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Abstract

Let S(v) be a function defined on the vertices v of the infinite
binary tree. One algorithm to seek large positive values of S is the
Metropolis-type Markov chain (X,,) defined by

1 eb(Sw)=S))

PXnpr =vlXn =v) = 3 I omm—sey

for each neighbor w of v, where b is a parameter (“l/temperature”)
which the user can choose. We introduce and motivate study of this
algorithm under a probability model for the objective function S, in
which S is “tree-indexed simple random walk” | that is the increments
é(e) = S(w)—S(v) along parent-child edges e = (v, w) are independent
and P(6 = 1) =p, P(( = —1) = 1—p. This algorithm has a “speed”
r(p,b) = lim, n"'ES(X,,). We study the speed via a mixture of rigor-
ous arguments, non-rigorous arguments and Monte Carlo simulations,
and compare with a deterministic greedy algorithm which permits rig-
orous analysis. Formalizing the non-rigorous arguments presents a
challenging problem. Mathematically, the subject is in part analogous
to recent work of Lyons-Pemantle-Peres (1995,1996) on the speed on
random walk on Galton-Watson trees. A key feature of the model is
existence of a critical point p..it below which the problem is infeasible;
we study behavior of algorithms as p | peit -

Preliminary version. See homepage for updates.
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1 Introduction

Section 1 describes the model, results and conjectures. Discussion of back-
ground algorithmic issues and of background statistical physics methods is
in sections 2.1 and 5.1.

Figure 1 illustrates a function S(v) defined on the vertices v of the in-
finite binary tree 7°°. Our convention is to make the root have degree 3
(rather than 2, the convention in the theory of algorithms), but the choice
of convention is not important. Note that 5(v) takes both positive and neg-
ative values. Note also that specifying a function S(v) with S(root) = 0 is
equivalent to specifying a function £(v, w) on directed edges (v, w) satisfying
&(w,v) = —€&(v,w), the equivalence being via

S(w)— S(v) = &(v,w) for all edges (v, w).
We study the (imprecise) question

What is a good algorithm for finding large positive values of
S()?

One can invent many algorithms, but the following two seem fundamental.

The greedy algorithm. Suppose we have examined vertices root =
Vo, V1, - . ., Vy. Consider the subset of those vertices which have some child
which has not been examined; from that subset, choose a vertex v for which
S(v) is maximal and then choose some previously-unexamined child of v to
be the next vertex v,41 to be examined.

The Metropolis algorithm. Fix a parameter b > 0. Let the sequence
of (not distinct) vertices examined be the Markov chain (X,,) with X = root
and with transition probabilities

b(S(w)—5(v))

€

W=

for each neighbor w of ».

Our term “Metropolis algorithm” in the present context is rather non-
standard, because the term is properly used in the context of simulating a
stationary distribution m(2) o exp(bS(2)) on a finite set. A connection be-
tween the finite and infinite settings will be discussed in section 2, but for the
moment keep in mind the idea that studying transient (in the Markov chain
sense) behavior of the infinite-state chain is intended as a toy model for the
pre-equilibrium (transient, in the engineer’s sense) behavior of randomized
optimization algorithms on large finite sets.
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figure 1

We called our original question “imprecise”. The algorithms themselves
are precisely specified (up to arbitrary tie-breaking and selection of children
conventions in the greedy algorithm, where the exact conventions are unim-
portant). What is imprecise is the criterion for an algorithm to be “good”.
Without assumptions on the objective function 5 there seems no hope of
comparing algorithms. So we introduce the simplest possible probability
model, in which the increments (v, w) across edges (v, w) directed away
from the root are modeled as independent random variables with common
distribution £ such that

P=1)=p, PEl=-1)=1-p. (2)

Here p is a parameter outside our control. For p > 1/2 the “oblivious”
algorithm which simply follows a prescribed ray in the tree will find large



positive values of 9, so we restrict to the case p < 1/2. Much of our analysis
should extend to the setting where the increment distributions £ have more
general distributions depending on a parameter p. But since the £1-valued
case already presents enough difficulty, we stick with the special setting,
with occasional remarks about “the general ¢ setting”. We call this model
tree-indexed random walk: see Pemantle [20] for a survey of theoretical prob-
ability results about such processes.

The “stationarity” inherent in this tree-indexed random walk model sug-
gests that for any reasonable algorithm ALG which generates a determinis-
tic or random sequence of vertices (root = Xg, X1, Xo,...) to be examined,
there should be some asymptotic “rate” r(p, ALG) such that

7}1—{%0 n~'S(X,) = r(p, ALG) a.s. (3)
Note that 7(p, ALG) may be positive, negative or zero. Of course from the
algorithmic viewpoint we are interested in the mazimum value found, but
(3) immediately implies
lim n~' max §(X,,) = max(0, 7(p, ALG)) a.s.
n—00 m<n
and so it is enough to consider r(p, ALG).

Standard results on branching random walk (see Biggins [2] for a recent

treatment) imply a rather different linear rate result:

dlirgo d-! Ulén}?()é) S(v) = a(p) a.s., and there exists a path

root, vy, vy, ... such that lim d™'S(vy) = a(p) as. (4)

d—oco

where H(d) is the set of 329! vertices at depth d, and where a(p) is the
solution of

i%f (pee +(1—pe? - %eea(p)) =0.
And there is a critical value

Perit = X2 % 0.06699

such that a(p) < 0 for p < peyi and a(p) > 0 for p > peyiy. This result has an
immediate negative implication: if p < peit then there are only finitely many
vertices v with S(v) > 0 and so no algorithm can have r(p, ALG) > 0. The
converse, that for p > pe,i¢ there exists some algorithm with »(p, ALG) > 0,



is not obvious from the statement of (4) but, as explained in [1], does indeed
follow fairly easily from the proof of (4).

