge we maintain
the distances of its endpoints to the boundary vertices of the corresponding clusters.

We extend this data structure as follows to speed up updates in the good case.

1. We keep a dynamic tree data structure [32] bffor determining distances between
nodes inT) giving dashed edges length 0 and nondashed edges length 1.

2. AteachleafC x D of 2T T we keep two lists, each one containing the nontree edges
of G betweerC andD of the same parity.

6.2. Updates An update operation (a) tests if the good case or the bad case occurs and
(b) executes the corresponding algorithm.

(a) The dynamic tree data structure that maintains the minimum spannirig teagsed

(asin[12]) to decide which case occurs.

(b) The algorithm consists of three steps:

(b1) Updating the mapping from G to’d.e., maintaining G as a degree graph
See Section 4.3. It takes constant time per update.

(b2) Updating the dynamic restricted partition and the structure of TT 204 .

The procedure for the bad case is described in Section 4.2 and takes time
O(./m), the procedure for the good case is described in Section 4.4 and takes
time O(logn) plus constant amortized time.

(b3) Updating the labels c2T T and the dynamic treén [11] it is shown that the
worst-case update time for this data structur®{s/m). Our extensions only
increase the running time by a constant factor. Thus, the update time in the bad
case isO(y/m).

We show in Section 6.3 that updates in labels BfTl2and the dynamic tree
takes timeO (logn) plus constant amortized time in the good case.

Summing the time for steps (a)-(b3) gives a total timeOgk) for the bad case and
O(logn) plus O(1) amortized time for the good case.

6.3. Updating the Labels &T T and the Dynamic Tree in the Good Casé&Ve describe
how to update in the good case the labels Bffi2and the dynamic tree data structure.

The Labels oPTT. If Conditions (2) or (3) are restored when updating the dynamic
partition (see Section 4.4), then the labels are updated in @nhgm), as in the bad
case. Otherwise at mo§i(1) clusters of sizé€D(1) are created. The data structure for
them and their ancestors InT and 2I' T can be built in timeO(logn). We next show
how to update the data structure of the remaining clusters in@heg n). Amortizing
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the cost if Conditions (2) or (3) are restored as in Section 4.4 gives a running time of
O(logn) plus O(1) amortized time.

First assume thatis inserted. Leti € C andv € D. We have to compute the parity
class ofein order to insert it into the right list at the leaf no@ex D INn2TT.IfC =D
we use the dynamic tree data structure to determine the paréyaod of the selected
edges ofZ x C. If C # D we determine the distance ofresp.v) to a boundary vertex
of C (resp.D) by determining the number of nondashed edges on the patlhétween
them. This can be computed in tinilogn) using the dynamic tree data structure for
T. Then we compare the parity efvith the parities of the selected edges stored atD
(if they exist) in constant time using the distance information in the data structure and
the following lemma shown in [11].

LEMMA 6.1. Let C and D be any two clusters at the same level of the topology tree
and let ff and % be any two nontree edges between C and.-& wc be a boundary
vertex of G and letwp be a boundary vertex of Det j; and p be respectively the
endpoints of fand %, in C and let r and r, be respectively the endpoints of &nd

f, in D. The two cycles.s, and A, have the same parity if and only if the quantity
d(j1, we) +d(j2, we) +d(ry, wp) +d(rz, wp) is even

After determining the parity class @& we inserte in the appropriate list. This takes
constant time. If the selected edgesf D change, we percolate this change up in
2T T. Since we can update each level in constant time using Lemma 6.1 the whole
procedure takes tim@®(logn).

If eis to be deleted, we delete it from the lis&tC x D in which itis contained. I&
was a selected edge we replace it by the next edgdfione exists. This takes constant
time. Updating the ancestors @fx D takes timeO(logn) as in the case of insertions.

The Dynamic Tree In the good case updating the mapping fr@rto G’ changes a
constant number of edges ©f. Each modification takes tim®@(logn).

6.4. The Final Result The analysis for minimum spanning trees carries over, so we
get the following theorem.

THEOREMG6.2. There exists a data structure that answers bipartiteness queries in con-
stant time and that can be updated in total expected tingeld@n + Z'izl n//my)
during a sequence of | update operations starting with a random subgraphobfsize

mg for any my, where m is the number of edges in G after operation i

7. 2-Edge Connectivity. Frederickson gives a data structure, calledaambivalent
data structurethat answers 2-edge connectivity queries in tidog n) [13]. It can be
updated in timeD (,/m).

The basic idea is to maintain a spanning tfeef the graphG andcoverage infor-
mationfor each tree edge. A tree edgés coveredif there exists a nontree edgg, )
such that lies on the tree path betweerandy. As shown in [13], two nodes andv
are 2-edge connected iff all edges in the tree path betwesmdv are covered. Thus,
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to answer 2-edge connectivity queries the ambivalent data structure maintains coverage
information in various forms such that it can quickly find uncovered edges on any path
inT.

We modify the ambivalent data structure and its update algorithm in order to speed
up the good case.

