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Abstract

This paper solves a long-standing open problem in mathematical
finance: to find a solution to the problem of maximizing utility from
terminal wealth of an agent with a random endowment process, in the
general, semimartingale model for incomplete markets, and to charac-
terize it via the associated dual problem. We show that this is indeed
possible if the dual problem and its domain are carefully defined. More
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precisely, we show that the optimal terminal wealth is equal to the in-
verse of marginal utility evaluated at the solution to the dual problem,
which is in the form of the regular part of an element of (L∞)∗ (the
dual space of L∞).
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ment, duality.
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1 Introduction

The problem of utility maximization in incomplete markets is relatively new
- it was solved in Ito-processes models of financial markets by Karatzas,
Lehoczky, Shreve and Xu (1991) (henceforth KLSX[91]), using the powerful
convex duality/martingale approach, which enabled the authors to deal with
models which are not necessarily Markovian (for a more detailed history of
the problem see Kramkov and Schachermayer (1999), henceforth KS[99]).
The approach has recently been generalized to semimartingale models and
under weaker conditions on the utility function by KS[99]. One of the main
innovations of the latter article, that made the approach work in this general
context, was the extension of the domain of the dual problem: it is defined
through a family of random variables Y (T ) (here T denotes the terminal
time) associated with nonnegative processes Y (·) which are such that, for
any admissible wealth processs X(·), the product process X(·)Y (·) is a su-
permartingale, and not necessarily a local martingale as in KLSX[91]. In
both KLSX[91] and KS[99], the agent was endowed with an initial capital
x > 0, and received no endowment after the initial time t = 0. Attempts to
extend the KLSX[91] approach to an agent who receives a random endow-
ment process have failed (if the endowment process cannot be replicated
in the market). Nevertheless, solutions have been found by attacking di-
rectly the primal problem in special cases: in Markovian models by Duffie,
Fleming, Soner and Zariphopoulou (1997), and in more general models in
Cuoco (1997). A dual problem approach in a particular Brownian model has
been worked out under the constraint X(·) ≥ 0 by El Karoui and Jeanblanc
(1998). This constraint is somewhat stringent in models with endowment
process, since it precludes borrowing against future income.
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In this paper we solve in great generality the problem of maximizing
expected utility E[U(X(T ))] of terminal wealth, for an agent whose income
is represented as an arbitrary bounded and adapted endowment process
e(·). This is done in the general semimartingale incomplete model, under
the same minimal conditions on the utility function U as in KS[99], and
using a similar duality approach. The main difference, and the reason why
we are able to do it, is that we extend the dual domain even further - it is no
longer contained in the space L1, but (L∞)∗, the dual space of L∞. In the
language of control theory, we are “relaxing” the set of controls over which
we do the optimization in the dual problem. The solution Q̂ is then found in
this set, and the optimal terminal wealth is shown to be equal to the inverse
of marginal utility evaluated at the regular part of Q̂. It should be mentioned
that this approach was already implicitly present in KS[99]: in that paper
the domain of the dual problem is associated with processes Y (t) which,
in our context, correspond to the processes given by the Radon-Nikodym
densities of the regular part of the restriction of elements Q ∈ (L∞)∗ to Ft,
the σ-algebra generated by the information up to time t. It was shown in
that article that the optimal Ŷ (·) is not necessarily a martingale, hence the
corresponding Q̂ is not necessarily contained in L1. It was not important
for the analysis of KS[99] to observe where “the singular mass of Q̂ has
disappeared to”. In the present paper this becomes very important, since the
“disappeared mass” does not actually vanish, but acts on the accumulated
random endowment, and can be located in (L∞)∗.

We introduce the model and the primal problem in Section 1, and define
the dual problem in Section 2. We solve it and make the connection to the
primal problem in Section 3. Finally, in the Appendix we recall some results
on properties of (L∞)∗ needed in the paper.

2 The Market Model

We consider a model of a security market which consists of d + 1 assets,
one bond (or bank account) and d stocks. Without loss of generality, we
assume that the bond price is constant (we can always choose the bond as
the numéraire otherwise). The stock-price process S = (Si)1≤i≤d is assumed
to be a semimartingale on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P).
Here T is the finite time-horizon, but our results can also be extended to an
infinite time-horizon.

