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Abstract. We give a complete characterization of affine term structure mod-
els based on a general nonnegative Markov short rate process. This applies to
the classical CIR model but includes as well short rate processes with jumps.
We provide a link to the theory of branching processes and show how CBI-
processes naturally enter the field of term structure modelling. Using Markov
semigroup theory we exploit the full structure behind an affine term structure
model and provide a deeper understanding of some well-known properties of
the CIR model. Based on these fundamental results we construct a new short
rate model with jumps, which extends the CIR model and still gives closed
form expressions for bond options.

1. Introduction

It is well known that the Cox–Ingersoll–Ross (CIR) short rate model possesses an
affine term structure (ATS)

P (t, T ) = e−A(T−t)−B(T−t)rt ,

see [5]. Conversely, it has been shown in [3] and [7] that any diffusion (and hence
continuous) nonnegative short rate process r = (rt)t≥0 providing an ATS is neces-
sarily of the CIR type. All these proofs are based on Itô calculus, not taking into
account the rich and strong structure behind an ATS.

However, interest rates do not evolve continuously over time. Any model yielding
solely continuous trajectories t 7→ rt(ω) should be considered only as a simplified
description of the real behavior of the interest rates. Coherent models include
jumps.

In this paper we characterize the class of all (including non-continuous) nonneg-
ative Markov short rate processes r which yield an ATS. Indeed, we start with any
time homogeneous progressively measurable Markov process r on R+ which satis-
fies the natural condition that

∫ t
0 rs ds is finite a.s. for all t. Assuming an ATS, we

then show – using Markov semigroup theory – that r is necessarily a Feller process
with generator

Af(x) = αxf ′′(x) + (b′ + βx)f ′(x)

+
∫

R◦+

(

f(x + y)− f(x)− f ′(x)(1 ∧ y)
)(

m(dy) + xµ(dy)
)

,
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where α, b′, β, m(dy) and µ(dy) are parameters to be specified below (see Theo-
rem 5.3). On the first line stands the continuous CIR part. On the second line
there enters the jump part. The Levy measure, as well as the diffusion and the
drift part, are seen to depend linearly on the state variable x. Such processes are
known as (stochastically continuous) conservative CBI-processes (continuous state
branching processes with immigration) and have been well studied, among others,
by Kawazu and Watanabe in [16].

Conversely, any operator A of the above form generates in a unique way a con-
servative Feller process r on R+ providing an ATS model. Thus we establish a
one to one correspondence between the class of conservative CBI-processes (de-
scribing branching phenomena) and Markov short rate processes implying an ATS,
respectively.

For valuing interest rate sensitive instruments indispensable is the pricing semi-
group

Qtf(x) =
∫

R+

f(y) qt(x, dy) := E
[

e−
R t
0 rs dsf(rt) | r0 = x

]

.

We identify Qt in terms of the Laplace transform of its transition function qt(x, dy).
Thus by Laplace inversion we get (in principle) closed form expressions for all
European claims f(rt). This explains a known fact of the CIR model.

We also restate a result from Shiga and Watanabe [21] that any conservative
CBI-process is infinitely decomposable and vice versa. This considerably extends
and clarifies another well known fact behind the CIR model, namely the additivity
property of the squared Bessel processes

Qδ
x ∗Qδ′

x′ = Qδ+δ′
x+x′ ,

see [18, Chapt. XI.1]. As a byproduct we observe that any conservative CBI – and
hence any infinitely decomposable – process is a semimartingale.

Based on these fundamental results we fully work out a non-continuous short rate
model which extends the classical CIR model and still gives closed form expressions
for European bond option prices. This model has already been discussed and
applied in [6].

In the multifactor case, however, ATS does no longer imply affinity of the under-
lying Markovian factors in general. As a counter example we present a two factor
ATS model driven by a two dimensional non-affine diffusion process.

A different approach towards the characterization of ATS models can be found
in Duffie, Pan and Singleton [8], including the discussion on multifactor models.
They also provide examples which are similar to the present one. See also [2] for
sufficient conditions for an ATS in a jump-diffusion short rate model.

