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Competitive Optimal On-Line Leasing

R. El-Yaniv,1 R. Kaniel,2 and N. Linial3

Abstract. Consider an on-line player who needs some equipment (e.g., a computer) for an initially unknown
number of periods. At the start of each period it is determined whether the player will need the equipment
during the current period and the player has two options: to pay a leasing feec and rent the equipment for the
period, or to buy it for a larger amountP. The total cost incurred by the player is the sum of all leasing fees
and perhaps one purchase.

The above problem, called theleasingproblem (in computer science folklore it is known as theski-rental
problem), has received considerable attention in the economic literature. Using the competitive ratio as a
performance measure this paper is concerned with determining the optimal competitive on-line policy for the
leasing problem.

For the simplest version of the leasing problem (as described above) it is known and readily derived that
the optimal deterministic competitive performance is achieved by leasing for the firstk − 1 times and then
buying, wherek = P/c. This strategy pays at most 2− 1/k times the optimal off-line cost.

When considering alternative financial transactions one must consider their net present value. Thus, ac-
counting for the interest rate is an essential feature of any reasonable financial model. In this paper we deter-
mine both deterministic and randomized optimal on-line leasing strategies while accounting for the interest
rate factor.

It is shown here, for the leasing problem, that the interest rate factor reduces the uncertainty involved. We
find that the optimal deterministic competitive ratio is 1+ (1+ i )(1− 1/k)(1− k(i /1+ i )), a decreasing
function of the interesti (for all reasonable values ofi ). For some applications, realistic values of interest rates
result in relatively low competitive ratios. By using randomization the on-line player can further boost up the
performance. In particular, against an oblivious adversary the on-line player can attain a strictly smaller compet-
itive ratio of 2− ((k/(k− 1))γ − 2)/((k/(k− 1))γ − 1)whereγ = ln (1− k(1− 1/(1+ i )))/ln(1/(1+ i )).
Here again, this competitive ratio strictly decreases withi .

We also study the leasing problem against a distributional adversary called “Nature.” This adversary
chooses the probability distribution of the number of leasing periods and announces this distribution before the
on-line player chooses a strategy. Although at the outset this adversary appears to be weaker than the oblivious
adversary, it is shown that the optimal competitive ratio against Nature equals the optimal ratio against the
oblivious adversary.

Key Words. Leasing, Lease-or-buy problem, On-line algorithms, Competitive analysis, Equipment rental,
Ski rental.

1. Introduction. In recent yearscompetitive analysis(to be defined) has been gaining
recognition for being a complementary approach in the analysis of algorithmic decision
making under uncertainty. In this approach one assumes that events are generated by an
adversary and the performance of anon-linestrategy, in which the decision maker has
no knowledge of future events, is compared with that of aclairvoyantstrategy that has
knowledge of the entire future and operates optimally.
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The success of most financial decisions depends on future events of which decision
makers have only partial and typically, very scarce knowledge. Despite that, financial
agents and institutions have to make periodical decision with irreversible consequences.
Thus the nature of most financial problems is inherently on-line.

In the traditional approach to the analysis of financial strategies, sometimes called
distributional or average caseanalysis, one assumes that future events are distributed
according to some known or unknown probability distribution and tries to achieve good
average case performance with respect to these stochastic assumptions. This approach
can be criticized from both technical and conceptual perspectives. Technically, for many
real-life problems, an adequate stochastic model is extremely difficult or costly to devise.
Sometimes, even if an adequate stochastic model can be found it might be very hard
to characterize or compute the optimal strategy analytically. From a conceptual point
of view, a strategy that is good on average is not necessarily the best strategy. In many
occasions it may be more advantageous to secure some minimal profit (or maximal loss).

1.1. Competitive Analysis. Consider a cost minimization problemP consisting of a set
I of inputs and a cost functionC. Associated with each inputI ∈ I is a set of feasible
outputsF(I ). For each inputI and a feasible outputO ∈ F(I ), the cost associated
with I andO is C(I ,O) ∈ R+. Let ALG be any algorithm forP. Denote byALG[ I ] a
feasible output produced byALG given the inputI . The cost incurred byALG is denoted
ALG(I ) = C(I , ALG[ I ]). In general, in anon-line problemP each inputI is a finite
sequenceI = i1, i2, . . . , i n and a corresponding feasible output is a finite sequence
O = o1,o2, . . . ,on. An on-line algorithmmust produce a feasible output in stages such
that at thej th stage the algorithm is presented with thej th component of the inputi j

and must produce thej th component of (a feasible) outputoj before the rest of the input
is made known. Denote byOPTanoptimal off-line algorithm. That is, for each inputI ,

OPT(I ) = min
O∈F(I )

C(I ,O).

An on-line algorithmALG is c-competitive(or “attains a competitive ratioc”) if there
exists a constantα such that, for each inputI ,

ALG(I ) ≤ c · OPT(I )+ α.(1)

The algorithmALG is strictly c-competitive if it isc-competitive withα = 0. In this
paper we are only concerned with strict competitive ratios. The smallestc such thatALG

is c-competitive is calledALG’s competitive ratio. Thus, ac-competitive algorithm is
guaranteed to incur a cost no larger thanc times the smallest possible cost in hindsight
for each input sequence.

As can be seen in the above definition, the competitive ratio is a worst case performance
measure and therefore it is sometimes convenient to view an on-line problem as a two-
person (zero-sum) game between anadversaryand the on-line player. In this game the
on-line player chooses an on-line algorithm and makes it known to the adversary. Then
the adversary chooses an input sequence. The payoff to the adversary is the performance
ratio, optimal off-line cost to on-line cost.

In general, as it is in two-person zero-sum games, randomization is required to ob-
tain optimal (expected) competitive performance (see, e.g., [10]). The extension of the
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competitive ratio measure to randomized on-line algorithms is straightforward4 under
the assumption that the adversary that generates the input sequence is oblivious to the
random choices made by the on-line player. Such anoblivious adversarygenerates the
input sequence in advance, given the probability distributions used by the chosen on-line
algorithm.5 Specifically, the definition of the randomized competitive ratio with respect
to anoblivious adversaryis the same as (1) withE[ALG(I )] replacingALG(I ) where
E[·] is the expectation with respect to the random choices made byALG.

The use of the competitive ratio for the evaluation of on-line algorithms is called
competitive analysis.6 Competitive analysis was first used by computer scientists in the
70s in connection with approximation algorithms for NP-hard problems (see, e.g., [21],
[24], [25], and [40]) and was explicitly formulated in the 1980s in the seminal work of
Sleator and Tarjan [38] onlist accessingandpagingalgorithms. Since then, competitive
analysis has been extensively used to analyze and design on-line algorithms for many
on-line optimization problems related to computer systems.