A portfolio Π is defined as a pair (x,H), where the constant x ∈ R is
the initial wealth and H = (H i)1≤i≤d is a predictable S-integrable process
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specifying the number of shares of each asset held in the portfolio. We also
assume that the agent receives an exogenous endowment (income), with its
cumulative process denoted by e = (et)0≤t≤T , e0 = 0, assumed bounded

and adapted, with ρ
4
= ‖eT ‖∞ < ∞. The corresponding value process

A = (At)0≤t≤T is then given by

At = x+ (H · S)t + et, 0 ≤ t ≤ T.

Here (H · S) =
∫ ·

0 H dS denotes the stochastic integral with respect to S.
Note that e(·) can take negative values, in which case it is interpreted as
the mandatory consumption (mandatory outflow of funds). It should also
be noted that for the problem of maximizing expected utility from terminal
wealth AT that we consider here, only the final value eT matters. This is
not the case when maximizing expected utility from consumption, a problem
that we plan to consider in future research.

A portfolio Π is called admissible if the process (H · S) is uniformly
bounded from below by some constant. Let C0 be the convex cone of random
variables dominated by admissible stochastic integrals, i.e.

C0
4
= {X | X ≤ (H · S)T for some admissible portfolio H}

and C 4= C0 ∩ L∞, the intersection with space L∞.
Suppose that the agent also has a utility function U : (0,∞) −→ R for

wealth, which is strictly concave, strictly increasing, continuously differen-
tiable and satisfies the Inada conditions

U ′(0+) = lim
x→0

U ′(x) =∞, U ′(∞) = lim
x→∞

U ′(x) = 0.

Our primal problem is to maximize the expected utility from terminal wealth
with value function

(2.1) u(x) = max
X∈C0

E[U(x+X + eT )].

Without loss of generality, we may assume U(∞) > 0. Define also U(x) =
−∞ whenever x ≤ 0.

We adopt the definition of an equivalent local martingale measure from
KS[99].

Definition 2.1 A probability measure Q ∼ P is called an equivalent local
martingale measure if for any H admissible, (H · S) is a local martingale
under Q.
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Throughout the paper we shall assume the following conditions.

Assumption 1 The family of equivalent local martingale measures M is
not empty.

Assumption 2 The utility function U(x) has asymptotic elasticity strictly
less than 1, i.e.

AE(U)
4
= lim sup

x→∞

xU ′(x)
U(x)

< 1.

Assumption 3 |u(x)| <∞ holds for some x > ρ = ‖eT ‖∞.

Remark 2.1 Detailed discussions on Definition 2.1 and the intimate rela-
tionship between Assumption 1 and the absence of arbitrage opportunities
are available in KS[99], DS[94] and DS[98] (for the case of general process
S which fails to be locally bounded).

Remark 2.2 It is shown in KS[99] that Assumption 2 is basically both nec-
essary and sufficient to get existence and nice properties of the solution to
the primal problem.

Remark 2.3 The concavity of u(x) and Assumption 3 easily imply that
u(x) <∞ for all x ∈ R.

3 The Dual Problem

Let us denote by V : (0,∞) −→ R the conjugate function of utility U(x),
i.e.,

V (y)
4
= sup

x>0
[U(x)− xy] = U(I(y))− yI(y).

Here I : (0,∞) −→ (0,∞) is the continuous, strictly decreasing inverse
function of the derivative of U(x). It is well known that V (y) is continuously
differentiable, strictly decreasing, strictly convex and satisfies

V (0) = U(∞), V (∞) = U(0), and V ′ = −I.

The function V (y) is the Legendre-transform of the function −U(−x),
which has been proved very useful in solving utility maximization problems,
especially in non-Markovian cases (for early works on duality in stochastic
optimal control see Bismut [73], and Pliska [86], for the first application to
finance). In this paper, we extend the usual dual domain (a subset of L1) to
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(L∞)∗, the dual space of L∞. It is well known that L1 is strictly contained
in (L∞)∗; see Dunford and Schwartz (1967) or Appendix A for more details
about space (L∞)∗.

