
ar
X

iv
:c

s/
98

01
10

3v
1

 [
cs

.D
S]

 1
5

Ja
n

19
98

Linear Probing and Graphs

Donald E. Knuth, Stanford University

Dedicated to Philippe Patrick Michel Flajolet

Abstract. Mallows and Riordan showed in 1968 that labeled trees with a small number of
inversions are related to labeled graphs that are connected and sparse. Wright enumerated
sparse connected graphs in 1977, and Kreweras related the inversions of trees to the
so-called “parking problem” in 1980. A combination of these three results leads to a
surprisingly simple analysis of the behavior of hashing by linear probing, including higher
moments of the cost of successful search.

The well-known algorithm of linear probing for n items in m > n cells can be described as

follows: Begin with all cells (0, 1, . . . ,m−1) empty; then for 1 ≤ k ≤ n, insert the kth item into the

first nonempty cell in the sequence hk, (hk + 1) mod m, (hk + 2) mod m, . . . , where hk is a random

integer in the range 0 ≤ hk < m. (See, for example, [4, Algorithm 6.4L].)

The purpose of this note is to exhibit a surprisingly simple solution to a problem that appears

in a recent book by Sedgewick and Flajolet [9]:

Exercise 8.39 Use the symbolic method to derive the EGF of the number of probes

required by linear probing in a successful search, for fixed M .

The authors admitted that they did not know how to solve the problem, in spite of the fact that a

“symbolic method” was the key to the analysis of all the other algorithms in their book. Indeed,

the second moment of the distribution of successful search by linear probing was unknown when

[9] was published in 1996.

If the kth item is inserted into position qk, the quantity d =
∑n

k=1(qk −hk) mod m is the total

displacement of the items from their hash addresses. The average number of probes needed in a

successful search is then 1 + d/n. Our goal in the following is to study the probability distribution

of d as a function of the table size m and the number of items n.

1. Generating functions. Let Dmn(x) =
∑

xd, summed over all mn possible hash sequences

h1 . . . hn, and let Fmn(x) be the same sum restricted to hash functions that are confined, in the

sense that linear probing with h1 . . . hn will leave cell 0 unoccupied.

Given h1 . . . hn, the m hash sequences
(

(h1 + j) mod m. . . (hn + j) mod m
)

for 0 ≤ j < m all

lead to the same total displacement d. And exactly (m − n)/m of them will be confined, in the

sense above. Therefore Dmn(x) = m
m−n Fmn(x), and the probability generating function for d is

Dmn(x)

Dmn(1)
=

Fmn(x)

Fmn(1)
. (1.1)

The quantity Fmn(x) is easier to deal with than Dmn(x), since linear probing does not “wrap

around” when the hash sequence is confined. We obviously have 0 < hk ≤ qk < m in a confined

sequence; therefore remainders mod m are not actually taken and the behavior is simpler.

1

http://arxiv.org/abs/cs/9801103v1

The special case of confined linear probing in which m = n + 1 has been called the parking

problem [5], because we can think of n cars that try to park in n consecutive spaces, where the

kth car starts its search in position hk. The number of sequences h1 . . . hn such that all cars are

successfully parked is the number of confined hash sequences, namely m−n
m mn = (n+ 1)n−1, when

m = n + 1. We will write

Fn(x) = Fn+1,n(x) (1.2)

for the generating function of total displacement in the parking problem.

The general case is clearly related to the special case m = n + 1 by

Fn+r,n(x) =
∑

n1+n2+···+nr=n

n!

n1!n2! . . . nr!
Fn1

(x)Fn2
(x) . . . Fnr

(x) , (1.3)

because every confined hash sequence leaves r cells

{0, n1 + 1, n1 + n2 + 2, . . . , n1 + · · · + nr−1 + r − 1}

empty, and defines parking sequences on blocks of sizes n1+1, n2+1, . . . , nr+1 for some nonnegative

integers n1, n2, . . . , nr. The number of ways to fit such subsequences into h1 . . . hn is the multinomial

coefficient n!/n1!n2! . . . nr!.

Let

F (x, z) =
∑

n≥0

Fn(x)
zn

n!
(1.4)

generate the displacements of successfully parked cars. Equation (1.3) tells us that

Fmn(x)

n!
= [zn]F (x, z)m−n ; (1.5)

hence the bivariate generating function F (x, z) is the key to the distribution of total displacement.