Thus our setting provides a toy model in which to study and compare
general purpose optimization algorithms: one can ask whether a specific
algorithm ALG satisfies

r(p, ALG) > 0 for all p > perig

and one can compare algorithms by comparing the values of r(-). It was
shown in Aldous [1] that »(p, GREEDY) can be expressed in terms of the
solution of a fixed-point identity for distributions and thereby computed
numerically — see figure 3 later. A minor purpose of this paper is to derive
(rigorously) the asymptotic behavior around the critical point.

Proposition 1 T(p, GREEDY) = exp (—C(p - pcrit)_1/2 + 0(1)) as p | perit
where ¢ = 1.11 is given by the explicit formula (13).

The proof comprises section 3.

The major purpose of this paper is to initiate study of the Metropo-
lis algorithm (1) in our tree-indexed random walk model. Recall that the
Metropolis algorithm involves a parameter b (= “1/temperature”), and as
at (3) write r(p,b) for the rate

. —1
Jim 7 S(X,) =r(p,b) as.

associated with the Metropolis algorithm. We do not know any theoretical
result which enables 7(p,b) to be calculated numerically. Figure 2 shows
values of r(0.2,b) for 0 < b < 3 obtained by Monte Carlo simulation. Note
that p = 0.2 is about 3 times p.t. The qualitative shape of the function
b — 7(p,b) seen in simulations is similar for all p.it < p < 1/2: the function
starts negative at b = 0, increases until reaching a positive maximum, then
decreases to 0 as b — oco. The maximum rate

r"(p) = maxr(p,b) (5)

is about 1072 for p = 0.2 — by comparison, r(0.2, GREEDY) ~ 0.044 is much
larger. Figure 3 compares r(p, GREEDY) (calculated numerically) with the
maximal Metropolis rate 7*(p) (found by simulation).






Can we give theoretical arguments which explain the simulation results?
As to figure 3, the answer is “no”. The simulations show a remarkably good
fit to the curve

r*(p) = constant x (r(p, GREEDY))?

and so for the record we make

Conjecture 2 As p | perits
r*(p) = (r(p, GREEDY)) (1),

Proving this seems well beyond the reach of current mathematics, though
in section 4 we point out the same “squared” relationship in an analogous
context. What is within reach? Mathematically, our Metropolis chain is
analogous to the well-studied topic RWIRE (Random Walk in Random En-
vironment) [7] and in particular to recent work of Lyons-Pemantle-Peres
[16, 17] studying speed of random walk on Galton-Watson trees. Applying
known methods gives

Theorem 3 Fiz 1/2 > p > peig and b > 0. Write bo(p) = 10g1,%p > 0.
Then the limit rate

lim n~'5(X,) = r(p,b) a.s. (6)

n—oo

exists, and
(A) r(p,0) = 2= < 0.
(B) r(p. bo(p)) = 0.
(C) For b = by(p) there is a variance rate

o(p, bo(p)) = lign t~tvar S(X;) > 0.

(D) r(p,b) <0 for 0 < b < bo(p) and r(p,b) > 0 for by(p) < b < 0.
(E) r(p,b) — 0 as b — oo.

To avoid technicalities, we shall give (section 5.2) only an informal treatment
of Theorem 3 emphasizing calculations, but there would be no real difficulty
in rephrasing our arguments rigorously. In contrast, in section 5.3 we give
calculations (which do seem difficult to make rigorous) for (F,G) below, and
reasons to believe (H).



Conjecture 4 In the setting of Theorem 3, write ry(p,b) = d%r(p, b). Then
(F) ry(p,0) = >3 > .
(G) o(p, bo(p)) = 50%(p bo(p))-
(H) a*(p,bo(p)) > 0.

The point is that (G,H) would imply

r*(p) = supr(p,b) > 0, for each p > peyis. (7)
b

See section 2.1 for interpretation.

The remaining sections of the paper are largely independent of each
other. Section 2 elaborates the conceptual connection between our setup
and randomized optimization over a large finite set. Section 3 gives the
proof of Proposition 1. Section 4 uses a formula of Lyons-Pemantle-Peres
[16] to exhibit a “squared” relationship (analogous to Conjecture 2) in the
context on random walk on near-critical Galton-Watson trees. Section 5
outlines the proof of Theorem 3 and arguments in support of Conjecture 4.

2 Finite optimization algorithms

2.1 General remarks

The universality paradigm in statistical physics asserts that, in a system
with a phase transition at a critical value 6., of a parameter 6, one expects
statistics of the system to scale as (8 — .,i¢)” near the critical point, where
the scaling exponent o depends on the statistic but not on the details of the
model. Our motivation for this paper was to investigate whether analogs
exist in the context of randomized optimization algorithms. A proof of Con-
jecture 2 would be an appealing starting point for such an area of research.

Diaconis and Saloff-Coste [4] survey what is rigorously known about
Metropolis algorithms, from the usual viewpoint of sampling from a given
distribution rather than our viewpoint as a randomized optimization algo-
rithm. As noted by Jerrum and Sorkin [9], despite the intuitively appealing
story behind simulated annealing, there is no known interesting example
where it can be proved that varying the temperature parameter improves
performance of the Metropolis optimization algorithm. And as noted by
Juels [10], there is no known interesting example where it can be proved
that either algorithm improves on more elementary “randomized hillclimb-
ing” algorithms.



