Type Introduction for Equational Rewriting*

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba
Tsukuba 305-8573, Japan
ami@is.tsukuba.ac. jp

Hitoshi Ohsaki

Computer Science Division
Electrotechnical Laboratory
Tsukuba 305-8568, Japan
ohsaki@etl.go. jp

Abstract

Type introduction is a useful technique for simplifying the task of proving
properties of rewrite systems by restricting the set of terms that have to
be considered to the well-typed terms according to any many-sorted type
discipline which is compatible with the rewrite system under consideration.
A property of rewrite systems for which type introduction is correct is called
persistent. Zantema showed that termination is a persistent property of non-
collapsing rewrite systems and non-duplicating rewrite systems. We extend
his result to the more complicated case of equational rewriting. As a simple
application we prove the undecidability of AC-termination for terminating
rewrite systems. We also present sufficient conditions for the persistence of
acyclicity and non-loopingness, two properties which guarantee the absence
of certain kinds of infinite rewrite sequences. In the final part of the paper
we show how our results on persistence give rise to new modularity results.

*This is a revised and extended version of a paper that appeared in the Proceedings of the 4th
Symposium on Logical Foundations of Computer Science (LFCS’97), Yaroslavl, Lecture Notes in
Computer Science 1234 (1997) 283-293.

1 Introduction

Term rewriting is an important method for equational reasoning. In term rewriting
the axioms of the equational system under consideration are used in one direction
only. Since in the presence of axioms like commutativity, a common situation in
equational reasoning, rewriting is non-terminating, the framework of equational
term rewriting has been proposed. Equational term rewriting is an extension
of rewriting in which certain axioms are used bidirectionally, more precisely, an
equational rewrite system R/E consists of a term rewriting system R and an
equational system &£ and a term s rewrites in one step to a term ¢ if there exists
a rewrite rule I — r in R and a substitution o such that s is equivalent (in the
equational theory generated by £) to a term s’ which contains lo and ¢ is equivalent
to the term ¢’ obtained from s’ by replacing lo by ro.

Here we are interested in termination of equational rewrite systems. An early
paper on termination of equational rewriting is Jouannaud and Munoz [11]. In
that paper sufficient conditions are given for reducing (equational) termination
of R/E to termination of R. In another early paper (Ben Cherifa and Les-
canne [4]) a characterization is given of the polynomials that can be used in a
polynomial interpretation proof of AC-termination, i.e., termination of equational
rewrite systems R/E where € consists of the associativity and commutativity ax-
ioms f(f(x,y),2) = f(x, f(y,2)) and f(z,y) = f(y,z) for (some of) the binary
function symbols in R. In more recent papers [12, 19, 20, 21] syntactic meth-
ods like the well-known recursive path order for proving termination of rewriting
are extended to AC-termination. Another recent paper is Ferreira [8] where the
dummy elimination technique of [9] for proving termination is extended to equa-
tional rewriting.

In this paper we extend the type introduction technique of Zantema [22] for
proving properties of rewriting to equational rewriting. More precisely, we show
that termination is a persistent property of equational rewrite systems R/E such
that R does not contain both collapsing and duplicating rules and £ is variable
preserving and does not contain collapsing axioms. Type introduction is known to
be useful for proving undecidability results for termination of rewriting [15], and
in this paper we give a simple proof of the undecidability of AC-termination for
terminating rewrite systems using type introduction. This result clearly shows that
equational termination is a much harder problem than termination. We also show
that, under the same conditions as for termination, acyclicity and non-loopingness
are persistent properties of equational rewrite systems. The last result enables us
to simplify several proofs of non-loopingness that can be found in the literature.

This paper is organized as follows. In the next section we briefly define equa-
tional rewriting and we recall the results of Zantema [22] on type introduction.

In Section 3 we generalize these results to equational rewriting. In Section 4 the
usefulness of the results of Section 3 is illustrated by showing the undecidability of
AC-termination for terminating rewrite systems and in Section 5 we address per-
sistence of acyclicity and non-loopingness. Persistence is closely related ([18, 22])
to modularity, a property which has been thoroughly investigated in the term
rewriting literature. Along this line we obtain several new modularity results.
These are described in Section 6. In particular, we give a simple proof to an ex-
tension of a recent result of Aoto and Toyama [1] concerning the preservation of
termination under non-disjoint combinations of term rewrite systems.

2 Preliminaries

Familiarity with the basic notions of term rewriting (as expounded in e.g. [3, 6, 13])
will be helpful in the following. We start this preliminary section with a very brief
introduction to many-sorted equational reasoning and term rewriting.

Let S be a set of sorts. An S-sorted signature is a set F of function symbols
together with a sort declaration a3 X --- X a, — « for every f € F. Here
al,...,an,a €S and n is called the arity of f. Function symbols of arity 0 are
called constants. We assume the existence of countably infinite sets of variables
Vo for every sort a € S. The union of all V, is denoted by V. The set 7 (F,V) of
well-typed terms is the union of the sets 7, (F,V) for o € S that are inductively
defined as follows: V, C 7, (F,V) and f(t1,...,tn) € To(F,V) whenever f € F
has sort declaration a; X -+ X a, — a and t; € T,,(F,V) for all 1 < i < n.
If t € T,(F,V) for some a € S then we say that ¢ has sort o and we write
sort(t) = a.. The set of variables appearing in a term t is denoted by var(t). For
every a € S, let O, be a fresh constant, named hole, of sort a. Elements of
T(FU{O, | a € §},V) are called contezts. So contexts are well-typed terms over
the extended signature F U {(J, | « € S}. An empty context is a hole. If C' is a
context with n holes O, , ..., s, (from left to right) and ¢4, ..., ¢, are terms with
sort(t;) = a; then C[ty,...,t,] denotes the term obtained from C' by replacing the
holes by t1,...,t,. A substitution is a mapping o from V to 7 (F,V) such that
sort(o(z)) = aif v € V, and {z € V| o(x) # x} is finite. This latter set is called
the domain of o and denoted by dom(c). We write to for the result of applying
o to a term t. The set {o(z) | z € dom(o)} is denoted by ran(o). The restriction
of o to a subset V' C V is denoted by o[y and we write 0 =7 [V] if o]y = 7]y

An S-sorted equational system (ES for short) consists of an S-sorted signature
F and a set € of equations between well-typed terms in 7 (F, V) such that sort(l) =
sort(r) for every equation [~ r € £. We write s —¢ t if there exist an equation
[~rin &, a substitution o, and a context C' such that s = C[lo] and t = Clro].

The symmetric closure of —¢ is denoted by Hg and the transitive reflexive closure
of Heg by ~g. Note that sort(s) = sort(¢) whenever s ~¢ t. An equation [~ r is
called non-erasing if the sets of variables in [and r are the same. We say that
[~ r is variable preserving if the multisets of variable occurrences in [and r
are the same. The equation [~ r is called collapsing if [or r is a variable. An
(S-sorted) ES is non-erasing (variable preserving) if all its equations are so and
collapsing if it has a collapsing equation. We denote the ESs {f(z,y) =~ f(y,z)}
and {f(f(z,y),2) = f(z, f(y,2))} by C(f) and A(f) respectively. The union of
A(f) and C(f) is denoted by AC(f).