2. Solution to the parking problem. Suppose h1 . . . hn is a confined hash sequence for the

special case m = n + 1, with n ≥ 1. This holds if and only if hn ≥ 1 and h1 . . . hn−1 leaves cells 0

and k empty for some k in the range hn ≤ k ≤ n. The sequence h1 . . . hn−1 then decomposes into

parking subsequences for k − 1 and n− k cars.

Therefore, by arguing as in (1.3) above, we see that the polynomials Fn(x) satisfy the recurrence

Fn(x) =

n
∑

k=1

(

n− 1

k − 1

)

(1 + x + · · · + xk−1)Fk−1(x)Fn−k(x) . (2.1)

(The factor 1 + x + · · · + xk−1 corresponds to the displacement of the nth car, while
(

n−1
k−1

)

is the

number of ways to mix the two subsequences.) The first few values are

F0(x) = 1 ;

F1(x) = 1 ;

F2(x) = 2 + x ;

F3(x) = 6 + 6x + 3x2 + x3 . (2.2)

2

Recurrence (2.1) can be put into a more user-friendly form if we write

An(x) = (x− 1)n Fn(x) . (2.3)

Then A0(x) = 1, and for n > 0 we have

An(x) =
n
∑

k=1

(

n− 1

k − 1

)

(xk − 1)Ak−1(x)An−k(x) . (2.4)

For fixed x, this recurrence can be analyzed by using the exponential generating functions

A(z) =

∞
∑

n=0

An(x)
zn

n!
, (2.5)

B(z) =
∞
∑

n=1

Bn(x)
zn

n!
, (2.6)

where

Bn(x) = (xn − 1)An−1(x) , (2.7)

because (2.4) is then equivalent to

A(z) = eB(z) , (2.8)

by Euler’s well-known formula for power series exponentiation (see, for example, exercise 4.7–4

in [3]).

Now (2.6) and (2.7) tell us that

B(z) = C(xz) − C(z) , (2.9)

where

C(z) =

∞
∑

n=1

Cn(x)
zn

n!
, (2.10)

Cn(x) = An−1(x) ; (2.11)

and we have

C ′(z) =

∞
∑

n=1

Cn(x)
zn−1

(n− 1)!
=

∞
∑

n=0

An(x)
zn

n!
= A(z) . (2.12)

In other words C ′(z) = eC(xz)−C(z); and if we set

G(z) = eC(z) (2.13)

we find

G′(z) = C ′(z)G(z) = eC(xz) = G(xz) . (2.14)

3

But this functional relation is easy to solve, for if we set

G(z) =
∑

Gn(x)
zn

n!
(2.15)

the relation G(xz) = G′(z) says simply that xnGn(x) = Gn+1(x). Therefore

G(z) =

∞
∑

n=0

xn(n−1)/2 zn

n!
, (2.16)

and we have deduced that

∞
∑

n=1

(x− 1)n−1 Fn−1(x)
zn

n!
= C(z) = ln

∞
∑

n=0

xn(n−1)/2 zn

n!
. (2.17)

3. Connected graphs. We are interested in the behavior of Fn(x) near x = 1, so it is convenient

to write x = 1 + w. Then (2.17) becomes

∞
∑

n=1

wn−1 Fn−1(1 + w)
zn

n!
= ln

∞
∑

n=0

(1 + w)n(n−1)/2 zn

n!
. (3.1)

Aha—the right side of this equation is well known as the exponential generating function for labeled

connected graphs [8]. Thus we have

wn−1 Fn−1(1 + w) = Cn(1 + w) =
∑

wedges(G) , (3.2)

where the sum is over all connected graphs on n labeled vertices.

From this interpretation of Cn(w), we see that

Fn(1 + w) = Cn,n+1 + wCn+1,n+1 + w2 Cn+2,n+1 + · · · , (3.3)

where Cm,n is the number of connected labeled graphs on n vertices and m edges. In particular,

Cn,n+1 is (n + 1)n−1, the number of labeled trees on n + 1 vertices; this checks with the value of

Fn(1) that we already knew.

4. Sparse connected graphs. Let

Wk(z) =
∞
∑

n=1

Cn−1+k,n
zn

n!
(4.1)

be the generating function for k-cyclic components of a labeled graph; thus W0(z) generates un-

rooted trees, W1(z) generates connected components that have exactly one cycle, W2(z) generates

bicyclic components, and in general Wk(z) generates connected graphs that have k− 1 more edges

than vertices. From (3.3) and (1.4) we have

F (1 + w, z) = W ′
0(z) + wW ′

1(z) + w2W ′
2(z) + · · · . (4.2)

4

E. M. Wright [11] showed how to compute the W ’s systematically, and proved that they are all

expressible in terms of the tree function

T (z) =
∞
∑

n=1

nn−1 zn

n!
, (4.3)

which generates rooted trees.
(

See [2] for simplifications and extensions of Wright’s results. In that

paper, W0(z), W1(z), and W2(z) are called respectively Û(z), V̂ (z), and Ŵ (z).
)

.

