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Abstract. This paper is about set packing relaxations of combinatorial optimization problems associated
with acyclic digraphs and linear orderings, cuts and multicuts, and set packings themselves. Families of
inequalities that are valid for such a relaxation as well as the associated separation routines carry over to
the problems under investigation.
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1 Introduction

This paper is about relaxations of certain combinatorial optimization problems in the form of a set packing
problem and the use of such relaxations in a polyhedral approach.

The set packing or stable set problem (SSP) is to find, in a graph G = (V,E) with node weights c, a set
packing or stable set, i.e., a set of pairwise non-adjacent nodes, of maximum weight. Set packing problems
are among the best studied combinatorial optimization problems with beautiful theories connecting this
area of research to Fulkerson’s antiblocking theory, the theory of perfect graphs, perfect and balanced
matrices, semidefinite programming, and other fields, see Grötschel, Lovász & Schrijver [1988] for a survey.
Likewise, the set packing polytope, i.e., the convex hull of all set packings of a graph, plays a prominent
role in polyhedral combinatorics not only because large classes of (facet defining) inequalities are known.
Perhaps even more important, many of them can be separated in polynomial time. In particular, odd cycle,
orthonormal representation, and (superclasses of) odd antihole constraints are polynomial time separable,
see again Grötschel, Lovász & Schrijver [1988] and Lovász & Schrijver [1991].

Our aim in this paper is to transfer some of these results to other combinatorial optimization problems.
We show that the acyclic subdigraph and the linear ordering problem, the max cut, the k-multicut, and the
clique partitioning problem, and the set packing problem itself have interesting combinatorial relaxations in
form of a set packing problem. Families of inequalities that are valid for these relaxations and the associated
separation routines carry over to the problems under investigation. The procedure is an application of a
more general method to construct relaxations of combinatorial optimization problems by means of affine
transformations that we discuss in a forthcoming paper. This method is in the tradition of projection
techniques such as Balas & Pulleyblank [1989], Pulleyblank & Shepherd [1993], and Chopra & Rao [1994a,b]
and, in particular, the approach of Padberg & Sung [1991] to use affine transformations for the comparison
of TSP formulations.

The paper is subdivided into four parts. Section 2 lists notation and results on set packing for future
reference. It also recalls three earlier frameworks that give results similar, yet not identical, to ours; we
shall point out similarities and differences throughout the article. Section 3 is devoted to a study of
the acyclic subdigraph and the linear ordering problem, see Grötschel, Jünger & Reinelt [1985b,a]. A
main result in this section is that a class of Möbius ladders with dicycles of arbitrary length belong to
a (larger) class of odd cycles of an appropriate set packing relaxation; this superclass is polynomial time
separable. Section 4 deals with set packing relaxations of the clique partitioning, the k-multicut, and the
max cut problem, see Grötschel & Wakabayashi [1990] and Deza & Laurent [1997]. We introduce a class of
“inequalities from odd cycles of lower triangle inequalities” that contains the 2-chorded cycle inequalities.
Section 5 treats the set packing problem itself. We show, in particular, that the wheel inequalities of
Barahona & Mahjoub [1994] and Cheng & Cunningham [1997] are odd cycle inequalities of a suitable
set packing relaxation. We also introduce a new family of facet defining inequalities for the set packing
polytope: The “cycle of cycles” inequalities. This class can be separated in polynomial time.

�Supported by the Gerhard Hess Forschungsförderpreis of the Deutsche Forschungsgemeinschaft, the Kultusministerium
Sachsen Anhalt, and an EU Donet Project.
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2 Terminology

The subsequent sections resort to the following notation and results about the set packing problem. The
set packing problem for a graph G with node weights c can be formulated as an integer program

max cTx Ax ≤ 1, x ∈ {0, 1}V , (SSP)

where A = A(G) ∈ {0, 1}E×V is the edge-node incidence matrix ofG and 1 a vector of all ones of compatible
dimension. Associated to this program is the stable set polytope

PSSP := conv
{
χS : S is a stable set in G

}
= conv

{
x ∈ {0, 1}n : Ax ≤ 1

}
,

the convex hull of all incidence vectors of stable sets in G or, equivalently, of all solutions of (SSP).
Occasionally, we will denote this polytope also by PSSP(G). For technical reasons, we will actually not
work with the stable set polytope PSSP itself, but with its antidominant̂

PSSP := PSSP −�V
+ =

{
x ∈ �V : ∃y ∈ PSSP : x ≤ y

}
.

This construction allows to consider vectors with arbitrary negative coordinates without destroying the
polyhedral structure of PSSP: Obviously, the valid inequalities for

̂

P SSP are exactly the valid inequalities
for PSSP of the form aTx ≤ α with non-negative coefficients. Since the stable set polytope PSSP is down-
monotone, its non-trivial valid inequalities all have non-negative coefficients. We can thus work with

̂

P SSP

as well as with PSSP.

We list some terminology to state five fundamental results on PSSP (or

̂

P SSP). A clique in a graph G is a
set of pairwise adjacent nodes. A walk is a sequence v1, e1, v2, e2, . . . , ek, vk+1 of nodes vi and edges ei such
that ei = vivi+1, i = 1, . . . , k. A closed walk has v1 = vk+1. A walk is a path if all its nodes are different,
except possibly the first and the last, which can be identical; in this case, the path is called a cycle. The
analogous concepts for digraphs, with the additional stipulation that all arcs have to be “oriented in the
same direction”, are called diwalk, closed diwalk, dipath, and dicycle, respectively. A (di)walk (and hence
a (di)path or (di)cycle) is odd if k is odd, i.e., if it contains an odd number of nodes, even otherwise. An
edge that joins two nodes of a cycle, but is not a member of the cycle, is a chord. A 2-chord is a chord
of the form vivi+2 (indices > k taken modulo k). A chordless cycle is a hole. For convenience of notation,
we will occasionally consider (di)paths and (di)cycles as sets of nodes, edges, or arcs, and we will denote
edges as well as arcs with the symbols ij and (i, j); the latter will be used in cases like (i, i + 1). Finally,
supp(x) = {i ∈ V : xi �= 0} is the support of a vector x ∈ �V .

The results on PSSP that we need are summarized in the following two theorems; we state them for

̂

P SSP.

2.1 Theorem (Padberg [1973], Grötschel, Lovász & Schrijver [1988])

Let G = (V,E) be a graph and

̂

P SSP the antidominant of the associated set packing polytope.

(i) If Q is a clique in G, the clique inequality
∑

i∈Q xi ≤ 1 is valid for

̂

P SSP; it is facet defining if and
only if Q is a maximal clique (with respect to set inclusion).

(ii) If C is an odd cycle in G, the odd cycle inequality
∑

i∈C xi ≤ (|C| − 1)/2 is valid for

̂

P SSP.

(iii) Let u ∈ �V be an orthonormal representation of G, i.e., |ui| = 1 for all i ∈ V and uT
i uj = 0 holds

for all ij �∈ E, and let c ∈ �V be an additional arbitrary vector with |c| = 1. The orthonormal

representation inequality
∑

i∈V (c
Tui)

2xi ≤ 1 is valid for

̂

PSSP.

Separation of clique inequalities is NP-hard. But the clique inequalities belong to the more general class
of orthonormal representation inequalities which can be separated in polynomial time.

2.2 Theorem (Grötschel, Lovász & Schrijver [1988])

Let G = (V,E) be a graph,

̂

P SSP the antidominant of the associated set packing polytope, and x ∈ �V .
Suppose that xi + xj ≤ 1 holds for all edges ij ∈ E. Then:

(i) Orthonormal representation inequalities violated by x can be separated in polynomial time.