A rewrite rule is an equation [= r such that [is not a variable and variables
which occur in r also occur in I. Rewrite rules [~ r are written as I — r. An
S-sorted term rewriting system (TRS for short) is an S-sorted ES all of whose
equations are rewrite rules. A rewrite rule [— r is duplicating if some variable
occurs more often in r than in I. An S-sorted TRS is duplicating if it has a
duplicating rewrite rule. An S-sorted equational term rewriting system (ETRS
for short) R/E consists of an S-sorted TRS R and an S-sorted ES £ over the
same signature. We write s —g /¢ ¢ if there exist terms s’ and ' such that
s~g s =t ~gt.

An ES (TRS, ETRS) is an S-sorted ES (TRS, ETRS) with S a singleton
set. This is equivalent to the usual (unsorted) definition found in the literature.
The underlying ES O(€) of an S-sorted ES £ is obtained by simply dropping all
sort declarations; likewise for TRSs and ETRSs. The term rewriting literature is
mainly concerned with unsorted (E)TRSs. In this paper we show how many-sorted
ETRSs can help to simplify the task of proving properties of unsorted ETRSs. A
property P of (many-sorted) ETRS is called persistent if the following equivalence
holds for every many-sorted ETRS R/E: R/E has the property P if and only if
©(R/E) has the property P. For most properties the “if” direction is trivial; we
are interested in the “only if” direction. In order to show that a given ETRS
R/E has a certain property P, which is known to be persistent, it is sufficient to
find suitable S and sort declarations such that the S-sorted ETRS R /€ has the
property P. The latter is often easier to prove since only well-typed terms have
to be considered. Hence persistence facilitates proving properties of ETRSs by
type introduction. In this paper we are mainly concerned with the termination
property. An ETRS R /€ is called terminating if there are no infinite R /E-rewrite
sequences.

Zantema [22] obtained the following result. In the next section we generalize
it to ETRSs.

Theorem 2.1 Termination is persistent for TRSs that do not contain both col-
lapsing and duplicating rules. [

3 Persistence of Termination for Equational Rewriting

In the following few definitions and lemmata R is an S-sorted TRS and £ an
S-sorted ES. Terms in O(R) need not be well-typed (with respect to R), but
they can be partitioned into well-typed components. This yields a natural layered
structure, which is formalized below.

Definition 3.1 We write t = C[t1,...,t,] if t = C[t1,...,t,] such that the
context C' is non-empty and maximal well-typed. Note that every term can be
uniquely written as C[t1,...,t,]. We write top(t) = C. The subterms t1,...,t,
of t are called aliens and we denote the multiset {t1,...,t,} by alien(t). The rank
of a term is the maximum number of type-clashes along any of its paths:

k(1) 0 if t is well-typed,
rank(t) =
1 + max {rank(s) | s € alien(t)} otherwise.

The rank of a ©(R/E)-rewrite sequence is the rank of its initial term. We extend
the definition of sort in Section 2 to arbitrary (non-well-typed) terms by letting
sort(t) = aif t = f(t1,...,tn) wWith f: a3 X -+ X ay — .

Let us illustrate these concepts on a small example. Consider S = {a, 3,7}
with sort declarations f: ax vy — 3, ¢9: 86— v, h: v — v, a: a, b: 3, and c: v.
For the term ¢; = f(f(b,9(c)), h(f(a,g(h(g(a)))))) we have sort(t;) = 3, top(t1) =

F(Oa, (D)), alien(ty) = {£(b,g(c)), fla, g(h(g(a))))}, and rank(t;) = 3. Figure 1
shows the decomposition of #; in maximal well-typed parts.

Definition 3.2 A rewrite step s —g(g) t is called inner if it takes place in one
of the aliens of s. Non-inner steps are called outer. An outer step s —g(g) t is
called collapsing if sort(s) # sort(t). An inner step s —gg) t is called collapsing

if top(s) # top(t).

Note that collapsing rewrite steps necessarily employ collapsing rewrite rules,
but not every (outer) step using a collapsing rewrite rule is collapsing. In partic-
ular, terms of rank 0 do not admit collapsing steps. Let us continue the above
example by considering the S-sorted ETRS R/ with

{15 2 2)

and £ = @. The rewrite step t1 —g(r) ta With ta = f(c, h(f(a,g(h(g(a))))))
is inner non-collapsing, even though f(b,g(c)) —e(r) c is outer collapsing. The

7
AN
b9 S
VAN
c. a9
|
h
9
a:

Figure 1: The maximal well-typed parts of ¢;.

rewrite step to —g(r) t3 with t3 = f(c, h(h(g(a)))) is inner collapsing. The outer
rewrite step t3 —gr) ta with t4 = f(c, g(a)) is non-collapsing despite the fact
that it uses a collapsing rewrite rule. The rewrite step t4 —g(r) t5 With t5 = a is
outer collapsing. Figure 2 shows how the maximal well-typed parts are affected
during the rewrite sequence from #; to t5; the contracted redexes are indicated
by boxes around the function symbols of the left-hand sides of the corresponding
rewrite rules.

The next three lemmata express well-known facts in the context of modularity.

Lemma 3.3 Ifs —g(r) t then rank(s) > rank(t). If s —g(g) t is outer collapsing
then rank(s) > rank(t). O

Lemma 3.4 Suppose s —g(r) t is non-collapsing. If s —g(r) t is outer then
top(s) —r top(t), otherwise top(s) = top(t). O

Lemma 3.5 If s —gR) t is outer, non-collapsing, and non-duplicating then
alien(t) C alien(s). If s = C[s1,...,5i,...,80] —em) Cls1,-- - ti,-..,8n] =t
with s; —e(r) ti is collapsing then alien(t) = (alien(s) — {s;}) Walien(t;), otherwise
alien(t) = (alien(s) — {s;}) w{t;}. O

Next we consider how Hg(g) and ~gg)-steps affect the layered structure of
terms. Because & is assumed to be non-collapsing and non-erasing, £ U £ is
a TRS and the relation Hgg) coincides with —gee-1) and «—geue-1). (Here

6

ler)

R — 3
S

ts

Figure 2: The maximal well-typed parts along a rewrite sequence.

E71 denotes the ES {r ~ [| [~ r € £}.) Hence we can reuse the above results
when reasoning about Hg(g). Note that £ U £~1 is non-duplicating for variable
preserving &.

Lemma 3.6 Let & be non-erasing and non-collapsing. If s Hegg) t then rank(s) =
rank(t).

Proof We have s —g(gug-1) t and thus rank(s) > rank(t) by Lemma 3.3. Symme-
try yields rank(t) > rank(s) and hence rank(s) = rank(t). O

The next lemma expresses that the layered structure of terms is essentially
preserved by ©(E)-steps. For the second part it is essential that £ is variable
preserving.