Competitive analysis appears to be particularly attractive with regard to financial
transactions. A major advantage of this approach over the traditional average-case mea-
sure is that the need to construct a probabilistic model is circumvented. This advantage
is exemplified in cases where one is unable to specify precisely the relevant underlying
distribution of a stochastic model; in such cases the distributional approach might be
of little use. Another important feature of the competitive ratio is that it is a relative
performance measure. In many situations, economic and financial agents would prefer
to compare their performancerelativeto their peers rather than to maximize their utility
in some absolute sense. This type of relative utility function is coined in the finance
literature asKeeping Up with the Jonesesutility functions (see, for example, [1] or [20]).

Nevertheless, in cases where financial players do possess accurate probabilistic mod-
els for input sequences, it would be a waste to ignore this knowledge (which is precisely
what the pure competitive ratio does). Indeed, competitive algorithms are often criticized
of being overly risk-averse. Recently, the competitive analysis framework has been gen-
eralized by al-Binali [7] to include a flexiblerisk managementmechanism. This means
that a forecast—in particular, a (partial) probabilistic input model—can be included in
an optimization that yields algorithms that perform well given that the forecast comes
true but still, even if the forecast fails, the loss remains bounded within a prespecified
tolerance.

1.2. The Leasing Problem. In this paper we consider a fundamental economic on-line
decision problem called theleasingor lease-or-buyproblem.7 In this problem an on-line
player needs some equipment (e.g., a car, musical instrument) for an initially unknown
number ofperiods(e.g., days, months). At the start of each period it is determined whether
or not the equipment will be needed for the current period and the player must choose
one of two choices: to lease the equipment for a leasing feec, or to buy it for a larger

4 See [9] for a game theoretic formulation of the corresponding two-person zero-sum game.
5 Other kinds of adversaries are ofadaptivetype (see [6]). In this paper we only consider oblivious adversaries.
6 The term “competitive ratio” was coined by Karlin et al. [29].
7 This problem is known in computer science folklore as the “ski-rental” problem. Its simplest variant was
first presented by Rudolph as an example of an on-line problem and competitive analysis [36].
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amountP. Once the player has purchased the equipment, he no longer has to pay leasing
fees. The total cost incurred by the player is the sum of all costs incurred (including all
leasing fees and perhaps one purchase). The player is interested in minimizing his total
cost. Whether the equipment is needed or not for a period is made knownon-lineat the
start of the period.8

1.3. Contextual Background and Our Results. Several studies have looked at financial
and economic problems from the perspective of competitive analysis (and other related
approaches). In particular, the following problems have been considered: portfolio se-
lection [15], [23], [35], [13], [14], [16], [34], [22], [8], search and one-way trading [17],
[7], equipment replacement (including mortgage refinancing) [18], [5], stock speculation
and gambling (multi-armed bandit) [3], [4] and inventory management [30].

The literature of finance has devoted considerable attention to the analysis of asset
leasing contracts. Many of the studies were primarily concerned with the effects and
implications of the tax code on the lease versus buy decision (see, e.g., [11], [19], [26],
[33], [32], and [37]). For example, one rational for the existence of leasing contracts is
to reduce tax payments. If the lessor and the lessee face different effective marginal tax
rates, leasing can reduce the total tax bill. The existence of taxes also raises the issue of
what is the appropriate discount rate one should use when valuing a lease contract. The
papers [37], [33], [26] construct valuation formulas which adjust for taxes.9

Although tax-related incentives to lease or buy play an important role in explaining the
existence of lease contracts and in valuing leases, there are other considerations. Smith
and Wakeman [39] analyze various determinants of corporate leasing policy. Some of
these determinants are: What is the expected period of use relative to the useful life of
the asset, comparative advantage in asset disposal, managerial compensation related is-
sues, and specialization in risk-bearing issues. They also demonstrate that the incentives
they identify can help explain some of the contractual clauses which are used in lease
contracts.

Our main concern in this paper is different from the issues addressed in the related
finance literature mentioned above. We are interested in determining how does one make
the lease-or-buy decision in an environment were the lessee is uncertain for how long
he will actually need the underlying asset. One paper that does account for uncertainty
with regard to the length of time that the asset is required for is that by McConnell and
Schallheim [31]. They use an option pricing framework to valueoperatingleases. The
standard operating lease can be cancelled by the lessee at any time. Thus, McConnell
and Schallheim view an operating lease forn periods as a compound option. The last
lease payment purchases the use of the leased asset over the time remaining until the
contract expires. Any of the other lease payments can be viewed as a combination of

8 The lease contracts we consider can be viewed as a sequence of short-term leases (see [32] for the distinction
between short-term and long-term leases) or equivalently as a perpetual standard operating lease (see [31]).
9 These papers use anadjusted present value methodology. The basic idea is that the decision maker should
discount the after-tax lease payments and depreciation tax shields at an adjusted discount rater ∗ which is
calculated from a conventional formula for weighted average cost of capital (for an explanation on the weighted
average cost of capital see, e.g., [12]).
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purchasing the use of the asset until the next lease payment is due and an option to pay
the next lease payment.10

The simplest variant of the leasing problem we consider here has a very simple
known solution. It is known in computer science folklore (and can be easily shown) that
the optimal deterministic competitive ratio is 2− 1/k wherek = P/c. In Section 2
we “warm up” by giving a few definitions and presenting the analysis of this “folk
version.”