We regard our tree-indexed random walk model of the graph and ob-
jective function as a caricature of an optimization problem on a large finite
graph. In typical such problems, the neighborhood size increases with the
problem size, but once a reasonably good value of the objective function 5
has ben found, most neighbors offer undesirable changes in 5, so that an
“effective neighborhood size” (i.e. moves with a non-vanishing chance of
being accepted) can be regarded as bounded. Moreover on large graphs the
Metropolis chain seems unlikely to return to a state in the short term except
by retracing steps. Thus the idea of mimicing an optimization problem on a
large graph by a problem on a bounded-degree tree (we chose binary merely
for simplicity) isn’t unreasonable; of course what is artificial is to model the
increments of the objective function as independent random variables.

From the viewpoint of this caricature, if (7) were false it would imply an
unsuspected weakness in Metropolis-type algorithms: there would be simple
explicit optimization problems (see section 2.2) where Metropolis does much
worse than greedy. Assuming (7) true suggests the following “practical”
procedure. Suppose we do a long run of the Metropolis scheme on a finite
problem with a fixed parameter b, and that the observed values of 5 look like
a stationary process (call this metastability: note we are not assuming the
Metropolis chain reaches its global stationary distribution). Can we predict
whether repeating a run with & > b will be an improvement (e.g. compared
to repeating with the same value of b)? For each state v there is a vector
(z;(v),7> 1) of increments

{S(w)— S5(v): w a neighbor of v}

arranged in decreasing order, say. Take a sample of states (v;,1 < j < J)
found in the parameter-b run, search exhaustively their neighbors (v;;,7 >

1), and calculate ¢(8) = J~! > 2o exp(0(5(v;:) — S(v;))). Now predict
Using a larger value of b will be an improvement iff infgsq 1&(0) > 1.

The point is that 1(8) is an estimate of ¢(8) = E'Y; exp(fz;(V)), where V
has the metastable distribution attained by the run. In the caricature we
assume the environment is such that the increments across edges at a single
vertex are distributed as (z;(V),7 > 1) independently over vertices. Then
the classical large deviation analysis (4) shows that paths with positive rate
of growth of S(-) exist if infg10(#) > 0. By metastability, our parameter-b
run has rate zero, i.e. the increments over edges satisfy the general-£ analog
of our “balance” condition b = bo(p) in (B). But given that paths exist with



positive rate of growth of 5(-), (7) suggests that the Metropolis algorithm
with slightly large value of b will find such paths.

2.2 A random graph model

In this section we explain how our infinite tree-indexed random walk model
for an optimization problem can be viewed precisely as a limit of a certain
random model for a finite optimization problem.

Fix large H > 1 and 0 < p < 1/2. Write n.(—=1,0) =n.(H,H+1)=0
and

H—-h
ne(h b4+ 1)=3[(2)7 T 0<h<H-1.
ny(h) = (ne(h — 1.h) + no(h,h+ 1))/3, 0 < h < H.

We construct a 3-regular graph with vertices in “levels” h = 0,1,..., H,
with n,(h) vertices at level h and with e(h,h+ 1) edges linking level h with
level h4+1 (0 < h < H), and with no other edges. The construction mimics
the usual construction (e.g. [8] p. 374) of a random 3-regular graph. Start
with the vertices arranged in levels, each with 3 “handles”. Connect a pair
of randomly-chosen handles in levels H and H — 1, and continue connecting
distinct random pairs until all handles in level H have been used. Then
connect randomly-chosen handles in levels H — 1 and H — 2, and so on. See
figure 4.

O/ ‘C{/O\

O level h + 1

AT NP A o

figure 4
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The construction yields a random graph G, The graph may have
multiple edges or small components disconnected from the giant component,
but that doesn’t affect the H — oo asymptotics of interest to us. For each
vertex v of G, define §(H)(v) = level of v. Fix b and write (Yt(H),t >0)
for the Metropolis chain on ¢ with objective function (") and parameter
b. Write

i = sy — gy 1> 0. (8)

The point of the construction is

Lemma 5 Let hgy — oo, H —hg — o0 as H — oo0. Let (Yt(H),t >0) be
the Metropolis chain on (G, SUDY with initial state YO(H) uniform on level
hyg. Then
g(H) d
(50,12 0) L (5(X0,02 0) (9)
where (X) is the Metropolis chain associated with the infinite tree-indexved
random walk (2), started at the root.

Here convergence is convergence of finite-dimensional distributions. The
assertion of the lemma is intuitively clear: at a vertex at level & not near
the “boundary” levels 0 and H, there are 3 edges, and the relative chances
of an edge going to level h+1 orlevel h—1 are p/(1—p) to 1, so the absolute
chances are p and 1 — p. The details of the proof are uninteresting.

The Metropolis chain on the finite graph (Q(H),S(H)) has stationary
distribution

bSUD (v)
TV) = = 10
S TN 1o
Under stationary we may write SVt(H) =5 _ & Xu_1, Xy), or in words

(%) St(H) is a sum of antisymmetric functionals along a stationary reversible chain.
h

Since n,(h) x (%) , if we choose the special value b = by(p) such that

e’ x p/(1—p) =1, then for large H

{v: ST (v)y=h}y~1/H, 0< h < H.

In words, the level of the stationary chain is approximately uniform on [0, H].
So, for the special value b = bo(p), Lemma 5 applies to the stationary chain,
implying (see section 5.1) that property (*) remains true for 5(X;). This is
not true for general b. The limit (9) for the stationary chains exists, but the
limit environment is not the infinite-tree-indexed random walk, but instead
is a modified tree with leaves.

11



3 Near-critical behavior of the greedy algorithm

3.1 Background

The main result of Aldous [1] was that, for the tree-indexed random walk
model with general distribution £, the asymptotic rate for GREEDY is

r=E(E+Y)*

where
Y = sup inf S(v;) <0 (11)
branches (v;) *
and £ is independent of Y. Specializing to the case where £ is +1-valued,
the rate becomes

r(p, GREEDY) = pP(Y = 0). (12)

In the special case, the S-values at successive depths of the tree form a
binary branching random walk on the integers, as follows. Start at time 0
with a single particle at position 0. At each step, replace each particle by
two children, each independently placed at the parent’s position plus one
(with probability p) or at the parent’s position minus one (with probability
1—p).

