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Abstract 

As increasingly large volumes of sophisticated options are traded i n  world financial markets, deter- 
mining a "fair" price for these options has become an important and difficult computational problem. 
Many valuation codes use the binomial pricing model, in which the stock price is driven by a random 
walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of 
the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to 
value since the future cash flow depends on the entire stock price path rather than on just the final stock 
price. Currently such options are approximately priced by Monte Carlo methods with error bounds that 
hold only with high probability and which are reduced by increasing the number of simulation runs. 

In this paper we show that pricing an arbitrary path-dependent option is #-P hard. We show that cer- 
tain types of path-dependent options can be valued exactly in polynomial time. Asian options are path- 
dependent options that are particularly hard to price. and for these we design deterministic polynomial- 
time approximate algorithms. We show that the value ofa perpetual American put option (which can be 
computed in constant time) is in many cases a good approximation to the value ofan otherwise identical 
n-period American put option. In contrast to Monte Carlo methods, our algorithms have guaranteed error 
bounds that are polynomially small (and in some cases exponentially small) in the maturity n. For the 
error analysis we derive large-deviation results for random walks that may be of independent interest. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuraq, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, recorn- 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. .. 
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1 Introduction 

Over the last decade or so. sophisticated financial instruments callzd derivative securities [9, 161 have hc- 
come increasingly important in world financial markets. These are securities whose value depends on thc 
values of more basic underlying variables. For instance a stock option is a derivative security whose value is 
contingent on the price ofa  stock. The trade in options. futures and other types of derivative securities often 
has a value cxceeding that of the underlyins asset [27]. Hedgers rind it advantageous to trade in a derivative 
security on an asset rather than in the asset itself. to reduce the risk associated with the price o f  the asset. 
Also, speculators trade in options on stocks to get extra leverage from a favorable movement of the stock 
price. 

Of course, a price must be paid to own a derivative security, and a ce.ntra1 problem is the one of derer- 
mining a "fair" price. An option is priced, or ''vqlued", by assuming (a) some model of the price behavior 
of the underlying asset (e.g., a stockj, and (b) a pricing theory. In a landmark paper, Black and Scholes [2] 
introduced a continuous-time model for option valuation that underlies most pricing methods in use today. 
Their model is based on Arbitrage Pricing Theon [9, 161. The model assumes that the asset price is driven 
by a Brownian motion, and specifies a stochastic differential equation that the option value must satisfy. 

For many complex options, such as Asiun Options and (American) Lookback options. the Black-Scholes 
differential equation has no known closed form solution, so numerical approximations are used. In Monte 
Carlo methods [4, 21, 221 one runs several continuous-time simulations of the Black-Scholes model to 2s- 

timate the option price - which is the time-discounted expectation of the future cash flow. This approach 
is justified by the law of large numbers. In finite difference methods [7, 17, 271 the underlying stochastic 
differential equation is discretized and solved iteratively. The error bound typically guaranteed by Monte 
Carlo methods is 0 (o/ a), where ;V is the number of simulation runs, and u is the standard deviation of 
the future cash Bows 1211. It should be noted that this bound only holds with "high' probability, is expressed 
in terms of the extrinsic parameter :V, and depends on the underlying dynamic only through 6. On the other 
hand, approximations based on finite-difference methods usually lack a precise quantification of the error 
term (see [24]). 

In contrast to the above methods, the widely-used binornia2 pricing model [8, 161 is based on a simpler 
discrete-time process. The mathematical justification of this model is that the standard symmetric random 
walk, appropriately scaled, converges to the Brownian motion. As in the continuous models, the price of an 
n-period option is the time-discounted expected value of the future cash-flows over n periods. Even under 
this model, path-dependent options [ 181 such as Asians and Lookbacks are particularly difficult to value: for 
such options, the future cash flows depend on the entire stock price path rather t h a  on just the final stock 
price, and there are 2" possible paths. 

In this paper, we study the option pricing problem from the rigorous perspective of computational com- 
plexity and approximation algorithms. We assume the binomial model throughout. We show that the prob- 
lem of pricing arbitrary path-dependent options is #-P hard. For certain path-dependent options we show 
polynomial-time exact pricing algorithms. For the notoriously hard Asian option pricing problem, we d e s i p  
determinisricpo~~vnomicll-rime (in n )  approximation algorithms. In contrast to the Monte Carlo methods. our 
error bounds arc expressed in terms of intrinsic parameters such as the maturity n. of the option: in fact they 
are polynomially and in some cases exponentially small in n. In some cases our algorithms run in time inds- 
pendent of n. We also show that in some cases the price of an American option can be approximated well by 
that of an otherwise equivalent perpetual option, whose value is O (  1)-time computable. For the error anal- 
ysis we prove several large-deviation results on random walks. We thus hope to demonstrate that the field of 
derivative securities is a rich source of opportunities for computer science research. 