Lemma 3.7 Let £ be variable preserving and non-collapsing. Suppose alien(s) =
{s1,--.,8n} and alien(t) = {t1,...t;m}. If s ~g(g) t then top(s) ~¢g top(t), m =n,
and there exists a permutation m such that s; ~g(g) tx(;) for all 1 <i < n.
Proof We use induction on the number of Hgg)-steps in s ~g(g) t. The base case
is trivial. Let s Hg(g) u ~g(g) t with alien(u) = {u, ..., ux}. From the induction
hypothesis we obtain top(u) ~¢ top(t), k = m, and a permutation 7’ such that
ui ~e(g) by for all 1 < i < m. Consider s —ggug-1) u.

Suppose this step is inner. Without loss of generality we assume that s =
Cls1y.--,8n] and u = C'[uq, ..., up] for some contexts C' and C’. We obtain

top(s) = top(u) and alien(u) = (alien(s) —{s;})W{u;} for some i with s; —g(gug—1)
u; from Lemmata 3.4 and 3.5. Hence m = n and s; = u; for j # ¢ and thus we
can take T = 7.

If s —gus-1) u is outer then top(s) —gug-1 top(u) by Lemma 3.4 and
alien(s) = alien(u) by Lemma 3.5. Hence m = n and thus there exists a per-
mutation 7 such that s; = u () for all 1 < i < n. In this case we clearly have
top(s) ~g top(t) and s; ~g(g) Lr() for all 1 <i < n with 7 defined as 7’ o 7. [J

Using all of the preceding lemmata, the following result can now be proved by
a routine ‘minimal counterexample’ argument (cf. Ohlebusch [16]).

Lemma 3.8 Let R/E be a terminating S-sorted ETRS with € variable preserving
and non-collapsing. If ©(R/E) is not terminating then there exists an infinite
rewrite sequence in which all terms have the same rank and which contains an
outer duplicating and an inner collapsing O(R)-step.

Proof Let A be an infinite rewrite sequence of minimal rank. According to Lem-
mata 3.3 and 3.6 this implies that all terms in A have the same rank and thus
A contains no outer collapsing O(R)-steps. For a proof by contradiction suppose
that A lacks outer duplicating or lacks inner collapsing ©(R)-steps.

First we show that there exists an infinite tail B of A with the property that all
O(R)-steps in B are either outer or inner non-collapsing. If A lacks inner collapsing
O©(R)-steps then we can take B = A. If A lacks outer duplicating ©(R)-steps, we
reason as follows. Associate with every term ¢ the multiset §(¢) = {rank(t’) | t' €
alien(t)}. As a consequence of Lemmata 3.6 and 3.7 we have f(u) = f(v) for every
©(&)-step u ~ v in A. Let u — v be a O(R)-step in A. From Lemma 3.5 we infer
that

1. #(u) Zmu (v) if w — v is outer (and thus non-duplicating),
2. #(u) >mu f(v) if w — v is inner collapsing, and
3. #(u) Zmu f(v) if w — v is inner non-collapsing.

(In the example of Figure 2 we have #(t1) = {1, 3}, f(t2) = {0,3}, 8(t3) = £(ta) =
{0,0}, and #(t5) = @.) Since > is a well-founded order on multisets (Dershowitz
and Manna [7]), the second alternative occurs finitely often. Hence A has an
infinite tail B in which all ©(R)-steps are outer or are inner non-collapsing.

If B contains infinitely many outer ©(R)-steps then by applying top to ev-
ery term in B we obtain an infinite R/E-rewrite sequence as a consequence of
Lemmata 3.4 and 3.7, contradicting the termination of R/E (over the extended
signature F U {J, | @ € S}, which is an easy consequence of the termination of

R /& over the original signature F). Hence there exists an infinite tail C of B such
that all ©(R)-steps in C are inner non-collapsing. With help of Lemma 3.7 and
the pigeon-hole principle, we obtain an infinite ©(R/E)-rewrite sequence starting
from one of the aliens of C. This contradicts the minimality of A. [J

The proof of the above lemma can easily be massaged to yield an infinite
O©(R/E)-rewrite sequence that contains infinitely many outer duplicating and in-
finitely many inner collapsing O(R)-steps. This observation will be used in the
proof of Lemma 6.5.

Corollary 3.9 Termination is persistent for ETRSs R/E with R non-collapsing
or non-duplicating and € non-collapsing and variable preserving. [J

Variable-preservingness of £ cannot be weakened to non-erasingness. Consider
for instance the {«, f}-sorted ETRS R/ with R = {a — b}, € = {f(z,z,y) =
f(y,z,y)}, and sort declarations f: a x a x @ — (and a,b: . The ETRS R/ is
terminating since the only reducible well-typed term is a, but in ©(R/E) we have
the following infinite sequence: f(a,b,a) —gr) f(b,b,a) Hee) f(a,b,a) —er)
-+-. Note that f(a,b,a) is not well-typed.

At present it is unclear whether Corollary 3.9 holds for collapsing £. Our proof
does not allow for collapsing £ since Lemmata 3.6 and 3.7 no longer hold. Note
that ©(R/E) (with non-empty R) cannot be terminating if £ contains a collapsing
equation [&~ x such that x has more than one occurrence in [(cf. [11, p. 181]).

4 Undecidability of AC-Termination

We start this section by showing the undecidability of termination modulo commu-
tativity for terminating TRSs. To this end we make use of the following well-known
result (e.g. [15]).

Lemma 4.1 [t is undecidable whether a TRS admits an infinite rewrite sequence
in which all steps take place at the root position. [J

Theorem 4.2 [t is undecidable whether a terminating TRS is C-terminating.
Proof Let R be an arbitrary TRS. Define

R ={f(l,a) — f(a,r) |l > r e R}

with f and a are fresh symbols. Termination of R’ can be shown by the lexi-
cographic path order with any total precedence in which f is maximum and a
minimum. We show that R’ is C(f)-terminating (i.e., R'/C(f) is terminating) if

and only if R does not admit an infinite rewrite sequence in which all steps take
place at the root position.

Let lio1 — r1i01 = lgog — r9og = --- with lz' — 1, €ER for 7 > 1 be an
infinite R-rewrite sequence in which all steps take place at the root position. This
sequence can be transformed into the following infinite R’/C(f)-rewrite sequence:
fllhor,a) —r fla,r1i01) Hep) f(rion,a) = f(laoz,a) =g fla,m202) Hegpy -

For the other direction we reason as follows. Since R’ is non-collapsing and
C(f) trivially non-collapsing and variable preserving, we can apply Corollary 3.9.
To this end we consider the sort declarations a: a, f: a x @ — (3, and g: a X

- X a — « for all function symbols g of R. In order to show that R’ is
C(f)-terminating, it is sufficient to prove termination of all well-typed terms.
Terms of sort a are trivially terminating. An infinite R’/C(f)-rewrite sequence
starting from a well-typed term of sort S must have the form f(ly01,a) —g
f(a, 7’101) HC(f) f(T’ldl, a) = f(lQUQ, a) —R! f(a, 7’202) HC(f) .-+ with li — T € R
for ¢ > 1. This gives rise to an infinite rewrite sequence ly01 —R 1101 = ls0y —R
rooe = --- in which all steps take place at the root position, contradicting the
assumption. Hence R’ is C(f)-terminating.

The desired result follows from the previous lemma. [J

Next we show the undecidability of termination modulo associativity for ter-
minating TRSs.