Define the following subset of (L∞)∗, which is equipped with the weak-
star topology:

D 4=
{
Q ∈ (L∞)∗

∣∣ ‖ Q ‖= 1 and 〈Q,X〉 ≤ 0 for all X ∈ C
}
,

and Dr 4= D ∩ L1 (where r stands for “regular”). Note that D ⊆ (L∞)∗+
(hence Dr ⊆ L1

+) since −L∞+ ⊆ C. Moreover, D is clearly convex and weak-
star compact (by Alaoglu’s Theorem). For any Q ∈ (L∞)∗+, we have the
unique decomposition Q = Qr + Qs. Here Qr and Qs are defined on the
σ–algebra F modulo the nullsets; on this abstract σ–algebra Qr is countably
additive and absolutely continuous while Qs is purely finitely additive.

For any Q ∈ (L∞)∗+, we may define

〈Q,X〉 4= lim
n
↑ 〈Q,X ∧ n〉 ∈ [0,∞]

for all X ∈ L0
+. For X ∈ L0, set 〈Q,X〉 = 〈Q,X+〉− 〈Q,X−〉 whenever this

is well defined. Under this definition, it is easy to see that

〈Q,X〉 ≤ 0

for all Q ∈ D and all X ∈ C0 which are uniformly bounded from below
(actually, this holds for all Q ∈ D, X ∈ C0).

We now define the value function of the dual optimization problem by

(3.2) v(y)
4
= min

Q∈D
J(y,Q) := min

Q∈D

{
E[V (y

dQr

dP
)] + y〈Q, eT 〉

}
,

which is clearly decreasing and convex. The following is the principal result
of the paper.

Theorem 3.1 Suppose Assumptions 1−3 hold true. Then

(i) u(x) < ∞ for all x ∈ R and v(y) is finitely valued for all y > 0. The
value function u and v are conjugate in the sense that

(3.3) v(y) = sup
x>x0

[u(x)− xy], y > 0,

(3.4) u(x) = inf
y>0

[v(y) + xy], x > x0.
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Here

(3.5) x0
4
= −v′(∞) = sup

Q∈D
〈Q,−eT 〉.

The value function u(x) is continuously differentiable on (x0,∞) and
u(x) = −∞ for all x < x0. The value function v(y) is continuously
differentiable on (0,∞).

(ii) For all y > 0, there exists Q̂y ∈ D (unique up to the singular part)
that attains the infimum in the dual problem (3.2). For all x > x0,

X̂ = I(ŷ
dQ̂rŷ
dP )− x− eT is optimal for the primal problem (2.1), where

ŷ attains the infimum of [v(y) + xy], and ŷ = u′(x).

The proof of the above Theorem will be given in Section 4 below.

Remark 3.1 The definition of the dual domain D is independent of x and
(et)0≤t≤T . It is simply the polar set of C (intersected with the norm-1 ele-
ments). Moreover, D and Dr are both nonempty since M ⊆ Dr. Actually,
Dr is the set of absolutely continuous local martingale measures in the case of
locally bounded S (see DS[94], Theorem 5.6); see also DS[98] for the general
case and the notion of equivalent sigma-martingale measures.

4 Proof of the Main Theorem

We claim that E[U(x + X + eT )] ≤ J(y,Q) + xy for any X ∈ C0 and y >
0, Q ∈ D. We only need to consider the case x + X + eT ≥ 0 (hence X
is uniformly bounded from below). It follows from the definition of V (·),
nonnegativity of x+X + eT , and 〈Q,X〉 ≤ 0, that

E[U(x+X + eT )] ≤ E[V (y
dQr

dP
) + y(x+X + eT )

dQr

dP
]

≤ E[V (y
dQr

dP
)] + y〈Q, x+X + eT 〉

≤ J(y,Q) + xy.

Moreover, the above inequalities become equalities if and only if

(4.6) x+X + eT = I(y
dQr

dP
), 〈Qs, x+X + eT 〉 = 0 and 〈Q,X〉 = 0,

in which case X is optimal for the primal problem. It is now clear that

(4.7) u(x) ≤ inf
y>0

[v(y) + xy].
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To show that equality actually holds true, it suffices to find a pair (ŷ, Q̂)
which attains the infimum of [J(y,Q)+xy] and a X ∈ C0 such that equalities
(4.6) hold.