(ii) Odd cycle inequalities violated by x can be separated in polynomial time.
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The literature has three frameworks that give results similar to this article:

• The independence system approach, see Nemhauser & Trotter [1973], Sekiguchi [1983], Euler, Jünger
& Reinelt [1987], Laurent [1989], Nobili & Sassano [1989], and others.

• The transitive packing approach of Müller [1996], Müller & Schulz [1995, 1996], Schulz [1996].

• The {0, 12}-Chvátal-Gomory cuts of Caprara & Fischetti [1996].

We recall these concepts for later comparisons with our approach. We do neither discuss the relation to
projection techniques nor to Padberg & Sung [1991] here; this would blast the scope of this article.

Independence System Approach. An independence system (IS) arises from a set system � ⊆ 2V of
circuits on a finite ground set V of elements with weights wi for all i ∈ V . A subset I of V is independent
if it contains no circuit. The independence system problem (ISP) asks for an independent set of maximum
weight. An integer programming formulation of the ISP reads

max
∑
i∈V

wixi

(i)
∑
i∈C

xi ≤ |C| − 1 ∀ circuits C ∈ �

(ii) xi ∈ {0, 1} ∀ i ∈ V.

(ISP)

The set packing problem, the acyclic subdigraph problem, and the knapsack problem are prominent ex-
amples of independence system problems, others, such as the set covering problem, can be transformed
into this setting, see, e.g., Laurent [1989] or Nobili & Sassano [1989]. This means that, in principle, these
problems and their associated polytopes can be understood completely in terms of the IS framework.

Facets for the independence system polytope PISP include generalized clique, generalized cycle, generalized
anticycle, and generalized antiweb inequalities, see, e.g., Nemhauser & Trotter [1973], Sekiguchi [1983],
Euler, Jünger & Reinelt [1987], Laurent [1989], Nobili & Sassano [1989]. These results unify and/or extend
individual results on special independence system polytopes such as the matroid and the set packing
polytope (Nemhauser & Trotter [1973], Laurent [1989]), the knapsack polytope (Padberg [1975], Laurent
[1989]), the acyclic subdigraph polytope (Euler, Jünger & Reinelt [1987], Nobili & Sassano [1989]), etc.

On the algorithmic side, virtually no polynomial separation algorithms for general classes of IS inequalities
seem to be known. There are, on the contrary, many negative results on the separation of subclasses, e.g.,
the NP-hardness of the separation of fence inequalities, which happen to be generalized clique inequalities
for the acyclic subdigraph polytope, see Müller [1996]. To the best of our knowledge, the only tractable
general IS inequalities are those that happen to be polynomial time separable {0, 12}-Chvátal-Gomory cuts,
see below.

Transitive Packing Approach. An extended set system � ⊆ 2V×V consists of pairs
(
C, tr(C)

)
of

(hyper)edges C ⊆ V and associated sets of transitive elements tr(C) ⊆ V \ C. V is a finite ground set of
elements v with weights wv. A subset I of V is a transitive packing (TP) if it contains, for every

(
C, tr(C)

)
such that C ⊆ I, at least one element from tr(C). The transitive packing problem (TPP) is to find a
transitive packing of maximum weight. An integer programming formulation is

max
∑
i∈V

wixi

(i)
∑
i∈C

xi −
∑

i∈tr(C)

xi ≤ |C| − 1 ∀ (C, tr(C)
) ∈ �

(ii) xi ∈ {0, 1} ∀ i ∈ V.

(TPP)

Every ISP with circuit system � is a TPP with extended set system � := {(C, ∅) : C ∈ �}. This means
that transitive packing captures all independence system problems. It subsumes, however, additional
combinatorial optimization problems that are not ISPs, among them the clique partitioning problem, the
max cut problem, the transitive acyclic subdigraph problem, and the interval order problem, see Müller &
Schulz [1996], Schulz [1996].
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All types of IS inequalities have been extended to classes of valid inequalities for the transitive packing
polytope PTPP. This unifies and/or generalizes results on inequalities for individual transitive packing and
related polytopes, among them the clique partitioning polytope and several subpolytopes of the acyclic
subdigraph polytope, namely, the transitive acyclic subdigraph polytope, the interval order polytope of a
digraph, and the linear ordering polytope, see Müller [1996], Müller & Schulz [1995, 1996], Schulz [1996].

While the general classes of TP inequalities are as difficult to separate as their IS antecedents, polynomial
time separation algorithms are known for interesting subclasses of generalized cycle inequalities for special
transitive packing polytopes. Polynomial time separable instances of these weak odd closed walk inequalities
(later called weak generalized (k, 2)-cycle inequalities) include (and generalize) well studied classes such as
the 2-chorded cycle and the odd wheel inequalities for the clique partitioning polytope, see Müller [1996],
and most of the known types of inequalities for the linear ordering polytope, see Müller & Schulz [1995].
Polynomial time separation of weak odd closed walk inequalities carries over to these classes.

{0, 12}-Chvátal-Gomory Cuts. This concept applies to integer linear systems

Ax ≤ b, x ∈ �n, (IP)

where A ∈ �m×n and b ∈ �m. A {0, 12}-Chvátal-Gomory cut for IP is an inequality of the form

λTAx ≤ 	λTb
,

where λTA ∈ �n and λ ∈ {0, 12}m, hence the name. Separation of {0, 12}-Chvátal-Gomory cuts, although
NP-hard in general, is polynomial in important cases, e.g., when the system IP has at most two odd
coefficients per row, see Caprara & Fischetti [1996].

LU weakening is a way to proceed when the system IP does not have this property. We may assume that
IP contains the bounds 0 ≤ x ≤ u, u ∈ (�∪ {∞})n. Denote by Oi := {1 ≤ j ≤ n : aij odd } the index
set of the odd coefficients in row i for i = 1, . . . ,m. To each row i of IP with |Oi| ≥ 3 one associates
2|Oi|(|Oi|−1)/2 (weaker) inequalities by adding upper and lower bound constraints

(Ai·x ≤ bi) +
∑
j∈Li

(−xj ≤ 0) +
∑
j∈Ui

(xj ≤ uj),

where (Li, Ui) runs through all possible partitions of Oi \ {k, �}, for all index pairs of odd coefficients
k, � ∈ Oi, k �= �. Note that all of these so-called LU weakenings of row i have exactly 2 odd coefficients.
Let IP′ be the system that arises from IP by replacing each row with |Oi| ≥ 3 by all its LU weakenings. IP′

has, in general, an exponential number of rows. Caprara & Fischetti [1996], however, have shown that one
can separate in time polynomial in the encoding length of the original system IP over all {0, 12}-Chvátal-
Gomory cuts that can be obtained from its LU weakening IP′.

Well known classes of inequalities for combinatorial optimization problems including the clique parti-
tioning problem, the acyclic subdigraph problem, and the asymmetric travelling salesman problem are
{0, 12}-Chvátal-Gomory cuts from appropriate IP formulations or their LU weakenings. Whenever IP has
polynomial size, these cuts can be separated in polynomial time. This applies, among others, to the 2-
chorded cycle and the odd wheel inequalities for the clique partitioning polytope, and to a large class of
facet defining Möbius ladder inequalities for the linear ordering polytope.

