N

N

Two-dimensional prefix string matching and covering on
square matrices

Maxime Crochemore, Costas S. Iliopoulos, Maureen Korda

» To cite this version:

Maxime Crochemore, Costas S. Iliopoulos, Maureen Korda. Two-dimensional prefix string matching
and covering on square matrices. Algorithmica, 1998, 20 (1), pp.353-373. 10.1007/PL00009200 .
hal-00619570

HAL Id: hal-00619570
https://hal.science/hal-00619570
Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00619570
https://hal.archives-ouvertes.fr

Two-dimensional Prefix String Matching
and Covering on Square Matrices

Maxime Crochemore* Costas S. Iliopoulos® Maureen Korda?

August 1996

Abstract
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position in a given square matrix, the longest prefix of a given pattern
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1. Introduction

In recent studies of repetitive structures of strings, generalized notions of periods
have been introduced. A typical regularity, the period u of a given string x, grasps
the repetitiveness of = since x is a prefix of a string constructed by concatenations of
u. A substring w of z is called a cover of x if x can be constructed by concatenations
and superpositions of w. A substring w of z is called a seed of = if there exists a
superstring of x which is constructed by concatenations and superpositions of w. For
example, abc is a period of abcabcabea, abea is a cover of abcabcaabea, and abea is a
seed of abcabcaabe. The notions “cover” and “seed” are generalizations of periods in
the sense that superpositions as well as concatenations are considered to define them,

whereas only concatenations are considered for periods.

Given a string x of length n and a pattern p of length m, the prefiz string matching
problem is that of determining, for every position in x, the longest prefix of p that occurs
in that position. Main and Lorentz introduced the notion of prefix string matching in
[ML84] and presented a linear time algorithm for it. In two dimensions, the prefiz string
matching problem is that of determining, for every position in a given n X n text matrix
T, the longest prefix of a given m X m pattern matrix P that occurs in that position.
The two-dimensional prefix string matching problem can be solved using the LSuffix
tree construction of Giancarlo (see [G93], [G95]). The LSuffix tree for T, defined over
an alphabet 3, takes O(n?(log |Z|+logn)) time to build. Giancarlo’s construction is the
two-dimensional analog of the suffix tree ([W]). Two-dimensional dictionary matching
and two-dimensional pattern retrieval (see [G95]) are among the applications of the
Lsuffix tree; one can use the Lsuffix tree to derive O(n?(log|X| + logn)) time for the
two-dimensional prefix string matching problem. Here we present an optimal linear time
algorithm for the two-dimensional prefix string matching problem that makes use of the
notion of a two-dimensional failure function (also used in [ABF92]) as well as the Aho-
Corasick automaton ([AC95]) in order to reduce the number of substring comparisons
to linear. Both constructions are dependent on the alphabet. In the case of fixed
alphabets, the algorithm presented here is faster than the one presented in [G95] by a
factor of O(logn) .

In computation of covers, two problems have been considered in the literature.
The shortest-cover problem is that of computing the shortest cover of a given string
of length n, and the all-covers problem is that of computing all the covers of a given
string. Apostolico, Farach and Iliopoulos [AFI91] introduced the notion of covers and
gave a linear time algorithm for the shortest-cover problem. Breslauer [Br92] presented a
linear time on-line algorithm for the same problem. Moore and Smyth [MS94] presented

a linear time algorithm for the all-covers problem. In parallel computation, Breslauer
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[Br95] gave an optimal O(«a(n)loglogn)-time algorithm for the shortest cover, where
a(n) is the inverse Ackermann function. Iliopoulos and Park [[P94] gave an optimal

O(loglog n)-time (thus work-time optimal) algorithm for the shortest-cover problem.
lliopoulos, Moore and Park [IMP93] introduced the notion of seeds and gave

an O(nlogn)-time algorithm for computing all the seeds of a given string of length n.
For the same problem Ben-Amram, Berkman, lliopoulos and Park [BBIP94] presented
a parallel algorithm that requires O(logn) time and O(nlogn) work. Apostolico and
Ehrenfeucht [AE93] considered yet another problem related to covers.

In this paper we generalize the all-covers problem to two-dimensions and we
present an optimal linear time algorithm for the problem. Let P be a square submatrix
of a square matrix T'; we say that P covers T (or equivalently P is a cover of T'), if every
point of T'is within an occurrence of P. The two-dimensional all-covers problem is as fol-
lows: given a two-dimensional square matrix 7', compute all square submatrices P that
cover T. While the algorithms for the shortest-cover problem [AFI91,Br92,Br95,1P94]
rely mostly on string properties, our algorithm for the two-dimensional all-covers prob-

lem 1s based on the Aho-Corasick Automaton and “gap” monitoring techniques.

A variant of the covering problem (see [DS]) defined above, was shown to have
applications to DNA sequencing by hybridization using oligonucleotide probes: given
string =, compute a minimal set of strings of fixed length k that cover x; the strings of the
minimal set are said to be the k-covers of x. The k-covering problem is closely related to
the string prefix matching problem, dictionary matching problem and the Aho-Corasick
Automata; techniques employed here as well as the ones used by Giancarlo in [G95],

could lead to efficient sequential and parallel solutions for the k-covering problem.

The paper is organized as follows: in the next section we present some definitions
and results used in the sequel. In section 3 we present a linear time algorithm for
computing all the borders of a square matrix. In section 4 we present a linear time
algorithm for computing the diagonal failure function of a square matrix (an algorithm
similar to the one in [ABF92]). In section 5 we present a linear time algorithm for the
two-dimensional prefix string matching problem. And finally in section 6, we present a

linear time algorithm for computing all the covers of square matrices.