First note that v(y) is finitely valued. Indeed, it follows from Jensen’s
inequality and the decrease of V (·) that

(4.8) v(y) ≥ min
Q∈D

E[V (y
dQr

dP
)]− yρ ≥ min

Q∈D
V (yE[

dQr

dP
])− yρ ≥ V (y)− yρ,

where ρ =‖ eT ‖∞. The fact v(y) <∞ follows from Theorem 2.2(iv) KS[99]
(observe M⊆ D, 〈Q, eT 〉 ≤ ρ and supX∈C0 EU(x+X) ≤ u(x+ ρ) <∞ for
all x).

The following inequalities are often used in the proof below. Under
Assumption 2, there exist y0 > 0, 0 < γ, µ < 1 and C <∞ such that

(4.9) yI(y) <
γ

1− γ
V (y) and V (µy) < CV (y), ∀0 < y < y0.

(see KS[99] Lemma 6.3 and Corollary 6.1 for the proof.)

Lemma 4.1 For every y > 0, the minimum in the definition of the dual
value function v(y) is attained at some Q̂y ∈ D.

Proof: With the help of Komlos Theorem (see Schwartz 86, for example)
and convexity of D, we can find a minimizing sequence {Qn} ⊆ D such that

dQrn
dP
−→ f almost surely

for some random variable f ≥ 0. Moreover, since |〈Qn, eT 〉| ≤ ρ, we can
always extract a subsequence of Qn (still denoted by Qn) such that 〈Qn, eT 〉
converges. Since D is weak-star closed and bounded, it is weak-star compact,
and the sequence {Qn} has a cluster point Q∗ ∈ D (that might not be
unique). We want to show that Q∗ is actually a minimizer. It follows from
Proposition A.1 that

dQr∗
dP

= f = lim
dQrn
dP

.

By Lemma 3.4 of KS[99], we have

lim inf E[V (y
dQrn
dP

)] ≥ E[V (y
dQr∗
dP

)].

Furthermore, since 〈Q∗, eT 〉 is a cluster point of {〈Qn, eT 〉} which is conver-
gent, we have 〈Q∗, eT 〉 = lim〈Qn, eT 〉. Hence J(y,Q∗) ≤ lim inf J(y,Qn) =
v(y), which yields

J(y,Q∗) = v(y).
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Therefore, we can take Q̂y = Q∗. 2

Remark 4.1 The minimizer might NOT be unique. However, it is unique
to the extent that its countably additive part (regular part) is unique. Indeed,

suppose Q1, Q2 are two minimizers with Qr1 6= Qr2. Let Q
4
= 1

2Q1 + 1
2Q2. It

follows that Qr = 1
2Q

r
1+ 1

2Q
r
2. By strict convexity of V we have E[V (y dQ

r

dP )] <
1
2E[V (y dQ

r
1

dP )] + 1
2E[V (y dQ

r
2

dP )]. Hence J(y,Q) < 1
2J(y,Q1) + 1

2J(y,Q2) =
J(y, Q̂y), a contradiction.

Remark 4.2 It is easy to see that the function v(·) is actually strictly con-
vex. Indeed, for all y1, y2 > 0 with y1 6= y2, and λ ∈ (0, 1), we have, for
y = λy1 + (1− λ)y2,

v(y) = J(y, Q̂y) > λJ(y1, Q̂y) + (1− λ)J(y2, Q̂y) ≥ λv(y1) + (1− λ)v(y2).

Lemma 4.2 The dual value function v(y) is continuously differentiable with

v′(y) = −〈Q̂ry, I(y
dQ̂ry
dP

)〉+ 〈Q̂y, eT 〉.

Proof: We first show that v(·) is differentiable (hence continuously differ-

entiable by convexity). For a fixed y > 0, let h(z)
4
= E[V (z dQ̂

r
y

dP )]+z〈Q̂y, eT 〉.
Then h(·) is convex, h(·) ≥ v(·) and h(y) = v(y). These estimates easily
imply 4−h(y) ≤ 4−v(y) ≤ 4+v(y) ≤ 4+h(y), where 4± denote the left
and the right derivatives respectively. It is easy to show, by the fact that
V ′(·) = −I(·), and the Monotone Convergence Theorem, that

4+h(y) ≤ −E

[
dQ̂ry
dP

I(y
dQ̂ry
dP

)

]
+ 〈Q̂y, eT 〉 = −〈Q̂ry, I(y

dQ̂ry
dP

)〉+ 〈Q̂y, eT 〉.