When considering alternative financial decisions an agent must consider their net
present value. That is, accounting for the market interest rate is an essential feature of
any reasonable financial model. In this paper we introduce the nominal interest rate
in the market into the model. Although this is only one step toward a more realistic
solution of the problem, the introduction of this parameter considerably complicates the
analysis and also introduces some new issues that do not exist in the simple problem
with no interest rate. For example, in the leasing game with zero interest rate it does not
matter if the equipment is used by the lessee in contiguous or noncontiguous periods.
In contrast, the total cost incurred by the player may change drastically when gaps of
nonusage periods are inserted. Of course, in practice there may be contiguous periods
of usage that are separated by short or long breaks. One interesting feature that we
discover is that the introduction of an interest rate diminishes the uncertainty involved in
(financial) decision making. We determine both deterministic and randomized optimal
on-line leasing strategies while accounting for the interest rate factor. Both these ratios
are monotone decreasing with the interest rate. Leti > 0 be the nominal interest rate
in the market. This means that the present discount value of one unit of money payable
in exactly one time period is the amount, which if invested at the rate of returni , would
grow to exactly one unit of money at the end of the period. That is, the present discount
value is exactly 1/(1+ i ) units of money. Practical reasoning suggests (see Section 3)
that only values ofi that satisfyi /(1+ i ) < 1/k make sense. For all such sensible
values ofi we prove in Section 3 that the optimal deterministic competitive ratio is
1+ (1+ i )(1− 1/k)(1− k(i /1+ i )), which strictly improves with the interest rate.
This can be interpreted as a reduction of the uncertainty (as a function of the interest
rate). For example, consider the following instance of the “ski-rental” problem. Assume
a person who has, each year, an opportunity to take a 4 day ski vacation. At some ski
resorts it is possible to rent the ski equipment for the entire 4 day vacation for about
$110. On the other hand, it is possible to buy reasonable quality ski equipment for $600.
This results ink = 5.45 and the optimal deterministic competitive ratio is 1.82. Now
assume an annual interest rate of 0.065.11 This results in a competitive ratio of about
1.57.

In Section 3.3 we show that by randomizing the on-line player can improve the
competitive ratio (against an oblivious adversary). Our analysis, in the case with no
interest rate against an oblivious adversary, can be viewed as a discrete version of a
result by Karlin et al. [28], in which they study thespin-blockproblem in a continuous
model. In particular, we show that the optimal randomized competitive ratio (against an

10 See [31] for a brief description of the various provisions that can be written into lease contracts.
11 At the time of writing the U.S. T-bill is at 6.62%.
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oblivious adversary) is strictly smaller than the deterministic one for allk and is precisely

2− (k/(k− 1))k − 2

(k/(k− 1))k − 1
< 2− e− 2

e− 1
≈ 1.58.

We then refine the analysis and determine the optimal randomized solution for the case
with interest rates. The optimal competitive ratio in this case is

2− (k/(k− 1))γ − 2

(k/(k− 1))γ − 1
where γ = ln (1− k(1− 1/(1+ i )))

ln(1/(1+ i ))
.

As in the casei = 0, it is shown that randomization helps to improve the competitive
ratio and that the optimal competitive ratio strictly decreases withi for all feasible values
of i . For example, returning to the above ski-rental instance, with randomization (and
interest rate of 0.065) we can attain a competitive ratio of 1.37.

As mentioned above, when interest rates are introduced the total cost incurred by
the player may vary drastically if gaps of time periods with no leasing are introduced
in between leasing periods. This could potentially increase the competitive ratio. In
Section 4 we show that our results hold whether or not the the leasing periods are
contiguous.

In Section 5 we analyze the leasing problem against a distributional adversary called
“Nature”; this is an adversary that chooses the probability distribution that governs the
number of leasing periods and announces this distribution before the on-line player
chooses his strategy. Although at the outset this adversary appears to be weaker than the
oblivious adversary, it is shown that the competitive ratio against Nature is identical to
the ratio against the oblivious adversary.

2. The Folk Version—“the Ski-Rental Problem.” We make use of the following
notation. For any strategyX for this problem, letVX(n) be thepresent valueof the total
cost spent byX if the equipment is used forn periods (in this section, since interest
rates are not involved, for alln the present value is simply the total cost). LetOPT be
the optimal off-line strategy. We are interested in identifying the optimal on-line leasing
strategy and determining the best attainable competitive ratio for this problem; that is,
to determine the quantity minX maxn VX(n)/VOPT(n).

As a “warm up,” we first consider the well-known “folk” variant of the leasing problem
called theski-rental problem. This variant is specified by the following parameters:

• A purchase price, P.
• A leasing price, c. It is convenient to assume thatP = kc for some integerk > 1.

Note that fork = 1 the problem is trivial since the player buys on the first period.

The first observation is thatVOPT(n) = min{P,nc}. Consider the following deter-
ministic on-line strategy: rent up tok − 1 times and then buy. Thus ifn ≤ k − 1, then
always lease. Denote this on-line strategy byS̄.

It is not hard to see that̄S is (2− 1/k)-competitive: Ifn ≤ k − 1 the on-line and
off-line players incur the same cost. On the other hand, ifn > k − 1, then the on-line
player pays(k−1)c+P and the off-line player paysP. ThereforeS̄attains a competitive
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ratio of

(k− 1)c+ P

P
= (k− 1)c+ kc

kc
= 2− 1

k
.

Further, it is not hard to show thatS̄ is an optimal deterministic strategy. First, notice
that any deterministic leasing strategy is a threshold-type strategy, specified by one
positive integert such that the on-line player leasest − 1 times and then buys. LetS(t)
be such a strategy witht 6= k. Clearly, the best option for the adversary is to choose
n = t . Consider the two cases:

(i) t < k: thenS(t) attains a competitive ratio of((t − 1)c+ P)/tc = 1+ (k− 1)/t ≥
2.

(ii) t > k: now S(t) attains a competitive ratio((t−1)c+P)/P > ((k−1)c+P)/P =
2− 1/k.

REMARK 1. For an arbitraryk (not necessarily an integer) it can be shown that the
competitive ratio of the optimal on-line strategy is

min

{
1+ k− 1

bkc ,1+
bkc
k

}
.

This competitive ratio can be obtained by a strategy similar toS(t).

3. Leasing in a Market with Interest Rate. As before, letP and c < P be the
purchase price and the per-period leasing price, respectively. In addition, leti be the
nominal interest ratein the market. Without loss of generality we assume thatc/P >

i /(1+ i ). This is a reasonable assumption for any practical use because the purchase
price of the equipment must be less than the present discount value of the alternative
of always leasing (

∑∞
j=0(c/(1+ i ) j ) > P). Otherwise, the on-line player can attain a

competitive ratio of 1 by simply never purchasing the equipment.
Throughout this section we make the simplifying assumption that the player needs

the equipment throughoutn contiguous time periods. (Later, in Section 4, we prove that
this assumption can be taken without loss of generality.)

3.1. Optimal Off-Line Strategy. Clearly, for anyn the optimal off-line decisions are
made according to one of the following two rules: (i) always lease; (ii) rentt times and
then buy, where 0≤ t ≤ n− 1.

Setβ = 1/(1+ i ). For i > 0 the present discount value ofn rentals is

n−1∑
j=0

c

(1+ i ) j
= c

n−1∑
j=0

β j = c
1− βn

1− β .