2. Preliminaries

A string is a sequence (concatenation) of zero or more symbols from an alphabet
Y. The set of all strings over the alphabet X is denoted by ¥*. The string zy is a

concatenation of two strings x and y. The concatenations of k copies of x is denoted

k

by z”. A non-empty string = of length n is represented by zjx5---x,, where z; € X
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for 1 < < n. A string w i1s a substring of x if + = wwv for u,v € ¥*; we say
that w occurs at position j of x if and only if x;---2j4;—1 = w;...w;, where [ is the
length of w. A string w is a prefiz of z if * = wu for u € ¥*; furthermore we define
prefixg(x) = vy ... 2. Similarly, w is a suffiz of x if = uw for u € ¥*; furthermore
we define suffixg(x) = vp&n—1 ... Tn—k4+1. A prefix zy...x,, for some 1 <p <nof zisa
pertod of x, if x; = x4, for all 1 < <n —p. The period of a string = is the shortest

period of .

A two-dimensional string is an ny X ng matrix drawn from X. In this paper, we
deal exclusively with the special case n = ny = ns, where the matrix is square. The
n X n square matrix 7' can be represented by T[1---n,1---n]. An m X m matrix P is
a submatriz of T, if the upper left corner of P can be aligned with an element Tz, j],
1<ij<n—-m+land P[l---m,1---m]=T[¢---t4+m—1,7---5+m—1]. In this
case, the submatrix P is said to occur at position [¢, j] of T. A submatrix P is said to
be a prefix of T if P occurs at position [1,1] of T. Similarly, a submatrix P is a suffiz
of T if P occurs at position [n —m 4+ 1,n —m + 1] of T.

A string b is a border of x if bis a prefix and a suffix of . The empty string and
x itself are trivial borders of x. An m x m submatrix P is a border of T, if P occurs
at positions [1,1], [n —m+1,1], [l,n—m+ 1] and [n —m+1,n —m + 1] of T. The

empty matrix and the matrix T itself are trivial borders of T.

Fact 1. A string u is a period of x = ub if and only if b is a non-trivial border of .
Proof. It follows immediately from the definitions of period and border. o

Fact 2. A cover of string = is also its border. A cover of matrix T is also its border.

Proof. A cover of a string (matrix) occurs as both a prefix and a suffix and therefore

it is a border. ©

The Aho-Corasick Automaton [ACT5] was designed to solve the multi-keyword
pattern-matching problem: given a set of keywords {ry,rs...,7;} and an input string ¢
of length n, determine for every keyword r; whether or not it occurs as a substring of ¢.
The Aho-Corasick pattern matching automaton is a six-tuple (Q, X, ¢, h, qo, F'), where
() is a finite set of states, ¥ is a finite alphabet input, ¢ : @ x ¥ — Q U fail is the
forward transition, f : @@ — @ is the failure function (link), ¢o is the initial state and F
is the set of final states (for details see [ACT5]).

Informally, the automaton can be represented as a rooted labelled tree augmented
with the failure links. The label of the path from the root (initial state) to a state s is a
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prefix of one of the given keywords ; we denote such label by /. If s is a final state , then
ls 1s a keyword. There are no two sibling edges which have the same label. The failure
link of a node s points to a node f(s) such that the string Iy is the longest suffix
of I5 that is a prefix of another keyword (see Figure 1 for an example.) The following
theorem can be found in [AC95].

Figure 1

The Aho-Corasick Automaton for {abca, aabe, acba, aaca}. Trivial failure links, i.e.,
failure links to the initial state, are not shown. Non-trivial failure links are shown as

dotted lines. Final states are shown as patterned squares.

Theorem 2.1 The Aho-Corasick automaton solves the multi-keyword pattern-matching
problem in O(E?:l |ri| +n) time. o

In the sequel we shall need to perform string comparisons using the Aho-Corasick
automaton and the following results by Harel and Tarjan [HT84], Scheiber and Vishkin
[SV88] and Berkman and Vishkin [BV94] will be used in guiding us within the automa-

ton:



Theorem 2.2 Let 7 be a rooted tree with n nodes and let u,v be nodes of the tree.
One can preprocess 7 in linear time, so that the following queries can be answered in

constant time:
(i) Find the lowest common ancestor of u and v.

(ii) Find the k-th level ancestor node on the path from node u to the root where the

first ancestor of u is the parent of . o

Using the above theorem one can derive the following two useful corollaries:

Corollary 2.3 Given the Aho-Corasick automaton for keywords 1,79, ...., r; and allow-
ing linear time for preprocessing, the query of testing whether prefix(r;) = r,, requires

constant time.

Proof. We preprocess the automaton as required by the Berkman-Vishkin algorithm.
We can identify the ancestor node, s, of the leaf r;, which corresponds to the k-th prefix
of r; in constant time. This node is the (|r;| — k)-th ancestor on the path from the leaf
r; (final state) to the root (initial state). The equality holds only when s is also the leaf

(final state) rp,. O

Corollary 2.4 Given the Aho-Corasick automaton for keywords ry,rz,....,7r; and al-
lowing linear time for preprocessing, the query of testing whether prefixy(r;¢) = rm

requires constant time, where r; ¢ = r;[d..|r;|].

r

Figure 2
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Proof. Let r; = pipz---pg and r;q = papa+1---pg. Then we have prefixg(r; 4) =
PdPd+1 " Pd+k—1- Let v be the d + k-th node on the path from the root to the leaf r;.
Using the failure links it is possible to construct a path v, uy..., us, 7 from the node v to
the root r. It is not difficult to see that the label of the path from the root r to u; is
5 1= Pdtk—1Pd+k—I+1" " Pd+k, Where [ is the distance of u; from the root r (see Figure
2). One can see that prefixi(r; 4) is a label of a path from the root to a node u, if and
only if u is one of the u;’s. One can say that equality of the query holds if u;, for some

7, 1s the leaf ry,.