Modify this branching random walk by killing any child placed at posi-
tion —1. Let p(p) = P(Y = 0) be the probability that the modified process
survives forever. While it is routine to set up equations which in princi-
ple determine the value of p(p), it is not so routine to extract from these
equations the behavior of p(p) near the critical point pgit. We will take
a different approach to prove the following result, which by (12) implies
Proposition 1.

Theorem 6

- 1Og ,O(p) = C(p - pcrit)_1/2 + 0(1) asp l Perit

ﬂlog(%)

Perit

where ¢ = ———" ~ 1.11. (13)
4/ 1 = 2perit

It turns out that Theorem 6 can be proved by analyzing the simple recur-

rence relation (15), and we present this proof in section 3.2. This proof is

elementary, and indeed could almost be given in a “mathematics for the

analysis of algorithms” course in the spirit of [6].

12



One can also consider the more general setting where instead of +1-
valued variables we have a one-parameter family (f(p)) of distributions on
R. Suppose the family is stochastically increasing with p and suppose there
is a critical value p..¢ defined by

inf Fexp(f¢Perit)) = 1/2.
é’go exp( & \Peri ) /
Defining p(p) as the non-extinction probability when particles entering (—o0, 0)

are removed, one can argue informally that, under suitable regularity con-
ditions, Theorem 6 should remain true with

e [Ee eyl
288—pE exp(0*£())

(14)

|p =Pcrit

where % = arg ming F exp(6¢Perit)).

Kesten [11] studied in great detail some analogous questions about branch-
ing Brownian motion with drift. His main results are stated for fixed su-
percritical or critical drift, but undoubtedly a result for Brownian motion
analogous to Theorem 6 can be extracted from the technical estimates in
[11]. Making a rigorous proof of (14) in the general setting involves issues
analogous to justifying smoothness of solutions of renewal-type equations,
and these seem different from the technical issues in [11]. Existing work in
the discrete-time context seems limited to determining critical values (e.g.
Biggins et al [3]). As observed in [1] and [3], the fact that p(p) > 0 iff
D > Perit 18 @ simple consequence of the standard large deviation analysis of
the right-most walker in branching random walk.

3.2 Analysis of a recursion

Fix p > perig- Recall the definition (12) of V', and write a,, = P(Y < —n).
Then ag = 1,a1 = 1 — p(p), and by conditioning on the values of £ on the
two edges at the root we get the recursion

an = (pany1 + (1 — p)an_l)z, n> 1. (15)
Rearranging,
Apy1 = ]l—jw/an — l%an_l, n > 1. (16)
The key idea is to study instead the linear difference equation
1 1—p
bn lz_bn_—bn—lv n>1 17
H=g p (17)

13



with by = 0,b; = p(p). Note that (b,) is the “linearization” of 1 — a,, for
small 1 — a,. In what follows, asymptotics are always as p | peprt, and
we will sometimes assume p — p.it is “sufficiently small” in nonasymptotic
assertions. We use “big-O” notation: d(p) = Q(e(p)) means e(p) = O(d(p)),
and d(p) = O(e(p)) means d(p) = O(e(p)) and d(p) = Q(e(p)).

It is elementary that the solution to the recurrence (17) is

2 -z n_1 5D NE

bn = = B
PP)——— = )" ——

n>1 (18)

where (2,2) = (re's,re™%) are the solutions of 22 — Lo + lp%p = 0, which

2p
are
14+ /1 —-16p(1—p)
2,2 = .
4p

The critical value peyy is such that 16pei(1 — perig) = 1, and a brief calcu-
lation gives

r= T(p) + O(p - pcrit) (19)

N 4Perit
€= g(p) =4y/1 - 2pcrit(p - pcrit)1/2 + 0(1)' (20)

Define N = N(p) by
N = min{n : ne(p) > 7}. (21)

Our goal is to show
p(p)r™ = O(1). (22)

Granted (22),

T

7o) +0()

—logp(p) = Nlogr + O(1) =
and Theorem 6 follows from (19,20).
The heuristic explanation of (22) is as follows. The approximation of
1 = ay, by b, should hold as long as these quantities are o(1). The sequence
b, increases until, for n = N — (1), it reaches a maximum value ©(p(p)r™)
and then decreases and becomes negative. So the natural place for the
approximation to break down is at n = N — ©(1), so this should be the first
time that b, = O(1).

To start the rigorous analysis, define

No=min{n >1:b, <2(1—p)b,_1}.

14



Note that b, > 0 for 1 < n < Ngy. Let ¢g = 0 and for 1 < n < Ny define ¢,
by
1-a, =b,c, (23)

so that ¢; = 1. The recursions (16,17) for (a,) and (b,) imply a recursion
for (¢,,), which after elementary manipulations becomes

1- Vv 1- bncn - (1 B p)bn—lcn—l

= , 1< n < Ng.
%bn - (1_p)bn—1

Cn+1

Subtracting ¢, gives

1- \% 1- bncn - %bncn + (1 - p)bn—l(cn - Cn—l)

Cpy1 — Cp = ,1 < n < Ng.
%bn - (1 - p)bn—l
(24)
Using the inequality
1—\/1—x—%x20f0r0§x§1,
(24) implies inductively that
Cn—Che1 >0 ¢, >1, 1 <n< Ng. (25)

In particular, e¢n,—1 > 1, and since a,, > 0 for all n we have from (23) that
bng_1 < 1. (26)
From the exact formula (18) for b,, we have

b, 1 sin ne

2(1 — p)b,—y  8p(1—p)sin(n—1)e’