The present value oft rentals followed by a purchase is

f (t) = β t

(
P − c

1− β
)
+ c

1− β .
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Using the assumption thatc/P > i /(1+ i )we obtain (as in the “folk” version) thatOPT

will never purchase the equipment after leasing it for some time.
Let n∗ be the number of rentals whose total present value isP. In other words,n∗ is

the root ofc((1− βn)/(1− β)) = P. That is

βn∗ = 1− P(1− β)
c

.(2)

Therefore,

n∗ = ln(1− k(1− β))
lnβ

= ln(1− k(i /1+ i ))

ln(1/(1+ i ))
.

REMARK 2. By applying straightforward calculus it can be shown thatn∗ is a continuous
function of i (i ≥ 0) and that limi→0 n∗ = k.

It follows that, for anyn, the optimal off-line cost,VOPT(n), is given by

VOPT(n) =
c

1− βn

1− β , n < n∗,

P, n ≥ n∗.

3.2. Optimal On-Line Deterministic Strategy. In what follows we make the simplifying
assumption thatn∗ is an integer.12

THEOREM3.1. The optimal competitive ratio obtained when i> 0 is

1+ 1

β

(
1− 1

k

)
(1− k(1− β)) = 1+ (1+ i )

(
1− 1

k

)(
1− k

i

1+ i

)
.

This competitive ratio can be obtained by following on-line strategy S∗:

• If n ≤ n∗ − 1, then always lease.
• Otherwise, lease n∗ − 1 periods and then buy.

PROOF. For eacht ≥ 1, let S(t) be the strategy that leases for the firstt − 1 periods
and then buys. Thus,S(t) pays

c · 1− β
t−1

1− β + P · β t−1.

Fix somet < n∗ and consider the strategyS(t). As in the case with zero interest rate,
it is clear that the optimal choice ofn by the adversary againstS(t) would be exactlyt .
For n = t , the cost ratio (on-line/off-line) is

R1 = c((1− β t−1)/(1− β))+ Pβ t−1

c((1− β t )/(1− β))

= β t−1(P − c)+ c− Pβ t

c(1− β t )
.

12 This assumption is made to facilitate a simpler presentation of the results which can be generalized to an
arbitraryn∗ (see Remark 3).
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Note that

∂

∂t
R1(t) = lnβ · β t−1(P − c)(1− β)

c(1− β t )2
< 0.

Therefore, the on-line player will take the maximum possible value oft , such thatt < n∗.
Having assumedn∗ to be an integer,t = n∗ − 1 and using (2) we obtain

R1(n
∗ − 1) = βn∗−2(P − c)+ c− Pβn∗−1

c(1− βn∗−1)

= 1+ (k− 1)βn∗−2(1− β)
1− βn∗−1

= 1+ 1

β

(k− 1)(1− β)(1− k(1− β))
β − (1− k(1− β))

= 1+ 1

β
(1− k(1− β)).

Next we consider strategiesS(t)with t ≥ n∗. There are two mutually exclusive cases.
If the choice ofn is such thatn < t , then forn < n∗ the on-line and off-line costs are
equal and for any choice ofn with n∗ ≤ n < t , the on-line strategy will always lease,
incurring a cost ofc((1− βn)/(1− β)). OPT, on the other hand, will buy and payP.
Without loss of generality, assume thatn = t − 1. Thus, for this case the best attainable
cost ratio is

R2 = c

P
· 1− β

t−1

1− β .

In the second case, the adversary choosesn ≥ t . Without loss of generality assume that
n = t (both the on-line and the off-line players cease all activities by thet th period).
The off-line cost isP and the on-line cost isc((1− β t−1)/(1− β))+ Pβ t−1. Thus, the
best attainable ratio for this case is

R3 = c

P
· 1− β

t−1

1− β + β t−1.

Clearly,R3 > R2. Therefore, the adversary will choosen = t , enforcing the the larger
ratio, R3. Clearly,

∂

∂t
R3(t) = β t−1 lnβ(β + c/P − 1)

β − 1
,

which is always positive.
Therefore, for this case, the best attainable ratio is obtained by settingt = n∗. Thus,

using (2) we obtain

R3(n
∗) = c

P

1− βn∗−1

1− β + βn∗−1

= 1

k
· 1− β

n∗

1− β +
1

β

(
1− 1

k

)
βn∗
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= 1+ 1

β

(
1− 1

k

)
βn∗

= 1+ 1

β

(
1− 1

k

)
(1− k(1− β)).

It is evident thatR1(n∗ − 1) > R3(n∗). Hence the on-line player choosest = n∗ (recall
thatn∗ is an integer) and the best attainable competitive ratio is

R3(n
∗) = 1+ 1

β

(
1− 1

k

)
(1− k(1− β))

= 1+ (1+ i )

(
1− 1

k

)(
1− k

i

1+ i

)
,

which is achieved by the optimal strategyS∗ (i.e., if n ≤ n∗ − 1, then always lease;
otherwise, leasen∗ − 1 periods and then buy).

REMARK 3. It can be shown that for an arbitraryn∗ the competitive ratio attained
is min{R3(dn∗e), R1(bn∗c)} in which case the competitive ratio can be obtained by a
strategy similar toS∗.

We now examine the optimal competitive ratio as a function ofi and ofk. Observe the
following two properties: (i) Wheni ≥ 0 the optimal competitive ratio is strictly decreas-
ing with i and strictly increasing withβ. (ii) 1 < k < 1/(1− β) and it is easy to show
that the optimal competitive ratio increases in the interval(1,

√
1/(1− β)], decreases in

the interval [
√

1/(1− β),1/(1− β)), and has a maximum atk = 1/
√

1− β.

3.3. Optimal On-Line Randomized Leasing Strategy. In this section we show how
randomization can boost the performance. We consider a game against an oblivious
adversary (see Section 1.1). We first consider the casei = 0 and then generalize to any
(feasible)i > 0.

3.3.1. Randomization when i= 0. Assumei = 0, which corresponds to the “folk”
version of Section 2. As mentioned earlier, for everyn, the optimal off-line cost is
VOPT(n) = min{cn, P}. As before, for everyt ≥ 1, let S(t) be the deterministic on-line
strategy that leases for the firstt − 1 periods and then buys.

Any randomized leasing strategy can be specified by a probability distribution{pt }
over deterministic leasing strategiesS(t) as defined above. For eacht define pt to be
the probability of using the strategyS(t). Let R = R(t,n, k) denote the cost ratio ( on-
line/off-line) of the strategyS(t) when the game consists ofn periods.