Given the automaton one can answer the query in constant time as follows.
Consider the following tree 7: root is the initial state of the Aho-Corasick automaton,
nodes are the nodes of the automaton and edges the failure links of the automaton.
Let prefixg(r; 4) be associated with a node v as above. It is not difficult to see that
prefixy(r; ¢) = rm if and only if the Lowest Common Ancestor of r,, and v in T is ry, -

a condition that can be checked in constant time by the [BV94] algorithm. o

By Fact 2. all borders of a string = or matrix T" are candidates for covers. Our
algorithm for the all-covers problem starts by computing all the borders of T and finds

covers among the borders.
The algorithm is subdivided in the following three steps:
1. Compute all the borders By, Bo, - - - By of the matrix T and derive the candidates

for covers. Here we use the fact that a cover of T is also a border. Let By be the

largest candidate border.

2. For every position [i,j] of T, compute the longest prefix of By that occurs at
that position. We next “round down” these occurrences to the nearest border

size, thus finding the largest border that occurs in that position.

3. We begin a gap monitoring program starting with By. We consider all occur-
rences of By in T and we check whether there are any positions of T that are
not covered by an occurrence of By —we call these positions “gaps” (see section
6 for a formal definition). If there is a gap, then Bj is not a cover. We proceed
by considering whether B;_; covers T for all: = k—1,..., 1, again by monitoring

their gaps.

3. Computing All Borders and Candidates

Here we describe a linear time algorithm for computing all the square borders
of an n x n matrix T. The algorithm makes use of two auxiliary n x n matrices C
and R, where C[i,j] := 1, if and only if the j-th column of T has a border of length
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i and R[t, ] := 1, if and only if the j-th row of T has a border of length i; otherwise
Cli,7] = R[i,j] = 0. Formally

— T[1..7,7] is a border of T[1..n, j];
Clig]= {0, otherwise.

. . |1, T[j,1..q] is a border of T[j, 1..n];
Rl j) = {O, otherwise.

We compute all the borders of every row and column of 7' using the Knuth,
Morris and Pratt ([KMP77]) algorithm. Furthermore we also use matrix M, such that:

M[i] = 1, R[i,j]=C[,j]=1,V1<j <t AND R[},]]=1, Vn—i+1<I[<mn;
~ 10, otherwise.

Lemma 3.1. The square submatrix T[1..7,1..7] is a border of T if and only if M[:] = 1.

Proof. Assume that M[:] = 1. From the definition of M[¢] it follows that R[i,j] =
1, for all 1 < j <, which in turn implies that rows ry,rs,...,r; all have borders of
length ¢. Therefore T[1..7,1..1] occurs at position [1,n — ¢ + 1] of T. Similarly, from
the fact that C[i, 7] = 1, for all 1 < j < i the columns ¢y, cq, ..., ¢; all have borders
of length ¢. Therefore T[1..z,1..7] occurs at position [n —¢ + 1,1] of T. From the fact
that R[e,j] =1, for all n—i+1 < j < n it follows that tows 1,11, "n—it2, -y Tn
all have borders of length ¢, which in turn implies that T'[1..7,1..i] occurs at position

[n—i4+1,n—i+1] of T.
The converse follows similarly. o

Based on this lemma, the following algorithm is proposed to compute the borders

of T:

begin
Compute C[i,j],1 <14,5 <n;
Compute R[i,7], 1 <i,5 <n;
comment Use the KMP algorithm.
for 1 <:<ndo
if M[i] =1 then
return 7'[1..7,1..¢] as a border of T}
comment It follows from Lemma 3.1.
od
end o
Algorithm 3.1
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Theorem 3.2 Algorithm 3.1 computes all the borders of an n x n matrix T in O(n?)

time.

Proof. The computation of the borders of each row and column takes O(n) time using
the KMP algorithm, O(n?) in total. Border verification of each diagonal candidate takes
time O(7), O(n?) in total. o

Although here we make use of the borders as candidates for covers, one can
obtain a (perhaps) smaller set of candidates by modifying the matrices C' and R as

follows:
1, TI[l..,7]is a cover of T[1..n,j];

Cli gl = {O, otherwise.

.4 |1, T[j,1..4] is a cover of T[j,1..n};
Rl j) = {0, otherwise.

One can compute all the covers of every row and column of T using the [MS94]
algorithm. The verification of the above set of candidates can be similarly done in linear
time. These candidates may lead to a more efficient algorithm (as they may be fewer

than the borders) but it does not change the asymptotic complexity.

4. Computing the Diagonal Failure Function of a Square Ma-
trix

An m x m submatrix P is said to be a diagonal border of an n x n matrix T', if P
occurs at positions [1,1] and [n —m+1,n —m+ 1] of T. We define the diagonal failure
function f(i), of T, for 1 < i < n to be equal to k, where T[1..k,1..k] is the largest
diagonal border of T[1..7,1..7] ; if there is no such k, then f(i) = 0 (see Figure 3-(i)).
Below we present a linear time procedure for computing the diagonal failure function;
a similar algorithm was presented in [ABF92] and [ABF94].