3 The Acyclic Subdigraph and the Linear Ordering Problem

Our aim in this section is to construct a set packing relaxation of the acyclic subdigraph and the linear
ordering problem in a space of exponential dimension. It will turn out that clique and odd cycle inequalities
of this relaxation give rise to (and generalize) several classes of inequalities for the acyclic subdigraph and
the linear ordering problem, namely, fence and Möbius ladder inequalities. References are Grötschel, Jünger
& Reinelt [1985b] for the acyclic subdigraph problem and Grötschel, Jünger & Reinelt [1985a] for the linear
ordering problem, see also the monographs Jünger [1985] and Reinelt [1985].

The acyclic subdigraph and the linear ordering problem involve a complete digraph Dn = (V,A) on
n nodes with integer weights wa on its arcs a ∈ A. An acyclic arc set in A contains no dicycle. The
acyclic subdigraph problem (ASP) asks for an acyclic arc set with maximum weight on its arcs. Acyclic
arc sets that contain, for any pair of nodes i and j, either the arc ij or the arc ji, are called tournaments.
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The linear ordering problem (LOP) is to find a tournament of maximum weight. Integer programming
formulations for the ASP and the LOP read as follows:

max
∑
ij∈A

wijxij

(ii)
∑
ij∈C

xij ≤ |C| − 1 ∀ dicycles C ⊆ A

(iii) −xij ≤ 0 ∀ ij ∈ A
(iv) xij ≤ 1 ∀ ij ∈ A
(v) xij ∈ � ∀ ij ∈ A

(ASP)

max
∑
ij∈A

wijxij

(i) xij + xji = 1 ∀ i, j ∈ V, i �= j

(ii)
∑
ij∈C

xij ≤ |C| − 1 ∀ dicycles C ⊆ A : |C| = 3

(iii) −xij ≤ 0 ∀ ij ∈ A
(iv) xij ≤ 1 ∀ ij ∈ A
(v) xij ∈ � ∀ ij ∈ A.

(LOP)

It can be shown that (ASP) is a relaxation of (LOP) and, even more, that the linear ordering polytope
PLOP is a face of the acyclic subdigraph polytope PASP. In particular, all inequalities that are valid for PASP

are also valid for PLOP. Two such classes of inequalities for both the ASP and the LOP are the k-fence
and the Möbius ladder inequalities, see Grötschel, Jünger & Reinelt [1985b].

A simple k-fence involves two disjoint sets of “upper” and “lower” nodes {u1, . . . , uk} and {l1, . . . , lk} that

are joined by a set of k pales P ↓
i := {uili}, i = 1, . . . , k. The pales are oriented “downward”. The k-fence

is completed by adding all “upward” pickets P ↑
ij := {liuj} with the exception of the antiparallel pales. A

(general) k-fence is obtained from a simple one by repeated subdivision of arcs, replacing pale and picket
arcs by dipaths. Figure 1 shows a simple 4-fence.

A Möbius ladder consists of an odd number 2k + 1 of dicycles C0, . . . , C2k such that Ci and Ci+1 (indices
taken modulo 2k + 1) have a dipath Pi in common, see Figure 2.

Fences and Möbius ladders give rise to valid inequalities for PASP: For a k-fence Fk and a Möbius ladder M
of 2k + 1 dicycles we have∑

ij∈Fk

xij ≤ |Fk| − k + 1 and

2k∑
i=0

∑
ij∈Ci\Pi

xij ≤
(

2k∑
i=0

|Ci \ Pi|
)

− (k + 1).

l1

u1 u2 u3 u4

l2

u1 u2 u3 u4

l3

u1 u2 u3 u4

l4

u1 u2 u3 u4

Figure 1: A 4-Fence.

C0C4

C1C3

C2

Figure 2: A Möbius Ladder of 5 Dicycles.

A Möbius ladder inequality as above has coefficients larger than one if an arc is contained in more than
one of the dipaths Ci \ Pi. In this situation of arc repetition, there is a difference to Grötschel, Jünger
& Reinelt [1985b]’s (original) definition, where the coefficients take only values of zero and one, the right
hand side is smaller, and the Möbius ladder must meet a number of additional technical requirements to
support a valid inequality. The definitions coincide if and only if there is no arc repetition.

We will show now that fences and Möbius ladders are cliques and odd cycles, respectively, in an (exponen-
tial) conflict graph �(Dn) = (�,�). � has the set of all acyclic arc sets of Dn as its nodes. We draw an
edge �� between two acyclic arc-set nodes � and � if their union contains a dicycle. In this case, we say
that � and � are in conflict, because they can not be simultaneously contained in a solution to (ASP).

It is now easy to identify the fences and Möbius ladders with cliques and odd cycles of �. To obtain a
k-fence Fk, we look at the k acyclic arc sets F i

k that consist of a pale P ↓
i and the pickets P ↑

ij that go up

from li, for i = 1, . . . , k. We call such a configuration a k-fork. Any two forks F i
k and F j

k, i �= j, are in

5



l1

u1 u2 u3 u4

l2

u1 u2 u3 u4

l3

u1 u2 u3 u4

l4

u1 u2 u3 u4

F4

l1

u1 u2 u3 u4

F 1
4

l2

u1 u2 u3 u4

F 2
4

l3

u1 u2 u3 u4

F 3
4

l4

u1 u2 u3 u4

F 4
4

Figure 3: A Fence Clique of Forks.

conflict (they contain a dicycle). Hence, all of them together form a clique in �. Figure 3 illustrates this
construction. Likewise, the Möbius ladders correspond to odd cycles of conflicting dipaths, namely, the
dipaths Ci \ Pi, see Figure 4.

C0C4

C1C3

C2

C0 \ P0C4 \ P4

C1 \ P1C3 \ P3

C2 \ P2

Figure 4: A Möbius Cycle of Dipaths.

The next step to obtain the fence and the Möbius ladder inequalities from the clique and odd cycle
inequalities of the (antidominant of the) set packing polytope

̂

PSSP(�) associated with the conflict graph�,
is to construct a set packing relaxation of the ASP. To this purpose, consider the function π : �A → ��

defined as

π�(x) :=
∑
ij∈�

xij − (|�| − 1) ∀ acyclic arc sets � ∈ �. (1)

π(x) is integral for all integral x ∈ �A . Moreover, for every incidence vector x ∈ PASP of an acyclic arc
set supp(x) in Dn, we have that π(x) attains its maximum value of one in component π�(x) if and only
if � is contained in supp(x). Since two conflicting acyclic arc sets can not simultaneously be contained in
supp(x), we have that

�� ∈ � ⇐⇒ π�(x) + π�(x) ≤ 1 ∀ x ∈ PASP ∩ �A

and, by convexity, also for all x ∈ PASP. This argument proves that

̂

PSSP(�) is a set packing relaxation of
PASP in the sense that

3.1 Lemma (Set Packing Relaxation of the ASP) π (PASP) ⊆

̂

P SSP

(
�(Dn)

)
.

Note that it is not possible to replace

̂

P SSP with PSSP, because the components of π can take negative values.
More precisely, π(x) is in general not the incidence vector of a stable set in

̂

P SSP(�), but max {0, π(x)},
with the maximum taken in every component, is.
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Lemma 3.1 allows us to expand an inequality aTπ ≤ α which is valid for

̂

P SSP into the inequality aTπ(x) ≤ α
which is valid for PASP. Our next theorem states that, with this terminology, the fence and Möbius ladder
inequalities are expansions of clique and odd cycle inequalities, respectively.

