
HAL Id: hal-00619570
https://hal.science/hal-00619570

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-dimensional prefix string matching and covering on
square matrices

Maxime Crochemore, Costas S. Iliopoulos, Maureen Korda

To cite this version:
Maxime Crochemore, Costas S. Iliopoulos, Maureen Korda. Two-dimensional prefix string matching
and covering on square matrices. Algorithmica, 1998, 20 (1), pp.353-373. �10.1007/PL00009200�.
�hal-00619570�

https://hal.science/hal-00619570
https://hal.archives-ouvertes.fr


Two-dimensional Pre�x String Matchingand Covering on Square MatricesMaxime Crochemore� Costas S. Iliopoulosy Maureen KordazAugust 1996
AbstractTwo linear time algorithms are presented. One for determining, for everyposition in a given square matrix, the longest pre�x of a given pattern(also a square matrix) that occurs at that position and one for computingall square covers of a given two-dimensional square matrix.� Institut Gaspard Monge, Universite de Marne-la-Vallee, 2, rue de la Butte Verte, F-93160 Noisy-le-Grand , France. Email: mac@univ-mlv.fr.y Department of Computer Science, King's College London, Strand, London, England and Schoolof Computing, Curtin University, Perth, WA, Australia. Email: csi@dcs.kcl.ac.uk. Partially sup-ported by SERC grants GR/F 00898 and GR/J 17844, NATO grant CRG 900293, ESPRIT BRA grant7131 for ALCOM II, and MRC grant G 9115730.z Department of Computer Science, King's College London, Strand, London, U.K.Email: mo@dcs.kcl.ac.uk. Supported by a Medical Research Council Studentship.



1. IntroductionIn recent studies of repetitive structures of strings, generalized notions of periodshave been introduced. A typical regularity, the period u of a given string x, graspsthe repetitiveness of x since x is a pre�x of a string constructed by concatenations ofu. A substring w of x is called a cover of x if x can be constructed by concatenationsand superpositions of w. A substring w of x is called a seed of x if there exists asuperstring of x which is constructed by concatenations and superpositions of w. Forexample, abc is a period of abcabcabca, abca is a cover of abcabcaabca, and abca is aseed of abcabcaabc. The notions \cover" and \seed" are generalizations of periods inthe sense that superpositions as well as concatenations are considered to de�ne them,whereas only concatenations are considered for periods.Given a string x of length n and a pattern p of lengthm, the pre�x string matchingproblem is that of determining, for every position in x, the longest pre�x of p that occursin that position. Main and Lorentz introduced the notion of pre�x string matching in[ML84] and presented a linear time algorithm for it. In two dimensions, the pre�x stringmatching problem is that of determining, for every position in a given n�n text matrixT , the longest pre�x of a given m�m pattern matrix P that occurs in that position.The two-dimensional pre�x string matching problem can be solved using the LSu�xtree construction of Giancarlo (see [G93], [G95]). The LSu�x tree for T , de�ned overan alphabet �, takes O(n2(log j�j+logn)) time to build. Giancarlo's construction is thetwo-dimensional analog of the su�x tree ([W]). Two-dimensional dictionary matchingand two-dimensional pattern retrieval (see [G95]) are among the applications of theLsu�x tree; one can use the Lsu�x tree to derive O(n2(log j�j + logn)) time for thetwo-dimensional pre�x string matching problem. Here we present an optimal linear timealgorithm for the two-dimensional pre�x string matching problem that makes use of thenotion of a two-dimensional failure function (also used in [ABF92]) as well as the Aho-Corasick automaton ([AC95]) in order to reduce the number of substring comparisonsto linear. Both constructions are dependent on the alphabet. In the case of �xedalphabets, the algorithm presented here is faster than the one presented in [G95] by afactor of O(logn) .In computation of covers, two problems have been considered in the literature.The shortest-cover problem is that of computing the shortest cover of a given stringof length n, and the all-covers problem is that of computing all the covers of a givenstring. Apostolico, Farach and Iliopoulos [AFI91] introduced the notion of covers andgave a linear time algorithm for the shortest-cover problem. Breslauer [Br92] presented alinear time on-line algorithm for the same problem. Moore and Smyth [MS94] presenteda linear time algorithm for the all-covers problem. In parallel computation, Breslauer1