7.1. Data Structure We first describe the data structure of [13] and then give our
modifications. As in Section 4, the algorithm gives each edgmst 1 and connects

by dummy edges of cost 2. We cho@&ait(G) to consist of all minimum spanning trees
of G. The algorithm creates a degree-3 graphand maintains a minimum spanning
treeT’ of G’ in a topologyT T and a two-dimensional topologyi .

The algorithm partitions the edgesDfinto chains, calledomplete pathgor which
it keeps coverage information. Subpaths of complete paths are paligal paths They
are used to compute coverage information for edges on complete paths efficiently and
to answer coverage queries about parts of complete paths.

Each cluster in the partition, i.e., each leaf o has an associated partial path,
but no complete path, and each internal nod& ®fhas either an associated partial or
an associated complete path. The path associated with a dlistest subpath of the
spanning treel’’, formed by edges of. See [13] for the definition of complete and
partial paths.

For a nodau € C, let proj(u) be the node on the partial path®@fthat is closest to
in T” and letdist(u, e) be the number of edges on the partial patiCdietweerproj(u)
and the tree edgeincident toC.

For each tree edgeincident toC we denote

e by maxcove(C, D, e) the maximum ofdist(u, ) over all nodesu € C that are
connected by a nontree edge to a nodBjn

e by maxcovemodeC, D, e) a nodeu such thatdist(u, e) = maxcove(C, D, e),
and

e by maxcoveredgd€C, D, e) a nontree edge betwedd and D that is incident to
maxcovemnodgC, D, e).

The ambivalent data structure consists of:

=

. AnMSTT".
. The partial and complete paths represented in binary trees.
3. Atopology treeT T for T’, extended with the following labels:
(A) Ateach leafC of TT the algorithm stores the following labels:
(a) It stores a valudisttobrfor each nodel € C: In a graph that only contains
T and the nontree edges inciden@pdisttobrcontains the number of edges
(in T) from u to the closest bridge on the path franto (but excluding) the
partial path ofC if such a bridge exists ansb otherwise.
(b) It also keeps a least common ancestor data structuré far nodes ofC
rooted at an arbitrary boundary vertex@f
(B) For each nod€ of TT the data structure keeps
(a) a pointer to the partial or complete pathCf
(b) thelengthof the partial path o€ (if it exists),

N
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(c) avaluetoptobr, which is the number of edges (i) from a fixed endpoint
of the complete path associated who the closest bridge on the complete
path (if it exists), and

(d) additional values that do not change in the good case and that can be created
in time linear in the size of.

4. The corresponding two-dimensional topology tr@ef2 The nodes of Z T are la-
beled with the following values:

(A) Ateach leafC x D with C # D it keeps for each tree edgéncident toC the
valuemaxcove(C, D, e).

(B) At each internal node of T it keeps a constant number wfaxcovervalues.
These values are computed in constant time fromntlagcovervalues of its
children. In this way, for each paic, D) of nodes on the same level ®fT and
for each tree edge incident gpamaxcove¢C, D, e) value is computed.

We modify the data structure as follows:

1. Extended Dynamic Path Data Structurelnserting or deleting nontree edges can
change the coverage informatiortat,/m) leaves of the binary trees representing partial
and complete paths. To avoid this cost, we maintain all partial and complete paths in
a new data structure, called thgtended dynamic path data structuwie present the
interface of the data structure next and give its implementation in Section 7.5.

The extended dynamic path data structure extends the dynamic path data structure
of [32]. It represents a set of paths such that two paths are either vertex-disjoint or one
path is contained in the other oA&lote that each edge on one of the paths is represented
just once, since a path contained in a patl®, shares parts of the data structureRef
There is a uniqueover valueassociated to each edge counting the number of edges
which covere'.

The data structure supports the following operations:

e Initialize(P, E’): Build a data structure for a partial path with a set of covering
edgestE’.

e Cover P, e): Increase the cover value of each edgim P which is covered b.

e Uncovel P, e): Decrease the cover value of each egge P which was covered
by e.

e Link(Py, P,, e): Link the data structures fd?P, and P, by the edgee. This is allowed
if neither P, nor P, are subpaths of another path in the data structure.

e Unlink(P): Undo theLink operation that createl. This is allowed ifP is currently
not linked with another path.

e RightUncoveredP): Return the rightmost uncovered edgeii it exists.

e LeftUncoveredP): Return the leftmost uncovered edge Brif it exists.

e Add(P, X, y): Replace the edgg, y) of P by the edgesx, z) and(z, y), wherezis
a new node that does not appear on any path. The cost of both new edges is equal to
the cost of(x, y).

3 The definition of complete paths in [13] does not make them vertex-disjoint: the head of a complete path can
be contained in another complete path. To make them vertex-disjoint we simply create a second copy of these
shared nodes in the extended path data structure.
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e RemovéP, z): Remove the two edgex, z) and(z, y) of P and add the new edge
(X, y). The operation demands that the cost of the two removed edges be identical.
The cost of the new edge is the cost of a removed edge.