For more details on option pricing and the Arbitrage Pricing Theory, the interested reader is referred 
to the Hull's 1161 excellent introductory text. However the present paper defines all the relevant concepts 
needed, and will suffice to understand the computational problems involved. Section 1.1 describes the bino- 
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mial model for stockprices. Section 1.2 defines the options considered in this paper. and Section 1.3 describes 
the pricing formulas and the specific results in the paper. The remaining sections contain our results. 

1.1 The binomial model for stock prices 

To keep the tvording simple, we only consider options on stoch. The notation described in t h s  section w1L1 
he used throughout the paper. For easy reference. at the end of the Appendix we include a summary of  the no- 
tation used in this paper. The binomial model for the price of the stock underlying an n-time-period ( n  2 1 ) 
option is the following The model is parametrized by the constants p .  q.  11. r .  These parameters are deter- 
mined independently, and we will assume they are known. n is the (possibly infinite) number of time periods 
up to the expiration of the option. where time 0 is the initial time, i.e., the time at which one wants to price 
the option. The trading dates are times 0. I. . . . . R .  The stock price at time k is denoted SA.. The initial stock 
price So is assumed to be non-random. u is the up-factor, p is the up-tick probability, r is the risk-free in- 
terest rate. At each time step, with probability p the stock price goes up by a factor u, and with probability 
q = 1 - I-, the price goes down by a factor 1/ u. The parameters u. p .  4 ,  r satisfy (see [16]): 

O < p < l .  p + 4 = 1 .  
1 + r - 1 / u  . or equivalently. p u  + q / 7 1  = 1 + r .  p =  U - l / l L  

We now formalize the model. It will be convenient to visualize a sequence of R independent coin-tosses 
J: = 2 1 .  . . . dn 1, where each J), f { H .  2"); an H corresponds to an "up-tick" of the stock price, and a T 
corresponds to a **down-tick'. A particular sequence of coin-tosses J will be referred to as a path. The sam- 
ple space Q is the set of all possible coin-toss sequences J. We define the random variables .Y1. .Y2. . . . . -Y,& 
where for any J E R, 

{:: X;(w)  = 
i f d ;  = H ,  
otherwise. 

We define the probability measure P on Q to he the unique measure €or which the random variables .Yt. i = 
1. 2. . . . . n ,  are independent, identically distributed(iid) with P[Xt = 11 = p and P[X, = - 11 = q = 1 - p ,  
We will refer to the sequence of random variables { with the above distribution as the random walk 
with drift p. Then the stock price s k ,  k 2 0. is a random variable that satisfies 

we also define YO = 0,  and for k 2 1, yk = E:=, X I ,  and Tk = E:=, St. Thus we can write for k. 2 0, 

For any integer k 2 0, for any random variable 2, theconditionalexpectation E[Z( SI. X z .  . . . . .'ik] of Z 
u given the first k coin tosses will be denoted E[ZIFk]. In particular E[ZlFo] = E[Z]. For any integer k 2 I ,  
a random variable 2 is 3k-measurabie if it depends only on the first IC coin tosses, Le., on XI .  X 2 .  . . . . .Yr. 
An Fo-measurable random variable is non-random. 

It is common to refer to a sequence of random variables as a process. In particular, { Sk}z=o is the stock 
price process. A process { Zk};=o such that each 12 is Fk-measurable, is said to be adapted. Thus the 
stock price process is adapted. For any process {2k}lZo we write z k  to denote rnaxo<i<k - -  2,. Similarly, 
&.. = m m s 1 < 4 -  2%. 

Sk = s o  , L ' ,  . - 

A 

a .  



1.2 Options 
There are two basic types of options. A call option on a stock is a contract that gives the holder the right 
tu b r ~  the underlying stock by a certain date. for a certain price. A put option gives the holder the risht 10 
sell the underlyins stock by a certain date for a certain price. The price in the contract is known as rhz strike 
price, and is denoted by ii. The date in the contract is known as the exercise date, or expiration date. 
Recall that I I  denotes the number of time periods until the expiration of the option. The holder of the option 
must pay a certain price, called the option price to the issuer of the option. The option pricing problem is 
to determine the "fair" price to pay for an option. This will become clearer later. An American option can 
be exercised at any time up to the expiration date. European options can only be exercised on the expiration 
date itself. It is important to note that an option contract merely gives the hdder the r i g h ~  to exercise: thz 
holder need not exercise it. 

The payoff Gk from an option (for the holder) at time k is 0 if it cannot be exercised at time k .  Otherwix 
Gk is the maximum of 0 and the profit that can be realized by exercising the option at time A. Thls prohl 
ignores the price paid by the buyer for the option. For instance consider an American Call option. If 5:. ;. /<. 
the holder can exercise the option at time k by buying the stock at l< and realize a profit of S'k - li by sellins 
the stock in the market at Si.. If SC 5 K, no positive profit can be made by exercising. Thus, for an American 
czlll, the payoff' is the random variable 

C:k = (Sk - I<jt: k = 0: 1.2 . .  . . . n. (Payoff for American call) 

where for any x E R, .rt = max(.c. 0). Similarly for an American put. 