[Br95] gave an optimal O(�(n) log logn)-time algorithm for the shortest cover, where�(n) is the inverse Ackermann function. Iliopoulos and Park [IP94] gave an optimalO(log logn)-time (thus work-time optimal) algorithm for the shortest-cover problem.Iliopoulos, Moore and Park [IMP93] introduced the notion of seeds and gavean O(n log n)-time algorithm for computing all the seeds of a given string of length n.For the same problem Ben-Amram, Berkman, Iliopoulos and Park [BBIP94] presenteda parallel algorithm that requires O(log n) time and O(n logn) work. Apostolico andEhrenfeucht [AE93] considered yet another problem related to covers.In this paper we generalize the all-covers problem to two-dimensions and wepresent an optimal linear time algorithm for the problem. Let P be a square submatrixof a square matrix T ; we say that P covers T (or equivalently P is a cover of T ), if everypoint of T is within an occurrence of P . The two-dimensional all-covers problem is as fol-lows: given a two-dimensional square matrix T , compute all square submatrices P thatcover T . While the algorithms for the shortest-cover problem [AFI91,Br92,Br95,IP94]rely mostly on string properties, our algorithm for the two-dimensional all-covers prob-lem is based on the Aho-Corasick Automaton and \gap" monitoring techniques.A variant of the covering problem (see [DS]) de�ned above, was shown to haveapplications to DNA sequencing by hybridization using oligonucleotide probes: givenstring x, compute a minimal set of strings of �xed length k that cover x; the strings of theminimal set are said to be the k-covers of x. The k-covering problem is closely related tothe string pre�x matching problem, dictionary matching problem and the Aho-CorasickAutomata; techniques employed here as well as the ones used by Giancarlo in [G95],could lead to e�cient sequential and parallel solutions for the k-covering problem.The paper is organized as follows: in the next section we present some de�nitionsand results used in the sequel. In section 3 we present a linear time algorithm forcomputing all the borders of a square matrix. In section 4 we present a linear timealgorithm for computing the diagonal failure function of a square matrix (an algorithmsimilar to the one in [ABF92]). In section 5 we present a linear time algorithm for thetwo-dimensional pre�x string matching problem. And �nally in section 6, we present alinear time algorithm for computing all the covers of square matrices.2. PreliminariesA string is a sequence (concatenation) of zero or more symbols from an alphabet�. The set of all strings over the alphabet � is denoted by ��. The string xy is aconcatenation of two strings x and y. The concatenations of k copies of x is denotedby xk. A non-empty string x of length n is represented by x1x2 � � �xn, where xi 2 �2



for 1 � i � n. A string w is a substring of x if x = uwv for u; v 2 ��; we saythat w occurs at position j of x if and only if xj � � � xj+l�1 = w1:::wl, where l is thelength of w. A string w is a pre�x of x if x = wu for u 2 ��; furthermore we de�nepre�xk(x) = x1x2 : : : xk. Similarly, w is a su�x of x if x = uw for u 2 ��; furthermorewe de�ne su�xk(x) = xnxn�1 : : : xn�k+1. A pre�x x1:::xp, for some 1 � p < n of x is aperiod of x, if xi = xi+p for all 1 � i � n � p. The period of a string x is the shortestperiod of x.A two-dimensional string is an n1 � n2 matrix drawn from �. In this paper, wedeal exclusively with the special case n = n1 = n2, where the matrix is square. Then� n square matrix T can be represented by T [1 � � �n; 1 � � �n]. An m �m matrix P isa submatrix of T , if the upper left corner of P can be aligned with an element T [i; j],1 � i; j � n �m+ 1 and P [1 � � �m; 1 � � �m] = T [i � � � i+m� 1; j � � � j +m� 1]. In thiscase, the submatrix P is said to occur at position [i; j] of T . A submatrix P is said tobe a pre�x of T if P occurs at position [1; 1] of T . Similarly, a submatrix P is a su�xof T if P occurs at position [n�m+ 1; n�m+ 1] of T .A string b is a border of x if b is a pre�x and a su�x of x. The empty string andx itself are trivial borders of x. An m �m submatrix P is a border of T , if P occursat positions [1; 1]; [n�m+ 1; 1]; [1; n�m+ 1] and [n�m+ 1; n �m + 1] of T . Theempty matrix and the matrix T itself are trivial borders of T .Fact 1. A string u is a period of x = ub if and only if b is a non-trivial border of x.Proof . It follows immediately from the de�nitions of period and border.Fact 2. A cover of string x is also its border. A cover of matrix T is also its border.Proof . A cover of a string (matrix) occurs as both a pre�x and a su�x and thereforeit is a border.The Aho-Corasick Automaton [AC75] was designed to solve the multi-keywordpattern-matching problem: given a set of keywords fr1; r2:::; rhg and an input string tof length n, determine for every keyword ri whether or not it occurs as a substring of t.The Aho-Corasick pattern matching automaton is a six-tuple (Q;�; g; h; q0; F ), whereQ is a �nite set of states, � is a �nite alphabet input, g : Q � � ! Q [ fail is theforward transition, f : Q! Q is the failure function (link), q0 is the initial state and Fis the set of �nal states (for details see [AC75]).Informally, the automaton can be represented as a rooted labelled tree augmentedwith the failure links. The label of the path from the root (initial state) to a state s is a3



pre�x of one of the given keywords ; we denote such label by ls. If s is a �nal state , thenls is a keyword. There are no two sibling edges which have the same label. The failurelink of a node s points to a node f(s) such that the string lf(s) is the longest su�xof ls that is a pre�x of another keyword (see Figure 1 for an example.) The followingtheorem can be found in [AC95].
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Figure 1The Aho-Corasick Automaton for fabca; aabc; acba; aacag. Trivial failure links, i.e.,failure links to the initial state, are not shown. Non-trivial failure links are shown asdotted lines. Final states are shown as patterned squares.Theorem 2.1 The Aho-Corasick automaton solves the multi-keyword pattern-matchingproblem in O(Phi=1 jrij+ n) time.In the sequel we shall need to perform string comparisons using the Aho-Corasickautomaton and the following results by Harel and Tarjan [HT84], Scheiber and Vishkin[SV88] and Berkman and Vishkin [BV94] will be used in guiding us within the automa-ton: 4