3.2 Theorem (Fence and Möbius Ladder Inequalities)
Let Dn be the complete digraph on n nodes, PASP the corresponding acyclic subdigraph polytope, � the
conflict graph associated with Dn, and

̂

PSSP(�) the set packing relaxation of PASP.

(i) Every k-fence inequality for PASP is the expansion of a clique inequality for

̂

P SSP(�).

(ii) Every Möbius ladder inequality for PASP is the expansion of an odd cycle inequality for

̂

P SSP(�).

Proof.
(i) Let Fk be a k-fence. The forks F i

k, i = 1, . . . , k, defined on page 5, are acyclic arc sets and they form a
clique in �, see the discussion on the previous page. An expansion of the corresponding clique inequality
yields the desired k-fence inequality:

k∑
i=1

πF i
k
(x) ≤ 1

⇐⇒
k∑

i=1

⎛⎝∑
ij∈F i

k

xij − (|F i
k| − 1)

⎞⎠ =
∑
ij∈Fk

xij − |Fk|+ k ≤ 1

⇐⇒
∑
ij∈Fk

xij ≤ |Fk| − k + 1.

(ii) Let M be a Möbius ladder consisting of an odd number 2k+1 of dicycles C0, . . . , C2k such that Ci and
Ci+1 have a dipath Pi in common. The argument on the previous page showed that the dipaths Ci \ Pi

form an odd cycle of 2k + 1 acyclic arc sets in �. Expanding the corresponding odd cycle inequality for̂

P SSP(�), one obtains the Möbius ladder inequality for M :

2k∑
i=0

πCi\Pi
(x) ≤ k

⇐⇒
2k∑
i=0

⎛⎝ ∑
ij∈Ci\Pi

xij − (|Ci \ Pi| − 1)

⎞⎠ ≤ k

⇐⇒
2k∑
i=0

∑
ij∈Ci\Pi

xij ≤
(

2k∑
i=0

|Ci \ Pi|
)

− (k + 1).
�

Looking at the separation of Möbius ladder inequalities, we notice that the construction that we just
presented to prove Theorem 3.2 (ii) yields a class of odd cycle of dipath inequalities that coincides with the
Möbius ladder inequalities as defined in this paper and subsumes Grötschel, Jünger & Reinelt [1985b]’s
Möbius ladder inequalities without arc repetition. Generalizing this class further by allowing the paths
Ci \ Pi to intersect themselves on nodes and/or arcs, i.e., by substituting in the definition of a Möbius
ladder on page 5 diwalk for dipath and closed diwalk for dicycle, we obtain an even larger class of odd cycle
of diwalk inequalities for the acyclic subdigraph polytope. Note that these inequalities do in general not
correspond to odd cycles of conflicting acyclic arc sets in the graph �, because diwalks do not have to be
acyclic (they may contain dicycles). This obstacle can be overcome by extending � in an appropriate way
(including only certain relevant diwalks). At this point, however, we do not want to enter this formalism
and defer the details of the extension to the proof of Theorem 3.3.

We can devise a polynomial time separation algorithm for odd cycle of diwalk inequalities, even though
the number of diwalks is, in fact, infinite and their length is not even bounded. The idea is to construct a
most violated cycle of diwalks out of properly interlinked longest diwalks. Suppose that M is an odd cycle
of diwalks (we want to denote these diwalks with a slight extension of our notation by Ci \Pi) that induces
a violated inequality, and consider the diwalk Pi linking the two (successive) closed diwalks Ci and Ci+1.
Rearranging, we can isolate the contribution of Pi in the constraint as

|Pi| −
∑
ij∈Pi

xij <
∑

j �=i+1

(∑
ij∈Cj\Pj

xij − |Cj \ Pj |
)
+

∑
ij∈Ci+1\(Pi∪Pi+1)

xij − |Ci+1 \ (Pi+1 ∪ Pi)|+ (k + 1).
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(Here, all sets are supposed to be multisets. We have < because the constraint is, by assumption, violated.)

Replacing Pi with a diwalk P that has the same endpoints, but is shorter with respect to the length
function

|P | −
∑
ij∈P

xij =
∑
ij∈P

(1− xij), (2)

we get a more violated cycle of diwalks inequality. If we think of any closed diwalk Ci as being composed
out of four diwalks, namely, the diwalk P 1

i := Pi that Ci has in common with the succeeding closed diwalk
Ci+1, the diwalk P 2

i from P 1
i ’s head to the diwalk P 3

i := Pi−1, that Ci has in common with the preceding
closed diwalk Ci−1, and the remaining diwalk P 4

i from P 3
i ’s head to P 1

i ’s tail, the same argument holds for
any of these diwalks. This observation allows us to show

3.3 Theorem (Polynomial Separability of Odd Cycle of Diwalk Inequalities)
Let Dn be the complete digraph on n nodes and PASP the associated acyclic subdigraph polytope. Suppose
that x ∈ �A satisfies the dicycle and bound constraints (ASP) (ii)–(iv). Then:

Odd cycle of diwalk inequalities violated by x can be separated in polynomial time.

Proof.
Using Dijkstra’s algorithm, we can compute a shortest diwalk P (u, v) with respect to the length (2) from
any node u to any node v of Dn. We can assume these diwalks P (u, v) w.l.o.g. to be of polynomial length
(actually we could even assume them to be dipaths). This yields a polynomial number of (2)-shortest
diwalks of polynomial length and, moreover, (not every, but) a most violated cycle of diwalks inequality
will consist only of these shortest diwalks.

We can find a set of them forming an odd cycle of diwalks as follows. We think of all diwalks P (u, v)
as a possible common diwalk Pi of two successive closed diwalks Ci and Ci+1 in a cycle of diwalks.
To get the diwalks Ci \ Pi as the pieces of the cycle, we compute for any two diwalks Pi and Pj the
(2)-shortest diwalk Pi〈Pj〉 that starts at Pi’s head, contains Pj , and ends at Pi’s tail. Such a diwalk
Pi〈Pj〉 will link (on Pj) properly with another diwalk Pj〈Pk〉 to form a cycle of diwalks. Computation
of the Pi〈Pj〉 can be performed in polynomial time and yields, in particular, a polynomial number of
n(n − 1)

(
n(n − 1) − 1

)
= O(n4) diwalks of polynomial length. Again, (not every, but) a most violated

cycle of diwalks inequality will consist only of these diwalks Pi〈Pj〉.
We can construct a graph that has these diwalks Pi〈Pj〉 as its nodes with node weights equal to the values∑

ij∈Pi〈Pj〉 xij − (|Pi〈Pj〉| − 1
)
(see (1) on page 6) and that has all edges of the form (Pi〈Pj〉,Pj〈Pk〉).

A most violated cycle of diwalks inequality corresponds to a most violated odd cycle inequality in the
Pi〈Pj〉-graph. Note that this means, in particular, that there is a most violated cycle of diwalks inequality
that consists of a polynomial number of diwalks, even though the total number of diwalks is infinite.

The node weights on an edge in the Pi〈Pj〉-graph never exceed one because x satisfies the dicycle inequalities
(ASP) (ii). Hence, we can find a most violated odd cycle inequality there with the algorithm of Grötschel,
Lovász & Schrijver [1988, Lemma 9.1.11]. �

3.4 Corollary (Separation of Möbius Ladder Inequalities)
A superclass of the Möbius ladder inequalities can be separated in polynomial time.