The known results about Wk(z) for small k show that we have

F (1 + w, z) =
T (z)

z
f
(

w, T (z)
)

, (4.4)

where f(w, t) has the following leading terms:

f(w, t) = 1 + w
t2

2(1 − t)2

+ w2

(

5

24

t4

(1 − t)5
(5 − 2t) +

1

4

t3

(1 − t)4
(4 − 2t)

)

+ w3

(

5

16

t7

(1 − t)8
(8 − 2t) +

55

48

t6

(1 − t)7
(7 − 2t)

+
73

48

t5

(1 − t)6
(6 − 2t) +

3

4

t4

(1 − t)5
(5 − 2t)

+
1

24

t3

(1 − t)4
(4 − 2t)

)

+ w4

(

1105

1152

t10

(1 − t)11
(11 − 2t) + · · ·

)

+ · · · (4.5)

(

See formula (8.13) in [2], and use the fact that zT ′(z) = T (z)/
(

1 − T (z)
)

.
)

5. Application to linear probing. We can now put everything together and calculate factorial

moments of the distribution of total displacement when n items are inserted into m cells by linear

probing. The tree function has a wonderful property that leads to considerable simplification,

thanks to Lagrange’s inversion formula and the identity T (z) = zeT (z):

[zn]F (1 + w, z)m−n

= [zn]
T (z)m−n f

(

w, T (z)
)m−n

zm−n

= [zm]T (z)m−n f
(

w, T (z)
)m−n

= [tn] emt(1 − t) f(w, t)m−n . (5.1)

(See [3], third edition, exercise 4.7–16, for a simple algorithmic proof of Lagrange’s formula.)

5

We will need to use the functions

Qr(m,n) =

(

r

0

)

+

(

r + 1

1

)

n

m
+

(

r + 2

2

)

n(n− 1)

m2
+ · · · = 2F0(r + 1,−n ; ;−1/m) , (5.2)

which are known to appear in the analysis of linear probing (see [4], Theorem K); they have the

simple generating function
∞
∑

n=0

Qr(m,n)
tn

n!
=

et

(1 − t/m)r+1
. (5.3)

The formulas above now allow us to compute the expected total displacement as follows, using

(5.3) and (4.5):

[wzn]F (1 + w, z)m−n

[zn]F (1, z)m−n

=
[tn] emt(1 − t)(m− n) t2/

(

2(1 − t)2
)

[tn] emt(1 − t)

=
1
2

(m− n) [tn] emtt
(

1/(1 − t) − 1
)

mn/n! −mn−1/(n − 1)!

=
1
2
(m− n)mn−1

(

Q0(m,n− 1) − 1
)

/(n − 1)!

(m− n)mn−1/n!

=
n

2

(

Q0(m,n− 1) − 1
)

. (5.4)

This agrees with the known result that a successful search requires 1
2

(

Q0(m,n− 1) + 1
)

probes, on

the average [4, Theorem K].

Moreover, a similar calculation gives

[w2zn]F (1 + w, z)m−n

[zn]F (1, z)m−n

=
n(n− 1)(n − 2)

24m2

(

15Q3(m,n− 3) + (4 + 3m− 3n)Q2(m,n − 3)

+ (5 − 3m + 3n)Q1(m,n− 3)
)

. (5.5)

This is the expected value of
(

d
2

)

, from which of course we obtain the expected value of d2 by

doubling and adding (5.4). All moments can in principle be obtained in this way, although the

expressions get more and more complicated.

Formulas such as (5.5) can be rewritten in many ways using the identities

rQr(m,n) = mQr−2(m,n) − (m− n− r)Qr−1(m,n) ; (5.6)

rQr(m,n) = mQr−1(m,n + 1) −mQr−1(m,n) ; (5.7)

nQr(m,n− 1) = mQr(m,n) −mQr−1(m,n) . (5.8)

However, none of these transformations seems to convert (5.5) into a substantially simpler formula.