Theorem 2.2 Let T be a rooted tree with n nodes and let u; v be nodes of the tree.One can preprocess T in linear time, so that the following queries can be answered inconstant time:(i) Find the lowest common ancestor of u and v.(ii) Find the k-th level ancestor node on the path from node u to the root where the�rst ancestor of u is the parent of u.Using the above theorem one can derive the following two useful corollaries:Corollary 2.3 Given the Aho-Corasick automaton for keywords r1; r2; ::::; rh and allow-ing linear time for preprocessing, the query of testing whether pre�xk(ri) = rm requiresconstant time.Proof . We preprocess the automaton as required by the Berkman-Vishkin algorithm.We can identify the ancestor node, s, of the leaf ri, which corresponds to the k-th pre�xof ri in constant time. This node is the (jrij � k)-th ancestor on the path from the leafri (�nal state) to the root (initial state). The equality holds only when s is also the leaf(�nal state) rm.Corollary 2.4 Given the Aho-Corasick automaton for keywords r1; r2; ::::; rh and al-lowing linear time for preprocessing, the query of testing whether pre�xk(ri;d) = rmrequires constant time, where ri;d = ri[d::jrij].
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Proof . Let ri = �1�2 � � � �q and ri;d = �d�d+1 � � � �q. Then we have pre�xk(ri;d) =�d�d+1 � � � �d+k�1. Let v be the d+ k-th node on the path from the root to the leaf ri.Using the failure links it is possible to construct a path v; u1:::; ut; r from the node v tothe root r. It is not di�cult to see that the label of the path from the root r to uj iss := �d+k�l�d+k�l+1 � � � �d+k, where l is the distance of uj from the root r (see Figure2). One can see that pre�xk(ri;d) is a label of a path from the root to a node u, if andonly if u is one of the uj's. One can say that equality of the query holds if uj, for somej, is the leaf rm.Given the automaton one can answer the query in constant time as follows.Consider the following tree T : root is the initial state of the Aho-Corasick automaton,nodes are the nodes of the automaton and edges the failure links of the automaton.Let pre�xk(ri;d) be associated with a node v as above. It is not di�cult to see thatpre�xk(ri;d) = rm if and only if the Lowest Common Ancestor of rm and v in T is rm -a condition that can be checked in constant time by the [BV94] algorithm.By Fact 2, all borders of a string x or matrix T are candidates for covers. Ouralgorithm for the all-covers problem starts by computing all the borders of T and �ndscovers among the borders.The algorithm is subdivided in the following three steps:1. Compute all the borders B1; B2; � � �Bk of the matrix T and derive the candidatesfor covers. Here we use the fact that a cover of T is also a border. Let Bk be thelargest candidate border.2. For every position [i; j] of T , compute the longest pre�x of Bk that occurs atthat position. We next \round down" these occurrences to the nearest bordersize, thus �nding the largest border that occurs in that position.3. We begin a gap monitoring program starting with Bk. We consider all occur-rences of Bk in T and we check whether there are any positions of T that arenot covered by an occurrence of Bk {we call these positions \gaps" (see section6 for a formal de�nition). If there is a gap, then Bk is not a cover. We proceedby considering whether Bi�1 covers T for all i = k�1; :::; 1, again by monitoringtheir gaps.3. Computing All Borders and CandidatesHere we describe a linear time algorithm for computing all the square bordersof an n � n matrix T . The algorithm makes use of two auxiliary n � n matrices Cand R, where C[i; j] := 1 , if and only if the j-th column of T has a border of length6



i and R[i; j] := 1, if and only if the j-th row of T has a border of length i; otherwiseC[i; j] = R[i; j] = 0. FormallyC[i; j] = � 1; T [1::i; j] is a border of T [1::n; j];0; otherwise.R[i; j] = � 1; T [j; 1::i] is a border of T [j; 1::n];0; otherwise.We compute all the borders of every row and column of T using the Knuth,Morris and Pratt ([KMP77]) algorithm. Furthermore we also use matrix M , such that:M [i] = � 1; R[i; j] = C[i; j] = 1; 8 1 � j � i AND R[i; l] = 1; 8 n� i + 1 � l � n;0; otherwise.Lemma 3.1. The square submatrix T [1::i; 1::i] is a border of T if and only if M [i] = 1.Proof . Assume that M [i] = 1. From the de�nition of M [i] it follows that R[i; j] =1; for all 1 � j � i, which in turn implies that rows r1; r2; :::; ri all have borders oflength i. Therefore T [1::i; 1::i] occurs at position [1; n � i + 1] of T . Similarly, fromthe fact that C[i; j] = 1; for all 1 � j � i the columns c1; c2; :::; ci all have bordersof length i. Therefore T [1::i; 1::i] occurs at position [n � i + 1; 1] of T . From the factthat R[i; j] = 1; for all n � i + 1 � j � n it follows that rows rn�i+1; rn�i+2; :::; rnall have borders of length i, which in turn implies that T [1::i; 1::i] occurs at position[n� i+ 1; n� i + 1] of T .The converse follows similarly.Based on this lemma, the following algorithm is proposed to compute the bordersof T :beginCompute C[i; j], 1 � i; j � n ;Compute R[i; j], 1 � i; j � n ;comment Use the KMP algorithm.for 1 � i � n doif M [i] = 1 thenreturn T [1::i; 1::i] as a border of T ;comment It follows from Lemma 3.1.odend Algorithm 3.17