On the other hand,

4−h(y) ≥ lim sup
ε→0+

E

[
−
dQ̂ry
dP

I

(
(y − ε)

dQ̂ry
dP

)
+ 〈Q̂y, eT 〉

]
.

We claim that, with y0 being the constant from (4.9),

dQ̂ry
dP

I

(
(y − ε)

dQ̂ry
dP

)
=
dQ̂ry
dP

I

(
(y − ε)

dQ̂ry
dP

)
1
{y dQ̂

r
y

dP
≤y0}

+
dQ̂ry
dP

I

(
(y − ε)

dQ̂ry
dP

)
1
{y dQ̂

r
y

dP
>y0}
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is uniformly integrable when ε is sufficiently small. Indeed, the second part

is dominated by I(y−εy y0)dQ̂
r
y

dP , which is uniformly integrable when ε is small

since ‖ Q̂ry ‖≤ 1. It follows from (4.9) that the first part, when ε is small, is
dominated by

1
y − ε

γ

1− γ
V

(
(y − ε)

dQ̂ry
dP

)
which is in turn dominated by

1
y − ε

γC

1− γ
V

(
y
dQ̂ry
dP

)
.

Therefore the first part is also uniformly integrable since E

∣∣∣∣V (y dQ̂rydP

)∣∣∣∣ <∞.

We have established

4−h(y) ≥ −E

[
dQ̂ry
dP

I(y
dQ̂ry
dP

)

]
+ 〈Q̂y, eT 〉 = −〈Q̂ry, I(y

dQ̂ry
dP

)〉+ 〈Q̂y, eT 〉.

This completes our proof. 2

Lemma 4.3 v′(0+) = −∞, v′(∞) ∈ [infQ∈D〈Q, eT 〉, supQ∈D〈Q, eT 〉]

Proof: Observe that v(0+) ≥ V (0+) by (4.8). However, v(y) ≤ V (0+)+yρ
implies v(0+) ≤ V (0+), which in turn implies v(0+) = V (0+) = U(∞). If
U(∞) =∞, then v(0+) =∞ and v′(0+) = −∞. If U(∞) <∞, we have

−v′(0+) ≥ v(0+)− v(y)
y

≥
V (0+)− V (y dQ

r

dP )− yρ
y

≥ E[
dQr

dP
I(y

dQr

dP
)]− ρ

for all y > 0 and Q ∈ D. Letting y → 0, we have −v′(0+) ≥ ∞, or
v′(0+) = −∞.

By de l’Hospital’s Rule

v′(∞) = lim
y→∞

v(y)
y

= lim
y→∞

infQ∈D
{

E[V (y dQ
r

dP )] + y〈Q, eT 〉
}

y

∈

[
lim
y→∞

infQ∈D E[V (y dQ
r

dP )]
y

+ inf
Q∈D
〈Q, eT 〉, lim

y→∞

infQ∈D E[V (y dQ
r

dP )]
y

+ sup
Q∈D
〈Q, eT 〉

]

However, limy→∞
infQ∈D E[V (y dQ

r

dP
)]

y = 0 as in KS[99], Lemma 3.7. 2
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Remark 4.3 Note that infy>0[v(y) + xy] = −∞ for all x < −v′(∞), which
implies u(x) = −∞ by (4.7) (in this case the optimization problem is trivial).
However, for every x ∈ (−v′(∞),∞), there exists a unique ŷ > 0 that attains
the infimum of [v(y) + xy], and such that v′(ŷ) = −x. From now on we
consider x ∈ (−v′(∞),∞), and let Q̂ := Q̂ŷ and X̂ = I(ŷ dQ̂

r

dP ) − x − eT . It
follows from Lemma 4.2 that

(4.10) v′(ŷ) = −x = −〈Q̂r, x+ X̂〉+ 〈Q̂s, eT 〉.

Lemma 4.4 We have

sup
Q∈D

[〈Qr, x+ X̂〉 − 〈Qs, eT 〉] = 〈Q̂r, x+ X̂〉 − 〈Q̂s, eT 〉 = x;

in particular,

(4.11) 〈Qr, x+ X̂〉 ≤ 〈Qs, eT 〉+ x ∀Q ∈ D.