6

6. Related work. Germain Kreweras [6] discussed the polynomials Fn(x) at length, showing that

they are the generating functions for “suites majeures,” which are equivalent to parking sequences

with displacements enumerated. He also showed that Fn(−1) is the number of “up-down” permu-

tations, and that Fn(x) is the generating function for inversions in a labeled tree of n + 1 nodes.

The concept of inversions in trees was first defined by Colin Mallows and John Riordan [7], who

established their relation to connected graphs. Thus, all of the main ideas of sections 2, 3, 4 were

already in the literature, waiting to be applied to the analysis of linear probing.

A one-to-one correspondence that maps labeled trees on {0, 1, . . . , n} with k inversions bi-

jectively into parking sequences on {1, . . . , n} with k displacements appears in [4, second edition,

answer to exercise 6.4–31]. A beautiful construction that uses depth-first search to establish (3.2),

by relating each n-node tree with k inversions to 2k connected graphs having wn(1 + w)k edges,

was found by Ira Gessel and Da-Lun Wang [1]. Therefore the relation between linear probing and

graphs can be made quite explicit, although there is apparently no really simple connection.

The expected value of d2 was first obtained by Alfredo Viola and Patricio Poblete [10], who

discovered a formula equivalent to (5.5) about one week before the author had independently carried

out the calculations above. Their starting point was equivalent to the symmetry-breaking strategy

of section 1; their other methods provide an interesting alternative to those of the present note.

7. Personal remarks. The problem of linear probing is near and dear to my heart, because

I found it immensely satisfying to deduce (5.4) when I first studied the problem in 1962. Linear

probing was the first algorithm that I was able to analyze successfully, and the experience had a

significant effect on my future career as a computer scientist. None of the methods available in 1962

were powerful enough to deduce the expected square displacement, much less the higher moments,

so it is an even greater pleasure to be able to derive such results today from other work that has

enriched the field of combinatorial mathematics during a period of 35 years.

It is also gratifying to know that the field of algorithmic analysis has matured to the point

where researchers in different parts of the world are now able to resolve such difficult problems

working independently.

The reader will note that Sedgewick and Flajolet’s exercise 8.39 has not truly been solved,

strictly speaking, because we have not found the EGF
∑m−1

n=0 Fmn(x) zn/n! as requested. However,

Sedgewick and Flajolet should be happy with any analysis of linear probing that uses symbolic

methods associated with generating functions in an informative way.

I thank the referees for their perceptive remarks and valuable suggestions.

Finally, I wish to pay tribute to my secretary of more than twenty-five years, Phyllis Astrid

Benson Winkler, who is retiring this year. The present paper is the last of more than one hundred

that she has typed and typeset beautifully for me at Stanford.

References

[1] Ira Gessel and Da-Lun Wang, “Depth-first search as a combinatorial correspondence,” Journal

of Combinatorial Theory (A) 26 (1979), 308–313.

[2] Svante Janson, Donald E. Knuth, Tomasz Luczak, and Boris Pittel, “The birth of the giant

7

component,” Random Structures and Algorithms 4 (1993), 233–358.

[3] Donald E. Knuth, Seminumerical Algorithms, third edition, (Reading, Massachusetts: Addi-

son–Wesley, 1997).

[4] Donald E. Knuth, Sorting and Searching, second edition, (Reading, Massachusetts: Addison–

Wesley, 1998).

[5] Alan G. Konheim and Benjamin Weiss, “An occupancy discipline and applications,” SIAM

Journal on Applied Mathematics 14 (1966), 1266–1274.

[6] G. Kreweras, “Une famille de polynômes ayant plusieurs propriétés énumératives,” Periodica

Mathematica Hungarica 11 (1980), 309–320.

[7] C. L. Mallows and John Riordan, “The inversion enumerator for labelled trees,” Bulletin of

the American Mathematical Society 74 (1968), 92–94.

[8] R. J. Riddell, Jr., Contributions to the Theory of Condensation (Ann Arbor: University of

Michigan, 1951). The main results of this dissertation were published as R. J. Riddell, Jr.,

and G. E. Uhlenbeck, “On the theory of the virial development of the equation of the state

of monoatomic gases,” Journal of Chemical Physics 21 (1953), 2056–2064.

[9] Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms (Read-

ing, Massachusetts: Addison–Wesley, 1996).

[10] Alfredo Viola and Patricio V. Poblete, “Analysis of the total displacement in linear probing

hashing,” presented at the third Dagstuhl Seminar in Analysis of Algorithms (9 July

1997).

[11] E. M. Wright, “The number of connected sparsely edged graphs,” Journal of Graph Theory 1

(1977), 317–330.

8