Since y 2 it follows easily from the definition of Ny that

_ 1
8p(1—p

—o(e) <m— Noe < (14 0(1))e

_ _osin(Ng—1)e
N = No=0(1); P = 0(1). (27)
So by the exact formula for b,
bng—1 = O(p(p)r™)
which by (26) gives
p(p)r™ = 0(1) (28)



To get a bound in the other direction, define (e,) by
1—a, =0b,+e,. (29)
So eg = e3 = 0. The recursions (16,17) lead to the recursion

1

1 1—p
1 == (1=2b, —/T=b, = n)— o, n>1. (30
€nt1 p( 5 e p en_1, N> (30)

Nl :mln{nZ 1bn-|—1/bn< 1/3p2.t }
Crl1

. 1 2 . i
Since > Vo > 2(1 — perit) we see that (for sufficiently small

4Pcrit
P — Perit) We have Ny < Ny. Arguing as for (27),

Define

No N =o(ry Sz le gy (31)

sin €

By (25) we have
e, >0; 1<n< Ny (32)

Define
Ny = min{n : b, > 1/10}.

We shall show by induction that
en < b2, 1< n <min(Ny, Ny). (33)

We use the calculus bound
- Lo VIr-a <

So if (33) holds for a particular n < min(Ny, N3) then

2%, 0< a2 <1/10.

Wi

€n+1 S 2}_)(_%bn_\/l_bn_en)
< 1 _ 1y o 2)
< (1 1 — /1= by — 52 ) by (33)
< L %bi by the calculus bound, since n < Ny
Perit
< b2, since n < Ny

establishing (33). Next, by considering subsequences of p’s we may suppose
either



(a) bmin(ny,Ny) — 05 or
(b) bmin(Nth) = 6(1)
Suppose case (a) holds, in which case by, — 0. For fixed £ > 1 we have
|bn,+k| = O(bn, ). By (33) we have ey, /by, — 0 and then, using (30) and
induction on k,

M — 0, for fixed k& > 0.

bn,

But for some k& = ©(1) we have by, 11 = Q(—bn, ) and hence by, 11 + €N, +%
is negative, which is impossible by (29). Thus case (b) must hold. But (b,,)
is increasing on n < Ny, and by (31) 83ME — @(1), so

O(1) = bynin(ny,\5) < by = O(p(p)r™")
which by (31) leads to
p(p)r™ = Q(1). (34)
Now (34) and (28) imply (22), establishing Theorem 6.

4 Speeds of random walks and depth-first search
on Galton-Watson trees

Let 7 be a supercritical Galton-Watson tree with offspring distribution p =
(pi,i=0,1,2,...), conditioned on non-extinction. Write D(v) for the depth
of vertex v. A simpler analog of seeking algorithms to find large values
of S(v) in the tree-indexed random walk model is to seek algorithms to
find large values of D(v) in this Galton-Watson setting. As in the former
case, one feels that for any reasonable algorithm ALG which generates a
deterministic or random sequence of vertices (root = X, X1, Xa,...) to be
examined, there should be some asymptotic “speed”

lim n~'D(X,) = s(p, ALG) a.s. (35)

n—oo

The natural greedy algorithm is depth-first search: having examined vertices
Vg, V1. - -, Un, choose from that set a maximal-depth vertex »* with some
child not in that set, and let v,41 be a child of v*. It is elementary to give
a expression (41) for s(p, DEPTH — FIRST). The analog of the Metropolis
chain (1) is simple symmetric random walk (X,). Lyons-Pemantle-Peres
([16] page 601) establish the (non-obvious) formula
s(p, RANDOM — WALK) = i -1 1ot
’ i+17" 11— g2

=0

(36)
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where ¢ < 1 is the extinction probability, i.e. the solution of
0 .
q=>_piq (37)
=0

We consider a family, parametrized by the mean A € [1, A¢], of probability
distributions (p;(A);i=0,1,2,3,...) on non-negative integers. Write

A=m(\) = E&
o’(N) = E&(E-1)
KY(A) = E&E - 1)(6-2)

where £y has distribution (p;(A)). The behaviors of the speeds as A | 1, that
is as the trees approach criticality, are as follows.

Corollary 7 Suppose p(\) — p(1) as A | 1, and suppose a*(1) > 0 and
supy £2(N) < oo. Write s(A) = s(p(A), RANDOM — WALK) and s.()\) =
s(p(A), DEPTH — FIRST). Then

(a) s(1) =0, s'(1) =0, (1) = —%

302(1)"
(5) 5.(1) = 0, (1) = Ay

In other words, depth-first search has speed O(A — 1) whereas random walk
has speed O ((A — 1)%). A verbal explanation of the difference is given after
the proof.

Proof of Corollary 7. We first give the routine-but-tedious calculus to
derive (a) from (36).