The computation of the diagonal failure function shadows the computation of
the failure function given in the Knuth-Morris-Pratt algorithm, with the exception
that character comparisons are now substring comparisons. The algorithm makes use
of the Aho-Corasick multi-word automaton to perform these comparisons in constant
time. First we construct the Aho-Corasick multi-word automaton for the set of words
TUy T2y eeey Ty C1y €2y ooy €y, Where 7 = T[i,¢]T[e,0 — 1]---T[i,1], 1 < ¢ < n and ¢; =
Tle,e)T[e—1,¢]---T[1,7], 1 <1¢<n(seeFigure 3-(ii)). Secondly, at iteration ¢, we have
computed f(:) = k and we proceed to compute f(i+1) by comparing rx41 and c¢gy1 with
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Figure 3

prefixg1(riyr) and prefixgyi(ciy1) respectively (Recall that prefixg(z) = xqag--- 23
and suffixg(z) = axgagyr - @, with |x| = n.) Clearly, if both match, then we have
f(i +1) =k + 1. Otherwise, as in KMP, we recursively (on k) compare ri41 and cgq1
with prefixgy1(ri+1) and prefixgyi(cit1), with k := f(k), until both strings match.

Formally, the algorithm is as follows:

begin
ri « Te,2)T[e,0 —1])---T[i, 1],
ci — T[e,e]T[e —1,¢)---T[1,4],

R—{ry,ro,.cc,rn};

1< < n;
1< < n;

C — {cy,c2,...,cnt;
Construct the Aho-Corasick automaton for R and C;
Preprocess the automaton for LCA queries;
f(1) =05 ke f(1);
for : =2 ton do
while prefixji1(r;) # ri41 or prefixgii(c;) # cg+1 do
comment The condition is tested as in Corollary 2.3.
ko f(k);
od
k—Fk+1;
f@) =k
od
end @O
Algorithm 4.1

Theorem 4.1 Algorithm 4.1 computes the diagonal failure function of an n x n matrix

in O(nz) time.



Proof. The computation of the Aho-Corasick automaton and their preprocessing re-
quire O(n?) time. The condition of the while loop can be computed in constant time

as in Corollary 2.3. o

5. Prefix String Matching in Two Dimensions

Let P (the “Pattern”), T (the “Text”) be m x m, and n x n matrices respectively.
The two-dimensional problem of prefix string matching is that of determining, for every

position in the text matrix T, the longest prefix of P that occurs in that position.

The algorithm below shadows the Main-Lorentz ([ML84]) algorithm on the diag-
onals of the text matrix T (see Figure 4) with the exception that character comparisons
are now substring comparisons. We use the Aho-Corasick automata to perform string
comparisons in constant time. In order to simplify the exposition, we only compute the
maximum prefix of the pattern occurring at points below the main diagonal of the text.

The main diagonal is said to be the I-diagonal, and the diagonal starting at position
[d, 1] is said to be the d-diagonal.

In Algorithm 5.1 below, we first construct the Aho-Corasick multi-word automa-
ton for the set of rows ry,re,...,r, and rj, 75, ...,7. of T and P. We also construct the

Aho-Corasick multi-word automaton for the set of columns ¢y, ¢, ..., ¢, and ¢}, ¢}, ..., ¢l
of T and P. Starting from the top of each d-diagonal, and sliding downwards (on the
d-diagonal), we iteratively compute the maximum prefix of P at each point of the d-
diagonal as follows: at the end of the j-th iteration, we have computed the largest
prefix of P that is a suffix of T[d..d + j — 1,1..j] for all 1,...,7. Next, we attempt to
augment that occurrence by extending it by a row and a column (in a manner similar
to the L-character used by Giancarlo in [G93] and [G95]); this is only possible when
the relevant row and column of the text match the corresponding ones of the pattern.
If such an extension of the occurrence of the prefix of P is not possible, then we make
use of the diagonal failure link, and next we attempt to extend the prefix pointed to by
the link. Analytically, the pseudo-code for solving the prefix string matching problem

is presented below.

begin
ri «— Tle,n]Tle,n—1]--- T, 1], 1<i<n;
¢i — Tn,i|Tn—1,4---T[1,7], 1<1i<n;
comment The strings r;, ¢; are the rows and columns of the text T' reversed.
r'y « Pli,e]P[i,e —1]--- Pli, 1], 1 <i<m;
¢t — Pli,i|P[t — 1,¢]--- P[1,7], 1<:¢<m;

comment The strings ., ¢, are similar to the ones in Figure 3-(ii).

10
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Construct the Aho-Corasick automata for R and C';
Compute the diagonal failure function f of P;
for d=1ton do
k «— 0;
for : =dtondo
rig <« Tle,e —d+1] -+ T[,1];
¢ig—Tdi—d+1] --- Tld,i —d+1];
comment See Figure 4 for illustration of r; 4 and ¢; 4.
while prefixy1(r;.q) # r'k+1 or prefixgyi(ciq) # ¢'k4+1 do
comment The condition is tested as in corollary 2.4.
p(i —k,d) «— k;
comment The integer p(i —k, d) is the length of the largest prefix of the pattern
occurring at position [t — k, 0 — k —d + 1].
ko f(k);
od
k—Fk+1;
od
od
end o
Algorithm 5.1

Theorem 5.1 Algorithm 5.1 computes the longest prefix of the m x m matrix P

occurring at every position of an n x n matrix T in O(n? +m?) time.