Theorem 3.2 Algorithm 3.1 computes all the borders of an n � n matrix T in O(n2)time.Proof . The computation of the borders of each row and column takes O(n) time usingthe KMP algorithm,O(n2) in total. Border veri�cation of each diagonal candidate takestime O(i), O(n2) in total.Although here we make use of the borders as candidates for covers, one canobtain a (perhaps) smaller set of candidates by modifying the matrices C and R asfollows: C[i; j] = � 1; T [1::i; j] is a cover of T [1::n; j];0; otherwise.R[i; j] = � 1; T [j; 1::i] is a cover of T [j; 1::n];0; otherwise.One can compute all the covers of every row and column of T using the [MS94]algorithm. The veri�cation of the above set of candidates can be similarly done in lineartime. These candidates may lead to a more e�cient algorithm (as they may be fewerthan the borders) but it does not change the asymptotic complexity.4. Computing the Diagonal Failure Function of a Square Ma-trix An m�m submatrix P is said to be a diagonal border of an n�n matrix T , if Poccurs at positions [1; 1] and [n�m+1; n�m+1] of T . We de�ne the diagonal failurefunction f(i), of T , for 1 � i � n to be equal to k, where T [1::k; 1::k] is the largestdiagonal border of T [1::i; 1::i] ; if there is no such k, then f(i) = 0 (see Figure 3-(i)).Below we present a linear time procedure for computing the diagonal failure function;a similar algorithm was presented in [ABF92] and [ABF94].The computation of the diagonal failure function shadows the computation ofthe failure function given in the Knuth-Morris-Pratt algorithm, with the exceptionthat character comparisons are now substring comparisons. The algorithm makes useof the Aho-Corasick multi-word automaton to perform these comparisons in constanttime. First we construct the Aho-Corasick multi-word automaton for the set of wordsr1; r2; :::; rn; c1; c2; :::; cn, where ri = T [i; i]T [i; i � 1] � � � T [i; 1]; 1 � i � n and ci =T [i; i]T [i�1; i] � � �T [1; i]; 1 � i � n (see Figure 3-(ii)). Secondly, at iteration i, we havecomputed f(i) = k and we proceed to compute f(i+1) by comparing rk+1 and ck+1 with8
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k Figure 3pre�xk+1(ri+1) and pre�xk+1(ci+1) respectively (Recall that pre�xk(x) = x1x2 � � � xkand su�xk(x) = xkxk+1 � � � xn with jxj = n.) Clearly, if both match, then we havef(i + 1) = k + 1. Otherwise, as in KMP, we recursively (on k) compare rk+1 and ck+1with pre�xk+1(ri+1) and pre�xk+1(ci+1), with k := f(k), until both strings match.Formally, the algorithm is as follows:beginri  T [i; i]T [i; i� 1] � � � T [i; 1]; 1 � i � n;ci  T [i; i]T [i� 1; i] � � � T [1; i]; 1 � i � n;R fr1; r2; :::; rng;C  fc1; c2; :::; cng;Construct the Aho-Corasick automaton for R and C;Preprocess the automaton for LCA queries;f(1) 0; k f(1);for i = 2 to n dowhile pre�xk+1(ri) 6= rk+1 or pre�xk+1(ci) 6= ck+1 docomment The condition is tested as in Corollary 2.3.k f(k);odk  k + 1;f(i)  k;odend Algorithm 4.1Theorem 4.1 Algorithm 4.1 computes the diagonal failure function of an n�n matrixin O(n2) time. 9



Proof . The computation of the Aho-Corasick automaton and their preprocessing re-quire O(n2) time. The condition of the while loop can be computed in constant timeas in Corollary 2.3.5. Pre�x String Matching in Two DimensionsLet P (the \Pattern"), T (the \Text") be m�m; and n�n matrices respectively.The two-dimensional problem of pre�x string matching is that of determining, for everyposition in the text matrix T , the longest pre�x of P that occurs in that position.The algorithm below shadows the Main-Lorentz ([ML84]) algorithm on the diag-onals of the text matrix T (see Figure 4) with the exception that character comparisonsare now substring comparisons. We use the Aho-Corasick automata to perform stringcomparisons in constant time. In order to simplify the exposition, we only compute themaximum pre�x of the pattern occurring at points below the main diagonal of the text.The main diagonal is said to be the 1-diagonal, and the diagonal starting at position[d; 1] is said to be the d-diagonal.In Algorithm 5.1 below, we �rst construct the Aho-Corasick multi-word automa-ton for the set of rows r1; r2; :::; rn and r01; r02; :::; r0m of T and P . We also construct theAho-Corasick multi-word automaton for the set of columns c1; c2; :::; cn and c01; c02; :::; c0mof T and P . Starting from the top of each d-diagonal, and sliding downwards (on thed-diagonal), we iteratively compute the maximum pre�x of P at each point of the d-diagonal as follows: at the end of the j-th iteration, we have computed the largestpre�x of P that is a su�x of T [d::d + j � 1; 1::j] for all 1; :::; j. Next, we attempt toaugment that occurrence by extending it by a row and a column (in a manner similarto the L-character used by Giancarlo in [G93] and [G95]); this is only possible whenthe relevant row and column of the text match the corresponding ones of the pattern.If such an extension of the occurrence of the pre�x of P is not possible, then we makeuse of the diagonal failure link, and next we attempt to extend the pre�x pointed to bythe link. Analytically, the pseudo-code for solving the pre�x string matching problemis presented below.beginri  T [i; n]T [i; n� 1] � � �T [i; 1]; 1 � i � n;ci  T [n; i]T [n� 1; i] � � � T [1; i]; 1 � i � n;comment The strings ri; ci are the rows and columns of the text T reversed.r0i  P [i; i]P [i; i� 1] � � �P [i; 1]; 1 � i � m;c0i  P [i; i]P [i� 1; i] � � �P [1; i]; 1 � i �m;comment The strings r0i; c0i are similar to the ones in Figure 3-(ii).10
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computation of the Aho-Corasick automata requires O(n2 +m2) time. The theoremfollows from corollaries 2.3 and 2.4.6. Computing the GapsIn this section we focus on the covering problem: given a square matrix T com-pute all sub-matrices S that cover T . Recall that a sub-matrix S covers T if everyposition of T is within an occurrence of S. The linear time algorithm below is based ongap monitoring techniques.The algorithm makes use of the fact that a cover of T is also a border. We �rstcompute all the borders of T , let Bk be the largest one. Next we compute the largestpre�x of Bk that occurs at every position of T . We \round down" these occurrencesto the nearest border size. Then we begin a gap monitoring program starting with Bk.We consider all occurrences of Bk in T and we check whether there are any positionsthat are not covered by an occurrence of Bk { these \uncovered" positions are calledgaps. If there is a gap, then Bk is not a cover. We proceed by considering whetherBk�1 covers T . Note that Bk�1 occurs in all positions of Bk, thus we have to \add"some positions to the occurrences of Bk to obtain the set of occurrences of Bk�1 in T .In fact every insertion of a new position may \reduce" previous gaps. Also due to thefact that we now consider a smaller border, Bk�1, some positions previously covered byBk may now be left \uncovered", and therefore the gap size between previous gaps may\increase". We monitor all these changes and if all gaps are closed then the border is acover. Analytically the steps of the Gap Monitoring Algorithm are as follows:Algorithm 6.1Step 1. Compute all the square bt � bt borders Bt, 1 � t � k, of the input matrixT ; Let Bk be the largest border and without loss of generality bt < bt+1; 1 � t < k.For 1 � i � n, let F(i) = ft : bt � i < bt+1g and let C(i) = ft : bt�1 < i � btg.The \
oor" F function will be used for rounding down the maximum border pre�xescomputed in the next step and the \ceiling" C function will be used for rounding up thegap length in step 5.Step 2. For every position [i; j] of T compute the length d(i; j) of the maximum pre�xof Bk that occurs in that position by using Algorithm 5.1. Let P [i; j] = F(d(i; j)), i.e.the index of the largest border that occurs at position [i; j] of T . Here we round downthe occurrence (of the pre�x of Bk) to the nearest border size, because only borders arecandidates for covers (see Fact 2). 12