Step 1. Let f(x,y) be smooth and let y = y(x) be the solution of
f(z,y) = 0. Differentiating once and twice gives

Ozfx‘|‘3//fy

0= fxac —I' Qy/fl’y —I_ y//fy —I_ (y/)zfyy

which rearranges to

!/ _fx
" _ _fl’l’ wafxy _ fg?fyy

18



Step 2. Writing y = 1 — ¢, formula (37) for y in terms of A can be written
as the solution of f(\,y) =0 where

fy) =y (sz i—(l—y))-

Computing partial derivatives at A = 1,

!/

Hh=-m'=-1; fu=-m"=0

L, I 3
fy:§‘7? fyy:_g“

1
P = 5(‘72)/-
Substituting into (38,39), the derivatives of y(\) at Ag are

2
r_
Y= (40)
Y M) s
B ot 306

Step 3. Write

Then the derivatives w.r.t. y at y = 0 are

t; = t;:—i_Tlt”:ii_l—l—

B |
(o]

Step 4. We are interested in the speed
s(A) = Z(i = Dpi(Mti(y(A)).
The first derivative at A = 1 is

/ /

So= w4 Y- Dpy (-5

19



The second derivative is

-7 %_I_Q Z(i—l)p;@// (_%) -I-Z(i—l)piy” (_%) ‘|‘Z(i—1)pi(y/)2 (2(26—1)

/ 2\/ "2 N2

m// m/(g2)/ m// m/(g2)/ 2(m’)2/£3 4(m/)2

- N _ 3 2
D o2 5 T2 307 T gt )
_2(m!)? 2
302 302

This establishes (a). The analysis of depth-first search involves some el-
ementary and well-known properties of Galton-Watson trees. A backbone
vertex is one with an infinite line of descendants. Clearly we have

1

s(p, DEPTH — FIRST) = -— 5
o

(41)

where «a is the mean number of non-backbone children of a backbone vertex
that are examined before encountering a backbone vertex; and /3 is the mean
total progeny in the Galton-Watson tree conditioned to become extinct. One
may derive formulas for a and § in terms of p as follows. The Galton-Watson
tree conditioned to become extinct has offspring distribution

o pid

pi =

q

=" ip:,
7

and so 3 = 1/(1 — m). For a backbone vertex, the chance of a particular
sequence such as (N, N, B, N, B) of n non-backbone children and b > 1
backbone children is p,44¢"(1—¢)"/(1—q), and a can be expressed in terms
of this distribution.

In the A | 1 setting of the corollary, one can directly see the limiting

with mean

behavior of a(A). In the limit, a backbone vertex has exactly one backbone
child, and the total number of children is the size-biased distribution

P(E=i)=ip(1), i > 1.

20
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So

a(1) = 1(E€ —1):%(%—1) - "2(1).

So by (41), proving (b) reduces to proving
I—1m(A)~ -1
This is routine:

m(\) =) = D ip(M)(1 =g ()

K3

~ S ipi(A) (i = 1)(1 - g(N)

~ (1=q(A)a*(1)
~ 2(A-=1)
because % = 02_—(21) at A = 1 by (40).

Remarks. Here is an informal explanation of the corollary. When the
mean number of offspring is 1+ 4, the backbone is a branching process with
chance ©(4) of two children, and the side branches have mean size ©(1/6).
Depth-first search spends time ©(1/6) in branches before taking a step down
the backbone, so its speed is ©(6). Random walk also spends mean time
O(1/6) in each visit to a branch, that is between successive steps on the
backbone. And random walk restricted to the backbone has drift rate ©(¢),
so to reach level L requires O(L/6) steps on the backbone, which means
O(% x 1) steps in total.

5 Analysis of the Metropolis algorithm

5.1 Background

As mentioned in the introduction, the Metropolis chain is analogous to
RWIRE (Random Walk in Random Environment, which on Z¢ is a well-
studied topic with statistical physics motivation [7]) and in particular to re-
cent work of Lyons-Pemantle-Peres [16, 17] studying speed of random walk
on Galton-Watson trees. So we shall view the objective function S(v) as
defining a “random environment” on the infinite binary tree. Note that the
Metropolis chain has an “antisymmetric” character, so in general is different
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from the “symmetric” random walk on a random electrical network (see [15]
for an example on trees).

In the context of biased random walk on Galton-Watson trees, Lyons-
Pemantle-Peres ([18] Question 2.1) noted that, while monotonicity of speed
as a function of bias seems intuitively obvious, and one might expect some
simple coupling proof, there is no known proof. Analogously, monotonicity
of the optimal Metropolis rate 7*(p) at (5) as a function of p seems intuitively
obvious, but we do not see a proof.

In analysis of RWIRE a central role is played by the notion of “Environment
as seen by the Walker”. Given a graph G and a function s(-) on vertices, for
each vertex v, (“position of walker”) define EW (wv,) to be the graph rooted
at v,, with the function s*(v) = s(v) — s(v.). So EW(v) takes values in the
space & of all possible objective functions (s(v): v € 7°). Thus associated
with the Metropolis chain Yt(H) on the finite random graphs (GU), (1)) in
section 2.2, or with the Metropolis chain X; on the infinite binary tree with
objective function 5(-), are processes (EW(Yt(H))) and (EW(X,)) describ-
ing the environment as seen by the walker. Lemma 5 extends to prove weak

convergence

EWY ) 1> 0) 2 (EW(X,),t>0) (42)

under the same assumptions. (We skip over technical issues such as em-

bedding the state space of EW(Yt(H)) into £.) If we take (Yt(H)) to be the

stationary process then the process EW(Yt(H)) is stationary and reversible.
Taking H — oo limits as in section 2.2, we see that for the special value
b = bo(p) the process EW(X,) is stationary and reversible. For general b,
though the process EW(X;) does have a stationary distribution = = =,
(see section 5.2), the stationary distribution is not the initial distribution
EW(Xy) and the stationary process is not reversible.

The most interesting part of our analysis is the non-rigorous “differ-
entiation with respect to the parameter b” argument in section 5.3. Such
arguments are part of the statistical physics toolkit, but in our context seem
very hard to make rigorous. The closest rigorous argument I know is that
in Lebowitz - Rost [13], in the context of small perturbations of Brownian
motion.

As we shall see, general results imply existence of the limit variance rate
a%(p,bo(p)), but there are no general results to distinguish whether the limit
is positive or zero (i.e. whether the chain is diffusive or subdiffusive). Such
questions have been well-studied in the context of a tagged particle in the
symmetric exclusion process, which is subdiffusive in the one-dimensional
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nearest-neighbor case and diffusive otherwise ([14] sec. 8.4). By analogy
with this and other examples of RWIRE one expects diffusive behavior in
our setting, but I do not see any simple proof strategy.