The same technique can be used for the separation of (general) k-fence inequalities for fixed, but arbitrary
k. Note that one can not enumerate these constraints because general k-fences can contain long dipaths.
We sketch the construction. Generalizing k-forks to k-forkings by allowing for arbitrary diwalks as pales
and pickets, we can construct classes of clique of k-forking inequalities, or even k-forking orthonormal
representation constraints, that subsume the k-fence inequalities. Similar to the proof of Theorem 3.3, one
can show that not every, but a most violated clique of k-forkings inequality, or a most violated k-forking
orthonormal representation constraint, will consist of k-forkings that are solely composed from (2)-shortest
pickets and pales. For fixed k, these k-forkings can be enumerated in polynomial time and turned into the
nodes of a forking conflict graph of polynomial size that has an edge for any two such k-forkings R1 and R2

that contain a closed diwalk of the form “pale(R1)-picket(R1)-pale(R2)-picket(R2)”. Associating a weight
of x(R)− (|R| − 1) to each forking-node R (where R is a multiset), we enumerate a most violated k-clique
or use Grötschel, Lovász & Schrijver [1988] techniques to separate orthonormal representation constraints.
These arguments prove

3.5 Theorem (Separation of k-Fence Inequalities for Fixed k)
A superclass of the k-fence inequalities can be separated in polynomial time for fixed, but arbitrary k.
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Fence and Möbius ladder inequalities have been discussed in the contexts of independence systems, tran-
sitive packings, and {0, 12} Chvátal-Gomory cuts in the literature.

Before we start a comparison of results, we want to draw the readers attention to the following subtle
difference between the ASP and the LOP. While the length of the dicycles in a facetial Möbius ladder
inequality without node and arc repetition for the acyclic subdigraph polytope can be arbitrarily large, the
same constraint can only define a facet for the linear ordering polytope if the length of each dicycle is either
three or four, see Grötschel, Jünger & Reinelt [1985b]. This characteristic is responsible for differences in
Möbius ladder separation between the LOP and the ASP. No complete facet characterizations for Möbius
ladders, neither for PASP nor for PLOP, are known in the presence of node and/or arc repetition. Reinelt
[1985, Definition 2.4.1] gave the best known sufficient conditions for a Möbius ladder to be a facet of PLOP;
the LOP literature focusses on these (Reinelt [1985]’s) Möbius ladders.

Euler, Jünger & Reinelt [1987] have shown that the (simple) fences are generalized cliques of the inde-
pendence system of acyclic arc sets of a complete digraph, and that the Möbius ladders without node and
arc repetitions are generalized cycles of this IS. In both cases, their arguments prove faceteness of the
associated inequalities for PASP, but they do, per se, not lead to separation algorithms.

Müller & Schulz [1996] and Schulz [1996] give similar results in the context of transitive packing. They
also show that general fences are generalized cliques as well. A slight extension of their cutting plane
constructions and inequality classes, with appropriate modifications to allow for arc repetitions, would
classify our cliques of forkings as “extended generalized cliques” and our cycles of diwalks as “extended
weak generalized (k, 2)-cycles”.

Müller [1996] has proved that fence separation is NP-hard. Müller & Schulz [1995] and Schulz [1996],
extending results of Müller [1996], give a polynomial algorithm to separate a superclass (of so-called odd
closed walk inequalities) of Reinelt [1985]’s Möbius ladder inequalities for the linear ordering polytope.

Caprara & Fischetti [1996] exhibit Reinelt [1985]’s Möbius ladder inequalities for the linear ordering poly-
tope as {0, 12} Chvátal-Gomory cuts from an LU weakening of the system (LOP) (i)–(iv), which is of
polynomial size. This already establishes polynomial separability of this class.

To a limited extent, similar results hold for the separation of Möbius ladder inequalities for the acyclic
subdigraph polytope. Caprara & Fischetti [1996] separate a class of inequalities similar to Möbius ladder
inequalities (their cut (10)) that consists of {0, 12} Chvátal-Gomory cuts from an LU weakening of the
system (ASP) (ii)–(iv), where (ASP) (ii) is restricted to a polynomial number of dicycle inequalities, e.g.,
those from dicycles of some arbitrary, but bounded length. In case of arc repetition, Caprara & Fischetti
[1996]’s cut (10) is stronger than a corresponding cycle of diwalks inequality whenever the structure of the
latter gives also rise to the former. Möbius ladders with dicycles of arbitrary length, however, can not be
separated in this way.

4 The Clique Partitioning Problem

In this section, we investigate set packing relaxations of combinatorial optimization problems in connection
with cuts: The clique partitioning, the k-multicut, and the max cut problem. We will see that the 2-chorded
cycle inequalities for the clique partitioning polytope can be seen as cycles of “lower” triangle inequalities.
As a reference to the clique partitioning problem, we suggest Grötschel & Wakabayashi [1990], see also
Wakabayashi [1986], for the multicut and the max cut problem Deza & Laurent [1997].

The three cut problems of this section come up on a complete graph Kn = (V,E) on n nodes with integer
weights w : E → � on its edges. The clique partitioning problem (CPP) is to find a partition of V into an
arbitrary number k of cliques V = C1 ·∪ . . . ·∪ Ck (where ·∪ denotes a union of disjoint sets), such that the
sum of the weights of the edges that run between different cliques is maximal. In other words, we are trying
to find a multicut δ(C1 : · · · : Ck) of maximum weight, where the number k of (non-empty) members Ci

of the clique partition C1 ·∪ . . . ·∪ Ck is arbitrary. One obtains the k-multicut problem (k-MCP) from this
formulation by restricting the number of cliques to be less than or equal to some given number k, and
the max cut problem (MCP) by prescribing k = 2. Thus, any (max) cut is a k-multicut (k ≥ 2), and any
k-multicut comes from a clique partition. We remark that the CPP is commonly stated in an equivalent
version to find a clique partition that minimizes the sum of the edge weights inside the cliques.

Denote by �Δ the set of all ordered triples (i, j, k) ∈ V 3 of distinct nodes of Kn, such that, in particular,
(i, j, k) forms a triangle. With this notation, integer programs for the CPP and the k-MCP read
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max
∑
ij∈E

wijxij

(ii) xij − xjk − xik ≤ 0 ∀ (i, j, k) ∈ �Δ

(iii) −xij ≤ 0 ∀ ij ∈ E
(iv) xij ≤ 1 ∀ ij ∈ E
(v) xij ∈ � ∀ ij ∈ E

(CPP)

max
∑
ij∈E

wijxij

(i)
∑

ij∈E(W )

xij ≤ |E(W )| − 1 ∀ W ⊆ V : |W | = k + 1

(ii) xij − xjk − xik ≤ 0 ∀ (i, j, k) ∈ �Δ

(iii) −xij ≤ 0 ∀ ij ∈ E
(iv) xij ≤ 1 ∀ ij ∈ E
(v) xij ∈ � ∀ ij ∈ E.

(k −MCP)

Inequalities (CPP) and (k-MCP) (ii) are called “lower” triangle inequalities (their normal vectors are
oriented “downward” such that the induced face is on the “downside” of the polytope). Setting k to
2, inequalities (k-MCP) (i) turn out to be the “upper” triangle inequalities xij + xjk + xik ≤ 2 for all
(i, j, k) ∈ �Δ, and (2-MCP) is an integer programming formulation for the max cut problem. For k = n,
on the other hand, (k-MCP) (i) becomes void and (n-MCP) coincides with (CPP). Hence, (CPP) is a
relaxation of (k-MCP) which in turn is a relaxation of (MCP) and the associated polytopes PCPP, Pk−MCP,
and PMCP satisfy

PCPP ⊇ Pk−MCP ⊇ PMCP.