G'k = ( K  - S k ) ' ,  I; = 0. 1 ,2 .  . . . . n. (Payoff for American put) 

The payoff functions for the European options are the same as for their American counterparts. except thal 
exercise is only allowed at time IC = n ,  so Gk = 0 for all k. < n. 

In the case of simple calls and puts, the payoff at any time depends only on the prevailing stock price. Le.. 
Gk = g(Sk) for some function g .  Such options are said to be Markovian, or path-independent. However 
there are many options that are path-dependent [13, 16, 181. One class of such options we consider in thls 
paper are Asian options. An (European-style) Asian call option is one that can be exercised only at time I ) ,  

and whose payoff G', is given by 

G, = (p, - K) ' ,  (Payoff' for Asian call) 

where p n  is the average stock pricefiom rime 1 to time n,: p, = T,/n. We do not include SO in the com- 
putation of the average only for notational convenience: since So is a fixed constant, this does not affect our 
results. 

Similarly. a (European-style) Asian put has payoff 

G', = (K - &)+. (Payoff for Asian put) 

Asian options are of obvious appeal to a company which must buy a commodity at a fixed time each year. 
yet has to sell it regularly throughout the year [27]. These options allow investors to eliminate losses from 
movements in an underlying asset without the need for continuous rehedging. Such options are commonly 
used for currencies [27], interest-rates and commodities such as crude oil [14]. 

We consider two other path-dependent option payoffs in the paper: (Let 1.4 denote the indicator function 
for any subset A E Q.) 

( 3 k  - It-)?. k. 2 0 
l y ; , > B ( S k  - I < ) + .  k. 2 0 

(Lookback option) 
(Knock-in barrier option). 

= 

3 
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We also consider the American perpetual put (APP) option, whch has an associated strike price f< just 
like an ordinary American put. except that there is no expiration date. The payoft*(.;/; for an APP is thererorc 
given by 

(,'! = ( li - SA )'. k 2 0. (Payoff for American perpetual put) 

- 1.3 

Since a European option can be viewed as an American option with payoff (,'A = 0 for all X. <r I). pricing 
formulas for American options apply equally well to European options. However, the formulas for European 
options are somewhat simpler and we describe them first. 

Pricing formulas, and results in the paper 

For European-style options with payoff G,>, the value of the option at time k is defined by 

C, ,  = (1 + rjL'E[(l + r)- 'ZGn,13~].  k = 0. 1. . . . . n. i 3 
which is the expected payoff at expiration, discounted by the risk-free interest rate over n - k periods. in 
particular we have C, = G',L. We refer to the time-0 value 1 b as simply "the value" of the option, and denote 
it by L-: 

The pricing problem, which this paper deals with. consists of evaluatin_e the formula (E) for the value I -  
of an option. We show in Section 2 that this problem is #-P hard for an arbitrary (polynomially-specified) 
path-dependent European option. It is easy to see that ordinary European calls and puts can easily be valued 
in 0 ( n )  time. However, the valuation of Asian calls and puts is a well-known hard problem in finance and 
much research has been directed at this problem [3, 11,25,27,28]. All known valuation methods for these 
options either use some form of Monte Carlo estimation or use analytic approximations with no error analysis. 
For instance, Turnbull and Wakeman [25] have proposed an analytic approximation for Asian options. but 
provide no error analysis; they only experimentally test the accuracy of their approximation against Monte 
Carlo estimates. In Section 4 we develop deterministic polynomial-time approximation algorithms for the 
value I.; of Asian options, along with error bounds. For the error analysis we show several large-deviation 
results for random walks that may be of independent interest. 

To define the value of an American option, we need to use the notion of a stopping time (see the Ap- 
pendix). For an American option with payoff functions {Gk}&,, (where n can be infinite). the value at time 
k is given by 

where 
option at time 0 (whlch we simply refer to as *'the value" b*) is 

is the class of stopping times 7 satisfying k 5 T 5 n almost surely. In particular, the value of the 

(A? 

The value I' of an American perpetual put (APP) does not involve n, and it can be computed in O( 1) time in 
closed form. It is natural therefore to use this value to estimate the value of an otherwise identical n-period 
American put. In Section 5 we investigate the error of this estimate. 

For a Markovian option with payoff GI, =  SI,), the definition (4) implies that I/, = V I ,  (SI,) for some 
function Q,  where UX. satisfies: 

1;,~(5'~) = g(S,) (only for options with finite n) 

k = O , l  . . . .  ( 5 )  . 