THEOREM3.2. The optimal randomized competitive ratio against an oblivious adver-
sary is

1

1− ((k− 1)/k)k
= 2− (1+ 1/(k− 1))k − 2

(1+ 1/(k− 1))k − 1
.
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This ratio is attained by the following randomized strategy:

pj =



1

1+ k
(
(1+ 1/(k− 1))k−1− 1

) , j = 1;

p1 ·
(

k

k− 1

) j−1

, 1< j ≤ k;

0, k < j .

The proof of Theorem 3.2 makes use of the following lemmas.

LEMMA 3.1. There exists an optimal on-line randomized leasing strategy having the
property that, for every j> k, pj = 0.

PROOF. We first claim that the lemma holds under the assumption that there exists an
optimal on-line strategy whose probability distribution has finite support.

To prove this claim consider such an optimal on-line randomized strategy,P = {pj },
and setM(P) = max{i | pi 6= 0}. The expected (optimal) competitive ratio is thus
R1({pt }, n) =∑t pt · R(t,n, k). Without loss of generality assume thatM(P) > k. It
is easy to see that:

(i) Without loss of generality the adversary considers onlyn ≤ M(P).
(ii) ∀ j > n, R( j,n, k) = R(n+ 1,n, k).

(iii) ∀ h > n ≥ k, ∀ t ≤ n, R(t, h, k) = R(t,n, k).
(iv) ∀n > k, R(n,n, k) > R(n− 1,n− 1, k).

Consider the following probability distribution,̃P = { p̃t }:

p̃t =


pt , ∀ t ≤ M(P)− 2;
pM(P)−1+ pM(P), t = M(P)− 1;
0, t = M(P).

It follows that M(P̃) = M(P)− 1.
We now check how the expected competitive ratio changes as we shift from the

strategy{pt } to the strategy{ p̃t }:

R1({ p̃t },M(P̃)) =
∑

t

p̃t · R(t,M(P̃), k)=
∑

t

p̃t · R(t,M(P)− 1, k)

=
M(P)−2∑

t=1

pt ·R(t,M(P)−1, k)+ p̃M(P)−1·R(M(P)−1,M(P)−1, k)

=
M(P)−1∑

t=1

pt · R(t,M(P)−1, k)+ pM(P) ·R(M(P)−1,M(P)−1, k)

<

M(P)−1∑
t=1

pt · R(t,M(P)− 1, k)+ pM(P) · R(M(P),M(P), k)
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=
M(P)∑
t=1

pt · R(t,M(P), k) = R1( {pt } , M(P))

and, for alln < M(P̃),

R1({ p̃t },n) =
∑

t

p̃t · R(t,n, k)

=
M(P)−2∑

t=1

pt · R(t,n, k)+ p̃M(P)−1 · R(M(P)− 1,n, k)

=
M(P)−1∑

t=1

pt · R(t,n, k)+ pM(P) · R(M(P)− 1,n, k)

=
M(P)−1∑

t=1

pt · R(t,n, k)+ pM(P) · R(M(P),n, k) = R1({pt }, n).

Thus, the on-line strategy given by{ p̃t } is at least as good as the strategy given by{pt }.
Repeated applications of this argument prove the claim.

For the case in which the optimal strategy has infinite support (i.e., there are infinitely
many indicesj such thatpj 6= 0) we show that, for every 0< ε < 1, there exists a
probability distributionP̃(ε) with a finite support such that, for alln,

R1({ p̃t },n) ≤ R1({pt },n)
1− ε .

Let 0 < ε < 1 be given and letN(ε) be an index such that
∑

N(ε)≤t pt = δ ≤ ε.
Define

p̃t =
{ pt

1− δ , t < N(ε),

0, N(ε) ≤ t.

Clearly, for alln, (1− δ)R1({ p̃t },n) ≤ R1({pt },n).

Lemma 3.1 tells us that it is sufficient to consider strategies that give positive weights
only to the firstk periods. We may thus assume thatn ≤ k and it follows that for any
such choice ofn the expected cost ratio is

R(n) = 1+
∑
t≤n

pt
t + k− n− 1

n
.

Define4(k) def= {(x1, x2, . . . , xk) :
∑k

i=1 xi = 1; ∀i, xi ≥ 0}.

LEMMA 3.2. Let A be a k× k positive upper triangular matrix in which the upper
elements increase along columns(i.e., t ′ < t ≤ j ≤ k implies at ′, j < at, j ). Let (p,λ) be
an optimal solution for the linear program

minλ

such that

{
p · A ≤ λ· →1,

p ∈ 4(k).
Then p· A = λ · →1.
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α← max
t,n
| at,n |;

1 : δ← min{λ− p · Aj | p · Aj < λ};
l ← max{ j | p · Aj−1 < p · Aj = λ};
If l = −∞ then goto 2;
else{

ε← min

{
δ

4α
,

pl

2

}
;

p̄j ←


pj + ε, j = l − 1;
pj − ε, j = l ;
pj , otherwise;

}
If p̄ · A < λ · →1 END;

else{
p← p̄;
goto 1;

}
2 : r ← max{ j | p · Aj = λ};

ε← min

{
δ

4α
,

p1

2

}
;

p̄j ←


p1− ε, j = 1;
pj , 1< j ≤ r ;
pj + ε, j = r + 1;
pj , j > r + 1;

Fig. 1.An algorithm that computes a probability distributionp̄ ∈ 4(k) for which p̄ · A < λ · →1.

PROOF. The idea of the proof is that if there existsj ≤ k such thatp · Aj < λ, then by
a small variation of the probability distributionp to p̄ we can reduce the values ofp · Ai

in columns, wherep · Ai = λ, while in other columns wherep · Ai < λ the value still
stays strictly smaller thanλ− γ .

By contradiction assume that there existsj ≤ k for which p · Aj < λ. Consider the
algorithm of Figure 1. This algorithm computes a probability distributionp̄ ∈ 4(k) for

which p̄ · A < λ· →1.
After executing the algorithm of Figure 1,̄p · A < λ · →1. This is established by

considering the following three observations:

(i) After each iteration of stage 1,̄p · A ≤ λ · →1, and p̄ · Al < p · Al = λ:
• m< l − 1: p̄ · Am = p · Am.
• m= l − 1: p̄ · Am = p · Am + εam,m ≤ p · Am + (δ/4α)α < λ .
• m≥ l : p̄ · Am = p · Am + εal−1,m − εal ,m < λ.
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(ii) The algorithm terminates: from (i) it is clear that the number of times we execute
stage 1 is finite and stage 2 is either not executed at all or executed only once.

(iii) After an execution of stage 2,̄p · A < λ · →1:
• m≤ r : p̄ · Am < p · Am = λ.
• m≥ r + 1: p̄ · Am ≤ p · Am + εar+1,m ≤ p · Am + (δ/4α)α < λ .