In particular, any valid inequality for the clique partitioning polytope is also valid for the k-multicut and
the max cut polytope. One such family are the 2-chorded cycle inequalities of Grötschel & Wakabayashi
[1990].

A 2-chorded cycle is an odd cycle C of Kn together with its set of 2-chords C, see Figure 5. The associated
inequality states that

∑
ij∈C

xij −
∑
ij∈C

xij ≤ (|C| − 1)/2.

0

4

3

21

C

C

Figure 5: A 2-Chorded Cycle.

We show next that the 2-chorded cycle inequalities arise from odd cycle inequalities of a set packing
relaxation of the clique partitioning (or k-multicut or max cut) problem. Our arguments establish the
polynomial time separability of this class in an alternative way to earlier proofs of Müller [1996] and
Caprara & Fischetti [1996].

The relaxation involves a “lower triangle” conflict graph �Δ(Kn) = (�Δ,�Δ). �Δ consists of all ordered
triples (i, j, k) ∈ V 3 of distinct nodes of Kn, the edges � of � are of the form (i, j, k)(l, i, j), (i, j, k)(l, j, i),
(i, j, k)(l, i, k), and (i, j, k)(l, k, i) (the meaning of this definition will become clear in a second).

i

j

(i, j, k)

k

+1 −1

0
i

j

(j, i, k)

k

+1 0

−1
i

j

(k, j, i)

k

−1 +1

0
i

j

(k, i, j)

k

−1 0

+1
i

j

(j, k, i)

k

0 +1

−1
i

j

(i, k, j)

k

0 −1

+1

Figure 6: Labeling Lower Triangles.

To construct a set packing relaxation of the clique partitioning problem with this graph, we define a
mapping π : �E → ��Δ as

π(i,j,k)(x) := xij − xjk ∀ ordered triples (i, j, k) ∈ �Δ.

10



π(i,j,k)(x) is integral if x ∈ �E is integral. Moreover, for every multicut x ∈ PCPP, the component π(i,j,k)(x)
attains its maximum value of one if and only if the nodes j and k belong to the same clique (xjk = 0), but
node i does not (xij = xik = 1). The reader may think of the triples (i, j, k) as “edge-labelled triangles”
as shown in Figure 6; then, it is easy to see that

�� ∈ �Δ ⇐⇒ π�(x) + π�(x) ≤ 1 ∀ x ∈ PCPP ∩�E

and thus for all x ∈ PCPP. In other words, �Δ was defined in such a way that two triples are joined by an
edge if and only if it is impossible that both attain their maximum value of one under π simultaneously.
This argument shows that PSSP(�Δ) is a “lower triangle” set packing relaxation of PCPP:

4.1 Lemma (Set Packing Relaxation of the CPP) π(PCPP) ⊆ PSSP

(
�Δ(Kn)

)
.

The construction is called a “lower triangle set packing relaxation”, because one obtains the components
π(i,j,k)(x) = xij − xjk ≤ 1 of π from the lower triangle inequalities (CPP) (ii) by setting xik = 1:

xij − xjk − xik ≤ 0 ⇐⇒ xij − xjk ≤ xik.

We are now ready to state our result that the 2-chorded cycle inequalities are expansions (see the definition

on page 7) of odd cycle inequalities of

̂

P SSP(�Δ).

4.2 Theorem (2-Chorded Cycle Inequalities)
Let Kn be the complete graph on n nodes, PCPP the corresponding clique partitioning polytope, �Δ the
lower triangle conflict graph, and

̂

P SSP (�Δ) the lower triangle set packing relaxation of PCPP.

Every 2-chorded cycle inequality for PCPP is the expansion of an odd cycle inequality for

̂

P SSP (�Δ).
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Figure 7: An Odd Cycle of Lower Triangle Inequalities.

Proof.
Let C ·∪ C be a 2-chorded cycle in Kn with node set {0, . . . , 2k}. By definition, C = {ij : i = 0, . . . , 2k, j =
i+ 1} and C = {ij : i = 0, . . . , 2k, j = i+ 2} (where indices are taken modulo 2k + 1).

Consider the 2k + 1 triples �i := (i, i − 2, i − 1), i = 0, . . . , 2k (indices modulo 2k + 1). One verifies that
�i�i+1 ∈ � are in conflict and form the edge set of an odd cycle in �Δ, see Figure 7 for an example. The
associated odd cycle inequality expands to the 2-chorded cycle inequality in question:

2k∑
i=0

π(i,i−2,i−1)(x) =

2k∑
i=0

x(i,i−2) − x(i−2,i−1) =
∑
ij∈C

xij −
∑
ij∈C

xij ≤ (|C| − 1)/2.

�

Calling the expansions of odd cycle inequalities for

̂

P SSP(�Δ) inequalities from odd cycles of lower triangle
inequalities, we obtain

4.3 Corollary (Separation of Inequalities from Odd Cycles of Lower Triangle Inequalities)
Let Kn be the complete graph on n nodes and PCPP the associated clique partitioning polytope. Suppose
x ∈ �E satisfies the constraints (CPP) (ii)–(iv). Then:

Inequalities from odd cycles of lower triangle inequalities violated by x can be separated in polynomial
time.
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Proof.
The conflict graph �Δ has 6 × (n3) = O(n3) triple-nodes. Its size is polynomial. The sum of the node
weights on an edge never exceeds one. Applying the algorithm of Grötschel, Lovász & Schrijver [1988,
Lemma 9.1.11], we can find a most violated odd cycle inequality in �Δ in polynomial time. �

4.4 Corollary (Separation of 2-Chorded Cycle Inequalities)
A superclass of the 2-chorded cycle inequalities can be separated in polynomial time.

Note that the conflicts between two successive triples �i = (i, i − 2, i − 1) and �i+1 = (i + 1, i − 1, i) in a
2-chorded cycle stem from the common edge connecting nodes i and i − 1, that has a coefficient of −1 in
π�i+1 and 0 in π�i . But conflicts arise also from common edges with +1 and −1 coefficients. Thus, besides
possible node/edge repetitions and the like, odd cycle of lower triangle inequalities give rise to inequalities
that do not correspond to 2-chorded cycle inequalities.

Müller [1996] obtained similar results in a transitive packing context. He showed that the 2-chorded cycles
belong to a larger class of odd closed walk inequalities and gave a polynomial time separation algorithm.

Caprara & Fischetti [1996] derived the 2-chorded cycle inequalities as {0, 12}-Chvátal-Gomory cuts from an
LU weakening of the polynomial sized system (CPP) (ii)–(iv), thereby proving their polynomial separability.

5 The Set Packing Problem

We have demonstrated in the examples of the preceding sections that certain combinatorial optimization
problems have interesting set packing relaxations. Perhaps a bit surprising, we show now that the set
packing problem itself also has interesting set packing relaxations! These considerations yield alternative
derivation and separation techniques for several classes of wheel inequalities, including two classes intro-
duced by Barahona & Mahjoub [1994] and Cheng & Cunningham [1997], as well as a new class of cycle of
cycles inequalities. A survey on results for the set packing problem can be found in Grötschel, Lovász &
Schrijver [1988].