Step 3. Let Dt denote the lexicographicaly ordered list of positions [e; j] such that(i) P [i; j] = t,(ii) i � e < i+ bt.The list Dt contains all positions of T which belong to the �rst column of anoccurrence ofBt (see shaded area of the j-column of T in Figure 5-(i)). Furthermore eachposition [p; q] of T is associated with a range [p; q; l; r] if and only if [p; q] 2 Dt; 8 t : l �t � r, [p; q] 62 Dl�1 and [p; q] 62 Dr+1 (see Figure 5-(ii)). In other words, a position [p; q]is associated with a range [p; q; l; r], if and only if, the position [p; q] is within the �rstcolumn of an occurrence of all of the following borders Bl; Bl+1; :::; Br, but the position[p; q] is not within the �rst column of an occurrence of either Bl�1 or Br+1. Note thata position may be associated with more than one range, e.g., in Figure 5-(ii), assumingthat � < l � 1, we have [p; q; l; r] and [p; q; 
; �]. The computation of these ranges isdescribed in detail in the next section 6.2.
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lFigure 5Step 4. Next we de�ne the Left and Right functions that will allow constant timedeletion and insertion in updating the list Dt, which will be kept as a doubly linked list.We formally de�ne Left ([p; q; l; r]) := [p; q0; l0; r0]if and only if [p; q0] is the �rst entry to the left of [p; q] in the p-th row of T for whichl0 � l � r0, where [p; q; l; r] and [p; q0; l0; r0] are the ranges associated with positions [p; q]and [p; q0] respectively; otherwise Left([p; q; l; r]) := [p; 1;�;�] (Note that [p; 1;�;�] isnot a "true" range, it is merely used here as an endpoint for the Left function).13



We formally de�ne Right([p; q; l; r]) := [p; q00; l00; r00 ]if and only if [p; q00] is the �rst entry to the right of [p; q] in the p-th row of T forwhich l00 � l � r00, where [p; q; l; r] and [p; q00; l00; r00 ] are the ranges associated withpositions [p; q] and [p; q00] respectively; otherwise Right([p; q; l; r]) := [p; n;�;�] (Notethat [p; n;�;�] is not a "true" range, it is merely used here as an endpoint for the Rightfunction).Step 5. First we need the following de�nitions. For each position [p; q] in Dt , wede�ne gapt([p; q]) = q00�q, where [p; q00; l00; r00] = Right [p; q; l; r]. Although, the functiongapt provides us with information of the gaps within Dt, we need to classify these gapsaccording to their length. Thus, for 1 � s � k, we de�ne GAP (s) to be the list of allpositions [p; q] of Dt whose gapt([p; q]) satisfybs�1 < gapt([p; q]) � bs or equivalently s := C(gapt([p; q])):We also de�ne GAP (t) := GAP (k) [GAP (k � 1) [ � � � [ GAP (t)The list GAP (t) contains the positions of Bt occurrences, whose distance (gap) to thenext Bt occurrence is larger than bt.In this step we will consider the borders from largest to smallest. Let Bt bethe current border. Assume that we have computed the list Di and its associatedGAP (i) for all i � t and we proceed to construct Dt�1 and its associated GAP (i); i =k; k � 1; :::; t; t� 1 as follows:We have to consider ranges that fall in one of the following three categories:(i) The ranges of positions that are not members of Dt but which are members ofDt�1. These are ranges of positions [p; q] of T which are not within the �rstcolumn of an occurrence of Bt, but which are within the �rst column of anoccurrence of Bt�1. These are ranges of the form [p; q; l; t� 1] (terminating witht � 1). In order to create Dt�1, these ranges have to be added to the list Dt; their insertion will alter the list GAP , hence we also need to modify the listGAP (t) in order to obtain the list GAP (t� 1).(ii) The ranges of positions that are members of Dt but which are not members ofDt�1. These are ranges of positions [p; q] of T which are within the �rst columnof an occurrence of Bt but not within the �rst column of an occurrence of Bt�1.These are ranges of the form [p; q; t; r] (with t in the third position). In order to14