A sequence dfinkandUnlink operations results in a “linkage tree.” Labbe the depth of

this tree. Below we describe an implementation of this data structure that takes constant
time forLink andUnlink; O(d +logn) time forRightUncovered_eftUncoveredCover,
Uncover Add, andRemoveand O(|P| + |E’|) time for Initialize(P, E’). Sinced is
O(logn) in our applicatiorRightUncoveredLeftUncoveredCover, Uncover, Add, and
Removdake timeO(logn).

We use this data structure to maintain the complete and partial paths together with
their coverage information. An edgeon a partial or complete path is covered in the
extended dynamic path data structure iff it is covered in the binary tree representation
of [13]. Expressed more formally, the cover valueed$ larger than 0 in the extended
dynamic path data structure iff tts@mecowalue of an ancestor &is set to 1 in the
binary tree representation &%.

2. Labeled Dynamic Tree This data structure is used for three different reasons: (i) It
replaces thelisttobr of 3(A)(a). (ii) It replaces the least common ancest data structure
of 3(A)(b). (iii) It computes aist(u, e) value in timeO(logn) instead ofO(,/m).

(i) We do not store thalisttobr values, since one good-case update might change
Q(,/m) disttobrvalues. Instead we store the spanning tre€’oh a dynamic tree
data structure [32] and keep for each tree egligeC acover-counterlf eis not on
the partial path o€, its cover-counter counts the number of nontree edges incident
to C that covere. If e is on the partial path o€, its cover-counter is always 1.
Determining thedisttobr value of a nodes corresponds to Eindminquery in the
dynamic tree data structure to determine the bridge nearesamal to determine
the length of the path from to this bridge’

A constant number oflisttobr values change during an update operation. The
new values can be computed in timdxlogn) in the modified data structure, as
opposed toO(,/m) in the original data structure. Thaisttobr values are used
during a 2-edge connectivity query. However, each query only needs to know the
value of a constant number disttobrvalues, which takes tim@ (logn) using our
data structure. Thus, our data structure does notincrease the query @de@h).

(i) We do not store the least common ancestor data structire &ince even good-case
updates might change a constant number of edg@s (fee Section 4.3). Instead
we use the above dynamic tree data structure to answer least common ancestor
gueries in timeO(logn). As described fodisttobr values, this does not increase
the query time, since only a constant number of least common ancestor queries are
asked during a 2-edge connectivity query. It also reduces the time to update the
least common ancestor information®@ylogn).

(iii) Given a new nontree edge@!, v) with u in the level-0 cluste€ andv ¢ C, a slight
variant of this data structure can also be used to compaféu) and to compute

4 The latter can be done with a straightforward extension of the dynamic tree data structure@n(ima).
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dist(u, e) for each tree edgeincident toC. It takes timeO(logn). We leave the
details to the reader.

3. Max-heaps We do not keepnaxcovewalues, but instead the correspondingx-
coveredgeat each node of RT. While the data structure in [13] usetaxcovewvalues
to cover paths, our algorithm usesmxcoveredgednstead.

Storing the edge instead of the value has the following advantage: Even during good-
case updates, edges can be added to or removed from a partial or complete path when
updating the mapping froi@ to G’ and the dynamic partition. Thus, theaxcovewalue
becomes outdated, while theaxcoveredgeand the relative order of the nontree edges
incident to a cluster in themlaxcoverorder” does not becomes outdated.

Note that for an internal node with a partial path &f R its maxcoveredgescan
be computed in timé (1) from the maxcoveredgesof its children. (i) To determine
quickly themaxcoveredgeat a leaf of I T we keepmaxheaps at leaves ofl2T . (ii) We
also keep them at internal nodesToT with complete paths to speed up updating their
coverage information.

(i) At each leafC x D with C # D of 2T T we keep for each tree edgancident
to C a heapmax(C, D, e) that contains all nontree edgés, v) with u € C and
v € D inthe order of thalist(u, €) values. The maximum element of the heap is the
maxcoveredge€C, D, e).

(ii) IfanodeC of TT has a complete path, it has a degree-1 cBildn T T (see [13]).
Letebe the tree edge incident® . For all clusteD # C; on the same level &3,
the heapmax(C) contains all nontree edgés, v) with u € C; andv € D in the
order of thedist(u, e) values. The algorithm of [13] recomputes this value, which is
a maximum ofO(,/m) numbers, from scratch after each update. We avoid this by
adding the heap.

7.2. Updates We now describe the modified update algorithm. As in Section 4.2 an
update executes steps (a)—(b3). Steps (a)-(b2) are identical to Section 4.2. Step (b3)
updates the partial and complete paths, the labelBTafthe labels of Z T, and the
dynamic tree ofT. In the bad case it updates the labels in the original data structure
as in [13] and it updates the new labels of the modified data structure inQi¢gém)
in the straightforward way. The partial and complete paths are updated using the same
operations as in [13], but using our new data structure instead of the binary tree data
structure. For each operation, its running time matches the running time of the binary
tree representation.