The examples of this sections are based on a “rank” set packing relaxation that we introduce now. Given
a set packing problem (SPP) on a graph G = (V,E), the associated conflict graph � = (�,�) of the
relaxation has the set � := {G[H ] : H ⊆ V } of all node induced subgraphs of G as its nodes. In order to
define the set of edges, we consider the mapping π : �V → �� defined as

πG[H](x) =
∑

i∈G[H]

xi − (α(G[H ]) − 1) ∀ node induced subgraphs G[H ] ∈ �,

where α(G[H ]) denotes the rank, i.e., the maximum cardinality of a stable set, of G[H ]. We draw an edge
between two subgraphs G[H ] and G[W ] if there is no stable set in G such that its restrictions to G[H ] and
G[W ] are simultaneously stable sets of maximum cardinality in G[H ] and G[W ], i.e.,

G[H ]G[W ] ∈ � ⇐⇒ πG[H](x) + πG[W ](x) ≤ 1 ∀ x ∈ PSSP(G) ∩ �V .

Well known arguments show that

̂

P SSP(�) is a set packing relaxation of PSSP in the exponential space �� :

5.1 Lemma (Rank Set Packing Relaxation of the SSP) π(PSSP) ⊆

̂

PSSP(�).

5.1 Wheel Inequalities

One method to derive polynomial time separable expansions of inequalities from the rank relaxation is to
consider subgraphs of � of polynomial size. A natural idea is to restrict the set of nodes of � to

�k := {G[H ] : H ⊆ V : |H | ≤ k},
the node induced subgraphs G[H ] of G with bounded numbers of nodes |H | ≤ k for some arbitrary, but
fixed bound k. The smallest interesting case is k = 2, where G[H ] (|H | ≤ 2) is either empty, a singleton, an
edge, or a coedge (complement of an edge). The odd cycle inequalities that one obtains from this restricted

relaxation

̂

PSSP(�[�2]) contain, among other classes, the odd wheel inequalities of the set packing polytope.

A 2k + 1-wheel is an odd cycle C of 2k + 1 nodes {0 . . . , 2k}, say, plus an additional node 2k + 1 that is
connected to all nodes of the cycle C. C is the rim of the wheel, node 2k + 1 is the hub, and the edges
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connecting the node 2k + 1 and i, i = 0, . . . , 2k, are called spokes. For such a configuration, the following
inequality holds:

kx2k+1 +
2k∑
i=0

xi ≤ k.
5

0

1

5

23

4

5

0

Figure 8: A 5-Wheel.

An odd wheel inequality can be obtained by a sequential lifting of the hub into the odd cycle inequality
that corresponds to the rim. This can be used to construct a polynomial time separation algorithm for
wheel inequalities which tries all possible hubs. An alternative derivation is

5.2 Theorem (Odd Wheel Inequalities)
Let G = (V,E) be a graph, PSSP the associated set packing polytope, � the rank conflict graph, and̂

P SSP(�) the rank set packing relaxation of PSSP.

Every odd wheel inequality for PSSP is the expansion of an odd cycle inequality for

̂

P SSP(�[�2]).

5.3 Observation (Separation of Inequalities from Odd Cycles of Nodes, Edges & Coedges)

Let G = (V,E) be a graph and PSSP the associated set packing polytope. Suppose x ∈ �V satisfies all
edge constraints xi + xj ≤ 1, ij ∈ E, and the bounds 0 ≤ xi ≤ 1, i ∈ V . Then:

Inequalities from odd cycles of nodes, edges, and coedges violated by x can be separated in polynomial
time.
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Figure 9: A Cycle of Nodes and Edges.

Proof.
Consider a 2k+1 wheel with rim C = {0, . . . , 2k} and hub node 2k+1. The subgraphs �i := G[{i, 2k+1}],
i = 1, 3, . . . , 2k − 1, induced by the spokes with odd rim nodes, and the subgraphs �i = G[{i}], i =
0, 2, . . . , 2k, induced by the even rim nodes, form an odd cycle in �, see Figure 9 (the original wheel is
on the left, the nodes of the conflict graph are right, the dotted edges indicate conflicts). Expanding the
associated odd cycle inequality yields the wheel inequality:

2k∑
i=0

π�i(x) =
∑

i=1,3,...,2k−1

(xi + x2k+1) +
∑

i=0,2,...,2k

xi = kx2k+1 +

2k∑
i=0

xi ≤ k. �

We show now two examples of cycles of nodes, edges, and coedges that give rise to facetial inequalities
that do not correspond to odd wheels. The cycle on the left side of Figure 10 consists of the nodes 0, 2,
and 3 and the edges (1, 5) and (4, 6), the one on the right of the edges (1, 6), (2, 7), (3, 8), and (4, 9) and
the coedge (0, 5). The associated inequalities are

x0 + (x5 + x1) + x2 + x3 + (x6 + x4) ≤ 2 ⇐⇒ ∑6
i=0 xi ≤ 2

(x5 + x0 − 1) + (x6 + x1) + (x7 + x2) + (x8 + x3) + (x9 + x4) ≤ 2 ⇐⇒ ∑9
i=0 xi ≤ 3.
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Figure 10: Two Generalizations of Odd Wheel Inequalities.

Another generalization of odd wheel inequalities was given by Barahona & Mahjoub [1994] and Cheng &
Cunningham [1997]. They introduce two classes of inequalities that have subdivisions of odd wheels as
support graphs, where each face cycle must be odd, see Figure 11. Formally, a generalized 2k + 1-wheel
consists of an odd number 2k+1 of spoke( path)s Si, i = 0, . . . , 2k, that all have one common endnode, the
hub h. The opposite endnodes of any two successive spokes Si and Si+1 (indices taken modulo 2k+1) are
joined by a rim path Ri, i = 0, . . . , 2k, such that the face cycle formed by Si, Ri and Si+1 is odd. Following
for the remainder of this subsection Cheng & Cunningham [1997]’s terminology, a spoke is called even and
odd if it has an even and odd number of edges (not of nodes!), respectively. (We temporarily override here
the node oriented parity definition of the introduction for notational consistency with the literature.) Let
E and O be the endnodes of the even and odd spokes of an odd wheel W of this kind with some number
2k + 1 of faces, and let h be the hub. A wheel inequality of type I states that

kxh +
∑

i∈W\{h}
xi +

∑
i∈E

xi ≤ |W |+ |E|
2

− 1. (3)

A second variant of wheel inequalities (of type II, associated with the same wheel) states that

(k + 1)xh +
∑

i∈W\{h}
xi +

∑
i∈O

xi ≤ |W |+ |O| − 1

2
. (4)

We remark that these wheels do in general not arise from cycles of subgraphs of bounded size because they
contain potentially very long paths.

5.4 Theorem (Odd Wheel Inequalities)
Let G = (V,E) be a graph, PSSP the corresponding set packing polytope, � the rank conflict graph, and̂

P SSP(�) the rank set packing relaxation of PSSP.

Every odd wheel inequality of type I and II for PSSP is the expansion of an odd cycle inequality for

̂

P SSP(�).

Proof.

(i) Wheel inequalities of type I.

The idea of the proof is to obtain the wheel inequality (3) of type I as a cycle of paths, namely, the paths

Pi := Si ∪
{
Ri, if Si+1 is even

Ri \ Si+1, if Si+1 is odd

}
\
{
∅, if i is odd

{h}, if i is even

}
, i = 0, . . . , 2k,

see Figure 11. By definition, a path Pi consists of the spoke Si plus minus the hub depending on i, and the
full rim path Ri if the end node of the next spoke (in clockwise order) is even, or the rim path Ri without
the end of the next spoke in case this spoke is odd. In this way, the even spoke ends, having a coefficient
of two in the wheel inequality, appear in two paths, the odd spoke ends in one. (Recall that in this context
a spoke was odd/even if it contained an odd/even number of edges.) It is not hard to see that any two
successive paths Pi and Pi+1 are in pairwise conflict: The subpaths Pi \ {h} with the hub removed are all
odd and in pairwise conflict, and, likewise, the hub is in conflict with any of these subpaths. The odd cycle
inequality corresponding to the paths Pi expands into the odd wheel inequality (3):
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Figure 11: A 5-Wheel and a 5-Cycle of Paths of Type I.