Remark 4.4 ¿From the definition ofD, we have 〈Q, x+X̂〉 ≤ x, forQ ∈ D.
If the endowment eT is zero almost surely, then, by the lemma, we also have
〈Qr, x+ X̂〉 ≤ x for Q ∈ D, and 〈Q̂r, x+ X̂〉 = x. This has the “classical”
interpretation that x is the cost of replicating the claim ÂT := x+ X̂ in this
incomplete market, and the “shadow state-price density” for pricing ÂT is
given by the density of Q̂r. In the case of a nonzero endowment process this
interpretation is somewhat lost: now we have 〈Q̂, x+XT 〉 = x (see below),
but Q̂ does not necessarily have a density.

For the agent receiving the endowment, the cost of financing x+ X̂ + eT
is still x, but

〈Q̂r, x+ X̂ + eT 〉 = x+ 〈Q̂, eT 〉.

However, if the endowment process is “spanned” in the market, namely
representable as et = (He ·S)t for some admissible strategy He, the standard
interpretation is preserved. Indeed, since et is assumed to be a bounded
process, we have both 〈Q, eT 〉 ≤ 0 and 〈Q,−eT 〉 ≤ 0, for all Q ∈ D. In
particular, 〈Q̂, eT 〉 = 0, and x = 〈Q̂r, x+ X̂ + eT 〉.

Proof of Lemma 4.4: For a given Q ∈ D and ε ∈ (0, 1), let Qε
4
= (1 −
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ε)Q̂+ εQ. It follows that Qrε = (1− ε)Q̂r + εQr. By optimality of Q̂ we have

0 ≥ 1
εŷ

E

[
V (ŷ

dQ̂r

dP
)− V (ŷ

dQrε
dP

)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

≥ − 1
εŷ

E

[
ŷ(
dQ̂r

dP
− dQrε

dP
)I(ŷ

dQrε
dP

)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

= E

[
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQrε
dP

)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉.

However,(
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQrε
dP

)

)−
≤ dQ̂r

dP
I(ŷ

dQrε
dP

) ≤ dQ̂r

dP
I(ŷ(1− ε)dQ̂

r

dP
).

It follows from the same proof as in Lemma 4.2 that the last term is uni-
formly integrable when ε is sufficiently small. Now Fatou’s Lemma gives

0 ≥ E

[
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQ̂r

dP
)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

= 〈Qr, x+ X̂〉 − 〈Q̂r, x+ X̂〉+ 〈Q̂s, eT 〉 − 〈Qs, eT 〉,

which completes our proof. 2

We recall from DS[94] the following version of the bipolar theorem:

Lemma 4.5 Let X ∈ L∞. Then X ∈ C if and only if 〈Q,X〉 ≤ 0 for all
Q ∈ Dr.

Proof: Necessity follows directly from the definition. For sufficiency, first
note that the set C is a closed convex cone in L∞ equipped with the weak-
star topology σ(L∞,L1); see DS[94], Theorem 4.2 (for the case of non locally
bounded S we refer to DS[98]). Now let X ∈ L∞, such that 〈Q,X〉 ≤ 0 for
all Q ∈ Dr. If X does not belong to C, by the Hahn-Banach Theorem X and
C are strictly separated (see Conway 85, Theorem IV.3.9.) Therefore, there
exists a continuous linear functional f (i.e. f ∈ (L∞, σ(L∞,L1))∗ = L1)
such that 〈f,X〉 > α and 〈f,X〉 ≤ α, ∀X ∈ C for some α ∈ R. We claim
that α = 0. Since 0 ∈ C, we have α ≥ 0. Moreover, if there exists an X ∈ C
such that 〈f,X〉 > 0, then for any constant c > 0, we have cX ∈ C because
C is a convex cone. Thus, 〈f, cX〉 = c〈f,X〉 tends to +∞ as c→∞, which
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is impossible. Hence α = 0. This implies that f ∈ Dr and 〈f,X〉 > 0,
which is impossible. 2

Lemma 4.6 X̂ ∈ C0.