Recall a helpful way to view the Metropolis chain: from the current
vertex v pick a uniform random neighbor w as a “proposed” move, and
“accept” the move with probability pacc(&(v,w)), where

61)1’

= —. 4
14 b (43)

pacc(w)

5.2 Outline proof of Theorem 3

Writing a rigorous proof requires substantial investment in notation and
technical background, so we shall just outline the major points. For easy
reference we restate the theorem.
Fiz 1/2 > p > peig and b > 0. Write bo(p) = 1og1%p > 0. Then the
limit rate
lim n7'S(X,) = r(p,b) a.s. (44)

n—oo

exists, and
(A) r(p,0) = 21 < 0.

(B) r(p, bo(p)) = 0.
(C) For b = by(p) there is a variance rate

o(p, bo(p)) = lign t~tvar S(X;) > 0.

(D) r(p,b) <0 for 0 < b < bo(p) and r(p,b) > 0 for bo(p) < b < oo.
(E) r(p,b) — 0 as b — oo.

Existence of r(p,b) is obvious when b = 0, so let us consider only the
case b > 0.

Lemma 8 For almost all realizations of the environment, the chain is tran-
sient.

Proof. Fix the environment (S(v)). In the well-known correspondence [5]
between reversible Markov chains and electrical networks, the Metropolis
chain corresponds to the network where a parent-child edge (v, w) has con-
ductance (i.e. 1/ resistance)

a(v,w) = €5 pacc(€(v,w)) = "5 pacc(E(w, v)).
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The chain is transient iff there exists a unit flow f = (f(v,w)) from the
root to infinity such that 37, f2(v,w)/a(v,w) < oo. By considering the
unit flow along a single ray (v;), to prove transience it suffices to exhibit
a ray satisfying Zie_bs(“") < o0. This in turn holds if the ray satisfies
lim inf; 7=15(v;) > 0. But rays with this property exist by (4).

The remainder of the proof of (44) uses only “soft” arguments (cf. [17]
section 3), which we outline very briefly. Consider a version of the environ-
ment in which a finite number of £-values are fixed arbitrarily. By transience,
the chain visits new vertices infinitely often. For the chains (X}) and (X7?)
associated with two such versions of the environment, is it easy to exhibit a
‘local shift-coupling” in which for each k

pr EW(X}) = pr EW(X /) forall T, <t < 00

where Y is a random time-shift and pp denotes the restriction of the envi-
ronment to within distance k from the root. By considering subsequential
weak limits of time-averaged distributions EW(X};) one obtains a station-
ary distribution = for EW(X};). Then the existence of local shift-couplings
implies that the stationary process implies that the stationary process is
ergodic and identifies r(p, b) as the ergodic rate.

(A) For b = 0 the Metropolis chain is simple symmetric random walk on
the tree (paying no attention to the S-values), with chance 1/2 of holding.
It is elementary that the depth D(X,) grows at rate 1/6, and so S(X,)
grows at rate 3 x B¢ = £(2p—1).

(B,C) These follow from the fact that for b = bg(p) the process (EW (X))
is stationary and reversible. The point is that there is a representation

§(Xeq1) = (X)) = Y(EW(Xyp) - EW(XY)) (45)
where 1 is antisymmetric, i.e. ¥(nm1,72) = —¥(n2,m1). So the stationary
reversible property immediately implies ES(X;11) = ES(X}), giving (B).
Moreover it is well known and easy that (45) implies a subadditivity property

var (5(Xg)) < 2 var (5(Xy))

from which (C) follows, with a%(p,bo(p)) < ES?(X1) < 1. In fact general
theory [12, 19] gives a central limit theorem

n—l/QS(Xt) A Normal(0, Uz(Pa bo(p)))-
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(D) We use Lemma 5, which represents (5(X;)) as a weak limit of

(S(H)(Yt(H))). We will do the case b < bo(p): the other case is simi-
lar. To get a contradiction, suppose r(p,b) > 0. Choose mg so that
P(inf; S(X;) < —mp) < 1/5. Then for all sufficiently large ¢,

P(S0X) 2 $rpb), in S(X,) 2 —mo ) 2 3/5.
Fix such a t. Using Lemma 5, for sufficiently large H, the Metropolis chain

Yu(H) started from a uniform random vertex at level A (for arbitrary H/3 <
h < 2H/3) satisfies

P (S~ > Lr(p.b)) > 2/5.

(H)

Thus the stationary distribution © of Y\") satisfies

w{v: 5 (v) > % + ir(p,0)} > 2n{v: 0 < gM)p)y < 2y,

But for large ¢ and H this contradicts the fact (10) that 7{v : §()(v) =

b
I} « o where a = = <L

(E) follows from (C) and the very crude bound

r(p,b) < (1-— p)_2(1 + eb)_l.

Consider the times Uy, Us, . .. at which the chain reaches a previously-unvisited
vertex via a +1 edge. With chance (1 —p)? both outward edges from X (U,,)
have ¢-value —1, in which case the walk stays at X (U,,,) for mean time 1+¢”,
and 50 E(Upq1 — Un| X (1), < Up) > (1= p)?(1 + €°). By renewal theory,
liminf,, m='U,, > (1 — p)?(1 + €’) a.s. Since §(X;) < max{m : U,, < t},
the stated bound follows.

5.3 Regarding Conjecture 4

We show how (F,G) may be obtained by an argument involving (47) differ-
entiating an ergodic limit w.r.t. a parameter. I have no idea how to make
this argument rigorous.