2k∑
i=0

πPi(x) ≤ k

⇐⇒
k∑

i=0

⎛⎝∑
j∈P2i

xj − (|P2i| − 1)/2

⎞⎠+

k−1∑
i=0

⎛⎝ ∑
j∈P2i+1

xj − (|P2i+1| − 2)/2

⎞⎠ ≤ k

⇐⇒ kxh +
∑

j∈W\{h}
xj +

∑
j∈E

xj − |W | − 1 + k + |E| − (k + 1)− 2k

2
≤ k

⇐⇒ kxh +
∑

j∈W\{h}
xj +

∑
j∈E

xj ≤ |W |+ |E| − 2k − 2

2
+ k =

|W |+ |E|
2

− 1.

(Here, |Pi| denotes the number of nodes in path Pi).
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Figure 12: A 5-Wheel and a 5-Cycle of Paths of Type II.

(ii) Wheel inequalities of type II.

The wheel inequalities (4) of type II can be derived in much the same way as their relatives of type I. For
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the sake of completeness, we record the path decomposition

Pi := Si ∪
{
Ri, if Si+1 is odd

Ri \ Si+1, if Si+1 is even

}
\
{
∅, if i is even

{h}, if i is odd

}
, i = 0, . . . , 2k.

One can verify that, again, any two successive paths are in conflict. A final calculation to expand the
resulting odd cycle inequality yields the wheel inequality (4) of type II:

2k∑
i=0

πPi(x) ≤ k

⇐⇒
k∑

i=0

⎛⎝∑
j∈P2i

xj − (|P2i| − 1)/2

⎞⎠+
k−1∑
i=0

⎛⎝ ∑
j∈P2i+1

xj − (|P2i+1| − 2)/2

⎞⎠ ≤ k

⇐⇒ (k + 1)xh +
∑

j∈W\{h}
xj +

∑
j∈O

xj − |W | − 1 + (k + 1) + |O| − (k + 1)− 2k

2
≤ k

⇐⇒ (k + 1)xh +
∑

j∈W\{h}
xj +

∑
j∈O

xj ≤ |W |+ |O| − 2k − 1

2
+ k =

|W |+ |O| − 1

2
.

�

One can also derive polynomial time separation algorithms of much the same flavour as for the odd cycle
of diwalk inequalities; Cheng & Cunningham [1997] give such procedures.

5.2 A New Family of Facets for the Stable Set Polytope

The rank relaxation of the set packing problem offers ample possibilities to define new classes of polyno-
mially separable inequalities for the set packing problem. We discuss, as one such example, a class of cycle
of cycles inequalities.

The way to construct a cycle of cycles inequality is to link an odd number 2k+1 of odd cycles C0, . . . , C2k to
a circular structure, such that any two successive cycles are in pairwise conflict, i.e., πCi(x)+ πCi+1(x) ≤ 1
(indices taken modulo 2k + 1).

One way to do this is to select from each cycle Ci three successive nodes Li ⊆ Ci that will serve as a part
of the inter-cycle links yet to be formed. The link Li has the property that πCi(x) = 1 implies that at least
one of the nodes in Li is contained in the stable set supp(x), i.e.,

πCi(x) = 1 =⇒
∑
j∈Li

xj ≥ 1.

If we make sure that any two successive links Li and Li+1 are joined by the edge set of the complete
bipartite graph K3,3, then the inequality ∑

j∈Li

xj +
∑

j∈Li+1

xj ≤ 1

holds for all incidence vectors x of stable sets in G. But then, the corresponding two successive cycles
Ci and Ci+1 are in conflict, i.e., πCi(x) + πCi+1(x) ≤ 1, and the cycles Ci form an odd cycle in �, see
Figure 13.

5.5 Theorem (Cycle of Cycles Inequality)
Let G = (V,E) be a graph and PSSP be the corresponding set packing polytope. Let Ci, i = 0, . . . , 2k, be
an odd cycle and Li ⊆ Ci, i = 0, . . . , 2k, a set of three successive nodes in Ci. Assume further that Li and
Li+1, i = 0, . . . , 2k, are joined by a complete K3,3.

Then the following cycle of cycles inequality is valid for PSSP:

2k∑
i=0

∑
j∈Ci

xj ≤
2k∑
i=0

(|Ci| − 1)/2− (k + 1).
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Figure 13: A 5-Cycle of 5-Cycles.

Proof.
2k∑
i=0

πCi(x) ≤ k

⇐⇒
2k∑
i=0

⎛⎝∑
j∈Ci

xj −
(
(|Ci| − 1)/2− 1

)⎞⎠ ≤ k

⇐⇒
2k∑
i=0

∑
j∈Ci

xj ≤
2k∑
i=0

(
(|Ci| − 1)/2− 1

)
+ k =

2k∑
i=0

(|Ci| − 1)/2− (k + 1).

�

A cycle of cycles inequality will in general not be facet inducing, for example, if one of the cycles has a
chord that does not join two nodes of its link. But one can come up with conditions that ensure this
property. The most simple case is where the cycles Ci are holes, all node disjoint, and the only edges that
run between different holes belong to the links, i.e., we have a “hole of holes”.

5.6 Theorem (Facet Inducing Cycle of Cyles Inequalities)
If every cycle in a cycle of cycles inequality is a hole, all node disjoint, and the only edges that run between
different holes emerge from the links, then the cycle of cycles inequality is facet inducing.

Proof.
The proof is based on a sufficiency criterion for the faceteness of rank inequalities by Chvátal [1975]. It
is based on the notion of critical edges in a graph G = (V,E): An edge ij ∈ E is critical if its removal
increases G’s rank, i.e., if α(G − ij) = α(G) + 1. The criterion states that if the graph G∗ := (V,E∗) is
connected, where E∗ is the set of critical edges of G, the rank inequality

∑
i∈V xi ≤ α(G) is facet defining

for PSSP(G). It is easy to see that this condition holds in this case. �

5.7 Theorem (Separation of Cycle of Cycles Inequalities)

Let G = (V,E) be a graph and PSSP the associated set packing polytope. Suppose x ∈ �V satisfies all
bound, edge, and odd cycle constraints. Then:

Cycle of cycles inequalities violated by x can be separated in polynomial time.

Proof.
The number of potential links Li is polynomial of order O(|V |3). We set up a link graph, that has the links
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as its nodes; this device will, in a second, turn out to be a subgraph of �. Two links are connected by an
edge if and only if they are joined by a K3,3. To assign weights to the links, we calculate for each link Li

the shortest even path Pi in G that connects the two endpoints of the link (see, e.g., Barahona & Mahjoub
[1985] how to find even paths); here, shortest means shortest with respect to the length function

(1 − xi − xj)/2 ∀ edges ij ∈ E.

Li∪Pi forms an odd cycle Ci through Li. We set the weight of link Li to the value πCi(x), obtain the link
graph as a subgraph of �[{Ci}] (some edges that correspond to “non-link conflicts” are possibly missing),
and detect a violated odd cycle inequality in the link graph if and only if a violated cycle of cycles inequality
in G exists. �
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