The algorithm for step (b3) in the good case is given in Section 7.3. Step (b3) takes
time O(/m) for the bad case an@(logn) plus O(1) amortized time for the good case.

Summing the time for steps (a)—(b3) gives a total timédgf/m) for the bad case
andO(logn) plus O(1) amortized time for the good case.

7.3. Updating the Partial and Complete Paththe Labels of TT an@T T, and the
Dynamic Tree of Tin the Good Case If Conditions (2) or (3) are restored when
updating the dynamic partition, (see Section 4.4), then the partial and complete paths,
the labels ofT T and 2ZI' T, and the dynamic tree &f are updated in tim®(,/m), as

in the bad case. The costs are amortized as discussed before and contriut® an
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amortized cost to each update. Otherwise, there are at most six new clusters, each of
constant size. The data structures for them and their ancestors can be created in time
O(logn). We show that each part of the data structure for the old clusters can be updated
in time O(logn).

Let C; (x) be the level- cluster containing. We consider the insertion or deletion
of an edge(u, v). The only labels that have to be updated are the labels of clusters
(at various levels) containing or v. We achieveO(logn) update time, since there are
O(logn) such clusters at which we spe@{1) time each, and there af@(1) clusters
at which we spen® (logn) time.

The Partial and Complete Paths We denote byPP(C) the partial path of cluste€
and byCP(C) the complete path of clust€r. Let C, be the least ancestor G (u) in
T T with associated complete path. If edges are added to or removed from the partial or
complete path of a clust&’, then there exists a level-0 clust€rsuch that the edges
are also added to or removed from the partial patiCofThe algorithm that updates
the partial path data structure Gfalso updates the partial path©f, by data structure
sharing.

When edges are added to the partial path, the algorithm first exénliek operations
until the resulting partial path corresponds to the partial path of the level-0 closter
Then it executes aAidd operation. Finally it executes the steps below to add the nontree
edge. When edges are removed from the partial path, the algorithm first executes the
steps below to remove the nontree edge. Then it exetinésk operations until the
resulting partial path is the partial path of a level-0 cluster. Since each pair of edges to be
removed from the partial path byRemoveperation has the same cost, they are finally
removed by &Removeperation.

The coverage information of at most two partial or complete paths needs to be updated
when a nontree edda, v) is inserted or deleted. Which paths have to be updated depends
onu andv. We distinguish three cases:

(i) If uandv are contained in the same level-0 clustesind the update is an insertion,
then we execut€over(PP(C), (proj(u), proj(v))). If they are in the same level-0
cluster and the update is a deletion we exetlteove(PP(C), (proj(u), proj(v))).

(ii) If uandv are not contained inthe same level-0 cluster(ut C,,, leti be the high-
est level such that; (u) # Cj(v). We can determingin time O(logn). The only
maxcoveredgeghat have changed and are used to cover a partial or complete path
are maxcoveredg€C; (u), Ci (v), € and maxcoveredge€C; (v), C; (u), ), where
e is the tree edge connectir (u) andC; (v). Let m(u) (resp.m(v)) denote the
former value of maxcoveredgeC;(u), Ci(v), e) (resp. maxcoveredge&C;(v),
Ci(u), e)), and letm'(u) and m'(v) be the current edges. We execute first
UncovelPP(Ci 1(u)), m(u)) and Uncove(PP(Ci.1(u)), m(v)), and then
CoverPP(Cj 1(u)), m'(u)) andCoverPP(C;_1(u)), m'(v)).

(i) If Cy, # C,, then the maximummaxcoveredgein maxC,) is the only max-
coveredgethat has changed and is used to cover a partial or complete path (namely,
the complete path @,). Thus, we uncoveCP(C,) from the old maximum element
of maxC,) and cover it with the new maximum elementroaxC,). We do the
same for same for.
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The Labels of TT (A) We update the labeled dynamic treesGaf{u) and of Cy(v)
by adding a constant number of edges with the appropriate cover coumtrj(lf) =
proj(v) (and thuCo(u) = Co(v)) we increase theover-counteof all tree edges between
u andv. Otherwise we increment tlwever-countersf all edges on the tree path between
u andproj(u), and betweem andproj(v). Either case takes tim@(logn).

(B) We discuss the items in the order of Section 7.1.

(b) Iftree edges are added to the partial pat@g(iu) or Co(v), then theidlengthvalues
are updated. To update their ancestors, the changes are percolated up the tree.

(c) For a clusteC thetoptobr(C) value can be computed in tim@(logn) using the
data structure for the complete path@f Since at most two complete paths are
affected by the update, updating tptobrvalues takes tim@® (logn).

(d) Instead of the least common ancestor data structure, we update the dynamic trees of
Co(u) andCy(v) as described in (A).

The Labels oRPTT. (A) Using the dynamic tree data structure of the spanning tree
of Co(u) we can finddist(u, e) to each tree edgeincident toCy(u) in time O(logn).
Inserting or deletingu, v) from the heapmaxCy(u), Co(v), €) determines the new
value ofmaxcoveredg&Coy(u), Co(v), €) intime O(logn). Since at most four heaps are
affected, updating athaxcoveredgevalues at level-0 clusters takes tir@glogn).