This completes the proof of the lemma.

Lemma 3.2 entails the following corollary.

COROLLARY 3.1. There exists an optimal on-line randomized leasing strategy with the
property that, for every j≤ k, the ratios R( j ) are equal.

By Corollary 3.1, in order to identify the optimal randomized strategy it remains to
solve the system of equationsR(1) = R(2) = · · · = R(k) for the thepi ’s under the
constraintspi ≥ 0 and

∑
i pi = 1.

The proof of the following lemma is easily obtained by substitution.

LEMMA 3.3. For every positive p1, the choice pj = p1 · (k/(k− 1)) j−1, j = 2, . . . , k,
solves the system R(1) = R(2) = · · · = R(k) and, for all j , R( j ) = 1+ p1(k− 1).

PROOF OFTHEOREM3.2. Using Lemma 3.3 together with the constraint that{pi } is a
probability distribution we calculatep1 which must be the solution of 1−∑k

i=2 pi = p1:

p1 = 1

1+ k
(
(1+ 1/(k− 1))k−1− 1

) .
Note that since(1+1/(k− 1))k−1 is strictly increasing towarde, p1 is strictly decreasing.

By substituting this value forp1 we calculate the optimal expected competitive ratio
which after rearrangement reduces to

1

1−((k− 1)/k)k
= 2 − (1+ 1/(k− 1))k − 2

(1+ 1/(k− 1))k − 1
.(3)

Notice that the optimal deterministic ratio is always in the interval [3
2,2) and the

optimal randomized ratio is in [4
3,1.582). Further, it can be shown that the optimal

randomized competitive ratio is strictly smaller than the optimal deterministic one for
everyk.

3.3.2. Randomization When i> 0. Here we consider randomization wheni is positive
and state without a proof the following theorem.13

13 The proof of Theorem 3.3 can be found in [27].
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Fig. 2. The optimal on-line randomized competitive ratio is strictly smaller than the optimal deterministic
competitive ratio, for all feasible pairs ofk andi .

THEOREM3.3. Let i > 0 be given and set n∗ to be the number of rentals whose total
present value is P. Then the optimal competitive ratio against an oblivious adversary is

1

1− ((k− 1)/k)n∗
= 2− (k/(k− 1))n

∗ − 2

(k/(k− 1))n∗ − 1
.

This optimal competitive ratio can be obtained by the following randomized strategy:

pj =



1

k− 1
· (k− 1)n

∗

kn∗ − (k− 1)n∗
, j = 1,

p1 ·
(

k

k− 1

) j−1

, 1< j ≤ n∗,

0, n∗ < j .

We examine how the competitive ratio changes as a function of the interest ratei and
of k. Clearly:

1. Sincei ≥ 0, i ↑ H⇒ β ↓ H⇒ n∗ ↑ H⇒ R ↓.
2. Given that 1< k < 1/(1− β) (as argued in Section 3) it is possible to show that the

competitive ratio increases in the interval(1, 1/
√

1− β], decreases in the interval
[1/
√

1− β,1/(1− β)) and obtains a maximum atk = 1/
√

1− β.
It can also be shown, that the optimal on-line randomized competitive ratio is strictly
smaller than the optimal deterministic competitive ratio, for all feasible pairs ofk andi
(see Figure 2).

4. Noncontiguous Usage of Equipment. So far we have analyzed the leasing game
subject to the assumption that the player uses the equipment for a number of contiguous
periods and then never uses it again. Nevertheless, in practice there may be contiguous
periods of usage that are separated by short or long breaks.
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Of course, for the leasing game with zero interest rate this contiguous-usage assump-
tion is not required for the analysis as all costs are independent of time. On the other hand,
wheni > 0 it is not clear at the outset whether or not the removal of this contiguous-usage
assumption will affect the optimal competitive ratio.

Let U = u1,u2, . . . ,un, where theui ’s are period indices,u1 < u2 < · · · < un,
such that the equipment is needed by the player during each periodui . We call U a
usage sequence. In each usage sequenceU , |U | = n is thus the number of usage periods
in the sequence. A usage sequenceU is contiguousif uj+1 = uj + 1, j = 0,1, . . . ,
n− 1.

Assume thati > 0. Clearly, since a contiguous usage sequence is a special case of a
usage sequence (that may contain gaps of nonusage period segments), the competitive
ratio in the noncontiguous usage case can only increase relative to contiguous usage. In
this section we prove that in fact it remains the same.

THEOREM4.1. Let P, c, and i be given. Then the competitive ratio in the contiguous
case equals the optimal competitive ratio in the noncontiguous case.

Consider the following on-line deterministic strategyS∗∗: lease the equipment for the
first n∗ − 1 usage periods and then buy the equipment on then∗ usage period. (For a
contiguous usage sequence the strategyS∗∗ coincides with the optimal on-line strategy
S∗.)

PROOF OFTHEOREM4.1. We show thatS∗∗ ensures a competitive ratio of 1+(1/β)(1−
1/k)(1−k(1−β)) (which is the same as the competitive ratio achieved in the contiguous
case).

Before getting into the details we outline the proof. Since the on-line player uses
strategyS∗∗ we may assume, without loss of generality, that|U | ≤ n∗ (a longer sequence
can only raise the cost forOPTwithout affecting the on-line cost). We show that for such
usage sequencesOPT leases the equipment throughout the entire sequence (in the case
whereU is contiguous with|U | = n∗, OPTeither leases throughout the entire sequence
or purchases the equipment on the first period; the price incurred is the same). Based
on the fact thatOPT leases the equipment throughout the whole sequence we conclude
that for any given noncontiguous sequence the adversary can increase the competitive
ratio obtained by eliminating all the gaps. Thus, the optimal strategy for the adversary
(againstS∗∗) is to choose a contiguous sequenceU with |U | = n∗.

We now turn to a formal proof of the theorem. With respect to a usage sequence
U = u1, . . . ,un define the following strategies:

• BUY(t): lease the equipment until periodut−1 and buy it on periodut .
• BUY(∞): always lease.

In what follows we useC(·) to denote the cost incurred. We claim that given a usage
sequenceU such that|U | ≤ n∗, OPTbehaves as follows:

1. If U is contiguous and|U | = n∗, thenOPT will lease always or buy the equipment
on the first period of the sequence. Notice that according to the definition ofn∗, for
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such a sequence

C(BUY(∞)) = C(BUY(1)).

That is, the cost of purchasing on the first usage period is the same as the cost of
leasing throughoutU .