Theorem 4.3 It is undecidable whether a terminating TRS is A-terminating.
Proof Let R be an arbitrary TRS. Define

R ={f(f(e(l),a),a) — fle(r), f(a,a)) |l —r € R}

Termination of R’ is easily shown by the lexicographic path order. We can show
that R’ is A(f)-terminating if and only if R does not admit an infinite rewrite
sequence in which all steps take place at the root position, similar to the preceding
proof. Let F be the signature of R. For the “if” direction we use sort declarations
a:Bye:a— 0, f:BxF— F,and g: a X --- X a — « for all function symbols
g € F. Every well-typed term ¢ of sort 5 can be (uniquely) written as C[t1, ..., t,]
such that C' contains only f and a symbols and for every 1 < i < n we have
t; = e(t;) with t; € T(F,V). Let us denote the sequence (t1,...,t,) by ¢(t). If
t —x t' then there exist an ¢, a rewrite rule [— r € R, and a substitution ¢ such
that ¢; = e(lo) and @(t') = (t1,...,1;,...tn) with t; = e(ro). If t ~(5) t’ then
¢(t) = ¢(t'). Using the pigeon-hole principle it follows that an infinite R'/A(f)-
rewrite sequence gives rise to infinite R-rewrite sequence in which all steps take
place at the root position, contradicting the assumption. [

10

Note that taking R’ = {f(f(l,a),a) — f(r, f(a,a)) | | — r € R} in the above
proof precludes the (good) use of type introduction as there can be only one sort.

Theorem 4.4 [t is undecidable whether an A and C-terminating TRS is AC-
terminating.

Proof (sketch) Replace R’ in the previous proof by R’ = {f(f(e(l),a),b) —
f(a, f(bye(r))) | L = r € R}. The proof that R’ is AC(f)-terminating if and
only if R does not admit an infinite rewrite sequence in which all steps take place
at the root is similar to the one above. Here we show that R’ is both A(f) and
C(f)-terminating. We use Corollary 3.9. Consider the sort declarations a,b: 3,
e:a— 0, f:Bx0— G,and g: ax---xa — «forall g € F. In order to show the
A(f) and C(f)-termination of R" we only have to consider the well-typed terms.
Since well-typed terms of sort « are in normal form, we may restrict our attention
to well-typed terms of sort 5. Every well-typed term ¢ of sort 3 can be (uniquely)
written as C[ty, ..., t,] such that the context C' consists of f symbols only and for
every 1 < i < n we have either t; = e(t}) with t, € T(F,V), t; = a, or t; = b. Let
us denote the (binary) number ¥ (t;) ...1(t,) where v is defined as

b(s) = {1 if root(s) = e,

0 otherwise

by ¢(t). It is not difficult to verify that ¢(s) = ¢(t) for s Ha t and ¢(s) > ¢(t) for
s —gs t. Hence R’ is A(f)-terminating. For proving the C(f)-termination of R’
we associate with every well-typed term ¢ the sum of the depths of all occurrences
of a in ¢, which we denote by ¢(t). One easily verifies that ¢(s) = ¢(t) for s Hc ¢
and ¢(s) = p(t) + 1 for s -/ t, implying C(f)-termination. [J

Note that identifying the constants a and b in the above R’ would result in a
TRS that is not necessarily C(f)-terminating.

5 Persistence of Acyclicity and Non-Loopingness

An ETRS R/ is cyclic if it admits a sequence of the form ¢ —>7J£/g t. We say that
R/E is looping if there exist a term ¢, context C', and substitution o such that
t —ﬁ% /€ C[to]. Terminating ETRSs are non-looping and non-looping ETRSs are
acyclic, but the reverse statements do not hold. A recent study of non-loopingness
for TRSs is performed in Zantema and Geser [23].

By a straightforward modification of the proof of Lemma 3.8 we obtain the
following result.

11

Lemma 5.1 Let R/E be an acyclic S-sorted ETRS with £ wvariable preserving
and non-collapsing. If ©O(R/E) is cyclic then there exists a cycle in which all
terms have the same rank and which contains an outer duplicating and an inner
collapsing ©(R)-step. O

Corollary 5.2 Acyclicity is persistent for many-sorted ETRSs R/E such that R
is non-collapsing or non-duplicating and & is non-collapsing and variable preserv-
ing. U

The proof of the analogous result for non-loopingness is quite a bit more in-
volved. The reason is that because the involved substitution may substitute a term
of sort (8 for a variable of sort & we do not obtain a contradiction by considering
a loop of minimal rank.

Definition 5.3 A substitution o is called consistent if sort(z) = sort(xo) for all
eV

We show that every looping ©(R /&) admits a loop with consistent substitution.
Most of the work is done in the following lemma.

Lemma 5.4 For every substitution o and finite set of variables V' with dom(o) C
V there exist a consistent substitution o' and a variable substitution T such that
or =710’ [V].

Proof The desired substitutions ¢’ and 7 are computed by the following algorithm:

W .=V,
o =0
T =gy

while W # & do
if 3z € W with xo’ ¢ W then
7' = {x — 2’} with 2’ a fresh variable of sort sort(zo’);

o' 1= ' [qom(or)\fu} U {7 = 207"}

else
7= {x— & | x € W} with £ a fresh variable (of arbitrary sort);
o' =o' [qomo\w

fi;

T =77

W:= W \ dom(7’)

od

Below we prove that the statements

12

1. 7 is a variable substitution, i.e., a mapping from V to V,
2. var(t)NW =g,

3. o =710’ [V],

4. ran(o'[y\w)NW = @, and

5. 0'[y\w is consistent

are invariants of the while-loop which hold after the first three assignments. Here
var(7) denotes the union of dom(7) and U, cqom(r) var(z7). (Statements 2 and 4
are needed to show 3 and 5.) Note that V is the set of variables, not to be confused
with V. Termination of the while-loop is obvious since in each iteration at least
one element of W is removed and initially W = V is finite by assumption. Upon
termination we have W = & and thus o’[,, = ¢’ is consistent.

Let W;, o} and 7; denote the values of W, ¢’ and 7 after the i-th iteration of
the while-loop. After the first three assignments we have Wy = V, ¢, = o and
79 = €. Statements 1, 2, and 3 are trivially true. For statements 4 and 5 we note
that ofly\w, = o[y = € because dom(c) C V. Consider the i + 1-th iteration.
We distinguish two cases according to the condition of the if-statement.

a. Suppose there exists an z € W; such that xzo, ¢ W;. By construction, 7" =
{2 — 2’} with 2’ a fresh variable of sort sort(zc;) and 071 = 077 [4om(o7)\ {2} Y
{2/ — zolr'}. We have W;; = W; \ {z}. Since 7" and 7; (by induction hy-
pothesis) are variable substitutions, so is their composition 7,41 = 7;7". From
the assumption x € W; and the second part of the induction hypothesis we
infer that var(7;+1) = var(r;) U{z,2'}. Since z,2’ ¢ W11 and x ¢ var(r;) we
obtain var(n+1) N Wiy = var(n) N Wiy = var(n) NnNWwW;, = a.