(B) Eachmaxcoveredgeof an internal node of BT can be computed in constant
time from themaxcoveredgesof its children. Since Z T has deptiO(logn), all max-
coveredgescan be updated in tim@(logn).

Additionally The onlymaxheaps of internal nodes that change are the hea@g of
andC,. To updatemaxC,) andmaxC,) we delete the oldnaxcoveredgeof the cor-
responding tree-degree-1 child and insert the new one if the value has actually changed.
This takes timeD (logn).

The Dynamic Tree In the good case updating the mapping fr@mo G’ changes a
constant number of edges ©f. Each modification takes tim@(logn).

This shows thatthe data structure can be updated in@itteg n) plusO (1) amortized
time in the good case.

7.4. Final Result Using the analysis of Section 3 gives the following theorem.

THEOREM7.1. There exists a dynamic data structure that ansv2eesige connectivity
queries in time @logn) and that can be updated in total expected timd IGgn +

Z! _, h/4/m;) during a sequence of | update operations starting with arandom subgraph
of G of size rg, where m is the number of edges in G after operation i

7.5. An Extended Dynamic Path Data Structurdn this section we present the extended
dynamic path data structure for the maintenance of the cover values of the edges of paths.
It is based on the dynamic paths data structure which Sleator and Tarjan used for their
dynamic trees [32].

We consider the following problem. We are given a set of paths such that two paths
are either vertex-disjoint or one path is contained in the other. Each path has a leftmost
degree-1 vertex (also called thead and a rightmost degree-1 vertex (also called the
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tail). There is a cover value associated to each eflgeone of the paths. It counts the
number of edges which covet. The data structure allows the following operations:

Initialize(P, E’): Build a data structure for a partial path with a set of covering
edgesE’.

e Cover(P, e): Increase the cover value of each ed@gim P which is covered b.
e UncovelP, e): Decrease the cover value of each eégen P which was covered

by e.

Link(Py, P;, €): Link the data structures fd?; and P, by the edge. This is allowed
if neither P; nor P, are subpaths of another path in the data structure.
Unlink(P): Undo theLink operation that createld. This is allowed ifP is currently
not linked with another path.

e RightUncovere@P): Return the rightmost uncovered edgeiif it exists.
o LeftUncoveredP): Return the leftmost uncovered edge Brif it exists.
e Add(P, X, y): Replace the edg&, y) of P by the edgesx, z) and(z, y), wherezis

a new node that does not appear on any path. The cost of both new edges is equal to
the cost of(x, y).

RemovéP, 2): Remove the two edge, z) and(z, y) of P and add the new edge

(X, y). The operation demands that the cost of the two removed edges is identical. The
cost of the new edge is the cost of a removed edge.

Multiple edges are allowed, but not self-loops. A sequentgrdfandUnlink operations
results in a “linkage tree.” Ledl be the depth of this tree. In this section we describe
an implementation of the data structure that takes constant timarfhrand Unlink;
O(d + log|PJ) time for RightUncoveredLeftUncovered Cover, Uncover, Add, and
RemoveandO(|P| + |E’|) time for Initialize(P, E’).

In their paper on dynamic trees [32] Sleator and Tarjan introduce a data structure for

the dynamic maintenance of a collection of vertex-disjoint edge weighted paths. Each
pathp has a head and a tail. The data structure supports 11 kinds of operations. A subset
of them is quoted below from [32]. The operatigpath, head tail, beforg andafter

have the obvious meaning.

pmincostpath p): Return the vertex closest totail(p) such that(v, after(v)) has
minimum cost among edges @n

pupdatépath p, real x): Add x to the cost of every edge qn

reversgpath p): Reverse the direction gf, making the head the tail and vice versa.
concatenatgath p, g, real x): Combinep andq by adding the edggéail (p), headq))

of costx. Return the combined path.

split(vertex v): Divide path(v) into (up to) three parts by deleting the edges incident
tov. Returnalist p, q, X, y], wherep is the subpath consisting of all the vertices from
headpath(v)) to beforgv), q is the subpath consisting of all vertices frafter(v)

to tail(path(v)), X is the cost of the deleted edgeeforgv), v), andy is the cost of
the deleted edgév, after(v)). If v is originally the head opath(v), p is null andx is
undefined; ifv is originally the tail ofpath(v), g is null andy is undefined.

Every path in the dynamic path data structure is represented by a balanced binary tree
whose leaves represent the vertices of the path, and whose internal nodes represent the
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edges of the path. At each internal node of such a tree a constant amount of local (weight)
information is stored.