Proof. The computation of the diagonal failure function of P requires O(m?) time. The
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computation of the Aho-Corasick automata requires O(n* + m?) time. The theorem

follows from corollaries 2.3 and 2.4. o

6. Computing the Gaps

In this section we focus on the covering problem: given a square matrix T' com-
pute all sub-matrices S that cover T. Recall that a sub-matrix S covers T if every
position of T is within an occurrence of S. The linear time algorithm below is based on

gap monitoring techniques.

The algorithm makes use of the fact that a cover of T is also a border. We first
compute all the borders of T, let By be the largest one. Next we compute the largest
prefix of By that occurs at every position of T. We “round down” these occurrences
to the nearest border size. Then we begin a gap monitoring program starting with By.
We consider all occurrences of By in T and we check whether there are any positions
that are not covered by an occurrence of By — these “uncovered” positions are called
gaps. If there is a gap, then By is not a cover. We proceed by considering whether
Bj_1 covers T. Note that Bjy_; occurs in all positions of By, thus we have to “add”
some positions to the occurrences of By to obtain the set of occurrences of By_y in T.
In fact every insertion of a new position may “reduce” previous gaps. Also due to the
fact that we now consider a smaller border, By_1, some positions previously covered by
By may now be left “uncovered”, and therefore the gap size between previous gaps may
“increase”. We monitor all these changes and if all gaps are closed then the border is a

cover. Analytically the steps of the Gap Monitoring Algorithm are as follows:

Algorithm 6.1

STEP 1. Compute all the square b, x by borders By, 1 <t < k, of the input matrix
T; Let By be the largest border and without loss of generality b, < b1, 1 <t < k.
For 1 <i¢<mn,let F(i) ={t : b <t < b1} and let C(i) = {t : by < < b}
The “floor” F function will be used for rounding down the maximum border prefixes
computed in the next step and the “ceiling” C function will be used for rounding up the

gap length in step 5.

STEP 2. For every position [¢, j] of T' compute the length d(¢,7) of the maximum prefix
of By that occurs in that position by using Algorithm 5.1. Let P[i, j] = F(d(z,7)), i.e.
the index of the largest border that occurs at position [z, j] of T. Here we round down
the occurrence (of the prefix of By) to the nearest border size, because only borders are

candidates for covers (see Fact 2).
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STEP 3. Let D; denote the lexicographicaly ordered list of positions [e, 7] such that
(i) Pli,y]=1,
(i) i<e<i+ b

The list D, contains all positions of T" which belong to the first column of an
occurrence of By (see shaded area of the j-column of T in Figure 5-(i)). Furthermore each
position [p, g] of T' is associated with a range [p, ¢, [, r] if and only if [p,¢] € Dy, V t : [ <
t <r, [p.ql € Di—y and [p,q] € Dy41 (see Figure 5-(ii)). In other words, a position [p, ¢]
is associated with a range [p, q,[, ], if and only if, the position [p,¢| is within the first
column of an occurrence of all of the following borders By, Bi4+1, ..., By, but the position
[p, q] is not within the first column of an occurrence of either B;_y or B,4;. Note that
a position may be associated with more than one range, e.g., in Figure 5-(ii), assuming
that o« < I — 1, we have [p,q,[,r] and [p,¢,v,a]. The computation of these ranges is

described in detail in the next section 6.2.

[i]

. — '8,
[pdl T :

@) (i)

Figure 5

STEP 4. Next we define the Left and Right functions that will allow constant time

deletion and insertion in updating the list Dy, which will be kept as a doubly linked list.
We formally define

Left(lp, ¢, 1,r]) == [p, ¢, I',r]
if and only if [p, ¢'] is the first entry to the left of [p, ¢] in the p-th row of T for which
I"<1<v' where [p,q,l,r] and [p, ¢, ', r'] are the ranges associated with positions [p, ¢]
and [p, ¢'] respectively; otherwise Left([p,q,l,r]) := [p,1,—,—] (Note that [p,1,—,—] is

not a "true” range, it is merely used here as an endpoint for the Left function).

13



We formally define

Right([p,q.1,7]) == [p,¢", 1", r"]

if and only if [p,¢"] is the first entry to the right of [p,¢] in the p-th row of T for
which [" < 1 < ¢", where [p,q,l,r] and [p,¢",I",r"] are the ranges associated with

positions [p, ¢] and [p, ¢"] respectively; otherwise Ruight([p,q,l,7]) := [p,n,—, —] (Note
that [p,n, —, —] is not a "true” range, it is merely used here as an endpoint for the Right
function).

STEP 5. First we need the following definitions. For each position [p,q| in D, , we
define gap¢([p, q]) = ¢" — ¢, where [p,¢", 1" ,r"] = Right[p, ¢, 1, r]. Although, the function
gap; provides us with information of the gaps within Dy, we need to classify these gaps
according to their length. Thus, for 1 < s < k, we define GAP(s) to be the list of all
positions [p, q] of Dy whose gap([p, q]) satisty

be—1 < gap([p,q]) < bs or equivalently s :=C(gapi([p,q])).

We also define
GAP(t) :=GAP(k)UGAP(k —1)U---UGAP(t)

The list GAP(t) contains the positions of B; occurrences, whose distance (gap) to the

next By occurrence is larger than b,.