The backward-recursion equation ( 5 )  allows I. to be computed by dynamic programming in O( n' 1 titikc. 
since there are only k t 1 possible different values tor Si.. In Section 3 we extend t h ~ s  approach to certlun 
path-dependent options (such as the Lookback and Knock-in barrier options) whose payoff can be expressed 
as a function of  L( Markov process diiferent trom the stock price proczss { S i  ) .  

2 Pricing an arbitrary European option is #P-hard 

Consider a European option with an arbitrary path-dependent payoff function G,. We will restrict our atten- 
tion to payoff functions G, that can be specified in space polynomial in n. We then wish to evaluate 1 ~ % I ;!. 
We show that evaluating I' is #P-hard. 

Theorem 1 The problem of pricing a European option with ~~ol~~iomial ly-specied payoncjiirnctioii C!. . is 
#P-tzu rd. 

Proof: It is well-known that the following counting problem is #P-complete: Given a graph J with edge-set 
E = { E ' I .  e;7. . . . . t ,L}. count the number M ( J )  of perfect matchlngs in .I. We reduce this problem to the 
pricing problem. We define a (path-dependent) European option with expiration time .n whose payoff G ,  is 
given by: 

1 if {ki : wi = H )  is a perfect matching of J 
0 otherwise. 

G n ( d )  = 

Next we choose T and u so that 1 + r = ( u  + 1/ u ) / 2 ,  so that p = q = $. Thus every path J has probability 
P(d) = (3)". Clearly, from Eq. (E) the value of this option is 

V = (1 + r ) - n  P(a)Gn(a)  = (1 + r)-"f!j)" 
t ; € i U . l  1" d € { O  1 \n 

Gn(u) = (1 + r ) - n ( i ) R L \ f ( . J i .  

Thus if we can compute I - exactly in polynomial time, then we can also compute .If ( J )  in polynomial time. 

3 Exact pricing of some path-dependent options 

We saw in Section 1.3 that the value V of a Markovian option can be computed in 0 (n') time by dynamic 
programming, using the backward recursion formula (5). We generalize this dynamic programming approach 
to certain path-dependent options, such as the Lookback option, and the Knock-in barrier option. The main 
observation is that the backward-recursion formula ( 5 )  depends only on the fact that the stock price process 
(S.4) is a Markov process, i.e., for k >_ 0,  if h is any (Borel-measurable) function, then 

E[h(Sk+I .  S k + p . .  . . ~ S,)IFk] = E[h,(Sk+l. SL+~. . . . Sn))Sk]. 
~ 

Therefore, we have the following theorem: 

Theorem 2 Consider an American option with payoffprocess (Gk}?,, where G k  = g ( C k )  where c'i; is ail 

adapted Markov process such that for each k ,  the number of diflerent possible values of Ck is a polynomial 
in n,  and the set ojpossible values O f c k  is known. Then the value V for this option can be computed in time 
polynomial in n using dynamic programming. 

A For instance. it is not hard to show that the process Ck = (SA.. 3~). k = 0. 1 ~ . . . . n is a Markov process. 
Moreover, for each k .  there are at most (k+ 1)' possiblecombinations of values ( S k .  Tk). Both the Lookback 
option and the Knock-in barrier option (see Section 1.2) have payoff functions Gk expressible as functions 
of' (Sx:. 1s'k). so they can be priced in 0 ( n")  time by dynamic programming. 
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We wish to approximate the value I; for Asian calls and puts _given by the formulae in Section 1.3. Computing 
E(p,  - [<j ( o r  E( /< - p,, ) + )  exactly is known to be ;1 hard problem in finance (the exact computational 
complexity of t h s  problzm is not known). However, we ctin compute Epfi in closed form: 

Approximate Pricing of Asian Options 

n where n = E( t i S 1  ) = p u  f q (  l /u) = 1 + I'. It is not hard to see that the quantities i 1 + rj-n[Ep., - f<i+ 
and ( 1 + [K - Ep,,]+ respectively approximate the value 1- of an Asian call and an Asian put to within 

We now describe polynomial-time approximation algorithms that are significantly better. The error anal- 
ysis ot these algorithms is based on certain large-deviation results on random-walks that we derive in Section 
4.1. We use the notation 3 = I2p - 11 since this value appears frequently in the error bounds. In the following 
description, we use the symbols Pt (c. n )  . P, ( n  ) . Pg ( n )  (corresponding to the cases p less than. equal to and 
c greater than f respectively) to stand for different probabilities that will be determined in the next section. In 
most cases we can express the asymptotic difference between the exact value and our approximation in the 
form 1<(1+ r ) - n O ( f ( n ) ) ,  wherewetreattheparametersSo. u.3.rasconstants. 

F o r p  > i, weshow (Theorem3, Corollary4)that withprobabilityatleast l-Pg(n),  allstockprices after 
S n p  are at least 2 K ,  so that pn 2 K .  For  an Asian call. this means that with probability at least 1 - Pg ( n ) ,  
( p n  - K ) +  = (pn - K), so we approximate 

' (L+r)-K.  