2. If |U | < n∗, OPTalways leases.
3. If |U | = n∗ is noncontiguous, thenOPTalways leases.

To prove this claim notice that if 0≤ k < n ≤ n∗, then

C(BUY(k) ) ≥ C(BUY(∞))
m

c
k∑

j=1

βuj−1+ Pβuk+1−1 ≥ c
n∑

j=1

βuj−1

m

Pβuk+1−1 ≥ c
n∑

j=k+1

βuj−1

m

P ≥ c
n∑

j=k+1

βuj−uk+1,

but

c
n∑

j=k+1

βuj−uk+1 ≤ c
n∗∑

j=1

β j = P(4)

and equality holds in (4) if and only ifk = 0 and, for all j , uj = j ; that is, if and only if
U is contiguous with|U | = n∗. This proves the claim.

For a given noncontiguous time usage sequenceU , let Ũ be obtained fromU by
eliminating the last (nonusage) gap. When the on-line player appliesS∗∗, for every
noncontiguous time usage sequenceU with |U | ≤ n∗, R(Ũ ) ≥ R(U ).

Assume, without loss of generality, that|U | = n∗. (If |U | < n∗, then both the on-line
player andOPTalways lease, thereforeR(Ũ ) = R(U ).)

Consider the last gap in the time usage sequenceU that occurs betweenuk anduk+1,
and assume that this gap lastsl + 1 periods. The cost ratio achieved for the sequenceU
is

R(U ) = c
∑n∗−1

i=1 βui−1+ Pβun∗−1

c
∑n∗

i=1 β
ui−1

= c
∑k

i=1 β
ui−1+ c

∑n∗−1
i=k+1 β

ui−1+ Pβun∗−1

c
∑k

i=1 β
ui−1+ c

∑n∗−1
i=k+1 β

ui−1+ cβun∗−1
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= c
∑k

i=1 β
ui−1+ cβ l

∑n∗−1
i=k+1 β

ui−1−l + Pβ lβun∗−1−l

c
∑k

i=1 β
ui−1+ cβ l

∑n∗−1
i=k+1 β

ui−1−l + cβ lβun∗−1−l
.

Similarly, the cost ratio achieved for the sequenceŨ is

R(Ũ ) = c
∑i=k

i=1 β
ui−1+ c

∑i=n∗−1
i=k+1 β

ui−1−l + Pβun∗−1−l

c
∑i=k

i=1 β
ui−1+ c

∑i=n∗−1
i=k+1 β

ui−1−l + cβun∗−1−l
.

Define

X
def= c

i=k∑
i=1

βui−1;

M
def= c

i=n∗−1∑
i=k+1

βui−1−l .

To complete the proof it remains to show that

R(Ũ ) = X + M + Pβun∗−1−l

X + M + cβun∗−1−l
>

X + β l M + Pβ lβun∗−1−l

X + β l M + cβ lβun∗−1−l
= R(U )(5)

m

1+ βun∗−1−l (P − c)

X + M + cβun∗−1−l
> 1+ β lβun∗−1−l (P − c)

X + β l M + cβ lβun∗−1−l

m
1

X + M + cβun∗−1−l
>

1

X/β l + M + cβun∗−1−l
.

Since 0< β < 1 andl > 0 we get that the left-hand side in (5) is strictly greater than
the right-hand side.

5. Playing Against Nature. Consider the following adversary that can choose any
probability distributionπ on integers and then must announce it to the on-line player.
The on-line player then chooses a strategy and an integern is sampled according toπ .
The leasing game is then played forn periods without revealingn to the on-line player
until the nth period. We call such an adversaryNATURE. At the outset it appears that
NATURE is considerably weaker than the oblivious adversary and it could be concluded
that by weakening the adversary we can hope for a better competitive ratio.

Somewhat surprisingly (see Remark 4) we have

THEOREM5.1. In a game againstNATURE the optimal competitive ratio is the same as
in playing against an oblivious adversary.

PROOF. Consider the following two-person zero-sum game between the adversary and
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the on-line player:

• The set of pure strategies for the on-line player isN − {0}, whereN is the natural
numbers and the pure strategyt representsS(t) (i.e., leaset − 1 periods and then buy
on thet th period).
• The set of pure strategies for the adversary isN − {0} where the pure strategyn

represents a decision to terminate the game on thenth period.
• The on-line player pays to the adversary according to the payment matrixAt,n =

R(t,n,n∗), in particular, ifi = 0, thenAt,n = R(t,n, k).
• A mixed strategyy for the on-line player is a probability distribution overN − {0}.
• A mixed strategyx for the adversary is a probability distribution overN − {0}.
In the above gameNATURE’s objective is to ensure the value maxx miny yT Ax (which is
the competitive ratio that can obtained in a game againstNATURE).

In our analysis of the game against the oblivious adversary (Section 3.3) the optimal
on-line strategy was designed to guarantee for the on-line player the value

min
y

max
x

yT Ax.

Since for all f , infy supx f (x, y) ≥ supx infy f (x, y), it is only required to show that

max
x

min
y

yT Ax ≥ min
y

max
x

yT Ax.(6)

REMARK 4. Note that if the matrixA was finite we could easily complete the proof
by relying on the min-max theorem of game theory. However, in general the min-max
theorem does not apply to infinite matrices (see, e.g., [2]).

We now prove inequality (6). We also characterize the set of probability distributions
from whichNATURE can choose in order to secure the highest possible competitive ratio.

Here we consider only the casei = 0 (no interest rate).14 Denote thej th row of A by
Aj . The payment matrixA of the game is depicted in Figure 3.

From Theorem 3.2 we deduce that the value of miny maxx yT Ax is

α = 2− (k/(k− 1))k − 2

(k/(k− 1))k − 1
.

From Lemma 3.1 we conclude that the optimal on-line randomized strategy has the
property that, for allj > k, yj = 0, and from Lemma 3.3 we obtain that the optimal
on-line randomized strategy has the property that, for allj ≤ k, yj 6= 0. Therefore, using
the fact thatx is a probability distribution and the theorem of complementary slackness
of linear programming (see, e.g., [2]) it must be that maxx miny yT Ax ≥ α if and only
if the following set of restrictions is feasible:

• ∑∞i=1 xi = 1.

14 The proof of inequality (6) for the casei > 0 is similar.
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Fig. 3.The payment matrixA in a game againstNATURE (wheni = 0).

• ∀ j ≤ k, Aj · x = α.
• ∀ j > k, Aj · x ≥ α.