In this step we will consider the borders from largest to smallest. Let B; be
the current border. Assume that we have computed the list D; and its associated
GAP(:) for all ¢ > t and we proceed to construct D;_; and its associated GAP(i),i =
k,k—1,...,t,t —1 as follows:

We have to consider ranges that fall in one of the following three categories:

(i) The ranges of positions that are not members of D; but which are members of
D;_y. These are ranges of positions [p,¢] of T which are not within the first
column of an occurrence of By, but which are within the first column of an
occurrence of By_j. These are ranges of the form [p, ¢,[,t — 1] (terminating with
t —1). In order to create D;_y, these ranges have to be added to the list D

; their insertion will alter the list GAP, hence we also need to modify the list
GAP(t) in order to obtain the list GAP(t — 1).

(ii) The ranges of positions that are members of D; but which are not members of
D,_y. These are ranges of positions [p, ¢] of T which are within the first column
of an occurrence of B; but not within the first column of an occurrence of B;_1.

These are ranges of the form [p, ¢,t,r] (with ¢ in the third position). In order to

14



create Dy_q, these ranges have to be deleted from the list Dy; their deletion will
alter the list GAP, hence we also need to modify GAP(t) in order to obtain the
list GAP(t —1).

(iii) The ranges of positions that are members of both D; and D;_;. There is no need

to consider these ranges, since they do not cause any change in gapsize.

First we consider all positions [p, ¢] with range [p,q,l,t — 1]. Note that [p,q] is
in Dy_1, but [p, ¢] is not in Dy (see (i) above). We will obtain D;_; by inserting each of
these positions [p, ¢] in Dy and modify the associated GAP lists accordingly, by means

of the following operations:

5.1 Let [p,¢',I',r'] = Left|p, q,1,t —1]. The insertion of [p, ¢] in D; will narrow

the gap at position [p, ¢'], (in other words gap([p. ') # gapi—1([p, d'])),
hence we delete [p, ¢'] from the list GAP(C(gap:([p,¢']))

5.2 The gap size at position [p, ¢'] is gapi—1([p, ¢']) = ¢—¢', thus we add [p, ¢']
into GAP(C(q — ¢')). Note that we round up the gap sizes to the nearest

border size — since only borders are candidates for covers.

5.3 Now we consider the gap size at [p,q|. Let [p,¢", ", r"] = Right[p,q,1,t —
1]. The position [p, ¢"] is the nearest position to the right of [p, ¢] in Dy_;.
Therefore gapi—1([p, ¢]) = ¢" —¢. Thus we add [p, ¢] into GAP(C(¢" —q)).

Again we round up the gap size to the nearest border size.

Now we consider all positions [p, ¢] with range [p, ¢,t,7]. Note that [p, q] belongs to Dy
but it is not in Dy_; (see (ii) above). We update the lists D and GAP as follows:

5.4 Delete [p, q] from the GAP(C(gap:([p,¢])). This is done, because the po-

sition [p, ¢] is not a member of D;_;.

5.5 Let [p.¢',l',r'] = Left[p,¢.t,r] and [p,¢", 1", r"] = Right[p, ¢.t,r] The gap
at [p,¢'] (in D¢—1) has became larger (than the gap in D;) with the deletion

of the position [p,¢]. The new gap is between positions [p, ¢'] and [p, ¢"],
therefore we place (p,¢') into GAP(C(¢" — ¢')).

After all ranges have been processed (as needed in cases (i) and (ii) above) the
border B;_; is a cover if and only if GAP(t—1) is empty. Checking whether or not GAP
is empty can be done in constant time, by keeping GAP(k), GAP(k—1),...., GAP(t—1)
as a doubly linked list.

Theorem 6.1 Algorithm 6.1 checks whether B;, for all 1 <t <k, covers the matrix
T in O(n2 + R), where R is the number of ranges.
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Proof. Step 1 and Step 2 require O(n?) operations by Theorems 4.1 and 5.1. The
computation of the ranges in Step 3 is shown next (Theorem 6.2) and it requires O(R)
time. Step 4 has also a one to one relationship with the number of ranges, also requiring
O(R) time. One can easily deduce that steps 5.1-5.5 require O(1) operations each, for

adding and deleting items in doubly linked lists; the total number of operations of Step
5 is also bounded by O(R). o

6.2 Computing The Ranges

Recall, that each position [p, ] of T is associated with a range [p,q,[,r] if and
only if the position [p, ¢] is within the first column of an occurrence of all of the following
borders By, Bi41, ..., By, but the position [p,¢] is not within the first column of an
occurrence of either Bi_y or B,41. Let B; denote the first column of the border Bj, for
some 7 = 1,..., k. Also, we say that a substring s of =, terminates at position j of x if
and only if z[j — m + 1..j] = s[1l..m], where m is the length of s. The computation of

the ranges is based upon the following three simple facts:

Fact 3. Let B, be the first column of the largest border B, that terminates at position
[p,q] of T. Then By, B3, ..., 5,1 are all terminating at [p, q|.

This follows from the fact that B; is a border of B, for j = 1,2,...,v — 1 (see
Figure 6-(1)). Let [p;,¢], for j = 1,2,...,v, be the position that B; occurs as a suffix of
B,.

Fact 4. Suppose that there is no (non-empty) border whose first column terminates
at position [p,¢] of T and there is no (non-empty) border that occurs at [p + 1,¢]. If
[p,q,l,r] is a range for [p, q|, then [p+ 1,¢,[,r] is a range for [p + 1, ¢|.