Proof: It suffices to show that X̂ ∧ n ∈ C for all n > 0, and the rest
follows from DS[94], Theorem 4.2 again. However, X̂ ∧ n ∈ L∞ because
X̂ is uniformly bounded from below. Moreover, for any Q ∈ Dr we have
Qr = Q and it follows from Lemma 4.4 that

〈Q, x+ X̂ ∧ n〉 ≤ 〈Q, x+ X̂〉 ≤ x,

which implies 〈Q, X̂ ∧ n〉 ≤ 0 for all Q ∈ Dr and n ≥ 0. By Lemma 4.5,
we obtain X̂ ∧ n ∈ C. 2

Remark 4.5 Since X̂ ∈ C0 and X̂ is bounded from below, we have 〈Q̂, X̂〉 ≤ 0.
However, it follows from (4.10) that

〈Q̂, eT 〉+ x = 〈Q̂r, x+ X̂ + eT 〉 ≤ 〈Q̂, x+ X̂ + eT 〉 ≤ 〈Q̂, eT 〉+ x,

which yields the last two equations in (4.6):

(4.12) 〈Q̂s, x+ X̂ + eT 〉 = 0 and 〈Q̂, X̂〉 = 0.

Therefore, we have shown that X̂ solves the primal optimization problem
and

(4.13) u(x) = v(ŷ) + xŷ.

Remark 4.6 By definition there exists an admissible portfolio process Ĥ
such that X̂ := X̂T = (Ĥ · S)T . Let X̂t

4
= (Ĥ · S)t. We claim that X̂t is a

“martingale” under the finitely additive measure Q̂ in the sense that

〈Q̂, X̂T1A〉 = 〈Q̂, X̂t1A〉

for all A ∈ Ft. To this end, we only need to show that X̂t is a “super-
martingale” under the finitely additive measure Q̂ (“martingale” property
will follow from the fact that X̂0 = 0 and 〈Q̂, X̂T 〉 = 0), or equivalently

〈Q̂, X̂T1A〉 ≤ 〈Q̂, X̂t1A〉

13



for all A ∈ Ft. It suffices to show the above inequality for all A ∈ Ft on which
X̂t is bounded. Fix such a set A, and note that (X̂t) is a supermartingale
under any measure Q ∈ Dr; see Proposition 4.7 DS[98]. This implies

〈Q, X̂T1A ∧ n〉 ≤ 〈Q, X̂T1A〉 ≤ 〈Q, X̂t1A〉, ∀Q ∈ Dr,∀n > 0

Hence
〈Q̂, X̂T1A ∧ n〉 ≤ 〈Q̂, X̂t1A〉

for all n > 0, since Dr is weak-star dense in D. Letting n→∞, we obtain

〈Q̂, X̂T1A〉 ≤ 〈Q̂, X̂t1A〉

hence (X̂t) is a “supermartingale” under the finite additive measure Q̂, there-
fore also a “martingale”.

Proof of the Main Theorem: The existence of the optimal Q̂y for the
dual problem, and the optimality of X̂ for the primal problem have already
been shown. We already know that u(x) ≤ v(y) + xy, so that (4.13) implies
(3.4). Then (3.3) is a consequence of the classical convex duality theory, as
is the differentiability of u.

It only remains to show (3.5). From the argument above we obtain
|u(x)| < ∞ for all x > x0. This implies that there exists X ∈ C0 such that
x + X + eT ≥ 0, hence 〈Q, x + X + eT 〉 ≥ 0, and x ≥ 〈Q,−eT 〉, for all
Q ∈ D. It follows that x0 ≥ supQ∈D〈Q,−eT 〉, hence x0 = supQ∈D〈Q,−eT 〉
from Lemma 4.3. 2

5 Conclusions

We characterize the optimal solution to the problem of maximizing utility
from terminal wealth for an agent with random endowment, in general in-
complete markets. This is done by appropriately defining the domain of the
dual problem, as a subset of (L∞)∗. As the referee points out, this result
can be regarded as a necessary step towards the elusive general theory of
equilibrium in incomplete semimartingale market models. Moreover, it can
also serve as a stepping stone for the utility based approach to pricing con-
tingent claims in incomplete markets, as in Hodges and Neuberger (1989).
We leave these problems for future research.
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A Appendix. Some properties of (L∞)∗+

We state and prove here some well-known properties of (L∞)∗+, for the
convenience of the reader. A more complete discussion can be found in
Dunford and Schwartz (1967) (henceforth DS[67]) or Rao and Rao (1983).