A I 
2 

. I -  = (I + r ) -"E(pn - I<)+ N (1 + r)-"(Ep, - I<)+ (Asian call approx., p > :) 

When (pn - [<)+ exceeds ( p n  - f<) (whichoccurs withprobabilityat most P,(n)), the difference between 
these quanuties is at most K ,  so that the error in this constant-time approximation is at most 

1 
2 f<( 1 + I-)-~P,(Tz) = K ( l  + r ) - " O ( l / ~ ' ~ ~ / ~ ) .  (Asian call error, p > :) 

since, as we will show, P, (n)  = 0 ( l/e02n/4). On the other hand, for an Asian put. the above results imply 
that with probability at least 1 - P,( n ) ,  (K - pn)+ = 0, so that we can upper bound 

I- = (1 + r.)-"E(K - pn)+ 5 K(1+ r ) -nPg(n)  = l<(l + r ) - " O ( l / ~ ~ ~ ~ / ~ )  

and use half of this bound as a constant-time approximation. 
For p = k, * we show in Theorem 5 and Corollary 6 that with probability at least 1 - P, ( n ) ,  Some 

stock price before time n is at least n K ,  so that the average stock price / in is at least K .  Therefore by 
the same reasoning as above for an Asian call. the approximation (1 + r)-n(Epn - I<)+ has error at most 
I<(1 + r ) - " P P , ( n l  where P p ( n )  = 0 (9). As in the case p > 4, we can show that the value of' an 
Asian pu t  does not exceed K (  1 + r)-nP, (n). 

For p < t, Theorem 3 and Corollary 4 establishthat for any c > 0, with probability at least I - P,(c. ! I ) ,  

all stock prices after m = O(C log n)  steps are at most So/n. This means that the error in approximating 
p,, = T n / n  by T,/n is at most So/n.  Thus, for an Asian call we can approximate 

0 1 
(Asianput bound,p > 7).  2 

A I 
1- = I1 + r ) - " E ( p n  - I < ) +  y _  (1 + r)-''E(Tm,/'n - f<)+ (Asian call approx., y < ;'), - 
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whtch can be computed in time O(2"') = no( '1 since we need only consider coin-toss sequences of length ; / I .  

Whcn (T,; - ) 3 Si! (whichoccurs with probability at most P, ( v .  / I  j 1. ( , / .cr ,  - IO+ exceeds (T;,, ; ' / /  - I\ i -  

is the maxinium possible value of I [ , .  . S o  the m o r  i n  by at most ( J ~ ~ ~ ' ' '  - I< ,+. where 
the above approximation is at [nost 

,'>'.; i I, '. - ' 
I ' (  l i  - L i 

= 

Similarly, for an Asim put we use the nO(')-tinie computable approximation 

1 
(Asian put approx, p < - )  2 '  

In this case, the difference between { I <  - p,)+ and ( K - T,, i n  if cannot exceed I<,  so that the error i n  the 
approximation is at most 

( I  + r ) - f i  [" + I<Pt(c.  n )  . 
n 1 

As we will show in the next section. Pc(c. n) = ' 2 / (3 'nc ) ,  and it can be worked out that with c = 2. 
I<P,q( c. n 1. Thus with an no( ' )  running time we can achteve an error bound of 

3 

1 
2 

( 1  + r)?L"o/n. (Asian put error, p < -) 

In the next subsection we derive the large-deviation results that we assumed above. In Appendix A 3  wz 
describe an algorithm that performs better in practice than the ones we described above. We leave the error 
analysis of that algorithm as an open problem. 

4.1 Large-deviation results 

We first show the following fact about a drifred random walk. We use the notation for random walks from 
Section 1.1. In particular recall that Yk = X; is the C'th partial sum of the random walk, and that 
Tk = cf=, s;. 
Theorem 3 (Drifted Random Walk) Consider the random walk with drift p where p # f . Let a E (0. 3 n /2  ). 
undnz E ( 2 a / d .  n ) .  23en withprobabilir)!atleast 1 - $ exp ( 3 a  - 3'rnm/2). foreveryhzteger k E [m. n3: 

1 1 
y k > n i f p > -  and I i , < - n u p < , .  2 '  2 

Proof: The proof. given in Appendix A.2, uses Hoeffding bounds. 