For statement 3 we reason as follows. Let y be an arbitrary variable in
V. We have to show that yor;;1 = y7i4107,,. The induction hypothesis
yields yori11 = yorv' = yriojr’. If y = x then yrojr’ = wojr’ = 2’0} | =
x7'oj, | = a0} = yTiy10;,. In the first and fourth equality we use the
fact that = ¢ dom(7;), which follows from the second part of the induction
hypothesis. If y # x then we obtain y7; # x from the second part of the
induction hypothesis and hence yroj7" = yrio;, | = y7'oj | = yTit107, .
For the first equality note that y7; is a variable different from = and z’ and
furthermore y7;oi7" = y7; = y7i0;,; whenever y7; ¢ dom(o7).

Next we show statement 4. From z € W; and xag ¢ W,; we infer that x €
dom(o}). Together with the freshness of z’ this yields dom(o}) = dom(o’7")

13

and zojr" # x,2’. Hence dom(oj, ;) = (dom(cjr")N(dom(o})\ {z}))U{z'} =
(dom(co Z) (dom(o}) \ {z})) U{z'} = (dom(c}) \ {z}) U {2’} and therefore

D\ {zh) U {aH) N (Y \ W) U {z})
D\ {z}) N (VA W) U {a})) U{a'}
DN WAW))\{z}) U {2’}

dom (Ug-i-l rV\Wi+1)

dom(Ui) (V\W;) U {z'}
= dom(o;ly\w,) U {z'}.

The fourth equality follows from the assumption that x € W,;. Consequently,

I’an(0'2/-+1 rV\WiJrl) = {x Gz+1} U U y0'£+1
yEdom(o}ly\w;)
= {aoir'}U U Yo ow,

y€dom(o} hw,)

= {wzolr’'} Uran(olr’ rV\Wi)

The last equality follows from dom(c}) = dom(o}7’). From the fourth part
of the induction hypothesis we learn that z ¢ ran(o;[,,\,) and thus

/

i Tww,) U{zoir'}) 0 (Wi \ {z})
= (ran(o;7' [yww,) U {zoi7'}) N W;
= (ron(ofe Ty W) U (s} 0 1)
= ran(o;7 yvw,) N Wi

ran(ol s lywn,,) VWit = (ran(olr

The last equality follows from zolr’ = xo, ¢ W;. Now suppose on the
contrary that there exists a variable y € V \ W; such that yo,7’ € W;. If
yoiT! = yo! we obtain a contradiction with the fourth part of the induction
hypothesis. Hence yo|m’ # yo}, which implies that = € var(yo}) and thus
x’ € var(yolr’). This is impossible since W; is a set of variables that does
not contain z’. This concludes the proof of statement 4.

Finally we show that o7, ; [y\,,, is consistent. Let y € V. We have to show
that sort(y) = sort(yoi ;1 lww,,,). If y & dom(oiily\w,,,) then the result
is trivial. Let y € dom(oj,[y\w,,,)- In the proof of statement 4 above
we observed that dom(a7 ;[y\w;,,) = dom(aily\w,) U {z'}. We distinguish
two cases. If y = 2’ then sort(y) = sort(zo;) = sort(zo;7’) = sort(yo;).
The second equality follows from the inequality zo’ # x. In the other case

14

g

we have y € dom(oj) \ W; and thus yoj,, = yojr’. From the fourth part
of the induction hypothesis we infer that yo, # z. So if yo} is a variable
then yoir’ = yo! and thus sort(yoir') = sort(yol). If yo! is a non-variable
term then we clearly also have sort(yo.7') = sort(yo’). The fifth part of the
induction hypothesis yields sort(y) = sort(yo;). Hence sort(y) = sort(yo;,)
as desired.

. Suppose zo} € W; for all x € W;. By construction, 7/ = {z — & | z €

Wi} with § a fresh variable of arbitrary sort and o, ; = {7 [gom(o!)\w;-
Statement 1 follows as in the previous case. Since dom(7') = W;, W11 = @.
Hence statements 2 and 4 are trivially true.

For statement 3 we show that yo7;11 = y7i110;,, for all y € V. The third
part of the induction hypothesis yields yori11 = yor, 7" = yrojr’. First
consider the case that y € W;. From the second part of the induction
hypothesis we infer that y7; = y and thus yro,r’ = yoir’ = & by the
assumption that yoj € Wi. Also, yriy10j,, = yr'oj = &oj; = & Next
consider the case that y ¢ W,. From the second part of the induction
hypothesis we infer that yr; ¢ W; and thus y7i110], = yrioj,. If yr €
dom(oj) then yroj,, = yrojr’. If yr; ¢ dom(oj) then yroj , = yr =
yTio. = yrioir’. The last equality follows from y7; ¢ W;.

Finally we show that o7, is consistent. Let y € dom(o7, ;) = dom(a}) \ W;.
We have to show that sort(y) = sort(yo; ;). We have yoj, , = yo;7’ =
yol. Here the last equality follows from the fourth part of the induction
hypothesis. Now the fifth part of the induction hypothesis yields sort(y) =
sort(yo;) and thus sort(y) = sort(yo;, ;).

Lemma 5.5 Let R/E be an S-sorted ETRS. If O(R/E) is looping then there exists
a loop t =T Clto] with consistent o.

Proof Let t —1 Clto] be a loop in O(R/E). Without loss of generality we assume
that dom(c) C var(t). Let V' = var(t). According to the previous lemma there exist
a consistent substitution ¢’ and a variable substitution 7 such that o7 = 70’ [V].
Let ¢ = t7 and C" = C7. Since (equational) rewriting is closed under substitutions
we obtain ¢ = t7 —1 Crltor] = C'[tro’] = C’'[t'0’], which shows that O(R/E)
admits a loop with consistent substitution. [

Lemma 5.6 Let R/E be a non-looping S-sorted ETRS with £ variable preserving
and non-collapsing. If ©(R/E) is looping then there exists a loop in which all

15

terms have the same rank and which contains an outer duplicating and an inner
collapsing ©(R)-step.

Proof Let A:t _ﬂé(R 6 € [to] be a loop with consistent o of minimal rank, the
existence of which is guaranteed by Lemma 5.5. (The rank of A may be greater
that the minimal rank of a loop because the construction in the proof of Lemma 5.4
may increase the rank by one.) Because o is consistent, rank(t) = rank(to) and thus
rank(t) < rank(C[to]). From Lemmata 3.3 and 3.6 we obtain rank(t) > rank(C[to])
and therefore rank(t) = rank(CJto]). Hence, by Lemma 3.3, A contains no outer
collapsing ©(R)-steps.