create Dt�1, these ranges have to be deleted from the list Dt; their deletion willalter the list GAP , hence we also need to modify GAP (t) in order to obtain thelist GAP (t � 1).(iii) The ranges of positions that are members of both Dt and Dt�1. There is no needto consider these ranges, since they do not cause any change in gapsize.First we consider all positions [p; q] with range [p; q; l; t� 1]. Note that [p; q] isin Dt�1, but [p; q] is not in Dt (see (i) above). We will obtain Dt�1 by inserting each ofthese positions [p; q] in Dt and modify the associated GAP lists accordingly, by meansof the following operations:5.1 Let [p; q0; l0; r0] = Left [p; q; l; t�1]. The insertion of [p; q] in Dt will narrowthe gap at position [p; q0], (in other words gapt([p; q0]) 6= gapt�1([p; q0])),hence we delete [p; q0] from the list GAP (C(gapt([p; q0])).5.2 The gap size at position [p; q0] is gapt�1([p; q0]) = q�q0, thus we add [p; q0]into GAP (C(q � q0)). Note that we round up the gap sizes to the nearestborder size { since only borders are candidates for covers.5.3 Now we consider the gap size at [p; q]. Let [p; q00; l00; r00] = Right [p; q; l; t�1]. The position [p; q00] is the nearest position to the right of [p; q] in Dt�1.Therefore gapt�1([p; q]) = q00�q. Thus we add [p; q] into GAP (C(q00�q)).Again we round up the gap size to the nearest border size.Now we consider all positions [p; q] with range [p; q; t; r]. Note that [p; q] belongs to Dtbut it is not in Dt�1 (see (ii) above). We update the lists D and GAP as follows:5.4 Delete [p; q] from the GAP (C(gapt([p; q])). This is done, because the po-sition [p; q] is not a member of Dt�1.5.5 Let [p; q0; l0; r0] = Left [p; q; t; r] and [p; q00; l00; r00] = Right [p; q; t; r] The gapat [p; q0] (inDt�1) has became larger (than the gap inDt) with the deletionof the position [p; q]. The new gap is between positions [p; q0] and [p; q00],therefore we place (p; q0) into GAP (C(q00 � q0)).After all ranges have been processed (as needed in cases (i) and (ii) above) theborder Bt�1 is a cover if and only if GAP (t�1) is empty. Checking whether or not GAPis empty can be done in constant time, by keeping GAP (k); GAP (k�1); :::; GAP (t�1)as a doubly linked list.Theorem 6.1 Algorithm 6.1 checks whether Bi; for all 1 � t � k, covers the matrixT in O(n2 +R), where R is the number of ranges.15



Proof . Step 1 and Step 2 require O(n2) operations by Theorems 4.1 and 5.1. Thecomputation of the ranges in Step 3 is shown next (Theorem 6.2) and it requires O(R)time. Step 4 has also a one to one relationship with the number of ranges, also requiringO(R) time. One can easily deduce that steps 5.1-5.5 require O(1) operations each, foradding and deleting items in doubly linked lists; the total number of operations of Step5 is also bounded by O(R).6.2 Computing The RangesRecall, that each position [p; q] of T is associated with a range [p; q; l; r] if andonly if the position [p; q] is within the �rst column of an occurrence of all of the followingborders Bl; Bl+1; :::; Br, but the position [p; q] is not within the �rst column of anoccurrence of either Bl�1 or Br+1. Let Bj denote the �rst column of the border Bj , forsome j = 1; :::; k. Also, we say that a substring s of x, terminates at position j of x ifand only if x[j �m + 1::j] = s[1::m], where m is the length of s. The computation ofthe ranges is based upon the following three simple facts:Fact 3. Let Bv be the �rst column of the largest border Bv that terminates at position[p; q] of T . Then B1;B2; :::;Bv�1 are all terminating at [p; q].This follows from the fact that Bj is a border of Bv for j = 1; 2; :::; v � 1 (seeFigure 6-(i)). Let [pj ; q], for j = 1; 2; :::; v, be the position that Bj occurs as a su�x ofBv.Fact 4. Suppose that there is no (non-empty) border whose �rst column terminatesat position [p; q] of T and there is no (non-empty) border that occurs at [p + 1; q]. If[p; q; l; r] is a range for [p; q], then [p+ 1; q; l; r] is a range for [p+ 1; q].This follows from the fact that Bj, for all j = l; l + 1; :::; r, covers the position[p; q] of T , and since Bj does not terminate at position [p; q], for all j = l; l + 1; :::; r, italso covers [p+ 1; q] (See Figure 6-(ii)). Also,no new border occurs at [p+ 1; q]. Thus,in this case every range for [p; q] is also a range for [p+ 1; q].Fact 5. Let Bv be the �rst column of the largest border Bv that terminates at position[p; q] of T . The position [p+1; q] of T is covered by Bj , for some j = 1; :::; v, if and onlyif Bj occurs in one of the following positions f[pj + 1; q]; [pj + 2; q]; :::; [p+ 1; q]g.16
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B B Figure 6The main steps of the computation of the ranges are as follows: Assume that wehave computed all ranges for positions [i; q] for i = 1; 2; :::; p, for the q-th column of T ,and we proceed to compute the ranges for position [p+1; q] of T . Let Bt be the largestborder that occurs at [p+ 1; q]. We consider two cases:1. There is no border that terminates at [p; q]. In this case the borders that cover[p; q], also cover [p+1; q] (Fact 4). Therefore, for each range [p; q; l; r], we createone of the following new ranges: either [p + 1; q; 1; r] (when l � t � r ) or[p + 1; q; 1; t] (when t > r) or [p + 1; q; l; r] and [p + 1; q; 1; t] (when t < l). Thisfollows from Fact 4 combined with the fact that Bt occurs at position [p+ 1; q]of T .2. Let Bv be the largest border whose �rst column terminates at [p; q]. Let [pj ; q], forj = 1; 2; :::; v, be the position that Bj ; occurs as a su�x of Bv. For j = 1; 2; :::; v,we check whether there is another occurrence of Bj in positions below [pj ; q]and above of [p + 2; q] . If such an occurrence does not exist, then we insertj into a set named LIST. From Fact 5, the members of the set LIST are theindices of borders that do not cover [p+ 1; q], hence for each range [p; q; l; r], wecreate ranges [p+ 1; q; l; s1 � 1] ,[p+ 1; q; sj � 1; sj+1 � 1], j = 2; 3; :::;m� 1 and[p + 1; q; sm � 1; r], for all si 2 LIST : l � s1 < s2 < ::: < sm < r. Theseranges now need to be modi�ed to take into the account the occurrence of Bt at[p+ 1; q], in an identical manner to step 1 above.The pseudo-code below provides a detailed account of the computation of theranges. 17