Corollary 4 (Average Stock Price in a Drifted Binomial Model) Consider the binomial stock price pro- 
cess { h'k } zz0 with p # $. Suppose &- is the strike price of an Asian Oplion (Call or put). Let 

A 2 1  
P ' > ( C .  n) = -- 

.jl TI': 
(c is any positive constant), rnz= -+ - ) Inn  2 

a rc 9' ,3 In u 

Then: 
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I .  vp > und if n > f log,, (2fI-/’5(J) tlien witti prohahi1rn:at ieast 1 - P, ( 11 ), e v e n  stock price .< /or 

2. if 1) < 4. then \$.itti probabiliQ at leust 1 - P, ( I  . 111, ei‘en stock price A’, for 1 1 1 r 2  i s  ut rnost s,,, 11 

I 2 I )  /2  i s  ut leust 2 f i ,  and in parmitlar p ,  2 li. 

iind ~n pnrticitlar p, - % 5 $. 
Proof: See the Appendix. 

For the case p = i we would like to show, as in Corollary 4. that with high probability the stock prices 
.SL are all “lar_ge‘* (e&, at least ’LlI-) after say n / 2  steps. That argument rests on the fact (Theorem 31 that 
with high probability all partial sums in a random walk after a certain point are “large“. However the proot 
of Theorem 3 does not work with p = i. instead, we show that with high probability at some time the stock 
price is at least n K ,  so that the average is at least /<. For this we use the Berry-Essen Theorem and the 
Reflection Principle, which we quote in the Appendix. 

We first show a large-deviation result for the maximum partial sum of an undrifted random walk. 

n Theorem 5 (Undrifted random walk) Consider the random walk with p = i. Recallthary,. = inaxg+<s 1; 
Then for any a > 0. 

_ _  

Proof: For any integer m > 0 by the Reflection Principle we have 

since with every path w such that Y, (a) > m, we can associate M.’O paths for which Fn 2 rn: one path is 2 

itself, and the other path cv” is identical to VJ except between times i and n, where L is the first time .S1 = I I ’  : 
between times i and n ,  J’ is the reflection of w through the line y = rn. Thus, 

2 a  2 1 
2 1 -  JGF-- fi (since .V(z) i: - 2 + I for I > 0). 

The following is a straightforward application of this theorem. 

Corollary 6 (Averages in an undrifted random walk.) Consider the binomial stockprice process with p = 
2 ’  starting with price So at time 0. and let K he the strike price in the Asian option. Let 

Then for n > .So/ l<, with probability at least 1 - P, (n) .  the maximum stockprice on a path is at least ri li. 
and in particular pn 2 l<. 

Proof: See the Appendix. w 
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5 Approximating an n-period American put with a perpe,ual pu 

Recall that a Markovian American option (%LAO) is one whosepayoffis given by G!: = y (  Sj;) for  some func- 
tion y .  The dynamic progamnung alyxithm (based o n  the backward recursion ( 5 ) )  for pricing a MA0 rc- 
quireso( r!' I time. On theotherhand. the value I. ~-,fsomif~~r~~etzrczlMarkovianAmericanoptions(PR/LAO~. 
such as perpetual American puts. can be computed i n  closed form in only O (  1) time. It is therefore o f  in- 
terest to investigate how well the value of a PMAO approximates the value of an otherwise identical MAO. 
In this szction we first show a general formula bounding the difference between a PMAO and an otherwise 
identical MAO, and then apply it to the case of American puts. It is not hard to show (see Hull [16]) that 
under the pricing model of this paper, it is never optimal to exercise an American call before expiration. An 
American call is therefore equivalent to a European call and can be priced in 0 ( n )  time. Thus much research 
has focused on devising fast pricing methods for American puts [19, 12, 61. It is known [9] that the value 
of an American perpetual put can be computed in 0 ( 1) time. In this section we investigate the difference 
between an American put and an otherwise equivalent American perpetual put. 

Recall that To is the set of stopping times T such that T 2 0 almost surely. The value of a n-period MA0 
with initial (non-random) stock price SO is denoted by I The value of a PMAO with initial stock pricz So 
is denoted by V. From Section 1.3 we have the following formulas: 

\-n = mas E[( 1 + r)-T"ng(ST,,n)] 
T€G 

r €  10 
I,' = ma>E[(l + r)-Tg(ST)], (71 

where s r\ y = min { J. y }. In Appendix A.2 we prove the following lemma bounding the difference between 
a MA0 and an otherwise identical PMAO with payoff Gn. = g(  S k )  . 

Lemma 7 Let ri he a stopping time such that 

Define An asfollows: 

Now consider an American perpetual put. The payoft' function in this case is given by g(S,) = (I\' - 
Sk) f, where l< is the strike price. The following Lemma is known [9]. 

Lemma 8 For an! integer j f Z. let T~ denote the stopping rime 

Given an American p u t  with strike price K ,  there exists an integer s 2 0 such that T-,  achieves the m a s  in 
Eq. (71: 

I '  = E[(l + r ) -T- 'g (ST- . ) ]  = (11- - Sou-")E[(l+ T ) - ~ - ' ] .  (8) 

The last expression in (8) can be computed in closed fornl[9]. In the following we assume that 5 denotes the 
non-negative integer of Lemma 8. Let E; denote the event { S,, = So IL'. T- > n } ,  and let P ,  = P[E;]. 
We now upper bound the difference between an a-period American put and the corresponding perpetual put. 