We show that A contains an inner collapsing O(R)-step. Because rank(t) =
rank(C[to]) the displayed occurrence of to is not a subterm of an alien subterm
of C[to] and thus top(Clto]) = C'[0a,, - . ., top(to),...,Oa,,] for some context C’
with m > 0. Let 0/ = topo o. An easy induction on the structure of ¢ yields
top(to) = top(t)o’. Here we make use of the consistency of o. Now suppose for a
proof by contradiction that .4 contains no inner collapsing O(R)-steps. According
to Lemma 3.4 we have top(s) —r top(s’) for every outer step s —g) s in
A and top(s) = top(s’) for every inner step s —g(g) s’ in A. Furthermore,
top(s) ~¢ top(s’) for every s ~g(¢) s" in A by Lemma 3.7. Hence if A contains an
outer O(R)-step then

top(t) 7 1op(Cto]) = C'[Dha.... top(t)0’. ... O .

contradicting the non-loopingness of R/E. Consequently, top(t) ~g top(C|to]).
Because & is variable preserving and non-collapsing this implies that top(t) and
top(C[to]) have the same number of holes and thus the context C' must be well-
typed. Let alien(t) = {t1,...,t,}. The consistency of o yields alien(C[to])) =
alien(to) = {ti0,...,t,0}. With the help of Lemmata 3.5 and 3.7 we obtain a
permutation 7 such that for all 1 < ¢ < neither t; ~g(g) tr(;0 ort; —%(R/s) br(i)0-
Since there are inner (R)-steps in A, the latter alternative must occur for some
j. Let k > 0 satisfy 7%(j) = j. We obtain tj _>J®r(7€/£) tjak where 0% denotes the
k-fold composition of o. Since rank(t;) < rank(t) and o* inherits consistency from
o, this contradicts the minimality of 4. We conclude that A contains an inner
collapsing ©(R)-step.

It remains to show that .4 contains an outer duplicating ©(R)-step. Suppose
on the contrary that there are no outer duplicating ©(R)-steps in .A. Consider the
mapping f defined in the proof of Lemma 3.8. There we noticed that f(u) = §(v)
for every O(E)-step u ~ v in A and if u — v is a ©(R)-step in A then

1. #(u) Zmu t(v) if w — v is outer,

2. #(u) >mu f(v) if u — v is inner collapsing, and

16

3. #(u) Zmu f(v) if u — v is inner non-collapsing.

Since we know that the second alternative occurs at least once, we obtain £(t) >
#(C[to]). However, using the consistency of o, one easily verifies that §(C[to]) >mu
8(to) =Zmu f(t), yielding the desired contradiction. We conclude that A contains
an outer duplicating O(R)-step. [J

Corollary 5.7 Non-loopingness is persistent for many-sorted ETRSs R/E such
that R is non-collapsing or non-duplicating and & is non-collapsing and variable
preserving. [

We illustrate the usefulness of the above theorem by giving a simple proof of
non-loopingness for the following TRS from [10], depending on arbitrary instance
P of Post’s Correspondence Problem over the alphabet I':

h(F(c,cya(z))) — g(F(a(z),a(2),a(z))) Vael
R F(wi(x),w2(y),z) — Fl(x,y,z2) V (wy,wp) € P
h(g(z)) — g(h(z))
flg(z)) — f(h(h(x)))

Here symbols of I'" are unary function symbols of R and if w = a1---a, € T'*
then w(z) denotes the term aj(--- (an(z))---). In [10] this TRS is used to show
that termination is an undecidable property of non-looping TRSs. Note that R is
non-collapsing. Hence we can use type introduction to prove its non-loopingness.
Consider § = {«, 5,7} with sort declarations F: a X a X @« — 3, ¢: o, a: @ — «
foralla € ', g,h: 8 — (B, and f: B — . Terms of sort a are in normal form,
hence trivially non-looping. For terms of sort 3 we note that the rule f(g(z)) —
f(h(h(x))) can never be applied, but since R minus this rule is terminating (by
lexicographic path order) it follows that those terms are non-looping. So if R
admits a loop t —1 C[to] then sort(t) = v and the rule f(g(x)) — f(h(h(z)))
must be used. From sort(¢) = v we immediately infer that the root symbol of ¢ is
f and that C is empty. Hence t —* C[to] must be of the form

t = f(C1[F(s1,52,83)]) —" [f(g(Ca[F(t1,t2,13)]))
— f(R(R(Ca[F(t1,t2,13)])))
—* f(Cl [F(sla, S90, SgO’)]) =to

with (1 and Cs only containing g and h symbols. From the form of the rewrite
rules of R we get the contradictory |C1]| < |g(Ca)| = |C2| + 1 and |Cy| +2 =
|h(R(C2))| < |Ci|. Hence also all terms of sort v are non-looping. In [10] non-
loopingness of R is shown by a more complicated ad-hoc argument.

We conclude this section by remarking that the proofs of non-loopingness of
several of the examples in [23] can be simplified by an appeal to Corollary 5.7.

17

6 Modularity

Persistence is closely related to the notion of modularity. A property of ETRSs
is said to be modular if the union of two ETRSs with the property and disjoint
signatures has the property. Modularity has been extensively studied in the lit-
erature, see Ohlebusch [17] for a recent overview. The following result for TRSs
is from Zantema [22]. The easy proof in [22] applies to ETRSs as well. Here a
property P of ETRSs is called component closed if it can be defined in terms of the
induced rewrite relation (so an ETRS R/E has the property P if and only if the
relation —p /¢ has the property P) and the following statements are equivalent
for every ETRS R/E:

1. R/E has the property P,

2. for every equivalence class (with respect to <7, / ¢) C of terms, the restriction
of =g /e to C has the property P.

Lemma 6.1 Let P be a component closed property of ETRSs. If P is persistent
then P is modular. O

Most properties of ETRSs, including the ones we study in this paper (viz.
termination, acyclicity, and non-loopingness), are component closed. An example
of a persistent property that is neither component closed nor modular is “non-
collapsing or non-duplicating”. It is an open problem whether the converse of
Lemma 6.1 holds, even for TRSs. Van de Pol [18] showed that a component
closed property is persistent if and only if it is modular for S-sorted TRSs.

Combining Lemma 6.1 with Corollaries 3.9 and 5.7 and Theorem 5.2 yields
the following result.

Corollary 6.2 The union of disjoint terminating (acyclic, non-looping) ETRSs
R1/&E1 and Ra/Es is terminating (acyclic, non-looping) provided £ U & is both
non-collapsing and variable preserving and R U Ra is either non-collapsing or
non-duplicating. [J

For disjoint terminating TRSs R; and R it is well-known that their union
is also terminating if one of R1, Ro is both non-collapsing and non-duplicating
(Middeldorp [14]). This result, which also holds for acyclicity and non-loopingness,
extends to ETRSs.

Theorem 6.3 The union of disjoint terminating (acyclic, non-looping) ETRSs
R1/&E1 and Ra/E; is terminating (acyclic, non-looping) provided & U E; is both

18

non-collapsing and variable preserving and one of R1, Ro is both non-collapsing
and non-duplicating.

Proof Suppose on the contrary that (R1UR2)/(£1UE2) is not terminating (acyclic,
non-looping). Let S = {«, 5} and consider the sort declarations f: ax---xa — «
for all function symbols f occurring in R1/&; and g: X ---x 3 — (3 for all function
symbols g occurring in Ra/E2. Note that (R1UR2)/(E1UE) is trivially S-sorted.
Lemma 3.8 (Lemma 5.1, Lemma 5.6) yields a rewrite sequence (cycle, loop) A in
which all terms have the same rank and which contains an outer duplicating and
inner collapsing (R1 U R2)-step. Because all terms in A have the same rank we
may assume without loss of generality that sort(t) = « for every term ¢ in A. This
implies that outer duplicating (R1 U Ra)-steps are Ri-steps and inner collapsing
(R1 U Ra)-steps are Ro-steps. Hence R is duplicating and R is collapsing,
yielding the desired contradiction. [J

Note that the above proof also implies Corollary 6.2, eliminating the need for
Lemma 6.1 for obtaining our modularity results.