This follows from the fact that Bj, for all y = [,1 4 1,...,r, covers the position
[p, ¢] of T, and since B; does not terminate at position [p, ¢, for all j = 1,1+ 1,...;r, it
also covers [p + 1, ¢] (See Figure 6-(ii)). Also,no new border occurs at [p+ 1, ¢]. Thus,

in this case every range for [p, q| is also a range for [p + 1, ¢|.

Fact 5. Let B, be the first column of the largest border B, that terminates at position
[p, ¢] of T. The position [p+1,¢] of T is covered by Bj, for some j = 1, ..., v, if and only
if B; occurs in one of the following positions {[p; + 1, ¢],[p; +2,4],...,[p + 1, 4]}
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The main steps of the computation of the ranges are as follows: Assume that we
have computed all ranges for positions [z, ¢] for i = 1,2, ..., p, for the ¢-th column of T,
and we proceed to compute the ranges for position [p+1,¢| of T. Let By be the largest

border that occurs at [p + 1, ¢]. We consider two cases:

1. There is no border that terminates at [p, ¢]. In this case the borders that cover
[p, q], also cover [p+ 1, ¢] (Fact 4). Therefore, for each range [p, q,l,r]|, we create
one of the following new ranges: either [p + 1,¢,1,r] (when [ <t < r ) or
[p+1,q,1,t] (whent >r)or [p+1,q,],r] and [p+ 1,¢,1,?] (when t < [). This
follows from Fact 4 combined with the fact that B; occurs at position [p 4 1, ¢]
of T.

2. Let B, be the largest border whose first column terminates at [p, g]. Let [p;, ¢|, for
J =1,2,...,v, be the position that Bj, occurs as a suffix of B,. For j =1,2,...,v,
we check whether there is another occurrence of B; in positions below [p;, ¢]
and above of [p 4 2,¢] . If such an occurrence does not exist, then we insert
J into a set named LIST. From Fact 5, the members of the set LIST are the
indices of borders that do not cover [p + 1, ¢|, hence for each range [p, ¢, 1, r], we
create ranges [p+1,¢,0,51 — 1] ,[p+1,¢,5; — 1,541 — 1], 7 =2,3,...,m—1 and
P+ 1,¢,8m — 1,7], for all s; € LIST : 1 < 31 < 83 < ... < 84 < r. These
ranges now need to be modified to take into the account the occurrence of By at

[p+1,¢q], in an identical manner to step 1 above.

The pseudo-code below provides a detailed account of the computation of the

ranges.

17



Algorithm 6.2

begin
for j =1ton do
if B, occurs at position [1, j] then create the range [1,7,1,¢];
od
for v=1to k do
TERMINATE[p, q] «+ v, for all positions [p, q] in T that B, occurs;
od
for ¢ =1tondo
for p=1ton do
Let By be that largest border that occurs at position [p+ 1, q|;
if TERMINATEIp, q] = () then
for all ranges [p, ¢, [, 7] of position [p,¢] do
if [ <t <r then create the range [p+1,¢,1,7];
if t > r then create the range [p+1,¢,1,1];
if t < [ then create the ranges [p+ 1,¢,1,t] and [p+ 1,4, 7];
od
if TERMINATE[p, ¢] = v then
for j =1to v do
if B; does not occur between positions [p — b; +2,¢] and [p + 1, ¢] then
add j to the LIST
od
for all ranges [p, ¢, [, r] associated with [p, ¢] do
Compute {s; € LIST : 1 <81 <82 < ... < 8y < 1}
Create ranges [p+ 1,¢,1,s1 — 1],[p+ 1,4, 8, — 1,7] and
p+1,¢,5 — 1,841 —1], 5 =2,3,....m —1;
od
for all ranges [p+ 1,¢,[,r] of position [p+ 1,¢| do
if [ <t <r then create the range [p+1,¢,1,7];
if t > r then create the range [p+1,¢,1,1];
if t < [ then create the ranges [p+ 1,¢,1,t] and [p+ 1,4, 7];
od
od
od

end. o

Theorem 6.2 Algorithm 6.2 computes all ranges in O(n? + R) time.

Proof. The computation of the list TERMINATE takes at most O(n?) units of time.
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The computation of the set LIST can also be done in O(n?) units of time (in total)
by preprocessing: for each occurrence of B; we pre-compute the nearest position in
the same column that B; re-occurs; this is similar to step 4 of Algorithm 6.1 and

preprocessing requires O(n?) units of time.

All internal for loops go through all of the ranges in a column and the outer
loop goes through all columns; since each of the if statements requires constant time,

the loops require O(R) time. o

6.3 Counting the Number of Ranges

We have seen that there are cases that two or more occurrences of a border can
cover a position of T but they lead to just one range. For example, in Figure 6-(i),
By, B,,...B, all cover [p, ¢, but they define only one range [p,¢,1,v]. In order to be
able to count the ranges, we need to identify one of these occurrences, and we choose
the one that is the closest to (and covers) the position whose range is in question; we
say that these occurrences originate (establish) a range for that position. This will
enable us to distinguish between originating and non-originating border occurrences

and consequently count the number of ranges accordingly. Formally:

Let [p,q,1,r] be a range of the position [p, ¢] of a square matrix T. There exists
a position [p’, ¢] of T such that

(i) The border By of T occurs at [p', ¢], with ¢ such that [ <t <.

(ii) The position [p,¢| is within the occurrence of the border By at [p',¢] (i.e., By
covers [p, q]).
(iii) There is no position [p",¢q] of T, with p" > p with the above two properties.