The remainder of the paper is organized as follows. In Section 2 we restate some
of the basic facts about Markov processes and give the general setup for a Markov
short rate model. In Section 3 we restrict our considerations to those models which
provide an ATS. We discuss first structural consequences and derive a regularity
result: the above pricing semigroup (Qt) is Feller. Section 4 contains the definition
of a CBI-process and provides a summary of the results in [16] and [21]. In Section 5
we state our main result: the complete characterization of the class of Markov short
rate processes which provide an ATS. In Section 6 we derive the pricing formula for
a European bond call option within our framework. Section 7 presents a worked out
model including jumping short rates. We give the explicit expressions for the bond
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option prices. In Section 8 we discuss shortly the multifactor case and provide a
counter-example. We then conclude by Section 9. The appendix contains the basic
lemma for the characterization of CBI-processes.

Terminology and Notation. Basically, we follow the notation of [18]. We write
R+ = [0,∞), R◦+ = (0,∞), and R+ = [0,∞] for the one point compactification
of R+.

Denote by C(R+) and Cb(R+) the spaces of continuous and uniformly bounded
continuous functions on R+, respectively. We write C0(R+) and Cc(R+) for the
spaces of elements in C(R+) vanishing at infinity and having compact support,
respectively. The space of k times continuously differentiable functions on R+ is
denoted by Ck(R+). Analogously, we write Ck

b (R+), Ck
0 (R+) and Ck

c (R+).
Let R+ denote the Borel σ-algebra on R+ and B(R+) the space of bounded

R+-measurable functions.
Equipped with the norm ‖f‖ := supx∈R+

|f(x)| the sets Cb(R+), C0(R+) and
B(R+) are Banach spaces.

2. Markovian Short Rates

In this section we provide the setup for a Markov short rate model. For the following
definitions we refer to [18, Chapt. III.1] and [9, Chapt. I–II].

Let r = (rt)t≥0 be an R+-valued homogeneous Markov process, given by a tran-
sition function pt(x, dy) on (R+,R+). We will assume that rt(ω) = ω(t) is realized
as coordinate process on the canonical space Ω = R[0,∞)

+ with its natural filtration
(Ft)t≥0 and F = ∨t∈R+Ft. Thus, we are given a family of probability measures
(Px)x∈E on (Ω,F) with Px[r0 = x] = 1, such that r is Markov under each Px.

The corresponding semigroup (Pt) on B(R+), see [9, Chapt. II.1], is given by

Ptf(x) =
∫

R+

f(y)pt(x, dy) = Ex[f(rt)], x ∈ R+, f ∈ B(R+).

Here Ex denotes expectation with respect to Px. We define the shift operators
θt : Ω → Ω by (θtω)(s) = ω(t + s). Then the Markov property reads

Ex[Z ◦ θt | Ft] = Ert [Z], Px-a.s. ∀x ∈ R+,

for any nonnegative or bounded F-measurable random variable Z.
Notice that this is a fairly general setup for a time homogeneous Markov process

in R+. However, we want the savings account e
R t
0 rs ds to be a well-defined R+-

valued adapted process, for each Px. This is equivalent to the following standing
assumption:

(A1): The process r is progressively measurable and
∫ t

0
rs ds < ∞, Px-a.s. ∀t, x ∈ R+.

This implies in particular that r is conservative, i.e. pt(x,R+) = 1 for all t and x.
It is clear that (Pt) is a positive contraction semigroup on B(R+). Its (infinites-

imal) generator A is defined for all f ∈ B(R+) such that

Af = lim
t→0

Ptf − f
t
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exists in B(R+). The domain of A is denoted by D(A). We write B0(R+) for the
set of functions f in B(R+) for which limt→0 ‖Ptf − f‖ = 0. Observe that

(t, x) 7→ Ptf(x) = Ex [f(rt)]

is jointly measurable, for all f ∈ B(R+). Indeed,

(t, x) 7→ Ex
[

1[t1,t2](t) 1A
]

= 1[t1,t2](t)Px[A], t1 ≤ t2, A ∈ F ,

is jointly measurable. With regard to (A1) the claim follows by a monotone class
argument. Hence the resolvent of A, resp. (Pt),

Rλf(x) =
∫

R+

e−λtPtf(x) dt, λ ∈ R◦+,

is well defined for all f ∈ B(R+). It is well known that Rλ is a one to one mapping
from B0(R+) onto D(A) with Rλ = (λ − A)−1. Moreover Rλ(B(R+)) ⊂ B0(R+),
see [9, Chapt. I.2].