Algorithm 6.2beginfor j = 1 to n doif Bt occurs at position [1; j] then create the range [1; j; 1; t];odfor v = 1 to k doTERMINATE[p; q] v, for all positions [p; q] in T that Bv occurs;odfor q = 1 to n dofor p = 1 to n doLet Bt be that largest border that occurs at position [p+ 1; q];if TERMINATE[p; q] = ; thenfor all ranges [p; q; l; r] of position [p; q] doif l � t � r then create the range [p+ 1; q; 1; r];if t > r then create the range [p+ 1; q; 1; t];if t < l then create the ranges [p+ 1; q; 1; t] and [p+ 1; q; l; r];odif TERMINATE[p; q] = v thenfor j = 1 to v doif Bj does not occur between positions [p� bj + 2; q] and [p+ 1; q] thenadd j to the LISTodfor all ranges [p; q; l; r] associated with [p; q] doCompute fsi 2 LIST : l � s1 < s2 < ::: < sm < rg;Create ranges [p+ 1; q; l; s1 � 1],[p+ 1; q; sm � 1; r] and[p+ 1; q; sj � 1; sj+1 � 1], j = 2; 3; :::;m� 1;odfor all ranges [p+ 1; q; l; r] of position [p+ 1; q] doif l � t � r then create the range [p+ 1; q; 1; r];if t > r then create the range [p+ 1; q; 1; t];if t < l then create the ranges [p+ 1; q; 1; t] and [p+ 1; q; l; r];odododend.Theorem 6.2 Algorithm 6.2 computes all ranges in O(n2 +R) time.Proof . The computation of the list TERMINATE takes at most O(n2) units of time.18



The computation of the set LIST can also be done in O(n2) units of time (in total)by preprocessing: for each occurrence of Bj we pre-compute the nearest position inthe same column that Bj re-occurs; this is similar to step 4 of Algorithm 6.1 andpreprocessing requires O(n2) units of time.All internal for loops go through all of the ranges in a column and the outerloop goes through all columns; since each of the if statements requires constant time,the loops require O(R) time.6.3 Counting the Number of RangesWe have seen that there are cases that two or more occurrences of a border cancover a position of T but they lead to just one range. For example, in Figure 6-(i),B1; B2; :::Bv all cover [p; q], but they de�ne only one range [p; q; 1; v]. In order to beable to count the ranges, we need to identify one of these occurrences, and we choosethe one that is the closest to (and covers) the position whose range is in question; wesay that these occurrences originate (establish) a range for that position. This willenable us to distinguish between originating and non-originating border occurrencesand consequently count the number of ranges accordingly. Formally:Let [p; q; l; r] be a range of the position [p; q] of a square matrix T . There existsa position [p0; q] of T such that(i) The border Bt of T occurs at [p0; q], with t such that l � t � r.(ii) The position [p; q] is within the occurrence of the border Bt at [p0; q] (i.e., Btcovers [p; q]).(iii) There is no position [p00; q] of T , with p00 > p with the above two properties.We say that the border occurrence at position [p0; q] originates the range [p; q; l; r]at [p; q]. In Figure 6-(i), assuming that there no other borders occurring, the occurrenceof B1 (that terminates at [p; q]) originates the range [p; q; l; v].The lemma below establishes the criteria under which, a border occurrence at aposition originates a range.Lemma 6.3 Suppose that the borders Bt and Bs of T occur at the positions [c; q]; [e; q]of T and that the occurrence of Bs at [e; q] originates a range [p; q; l; r] for position [p; q].The occurrence of Bt at [c; p] originates a range [p; q; l0; r0] for position [p; q] if and onlyif bt > p� c and s < l0 (6:1)Proof . The border Bt at [c; p] originates a range at [p; q] if and only if it covers [p; q],that is [p; q] is a position within the occurrence of Bt at [c; q] (see Figure 7-(i)), hencebt > p� c. 19