Give the environment §' the stationary distribution = of EW (X};). Write
w ~ v if (v, w)is an edge, and write L(v) = o({(v,w) : w ~ v). Define

Q(v) = lim E,(S(X,) — S(v) — nr(p. b)|L(v). (46)
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The fundamental idea is

nipby= £ 3 B0 ) 0t )4 ()~ Q(roon)). (47)

w~TOO0T

To argue this, consider the effect of replacing b by b + db. At a typical
step, with chance dpacc(&(root,w)) the b + db process makes a step to a
neighbor w while the b process makes no move. Conditional on the entire
environment S5(-), the long-run effect of the different step is &(root,w) +
Q(w) — Q(root), where Q) is the analog of (46) obtained by conditioning on
the entire environment. Thus the overall effect is given by (47) with @ in
place of @, which is equivalent to (47).

Of course, (47) is only useful when we know the stationary distribution
=, which is only for b = 0 and b = bo(p). We first consider the simpler
case b = 0, where the Metropolis chain is simple random walk with holding
probability 1/2. The stationary distribution of the environment is as follows.
Take the tree-indexed random walk, pick a uniform random ray from the root
to infinity, and for each edge (v, w) in that ray replace &(v, w) by —&(v, w).
Because

Bpace) _ 2 15—

(47) gives

r5(p,0) = 11—2 Z E¢(root, w)(&(root, w) + Q(w) — Q(root))

w~TOO0T

=LY (14 Blé(root, ) E(Q(w) ~ Qroo)€(root, w)]).  (45)

v~T0O0T

The key fact is that for any edge (v, w),

EQ)|E(v,w)) = %(f(v, w)— E&(v,w)).

This holds because the final exit of the walk from v is equally likely to be
along any of the three edges at v, and the £-values are independent over
edges and independent of the walk. So for w ~ root,

E(Q(w)[¢(root, w)) = E(Q(w)[¢(w,root))

= %(f(w,root) — Ff(w,root)) = —%(f(root, w) — Ef(root,w)).
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So
E(Q(w) — Q(root)|{(root, w)) = —%(f(root, w) — Ef(root,w)).
So
E¢(root,w)E(Q(w)—Q(root)|é(root, w)) = —%V&I’ &(root, w) = —%(1—(2])—1)2)

and substituting into (48) establishes (F').

Now consider the case b = bo(p) = log 1%. Here the stationary distri-
bution = for EW is just the tree-indexed random walk itself. In particular,
by symmetry we can reformulate (47) in terms of a single neighbor w of the
root:

dpacc(&(root, w))

r5(p,bo(p)) = E (&(root, w) + Q(w) — Q(root))

db

where
Q(root) = lim Eyoo(S(Xy)|€(root, w))
Q(w) = lim Fu(S(X,) = S(w)le(root, w)).
Now
dpacc(z) zeb®

db N (14 ebv)?

and so

&(root, w)ebg(rootw)(f(root, w)+ Q(w) — Q(root))
(14 ebg(root,w))z

ro(psbo(p)) = E (49)

where b = bg(p). Now Q(w) does not have the same unconditional distri-
bution as Q(root), but it is easy to see the relationship between conditional
distributions:

dist (Q(w)|¢(w, root) = ) = dist(Q(root)[€(root, w) = o).
Since the likelihood ratio is
L(2) = P(&(w, 100t) = @)/ P(€(1oot, w) = &) = ¢**
we have for any function ¢

EQ(w)¢(£(root, w)) = EQ(w)(—&(w, root)) = EQ(ro0t)é(—E(root, w))eHe(root),
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In particular, the term of (49) involving Q(w) becomes

£(root, w)eErootw) B Q(root)é(root, w)
EQ(w) (1 + ebg(root,w))z =-F (1 + ebg(root,w))z'

So (49) reduces to

e Q(root)é(root, w)

(P, bo(p)) = (1+ 66)2 - B 1 4 ebé(root,w)

Using the definition of bg(p), the first term equals p(1 — p) and also

{(root,w)  {(root,w)42p—1
1+ &(root, w) 2 ’

so since EQ(root) = 0 we find

(P, bo(p)) = p(1 — p) — %EQ(root)f(root, w). (50)

We do not a formula for Q(root), so this does not enable us to actually
calculate the derivative. But the asymptotic variance rate for partial sums
of a stationary mean-zero sequence (7;) can be written as

1
Eng + 2lim F (770;772') :
Applying this to n; = S(X;) — 5(X;_1),

0? = a*(p.bo(p)) = Eng + 2lim EnoS(Xy). (51)

Here ng = —S(X_1), where by reversibility X_; is the position after a
step of the chain independent (conditional on the environment) of later
steps. To study this, we may suppose the attempted move is to w, and
write £ = £(root,w) and A for the event that the move is accepted. Then
no = —&14. Writing as before

Q(root) = lim Eroot(5(X,)|€(root, w))
formula (51) becomes

0% = Epace(€) — 2EQ(root )1 4.
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Now for b = bo(p) we have

L+ (1-2p)¢

pacc(f) = B

So Epacc(€) = 2p(1 — p) and

E+(1-2p)

EQ(root)é14 = EQ(root)pacc(&) = EQ(root) 5

Since EQ(root) = 0, the formula reduces to

o? = 2p(1 — p) — EQ(root)E.

Comparing with (50) gives (G).

Simulation results. For the reader unimpressed by the argument for
(G), we mention that it is supported by simulation evidence for p = 0.2.
Examining the slope in figure 2 gives r;(0.2,50(0.2)) ~ 7 x 1072, And direct
simulations of the chain with p = 0.2, b = bo(0.2) give ¢%(0.2,00(0.2)) ~
14 x 1077,
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