Modularity results are rather restrictive because of the disjointness require-
ment. Next we show how persistence gives rise to preservation results for non-
disjoint combinations of ETRSs, generalizing and simplifying one of the main
results of Aoto and Toyama [1].

Definition 6.4 An S-sorted signature F is called decomposable if S = {0,1,2}
and every sort declaration oy X --- X a,, — «a of a function symbol in F satisfies
al,...,opn € {0,a}. Let R/E be an S-sorted ETRS over a decomposable signature
F. Let &1 = {0,1} and S» = {0,2}. We define the S;-sorted ETRS R;/&; for
i € {1,2} as follows: R; ={l - r € R |sort(l) € {0,i}} and & = {l~r € & |
sort(l) € {0,i}}.

Note that R/E = (R1 UR2)/(E1 U E2) but the intersection of Ry and Ry (&
and &) need not be empty. The partitioning of R/E (with empty &) into R1/&;
and Ra/&s is called decomposition with naive sort attachment in [1].

Lemma 6.5 Let R/E be a terminating S-sorted ETRS over a decomposable signa-
ture with £ variable preserving and non-collapsing. If ©(R/E) is not terminating
and R; is non-collapsing and non-duplicating for some i € {1,2} then there exists
an infinite rewrite sequence which contains infinitely many outer duplicating and
infinitely many inner collapsing ©(R;)-steps with j # i.

Proof According to Lemma 3.8 there exists an infinite ©(R /E)-rewrite sequence A
in which all terms have the same rank and which contains an outer duplicating and
an inner collapsing O(R)-step. Actually, we may assume that A contains infinitely

19

many outer duplicating and infinitely many inner collapsing ©(R)-steps, cf. the
remark following Lemma 3.8. Let o € {0,1,2} be the sort of the terms in A.
Because the only rewrite rules that apply to well-typed terms of sort 0 come from
R1NRa € R;, which by assumption is non-duplicating, o # 0. Since R; is non-
duplicating, it follows that a = j with j # i and thus A contains infinitely many
outer duplicating ©(R;)-steps. Aliens in A have sort 0, 4, or j. Since well-typed
terms of sort 0 and ¢ do not admit collapsing rewrite rules, it follows that every
inner collapsing step in A uses a rule from ©(R;). O

The following result appears in [1] for the special case £ = @. Our proof is
much simpler.

Theorem 6.6 Let R/E be an S-sorted ETRS over a decomposable signature with
& wariable preserving and non-collapsing. The ETRS ©(R/E) is terminating if
both O(R1/&1) and ©(Ra/E2) are terminating and one of the following conditions
holds:

1. R is non-collapsing,
2. R is non-duplicating,

3. R1 or Ra is both non-collapsing and non-duplicating.

Proof First note that by definition of decomposability, any R/E-rewrite sequence
is an R /&;-rewrite sequence or an Ro/Es-rewrite sequence. Since both Ry /&1 and
R2 /&2 are terminating, we conclude that R /€ is terminating. Hence parts 1 and 2
are just a special case of Corollary 3.9. For part 3 we reason as follows. We assume
without loss of generality that R is non-collapsing and non-duplicating. Suppose
on the contrary that ©(R/E) is not terminating. According to the previous lemma
O©(R/E) admits an infinite rewrite sequence A that contains infinitely many outer
duplicating and infinitely many inner collapsing ©(R3)-steps. Hence, by replacing
all maximal subterms of sort 1 in .4 by an arbitrary but fixed variable we obtain
an infinite ©(R2/E2)-rewrite sequence, contradicting the termination of ©(Ra/Es).
We conclude that ©(R/E) is terminating. [

Termination of O(R1/&1) and O(R2/E2) cannot be weakened to termination
of R1/&1 and Ra/Es, as shown by the following example. Consider

fla,b,2) — f(z,2,2)
R = g(x,y) — =z
gz, y) — y

20

(with £ = @) and let § = {0,1,2} with sort declarations a,b: 0, f: 0 x 0 x 0 —
1, and g: 1 x 1 — 1. These sort declarations clearly satisfy the conditions of
Definition 6.4. We have Ry = R and R = @. The many-sorted TRS R; is
terminating and Rs is trivially terminating, in addition to being non-collapsing
and non-duplicating. However, ©(R) lacks termination.

The preceding result applies to the ETRS R/E with R consisting of the rewrite
rules

list(0) — [] [[Hz — =z
list(s(x)) — lst(x)+H[s(z)] [z|y]l+Hz — [z]|y+H2]
x>0 — true x>y — x2=s(y)
s(ry=2s(y) — x>y true A true — true
0>s(z) — false false N\x — false

and £ = A(++) U AC(A). (The expression [s(x)] denotes the term [s(x)|[]].)
Let S = {0,1,2} with sort declarations 0: 0, s: 0 — 0, []: 1, [|]: 0 x 1 — 1,
list: 0 =1, +:1x1—1, false, true: 2, >2,>: 0x 0 — 2, and A: 2x 2 — 2. The
conditions of Definition 6.4 are satisfied and Rs is non-collapsing as well as non-
duplicating. Hence Theorem 6.6 yields that termination of @(R/E) follows from
termination of ©(R;/A(++)) and ©(R2/AC(A)). Termination of O(R/A(++))
is e.g. established by the AC-RPO ordering of [20] with precedence list > ++ >
[1]> 1] (so ©(Ri/AC(++)) is terminating which implies that ©(R1/A(++)) is
terminating) and for ©(R2/AC(A)) we can use the polynomial interpretations
[0] = [true] = [false] = 0, [s](z) ==+ 1, [Z](z,9) = [A](z,9) =z +y +1,
[>1z,y) =2+y+3.
Theorem 6.6 extends to acyclicity and non-loopingness.

Theorem 6.7 Let R/E be an S-sorted ETRS over a decomposable signature with
& wariable preserving and non-collapsing. The ETRS ©(R/E) is acyclic (non-
looping) if both O(R1/E1) and ©(Ra/E2) are acyclic (non-looping) and one of the
following conditions holds:

1. R is non-collapsing,
2. R is non-duplicating,

3. R1 or Ry is both non-collapsing and non-duplicating.

Proof We only consider non-loopingness here. The proof for acyclicity is simpler.
We obtain the non-loopingness of R/E as in the proof of Theorem 6.6. Hence
parts 1 and 2 are a special case of Corollary 5.7. For part 3 assume without loss of
generality that R is non-collapsing and non-duplicating. Suppose on the contrary

21

that ©(R/E) is looping. We conclude from Lemma 5.6 that ©(R/E) admits a loop
At Hg(R /€) Clto] in which all terms have the same rank and which contains an
outer duplicating and an inner collapsing O(Rz2)-step. In particular, sort(t) = 2.
Let ¢ be the mapping that replaces all maximal subterms of sort 1 by an ar-
bitrary but fixed variable. From A we obtain the rewrite sequence ¢(t) Hg(RQ /63)
¢(Clto]). Note that all symbols above the hole in C' have sort 2 for otherwise
rank(C[to]) > rank(t). Therefore ¢(C[ta]) = C'[¢(t)o’] with C' = ¢(C) and
o' = ¢poo. Hence ©(R2/E2) admits a loop, which contradicts the assumption. [J

7 Future Work

An obvious question for future work is whether persistence can be proved for
other properties of ETRSs. A more important question is whether persistence
results still hold if we allow order-sorted signatures. This would result in more
useful decomposability results by relaxing the typing conditions imposed on the
respective subsystems.