Every path in the extended dynamic path data structure is stored as a path or a subpath
of a dynamic path data structure. The edge weights are the cover values. Whenever an
operation (exceptink andUnlink) involves a pathP that is a subpath of another path,
we reconstructP by a suitable sequence thnlink operations. After performing the
operation we execute the correspondiriigk sequence.

e To executdnitialize(P, E’) we first compute the cover value for the edgedadby
a left-to-right scan ofP with each edge oE’ stored at its endpoints iR. Then we
build a dynamic tree data structure fBrusing the cover values as edge weights.

e We realizeCover(P, (u, v)) by usingsplit, pupdate and concatenateas follows.
Without loss of generality assume thats closer tohead P) thanv. If u is not the
head ofP, then we splitP at beforgu). If v is not the tail of P, then we split the
subpath containing atafter(v). We add 1 to all edge weights in the subpath starting
at u by usingpupdateand mergeP together again usingoncatenateObviously,
Uncovel P, (u, v)) can be realized in the same way, except that we subtract 1 instead
of adding 1.

e To implement theLink(Py, P,, €) operation we do not use tlwncatenat@peration
because we want to execute this operation in constant time. Instead we create a new
node forewhose children are the roots of the data structure®f@nd P,. Afterward
we update the local information. Adnlink(P) is the reversal of theink operation.

e A LeftUncoveredP) query can be answered by usimgincost|f we wantto answer a
RightUncoveredP) query we first executeverseP), usepmincostP), and execute
revers€P) again.

e WerealizeAdd(P, x, y) by the following sequence of operations. First,apéit P atx.

This returns (up to) two paths and weights as described above. Thesneatenate x

to the path ending at its former predecessor again (if it existed) using the corresponding
weight which was returned bsplit. We create a new path consisting onlyzpfand
concatenaté with the paths ending at and starting ay with the weight of the edge

(X, ¥) which was returned bgplit as well.

e The operatiorRemovéP, z) is realized by asplit at z followed by aconcatenate
operation for the two paths returned split with one of the two (identical) weights
returned bysplit.

The running time ofnitialize(P, E") is O(|P| + |E’|) since the scan can be executed
in linear time and the dynamic tree for a p&hwith given edge weights can be built
in time O(|P|). A Link or Unlink operation takes constant time since, as shown in [32],
the local information can be updated in constant time. Any of the other operations is
enclosed in a sequence of at modt@nlink andLink operations. The operation itself
consists of a constant number of dynamic path operations which takeCitog| P|)
giving a total of timeO(d + log|P|). This shows the claimed bounds on the running
times.

8. Maximum Cardinality Matching.  Unlike minimum spanning tree and connectiv-
ity, the dynamic maximum matching problem is not solvable using sparsification [10],
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[11], because there are no nontrivial certificates. However, there are sparse suitable sub-
graphs, so this problem reveals an interesting difference between the otherwise similar
concepts of certificates and suitable subgraphs.

Using just one phase of a static maximum cardinality matching algorithm per update
leads to a dynamic algorithm wit®(n + m) worst-case update time (see, e.g., [2]). This
is still the best known algorithm. In the following we show that a variant of this simple
approach yields a bound @ (n) expected time for inputs which are random according
to the rr-model.

8.1. Terminology The cardinality of a maximum matching is theatching numbeof

the graph. In general a maximum matching is not unique. All of the following definitions
are with respect to a fixed matchiiy. A pathP in G is analternating path with respect

to M iff the edges inP alternate between being in the matchilgand not being in

M as we walk along®. We drop the phrase “with respect " whenever there are

no ambiguities. Afree vertexis a vertex which is not incident to any matching edge.

An alternating forestis a forest inG with the free vertices as roots whose paths are
alternating.

An augmenting patlis an alternating path which starts and ends with a free vertex.
A matching can baugmentedlong an augmenting pat by removing the matching
edges onP from the matching and inserting the nonmatching edged?adnto the
matching. This yields a matching’ which contains one more edge thish

AgraphH isfactor-criticalif H — v has a perfect matching for every veriex V(H).

This implies thatV (H)| is odd ancH itself has no perfect matching. L&ét= (V, E) be

a graph with some matching. A blossom Bn G with respect taM is a factor-critical
subgraph ofG which containk matching edges whel& (B)| = 2k + 1. One vertex

is a trivial blossom. The easiest nontrivial case is just an odd cycle where all vertices
but one are matched. Note that the definition of a blossom is not unique in the literature,
we define it similarly to [23]. A blossom which is not properly contained in another
one is amaximal blossomA blossom forest with respect to M a subgraph- of G
containing vertex-disjoint blossoms such that contracting each blossbrioia single
vertex—which is calleghrinkingthe blossom—Ileads to an alternating forestnaxi-

mum blossom fore# a blossom forest with maximal cardinality of its vertex set. In the
following we only deal with maximum blossom forests and drop the word “maximum.”
Since an arbitrary number of edges can be added to a blossom and it remains a blossom,
blossom forests are not necessarily sparse, but it is easy to see that there always exist
sparse blossom forests.