9 

a 



Theorem 9 
American perpetiial piit t.4PP.L then 

I,-" is the valrie of an n-period American piit m t l  I . is the udue oftin otlienvi.rr i~/eiziic.~ii 

Proof: The proof. given in Appendix A.2, uses Lemma 7 and the Reflection Principle. 

We now obtain an asymptotic error bound from this Theorem. Recall that I/, = m i n o l L < n  Y i ,  where 1; 
is as before the i'th partial sum in the random walk underlying the model. Noting that (A- - .YO u - ' )  5 Ii 
and (I< - S o u k ) +  2 0, we have forp = $: 

a 

k=-s+ l  

= K ( l +  7 ' ) -RP[Xn > -SI = K(1+ r)-nP[Ffl < PI 

= K ( l + r j - " O  

Since the value P[xn > - 81 is a non-decreasing function of p ,  the above error bound also applies for p < f . 
We leave the asymptotic error analysis for p > as an open problem. 

6 Further research 

Some problems left open in this paper are: (a, obtaining a more accurate error bound for the Asian call ap- 
proximation for p < f (Section 4), and for the American put for p > (Section 5 ) ;  (b) establishing the 
hardness of the pricing of a (European style) Asian option. 

There are plenty of research directions to pursue in option pricing. We mention a few here. One im- 
portant problem is the approximate pricing of American style Asian options, Le., those that can be exercised 
at any time up to expiration. We saw in Sections 1.3 and 3 that certain American options can be priced in 
polynomial-time (in the maturity n) using dynamic programming. Devising fast (say linear-time) approxi- 
mate algorithms-for such options would be a significant contribution to quantitative finance. Another problem 
is option pricing with time-varying interest rate r and time-varying up-factor pi. Finally, we mention that Ar- 
bitrage Pricing Theory depends on the ability to perfectly hedge the option being priced. Soner, Shreve and 
Cvitanic [23] have shown for the continuous-time setting that when proportional transaction costs (such as 
broker commissions) are present, perfect hedging becomes impossible, and the pricing formulas of Section 
1.3 no longer hold. An intriguing problem is therefore to develop a satisfactory pricing theory in the presence 
of transaction costs. Some initial work in this direction for simple calls and puts has been done [ 1,5]. 
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A APPENDIX 

A. l  
A.l.l Random walks 

Theorem 10 (Hoeffding[lS]) Let XI.  -Yz. . . . . -Y,L be independent, identicully-distributed (i.i.ci.) random 
variables whose values lie in the interval [- 1, I], and let Yn = SI + X 2  + . . . + Xn. Then for  a > 0 the 
following holds: 

Standard results assumed in the paper 

In particular, for the random walk with drift p ,  we have the iid random variables XI. Xy2. . . . . X, where 
P[Xi = +l] = p and P[Xi = -13 = 1 - p ,  and SO EX = ( 2 p  - 1)Z. 

Theorem 11 (Berry-Essen [lo, 201) LetXl,  XZ, . . . , S, bei.i.d. withEX, = 0, EX; = 02.  andE[.k-,(' = 
e. If F, (z) is the distribution of l w  and N( z) is the standard normal distribution, then 

Theorem 12 ((Reflection PrincipIe)[lO]) Imagine drawing the paths of the random walk on the .z - g plane 
asfollows: foreachi = 0 . 1  . . . .  .drawanedgefrom(i.k;) to(i-l-l.YL+l),whereY, isthez'thpartialsum. 
if T .  T' are positiveintegers, thenumber of paths from (0. T )  to (TZ, 2'') that touch or cross the z-axis is equal 
to the number of paths from (0, -T )  to (n ,  T'). 

Stopping timer261 Let i? be the sample space of all possible coin-toss paths w' defined in Section 1.1. A 
stopping time is a random variable 7 : Q + { O .  1.2. . . . . n }  U {m} with the property that for each k = 
0. 1, . . . . n.  3 ~ ,  the set { T = I C }  belongs to the a-algebra Fk. This means that membership in the set { T = k } 
depends only on the first k coin tosses of J. Informally, a stopping time can be thought of as a "decision rule" 
of when to "stop" the coin-toss sequence (or the random walk). ,' 

.. 
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A.2 Proofs of some results 

Proof of Theorem 3 

and since E l i  = ( 2 p  - l ) k  = jlk 2 jm > 20 > a. by Hoeffding bounds (,4ppendix, eq. (H)): 

Therefore. 

The proof for p < i is exactly analogous. 

Proof of Corollary 4 

Proof: Let -Y,. .Xi. . , . . X, denote the random waik underlying the binomial process, and let k; be the i'th 
partial sum as in Theorem 3. Thus the stock price after i coin tosses is Soux. 