Nevertheless, persistence in a many-sorted setting is already very useful. Below
we illustrate this by giving a simple proof of the completeness of the recent powerful
dependency pair approach of Arts and Giesl [2] for proving termination. More
precisely, we prove that termination of a TRS R implies termination of the TRS
R UDP(R). Here DP(R) denotes the set of dependency pairs of R. These are
defined as follows. Let F be the signature of R. A function symbol f € F is said
to be defined if f = root(l) for some rewrite rule [— r € R. With every defined
function symbol f we associate a so-called tuple symbol F of the same arity. Now
if f(l1,...,0p) = r € Rand g(t1,...,t,) is a subterm of r with g a defined symbol
then F(ly,...,l,) — G(t1,...,tn) is a dependency pair of R.

Lemma 7.1 If R is a terminating TRS then so is R UDP(R).

Proof Let F be the signature of R. Consider two sorts, o and [, with sort
declarations f: a x --- x @« — « for every f € F and F': a X --- X a — (3 for
every tuple symbol F'. Note that these sort declarations are compatible with the
rewrite rules in RUDP(R). Let S = {a, 8}. First we show that the S-sorted TRS
RUDP(R) is terminating. Suppose on the contrary that there exists a well-typed
term ¢ that admits an infinite R U DP(R)-rewrite sequence A. If sort(t) = « then
A consists of R-rewrite steps, contradicting the termination of R. If sort(¢) =
then A must have the form

t =R 81 —DpP(R) t1 =R 2 —DP(R) l2 =R 53 —DPR) I3 =R - -
where all R-steps take place below the root and all DP(R)-steps at the root. By
replacing every tuple symbol by its corresponding symbol in F and by putting

22

appropriate contexts around the ¢; terms, we easily obtain an infinite R-rewrite
sequence starting from ¢, again contradicting the termination of R.

Now suppose that the unsorted TRS RUDP(R) is not terminating. According
to Lemma 3.8 it admits a rewrite sequence that contains an inner collapsing rewrite
step. According to the sort declarations, aliens must have sort 5. However, the
only rewrite rules applicable to a subterm of sort § stem from DP(R) and these
rules are non-collapsing. Hence inner collapsing rewrite steps do not exist. We
conclude that R UDP(R) is terminating. [J

The reader is invited to compare our proof with the one in [2, Theorem 7].

Acknowledgements

We thank the anonymous referees for their detailed comments which helped to
improve the paper.

References

[1] T. Aoto and Y. Toyama, On Composable Properties of Term Rewriting Sys-
tems, Proceedings of the 6th International Conference on Algebraic and Logic
Programming, Southampton, LNCS 1298 (1997) 114-128.

[2] T. Arts and J. Giesl, Termination of Term Rewriting Using Dependency Pairs,
Technical report IBN-97/46, Department of Computer Science, Darmstadt
University of Technology, Germany, 1997. To appear in Theoretical Computer
Science.

[3] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge Univer-
sity Press, 1998.

[4] A. Ben Cherifa and P. Lescanne, Termination of Rewriting Systems by Poly-
nomial Interpretations and its Implementation, Science of Computer Pro-
gramming 9(2) (1987) 137-159.

[5] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation
3 (1987) 69-116.

[6] N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theo-
retical Computer Science, Vol. B (ed. J. van Leeuwen), North-Holland (1990)
243-320.

23

[7]

8]

N. Dershowitz and Z. Manna, Proving Termination with Multiset Orderings,
Communications of the ACM 22 (1979) 465-476.

M.C.F. Ferreira, Dummy Elimination in Equational Rewriting, Proceedings
of the 7th International Conference on Rewriting Techniques and Applica-
tions, New Brunswick, LNCS 1103 (1996) 78-92.

M.C.F. Ferreira and H. Zantema, Dummy Elimination: Making Termination
Easier, Proceedings of the 10th International Conference on Fundamentals of
Computation Theory, Dresden, LNCS 965 (1995) 243-252.

A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema, Relative Unde-
cidability in Term Rewriting, Proceedings of the 10th Annual Conference of
the European Association for Computer Science Logic, Utrecht, LNCS 1258
(1997) 150-166.

J.-P. Jouannaud and M. Munoz, Termination of a Set of Rules Modulo a Set
of Equations, Proceedings of the 7th International Conference on Automated
Deduction, Napa, LNCS 170 (1984) 175-193.

D. Kapur and G. Sivakumar, A Total, Ground Path Ordering for Proving
Termination of AC-Rewrite Systems, Proceeding of the 8th International
Conference on Rewriting Techniques and Applications, Sitges, LNCS 1232
(1997) 142-155.

J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer
Science, Vol. 2 (eds. S. Abramsky, D. Gabbay and T. Maibaum), Oxford
University Press (1992) 1-116.

A. Middeldorp, A Sufficient Condition for the Termination of the Direct Sum
of Term Rewriting Systems, Proceedings of the 4th IEEE Symposium on
Logic in Computer Science, Pacific Grove (1989) 396-401.

A. Middeldorp and B. Gramlich, Simple Termination is Difficult, Applicable
Algebra in Engineering, Communication and Computing 6 (1995) 115-128.

E. Ohlebusch, A Simple Proof of Sufficient Conditions for the Termination
of the Disjoint Union of Term Rewriting Systems, Bulletin of the EATCS 49
(1993) 178-183.

E. Ohlebusch, Modular Properties of Composable Term Rewriting Systems,
Ph.D. thesis, Universitét Bielefeld (1994).

24

[18]

[19]

[20]

21]

J. van de Pol, Modularity in Many-Sorted Term Rewriting Systems, Master’s
thesis, report INF/SCR-92-37, Utrecht University (1992).

A. Rubio, A fully syntactic AC-RPO, Proceedings of the 10th International
Conference on Rewriting Techniques and Applications, Trento, LNCS 1631
(1999) 133-147.

A. Rubio and R. Nieuwenhuis, A Total AC-Compatible Ordering Based on
RPO, Theoretical Computer Science 142 (1995) 209-227.

J. Steinbach, Termination of Rewriting: Extensions, Comparison and Au-
tomatic Generation of Simplification Orderings, Ph.D. thesis, Universitit
Kaiserslautern (1994).

H. Zantema, Termination of Term Rewriting: Interpretation and Type Elim-
ination, Journal of Symbolic Computation 17 (1994) 23-50.

H. Zantema and A. Geser, Non-Looping Rewriting, report UU-CS-1996-03,
Utrecht University, Department of Computer Science (1996).

25