Now let M be a maximum matching again. If there exists an alternating path with
respect tdVl from some free vertex to a certain verigithenv is reachableIf one of the
alternating paths from a reachable verbew some free vertex is of even lengtthenv
is aneven vertexf v is reachable, but only using odd alternating paths, then it édan
vertex Free vertices are also even. The sets of even and odd vertices are unique, i.e., they
are independent of the particular choice of a maximum matching [7]. A nonreachable
vertex is called aout-of-forest vertex

5 The length of a path is the number of edges it contains.
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8.2. Data Structure and SuiG). The data structure we maintain consists of a sparse
blossom forest, parity informations (even, odd, or out-of-forest) for the vertices, and a
list consisting of the edges in a current maximum matching. The matching and forest
edges are marked. Thus, it is trivial to answer a query. Additionally, we store at each
node in the blossom forest a pointer to the tree that it belongs to. A blossom forest is a
well-known data structure used in static maximum cardinality matching algorithms, see,
e.g., [7], [23], and [33].

Conceptually, the data structure is a sparse subgraph of the current@ragtich
has the same matching number and the same parit@sB&gen, odd, and out-of-forest
vertices correspond to the Gallai-Edmonds-Decomposition of a graph. For a definition
and properties of this decomposition see [23]. Since our algorithm maintains the partition
of the vertices into even, odd, and out-of-forest vertices, it also maintains the Gallai—
Edmonds-Decomposition of the graph.

We define the seduit(G) as follows. An element dbuit(G) is a maximum matching
of the current graph unioned with a blossom forest with respect to this matching. It
follows thats(n) = O(n). We show next that the mappir8uitmeets the requirements
for Theorem 3.1.

LeEmmA 8.1. The mapping Suit as defined above fulfills Conditiofs€= p 36).

PrROOF It is equivalent to show that Conditions A and B hold (see p. 35).G.dte
the current graph. Leb be the current suitable subgraph, consisting of the union of the
current maximum matchinlyl, and a blossom fore® with respect tav.

We begin with Condition A. Assume that we delete an eelgdich does not belong
to S. Sinceeis not in M, its deletion does not decrease the matching number. Whus
is maximum inG — {e}. Sinceeis not in B, its deletion has no influence on the parities
of the vertices. Thu8 is a blossom forest with respect kb for G — {e}, too. Hence,
the unionM U B is a member oBuit(G — {€e}).

In order to show Condition B, suppose that we insert an edgt the current edge
setE. Let E’ = E U {e}. We have to update the blossom forest or the matching only, if
one of the following three conditions applies:

(1) Theinsertion of e increases the matching numiipethis case we find an augmenting
path where is inserted, we augment the matching and have to rebuild the blossom
forest. If there is a maximum matching Ef not containingg, then the deletion of
efrom E’ does not decrease the matching number. This is a contradiction, since the
matching number is unique. ®dhas to be in every maximum matching.

(2) The insertion of e increases the number of reachable vertice st does not change
the matching numbein this case the blossom forest grows. Since the reachable
vertices are unique and they form the vertex set of every blossom forest, we can
argue in the same way as in the previous casedliin every possible blossom
forest for the new graph.

(3) Theinsertion of e neither changes the matching number nor the number of reachable
vertices but it changes the parity of some odd vertices to elrethis case there is
a new blossom in the forest. Since the parities of the reachable vertices within the
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blossom forest are the same as in the whole graph and they are unique, we can again
deduce that has to be in every possible blossom forest for the new graph.

In all three cases wher®is no longer suitable after the insertion of the new edge
has to be part of any new suitable subgraph. Thus, Condition B holds. O

8.3. Updates It is easy to detect whether an update implies a change in the suitable
subgraph (the bad case) or not. In case of a deletion, this is done using the labels of
the edges. In case of an insertion, we can check whether one of the three conditions
mentioned in Lemma 8.1 applies by using the parity information and the tree pointers at
the vertices. In both cases this can be done in constant time.

Tarjan [33] describes a static algorithm for computing a maximum matching in general
graphs. This algorithm is a variant of Gabow’s earlier implementation [14] of Edmond’s
algorithm [7]. It proceeds in phases. In each phase it either constructs a sparse blossom
forest, or it finds an augmenting path with respect to an intermediate matching computed
so far and augments this matching @(n + m) time. The algorithm computes the
reachable vertices, their parities, the blossoms and informations to retrieve augmenting
paths. It grows an alternating forest and shrinks nontrivial blossoms reachable via an
even alternating path when they are detected.

In a bad case we simply recompute the data structure by using one phase of Tarjan’s
algorithm. If the change also affects the current maximum matching, we have to apply
the algorithm twice, once for augmenting and once for computing a new blossom forest
with respect to the new maximum matching. These bad casetake- m) time. All
good cases can be handled in constant time, since we just update the adjacency structure
of the graph. For preprocessing we use the static/nm) algorithm of Micali and
Vazirani [24], [35] to construct a maximum matching in the initial random graph and
one phase of Tarjan’s algorithm to construct a sparse blossom forest with respect to the
initial maximum matching. Using Theorem 3.1 we get the following result.

THEOREM8.2. There exists a data structure for dynamic maximum matching which
can be updated in Q1) expected time with respect to the rr-madeteturns a current
maximum matching or answers the question whether a particular edge is in the current
maximum matching in optimal time

8.4. Insertions Only We give below an insertions-only maximum cardinality matching
algorithm withO(n) amortized time per insertion of an arbitranof random) edge, if
the initial edge set is empty.