By solving the equalities we obtain that,

∀1≤ j ≤ k− 1, xj = j

(
k− 1

k

) j−1

x1 = j
α

k2

(
k− 1

k

) j−1

.

Substituting 1/(1− ((k− 1)/k)k) for α we have,

∀1≤ j ≤ k− 1, xj = j

k2
· ((k− 1)/k) j−1

1− ((k− 1)/k)k
.
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LEMMA 5.1. Denote byγ = ∑∞
j=k xj = 1−∑k−1

i=1 xi . Then xk, xk+1, . . . , xk+m, . . .

are characterized by:

• ∑∞j=k xj = γ .

• ∀ j ≥ 0, xk+ j ≤ (( j + 1)/k)γ −∑ j−1
i=0 (1+ ( j − i )/k)xk+i .

PROOF. Consider the following subset of restrictions:

∀ j > k, Aj · x ≥ α.

These restrictions translate into the following set of linear equations:

k∑
j=1

xj + 2
∞∑

j=k+1

xj ≥ α,
k∑

j=1

xj +
(

1+ 1

k

)
xk+1 +

(
2+ 1

k

) ∞∑
j=k+2

xj ≥ α,
k∑

j=1

xj +
(

1+ 1

k

)
xk+1 +

(
1+ 2

k

)
xk+2 +

(
2+ 2

k

) ∞∑
j=k+3

xj ≥ α,
...

...
...

...
...
...

k∑
j=1

xj +
m−1∑
i=1

(
1+ i

k

)
xk+i +

(
2+ m− 1

k

) ∞∑
j=k+m

xj ≥ α,
...

...
...

...
...

Rearranging terms,

k∑
j=1

xj + 2
∞∑

j=k+1

xj ≥ α,

k∑
j=1

xj − xk+1 +
(

2+ 1

k

) ∞∑
j=k+1

xj ≥ α,

k∑
j=1

xj −
(

1+ 1

k

)
xk+1 − xk+2 +

(
2+ 2

k

) ∞∑
j=k+1

xj ≥ α,

...
...

...
...

...

k∑
j=1

xj −
m−1∑
i=1

(
1+ m− 1− i

k

)
xk+i +

(
2+ m− 1

k

) ∞∑
j=k+1

xj ≥ α,

...
...

...
...

...

By subtracting from each inequality the equationAk · x = α (written as
∑k

j=1 xj +
(1− 1/k)xk + (2− 1/k)

∑∞
j=k+1 xj = α) and after straightforward manipulations we
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Fig. 4.The magnitude of the weightsxj , 1≤ j ≤ k, for k = 100.

obtain 

−xk + 1

k

∞∑
j=k

xj ≥ 0,

−
(

1+ 1

k

)
xk − xk+1 + 2

k

∞∑
j=k

xj ≥ 0,

...
...

...

−
m−1∑
i=0

(
1+ m− 1− i

k

)
xk+i + m

k

∞∑
j=k

xj ≥ 0,

...
...

...

Clearly, there is a continuum of solutions of the inequalities in Lemma 5.1. Here we
present one solution in which all the inequalities hold as equalities. Consider the set
{xk+ j = ((k− 1)/k) j (γ /k)}j≥0. It can be verified (for example, by substitution) that
this set specifies a solution in which all inequalities hold as equalities.

An illustration of the magnitude of the weightsxj , 1 ≤ j ≤ k, for k = 100 is given
in Figure 4.

LEMMA 5.2. In a game againstNATURE, for all k ≥ 2,

P[the game lasts at least k periods] >
1

e− 1
.

PROOF.

k−1∑
j=1

xj =
k−1∑
j=1

j

k2
· ((k− 1)/k) j−1

(1− ((k− 1)/k)k)
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= 1

k2(1− ((k− 1)/k)k)

k−1∑
j=1

j

(
k− 1

k

) j−1

= 1

k2(1−((k−1)/k)k)

(
k((k−1)/k)k−1((k−1)/k−1)−((k−1)/k)k+1

((k−1)/k−1)2

)
= 1− ((k− 1)/k)k−1

1− ((k− 1)/k)k
.

Since, for allk ≥ 2, ((k− 1)/k)k−1 > 1/e> ((k− 1)/k)k, it follows that

1− ((k− 1)/k)k−1

1− ((k− 1)/k)k
< 1− 1/e

1− 1/e
= 1− 1

e− 1
.

Thus, there is an upper bound (1− 1/(e− 1)) for the probability that the game will
last less thank periods. An intuitive explanation of this fact is that if with very high
probability the game lasts less thank periods, the on-line player will always lease and
will attain a competitive ratio close to 1. Therefore, if the adversary wants to enforce a
high competitive ratio it must threaten the on-line player with a potentially far horizon.

6. Concluding Remarks. We have employed competitive analysis to study the leasing
problem in a market with interest rates. Unlike most conventional approaches in finance
we do not require the decision maker to have any prior knowledge about how long he will
need the underlying asset for. Still however we show that by using a simple randomized
algorithm the on-line player can achieve fairly low competitive ratios.

As discussed in Section 1.1 the pure competitive analysis (and our analyses here)
blatantly ignore partial (probabilistic) knowledge that the on-line player may have. The
risk–reward framework of al-Binali [7] that generalizes pure competitive analysis fa-
cilitates analyses and strategies that can include such side information. Indeed, in [7]
al-Binali analyzes the folk variant of the leasing problem to exemplify the risk–reward
framework. It would be very interesting to generalize our results to include risk man-
agement.

The basic leasing game studied here provides a reasonable abstraction of the lease-
or-buy dilemma in a situation where the lease contract can be broken at any time with no
penalty. Nevertheless, this basic formulation also abstracts away some realistic options
that the lessee may have. For example, in practice after the equipment is bought it can
later be sold (typically for a smaller price). Furthermore, our simple model ignores price
uncertainty which is a considerable factor in any financial decision process. Our work
can be extended in various directions:

• Introduce price uncertainty. In our model it is assumed that both the rental cost and the
purchase cost are constants. The next step should be to account for price uncertainty,
an important factor in financial modeling.
• Extend the analysis to a wider set of lease contracts. As noted in [31] some of the

provisions that can be written into a lease are: (1) leases which grant the lessee the
right to purchase the leases asset at a fixed price at the maturity date of the contract;
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(2) leases that are noncancelable during the life of the contract (this type of lease
is called afinancial lease); (3) leases that specify a period over which the lease is
noncancelable followed by a period over which the lease can be canceled at any time.
• Refinement of the leasing problem by considering other economic factors such as

inflation, taxes, salvage cost, etc.
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