The occurrence of Bt at [c; q] implies that the borders Bl0; Bl0+1; :::; Bt cover[p; q], where l0 = C(p� c). Similarly the occurrence Bs at [e; p] implies that the bordersBl; Bl+1; :::; Bs cover [p; q], with l = C(p � v). Thus Bt originates a new range at [p; q]if and only if s < l0 = C(p � c).
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Figure 7The following lemma establishes an upper bound on the number of ranges origi-nated by a chain of border occurrences.Lemma 6.4 Let [e1; q]; [e2; q]; :::; [em; q] be the positions of the q-th column of T thata non-empty border of T occurs. Let dj = ej+1 � ej ; j = 1; :::;m� 1. If the occurrenceat [ej ; q] originates a range for [ej+1; q] for every i = 1; :::;m� 1, thendj � 32 dj+1 (6:2)and the total number of ranges originated by these occurrences is O(n).Proof . By induction on the number of occurrences. One can show that it holds forj = 5. Assume that positions [ek+1; q]; [ek+2; q]; :::; [em; q] satisfy (6.2); we will nextshow [ek; q]; [ek+1; q]; :::; [em; q] also satisfy (6.2)Let xj , j = 1; 2; 3; 4, be the string that starts at position [ek�j+1; q] and haslength dk�j+1 (see Figure 7-(ii)). From Lemma 6.3 and (6.1) follows that jxj j > jxj+1jand therefore xj+1 is a pre�x of xj , for j = k; :::;m � 1. Using the facts that x2 is a20



pre�x of x1, x3 is a pre�x of x2 and x4 is a pre�x of x3 (see Figure 7-(ii)), one can �ndstrings c; f; g; h such that x1 = cfghx2 = cfgx3 = cfx4 = cAlso let z1 = cfghcfgcfcz2 = cfgcfcz3 = cfcz4 = cbe the substrings of the q-th column of T starting at positions [ek; q]; [ek+1; q]; [ek+2; q]and [ek+3; q] respectively and terminating at [ek+4; q]Case of g < c: From Lemma 6.3 and (6.1) follows that z3 is a pre�x of z2, hence wehave that c = gs for some string s. From z1 and z2 above one can see that x2s is apre�x of hx2x3. If jhj � jx2j=2 then we have thatx2 = h�h0; for some pre�x h0 of h and integer � � 2which implies c = h�h00, for some integer � < � and some pre�x h00 of h and whichin turn implies at least another border occurrence aoriginating a range at the position[ek+2 � jcj+ 1; q] between [ek+1; q] and [ek+2; q], a contradiction. Thus we havejhj > jx2j=2 ! dk = jx1j = jx2j+ jhj > 32 dk+1Case of g � c. This is similar to the case above.We have shown that (6.2) holds and furthermore one can observe that borderoccurrences at positions [e1; q]; [e2; q]:::; [ej ; q] originate j ranges to positions between[ej ; q] and [ej+1; q], or jdj in total for that region. The total number of ranges is�mj=1jdj � �mj=1j(23)j�1d1 = O(n)Theorem 6.5 The cardinality of the list of ranges created in each column is O(n).Thus the total number of ranges R = O(n2).21



Proof . Let [e1; q]; :::; [em; q] be the positions of the q-th column of T that a non-emptyborder of T occurs. The worst case arises when the occurrence at [ei; q], i = 1; :::;m� 1originates ranges to all the positions below it, i.e., [ej ; q], j = i+1; :::;m�1. Thus fromLemma 6.4, the number of ranges is at most O(n) for each column of T or R = n2.Theorem 6.6 Algorithm 6.1 computes all square covers of a square matrix T in lineartime.Proof It follows from Theorem 6.5 and Theorem 6.1.7. Conclusion and Open ProblemsThe Aho-Corasick Automaton depends on the alphabet; it is an open questionwhether the all-covers of a square matrix can be computed in linear time independentof the alphabet. A natural extension of the problems presented here is the design of al-gorithms for computing rectangular covers for rectangular matrices. Another extensionof the above problem is that of computing approximate covers that allow the presenceof errors.Also of interest is the PRAM complexity of both pre�x string matching and allcovers problems (on square and rectangular matrices). An optimal PRAM algorithmfor computing the smallest cover was given in [IK96] but the optimal computation ofall covers is still an open problem (see [IK96b]). In particular the PRAM relationshipbetween the pre�x string matching problem and the computation of the diagonal failurefunction; the PRAM computation of the failure function (see [GP94]) was done usingthe pre�x string matching algorithm, the reverse way of the methods used here.8. References[ABF92] A. Amir, G. Benson and M. Farach, Alphabet independent two dimensionalmatching, Proc. 24th ACM Symposium on Theory of Computing, 59-68, 1992[ABF94] A. Amir, G. Benson and M. Farach, Alphabet independent two dimensionalmatching, SIAM Journal of Computing 23 (2): 313-323 (1994)[AC75] A.V. Aho and M.J. Corasick, E�cient string matching, Comm. ACM, Vol 18,No 6, 333-340, 1975[AE93] A. Apostolico and A. Ehrenfeucht, E�cient detection of quasiperiodicities instrings, Theoret. Comput. Sci, 119, 247-265, 199322
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