Each phase of Tarjan’s algorithm scans the edgesS in arbitrary order until an
augmenting path is found. Scanning them in the order of insertion leads immediately to
a semidynamic algorithm. Whenever an insertion creates an augmenting path, the data
structure is rebuilt. A sequence of insertions between two rebuilds corresponds to one
phase of Tarjan’s algorithm. All the work which has to be done in one such phase, i.e.,
growing the forest, shrinking blossoms, augmenting the matching at the end of the phase,
and rebuilding the blossom forest with respect to the new maximum matching afterward,
takes timeO(n + m). Since there are at mast2 phases, the total time 8((n + m)n),
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i.e., the amortized time per insertion@(n), provided the algorithm is started with an
empty edge set.

9. k-Edge Connectivity andk-Vertex Connectivity. Eppsteinet al. [11] give a dy-
namic algorithm fok-edge connectivity with worst-case update tiiék?n log(n/K)),
which we slightly modify in order to speed up the good case. It uses an algorithm by
Gabow [15] for the static problem and the following lemma.

Let G be a graph and lef; = U; be a spanning forest @. Let T; be a spanning
forest of G\U;_; and letU; beU;_, U T;. ThenUy is called asparse k-edge connectivity
certificatefor G.

LEMMA 9.1 [26], [34]. Let G be a graph and let Ube a sparse k-edge connectivity
certificate for G Then G is k-edge connected if and only ifig k-edge connected

For notational convenience Igf be the empty graph. For eackve storeG\U;_; in
the above minimum spanning tree data structure to maifiaie chooseuit(G) to
be the set of all spardeedge connectivity certificates &. If an update operation does
not changeJy (good case) we incur amortized c@3tk logn). In the bad case we incur
O(ky/m+ k?nlog(n/k)) = O(k?nlog(n/k)).

The size of the suitable subgraph in this cag@{kn), so by Theorem 3.1 we get the
following result.

THEOREM9.2. There exists a data structure that answers the question whether
the current graph is k-edge connected in constant time and that can be updated in
O(min(1, kn/m)(k?nlog(n/k))) amortized expected time with respect to the rr-model

We discuss next how to test dynamically if the graph-igertex connected. Lemma
9.1 also holds fok-vertex connectivity provided thdi is chosen to be a scan-first search
forest of G\U; _; [4], [26]. To test quickly for the good case we define sneallest sparse
k-edge connectivity certificates follows: we number all vertices during a preprocessing
phase with a unique label between 1 amih an arbitrary, but fixed way. Then we use
the linear-time algorithm of [26] to fintlk. This algorithm sometimes makes arbitrary
choices of which vertex to select next. We require that if more than one vertex can
be selected, the algorithm has to use the one with the minimum label. The resulting
sparsek-edge connectivity certificatg is called the smallest sparkedge connectivity
certificate. We choos8uit(G) to be the unique smallest sparsedge connectivity
certificateS, of G.

Note that even with this additional requirement the algorithm of [26] runs in time
O(m + nlogn). Thus, we can test if the insertion of an edgis a good case or a bad
case by running this algorithm d& U e in time O(kn + nlogn). If this is the case we
can construct a new suitable subgrefhby running this algorithm oG U e in time
O(m+ nlogn). Testing if a deletion change& is obvious: if an edge of; is deleted,

S has to be recomputed, otherwise nothing has to be done.

In the good case we are done. In the bad case we additionally might have to check

whether the new suitable subgrafhis k-vertex connected. For this purpose we use
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the (static)O(k3n'® + k?n?) time k-vertex algorithm by Galil [16]. This provides the
following result.

THEOREM9.3. There exists a data structure that answers the question whether the
current graph is k-vertex connected in constant time and that can be updated in
O(min(1, kn/m)(k3n*® + k?n?)) expected update time with respect to the rr-model

Conclusion. We present a general technique for analyzing dynamic graph algorithms
in the average-case setting. Note that this technique can also be used for analyzing the
expected time of randomized incremental algorithms for static graph problems. There we
have a worst-case input graph and the algorithm works by maintaining a current solution
while inserting the edges one by one in random order. In fact, backwards analysis was
first used in computational geometry for exactly this purpose by Chew [5].

Note that our technique can also be used to analyze the average-case performance of
randomized dynamic graph algorithms. (A randomized algorithm is an algorithm that
makes use of random choices for computing the solution to a worst-case input.)

For the connectivity problems considered in this paper the running time of an update
consists of two parts: an expected running timedgh/./m + logn) (wherem is the
number of edges after the update) plus an amortized constant time for rebuilds. It is an
interesting open question whether the data structure can be improved by distributing the
costs of rebuilds over previous updates in a way that gives an expected time bound of
O(n//m+ logn) per update.

Eppstein [9] suggested that a good average-case behavior for some of the above
problems can also be shown for node insertions and deletions.
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