Let (Ω,F ,P) be our underlying probability space and (L∞)∗ be the dual
space of L∞(Ω,F ,P), and denote by (L∞)∗+ the set of all the nonnegative
elements in (L∞)∗. The set (L∞)∗+ can be identified as the set of all the
nonnegative finitely additive bounded set functions on F which vanish on the
sets of P-measure zero (Theorem IV.8.16 of DS[67]). For any Q ∈ (L∞)∗+,
there exists a unique decomposition

Q = Qr +Qs, Qr ≥ 0, Qs ≥ 0,

where Qr is countably additive (regular part) and Qs is purely finitely addi-
tive (singular part); see Definition III.7.7 and Theorem III.7.8 of DS[67] for
relevant information. The measure Qr is absolutely continuous to P, and
we denote its Radon-Nikodym derivative dQr

dP .

Lemma A.1 Q ∈ (L∞)∗+ is purely finitely additive (i.e. Qr = 0) if and
only if for every ε > 0, there exists set Aε ∈ F such that P(Aε) > 1− ε and
〈Q, 1Aε〉 = 0.

Proof: Sufficiency. Let Q = Qr +Qs and dQr

dP = f . Clearly f = 0 on Aε for
any ε > 0. But P(Aε) −→ 1, and we have f = 0 almost surely, or Qr = 0.

Necessity. Suppose Qr = 0. We define the following new additive set
function

ν(A)
4
= inf {〈Q, 1E〉+ P(A \ E); E ⊆ A,E ∈ F} ; ∀A ∈ F .

It is fairly easy to show that ν is finitely additive; we omit the details.
However, ν is actually countably additive (or, a measure) since ν(Bn) ≤
P(Bn) → 0 whenever {Bn; n ≥ 1} is a decreasing sequence of sets in F
with ∩∞n=1Bn = ∅. But ν ≤ Q = Qs, which yields ν = 0 by definition.

Let ε > 0. Since ν(Ω) = 0, there exists set An ∈ F for any n > 0 such
that

〈Q, 1An〉 <
ε

2n
and P(Acn) <

ε

2n
.

Let Aε
4
= ∩∞n=1An. Note Aε ∈ F and 〈Q, 1Aε〉 ≤ 〈Q, 1An〉 < ε

2n , which
implies that 〈Q, 1Aε〉 = 0. On the other hand, P(Acε) ≤

∑∞
n=1 P(Acn) < ε,

or P(Aε) > 1− ε. This completes the proof. 2
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Proposition A.1 Suppose a sequence {Qn} ⊆ (L∞)∗+ is such that dQrn
dP −→

f almost surely for some f ≥ 0. Then any weak-star cluster point Q of {Qn}
satisfies dQr

dP = f .

Proof: By Lemma A.1, for any ε > 0, there exists a set Aε ∈ F such that
P(Aε) > 1 − ε and 〈Qs, 1Aε〉 = 0. Moreover, there exist sets Bn ∈ F such
that P(Bn) > 1− ε

2n and 〈Qsn, Bn〉 = 0. By Egorov’s Theorem, there exists
a set Cε such that P(Cε) > 1− ε and dQrn

dP −→ f uniformly on Cε. Now for

any A ∈ F such that A ⊆ Ωε
4
= Aε

⋂∞
n=1Bn

⋂
Cε, we have for a subsequence

of {Qn} (still denoted as {Qn})∫
A
f dP = lim

∫
A

dQrn
dP

dP = lim〈Qrn, 1A〉 = lim〈Qn, 1A〉 = 〈Q, 1A〉 = 〈Qr, 1A〉 =
∫
A

dQr

dP
dP.

(The reason we can extract a subsequence is that 〈Q, 1A〉 is a cluster point
of 〈Qn, 1A〉.) Therefore, dQr

dP = f almost surely on Ωε, but P(Ωε) > 1 − 3ε.
Letting ε −→ 0, we complete the proof. 2

Corollary A.1 Let Qn be a sequence of purely finitely additive set functions
with Q as a weak-star cluster point. Then Q is purely finitely additive.
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