Case 1: p > $. Applying Theorem 3 with rn. = (n /2 (  and ~1 = log,('LK/So), we see that with prob- 
ability at least L -- Ps( n ) ,  we have that yi 2 log,(ZK/So) for every i 2 n/2 ,  or in other words, the stock 
price s; for i 2 rLJ2 is at least 'LK, in which case average over all stock prices S;  is at least fi-. 

Case 2: p < :. Applying Theorem 3 with rn as in q e  statement of the present theorem and a = log,1 r )  
we see that with probability at least 1 - Pa(c. n ) ,  we fiave that Y ,  5 - log,, n for every i 2 m,  or in other 
words. every stock price S; for i 2 nz is at most S o j n .  In such an event. the contribution of each stock price 
after 5'[. i 2 ! . t i  p n  is no  more than 5 ' o / n 2 ,  so that the "error" in estimating pn by T m / n  is at most .S"/n. 

Proof of Corollary 6 

Proof: Let I;, 11. . . . . Y,' be the random walk underlying the binomial model, and let Y; be the ,i'th partial 
sum as berore. Applying Theorem 5 with (I = log, (nl</So) we see that with probability at least I - Pe_(rt) 
the highest E;, is at least u,  so that the highest stock price is at least Soua = nl<. In this case the average 
stock price over the path is at least K .  I 

, 
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Proof of Lemma 7 

Proof: We have 

Proof of Theorem 9 

Proof: We use Lemma 7, with T* = T-.~: 

We are using the fact that 

The expression for Pf can be derived using the Reflection Principle (see the Appendix). 

A 3  A path-clustering approximation for Asian options 

We present here an 0 ( n3)-time approximation algorithm for an Asian Call for the case p >_ that in practice 
performs significantly better than the algorithm presented above. We leave the error analysis ofthis algorithm 
as an open problem. 

Note that 

G' = ( 1  + r)-nE(pn - I<)+ 

= (1 + r)-" P(d)(/Ln(S) - K ) +  
J E { H . T } "  

n 

= (1+ I . ) - " C p k q " - k  (pn(d) - I < ) + .  
k=O H (A') = k 

where H (LJ) denotes the number of H ' s  in the path w'. 

iv  



For each k we approximate the sum in (9) as follows: 

ivhere 

Thus our approximation for I .  is 

Notz that 1 1 7 ~ : / (  L) is the expected value of p,? over the "cluster" of paths that have exactly k H 's. Thus o u r  
approximation is similar in spirit to computing ( Elin - li I T .  The difference is that instead of  computing 
the expected value ofpn(>)  over all paths -' and then thresholding with f< (i.e. computing (. - f<)+), we 
compute the expected value of p n  (;) for each cluster and apply the threshold ( . - I<)  ++ to each cluster. 

We now show that 1b-k can be computed in polynomial time. For p 5 n.  h 5 p ,  we say that a path 
E { H .  T } "  "goes throughthe point ( p .  h)" if there are exactly h H's in the first p tosses o fd ,  If we write 

down the expression for \\'L~ we see that the stock price at point ( , p .  h )  (which is So u. lh-P) gets multiplied by 
a factor 

so that 11'1: may he written 

it is easy to see that this new approximation algorithm takes O ( n3)  time. 
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B Summary of Notation 

For each symbol, we mention the page where it is d i n e d .  and give a brief definition. 

Page 

6 
2 
3 
3 
3 
2 
2 
2 
2 
7 
7 
8 
2 
2 
2 
4 
9 
4 
2 
4 
9 
9 
2 
2 
2 
2 
9 
3 

Brief definition 

P P  - 11 
cT-field generated by the first k coin-tosses. 
The payoff from an option exericised at time k. 
Strike price of an option. 
Average stock price from time 1 to time n ,  T,/n. 
Maturity of the option. (Infinite for perpetual options) 
A coin-toss sequence .+. . . . . .+ of length n. 
The sample space of all coin-toss sequences of length n. 
Up-tick probability, i.e., probability of occurrence of H .  
Probability bound defined in Corollary 4, for the case p < $. 
Probability bound defined in Corollary 4, for the case p > $. 
Probability bound defined in Corollary 6, for the case p = f. 
Stock price at time k ,  = SOuYk+1 

maXO<'<k s,. 
7 Tk = ct=l 3.~. 

Generic stopping time. 
The specific stopping time min{ k : k'k = j } .  
Class of stopping times T such that k 5 T 5 n. 
The up-factor. 
Value of the option under consideration. 
In Section 5 this is the value of an American perpetual put. 
Value of an n-period American put. 
Random variable: Xk(u) = 1 if u k  = H and X k ( u )  = - 1 otherwise. 
Yk = E,"=, x,; Yo = 0. 
maxo<_zln Y,. 
mino<%+ Y,. 
min{x, Y) 
max{x,O) 
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