We say that the border occurrence at position [p', q] originates the range [p, q, 1, r]
at [p, ¢]. In Figure 6-(i), assuming that there no other borders occurring, the occurrence

of By (that terminates at [p, ¢]) originates the range [p,q,1, v].

The lemma below establishes the criteria under which, a border occurrence at a

position originates a range.

Lemma 6.3 Suppose that the borders B, and By of T occur at the positions [¢, ¢], [e, ¢]
of T and that the occurrence of B; at [e, ¢] originates a range [p, ¢, [, r] for position [p, q].
The occurrence of By at [c, p] originates a range [p, ¢, ', r'] for position [p, ¢] if and only
if

by >p—c and s<1! (6.1)

Proof. The border By at [c, p] originates a range at [p, ¢] if and only if it covers [p, q],
that is [p, ¢] is a position within the occurrence of By at [c, ¢] (see Figure 7-(1)), hence

by >p—c.
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The occurrence of By at [¢, ¢] implies that the borders By, By4q, ..., By cover
[p, ¢], where I' = C(p — ¢). Similarly the occurrence By at [e, p] implies that the borders
By, Bit1, ..., Bs cover [p,q], with [ = C(p — v). Thus By originates a new range at [p, ¢]
ifandonlyif s <!'=C(p—c¢). ©
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Figure 7

The following lemma establishes an upper bound on the number of ranges origi-

nated by a chain of border occurrences.

Lemma 6.4 Let [eq, q], [e2,¢], .., [ém, q] be the positions of the ¢-th column of T that

a non-empty border of T occurs. Let dj =¢ej41 —¢j, j =1,...,m — 1. If the occurrence
at [e;, ¢] originates a range for [e;41,¢] for every ¢ = 1,...,m — 1, then
3
dj 2 5 dj (6.2)

and the total number of ranges originated by these occurrences is O(n).

Proof. By induction on the number of occurrences. One can show that it holds for
J = 5. Assume that positions [ext1,9], [€k+2,4], s [€m, ¢] satisfy (6.2); we will next
show [ek, ¢, [€x+1, 4], ..., [em, ¢] also satisfy (6.2)

Let x;, j = 1,2,3,4, be the string that starts at position [e;—;41,¢] and has
length dj_ ;41 (see Figure 7-(ii)). From Lemma 6.3 and (6.1) follows that |z;| > |2;41]

and therefore x4 is a prefix of z;, for j = k,...,m — 1. Using the facts that x5 is a
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prefix of x1, a3 is a prefix of x2 and x4 is a prefix of x5 (see Figure 7-(ii)), one can find

strings ¢, f, g, h such that

r1 =cfgh
r2 =cfyg
x3 =cf
Ty =c
Also let
z1 = cfghcefgefe
z9 = cfgefe
z3 =cfe
Zy =¢

be the substrings of the ¢-th column of T starting at positions [ex, q], [¢x+1, 9], [€k+2, q]
and [exy3, ¢] respectively and terminating at [ef4, ¢]

Case of ¢ < ¢: From Lemma 6.3 and (6.1) follows that z3 is a prefix of z2, hence we
have that ¢ = ¢s for some string s. From z; and z; above one can see that z2s is a
prefix of hagxs. If |h| < |22]/2 then we have that

x9 = h*R', for some prefix h' of h and integer A\ > 2

which implies ¢ = h*h", for some integer ¢ < A and some prefix 2" of h and which
in turn implies at least another border occurrence aoriginating a range at the position

[ekt+2 — |¢| + 1, ¢] between [eg41,q] and [eg42,q], a contradiction. Thus we have
3
Al > Je2l/2 = di = o] = Je2] +[R] > 5 drn

Case of g > c. This is similar to the case above.

We have shown that (6.2) holds and furthermore one can observe that border
occurrences at positions [eq, ¢, ez, ¢]..., [e;, ¢] originate j ranges to positions between

le;,¢] and [ej4+1,¢], or jd; in total for that region. The total number of ranges is

. 2
SILdy < ST = On) s

Theorem 6.5 The cardinality of the list of ranges created in each column is O(n).
Thus the total number of ranges R = O(n?).
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Proof. Let [ey,q], ..., [em, q] be the positions of the ¢-th column of T' that a non-empty
border of T occurs. The worst case arises when the occurrence at [e;, ], 0 =1,....m—1
originates ranges to all the positions below it, i.e., [e;,q], j = ¢+ 1,...,m — 1. Thus from

Lemma 6.4, the number of ranges is at most O(n) for each column of T or R = n?.o

Theorem 6.6 Algorithm 6.1 computes all square covers of a square matrix 7' in linear

time.

Proof 1t follows from Theorem 6.5 and Theorem 6.1. o

7. Conclusion and Open Problems

The Aho-Corasick Automaton depends on the alphabet; it is an open question
whether the all-covers of a square matrix can be computed in linear time independent
of the alphabet. A natural extension of the problems presented here is the design of al-
gorithms for computing rectangular covers for rectangular matrices. Another extension
of the above problem is that of computing approximate covers that allow the presence

of errors.

Also of interest is the PRAM complexity of both prefix string matching and all
covers problems (on square and rectangular matrices). An optimal PRAM algorithm
for computing the smallest cover was given in [IK96] but the optimal computation of
all covers is still an open problem (see [IK96b]). In particular the PRAM relationship
between the prefix string matching problem and the computation of the diagonal failure
function; the PRAM computation of the failure function (see [GP94]) was done using

the prefix string matching algorithm, the reverse way of the methods used here.
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