We use the following notation, which differs from the terminology in [9].
Definition 2.1. A positive contraction semigroup (Tt) on B(R+) is called a Feller
semigroup if

Ttf ∈ C0(R+) and lim
t→0

‖Ttf − f‖ = 0, ∀f ∈ C0(R+).

The corresponding Markov process is called a Feller process.
For modelling purposes we will assume

(A2): Each Px is a risk neutral measure, x ∈ R+; that is, any contingent
claim h ∈ L1(Ω,FT ,Px) maturing at time T has price

Ex

[

e−
R T

t rs dsh | Ft

]

(1)

at time t ≤ T , given that r0 = x.
In particular, the price of a zero coupon bond is

P (t, T ) = Ex

[

e−
R T

t rs ds | Ft

]

= Ex

[

e−
R T−t
0 rs ds ◦ θt | Ft

]

= Π(T − t, rt) (2)

Px-a.s., where Π(u, x) := Ex

[

e−
R u
0 rs ds

]

. By (A1) we have that Π(u, x) is a strictly
positive non-increasing continuous function in u.

3. Affine Term Structure

The simplest nontrivial relation (2) is exponential-affine.
Definition 3.1. A Markov short rate model r as in Section 2 with

Π(u, x) = e−A(u)−B(u)x, (3)

for some functions A and B, is said to provide an affine term structure (ATS).
It is well know that property (2) excludes arbitrage possibilities in the bond

market. And, clearly, it imposes structural properties on A, B and r. It will
turn out that r is necessarily a very special type of Feller process and that A
and B satisfy a system of generalized Riccati equations which are given by the
infinitesimal generator of r. We already see from the preceding remarks that A(u)
and B(u) a fortiori are nonnegative and non-decreasing continuous functions with
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A(0) = B(0) = 0. Moreover, an immediate consequence of (2) is the following
relation

e−A(T )−B(T )x = P (0, T ) = Ex

[

e−
R t
0 rs dsP (t, T )

]

= e−A(T−t)Ex

[

e−
R t
0 rs dse−B(T−t)rt

]

, ∀t ≤ T.
(4)

Lemma 3.2. If B(u∗) = 0 for some u∗ ∈ R◦+, then B ≡ 0 and A(u) = au for some
a ∈ R+. Accordingly, the bond model is trivial, i.e. P (t, T ) = exp(−a(T − t)), and
can be realized by the transition function

pt(x, dy) =

{

δa(dy), if t > 0

δx(dy), if t = 0.
(5)

Proof. Let u ∈ [0, u∗]. Then B(u) = 0 and, by relation (4),

e(A(t+u)−A(u))−B(t+u)x = e−A(t)−B(t)x, ∀t ∈ R+.

Thus B(t + u) = B(t) and A(t + u) = A(t) + A(u) for all t ∈ R+ and u ∈ [0, u∗],
and the lemma follows. �

Consequently, we assume from now on that

B(u) > 0, ∀u ∈ R◦+. (6)

Accordingly, the image of B

I := {B(u) | u ∈ R+}
contains an open interval, hence is a set of uniqueness for analytic functions in R◦+.
Definition 3.3. With regard to (1) we call

Qtf(x) := Ex

[

e−
R t
0 rs dsf(rt)

]

, f ∈ B(R+), (7)

the pricing semigroup.
The naming pricing semigroup will be legitimated in Proposition 3.4 below.

Write fλ(x) := e−λx and define Λ := {fλ | λ ∈ R◦+}. By the Stone–Weierstrass
theorem the linear hull L(Λ) of Λ is dense in C0(R+). Equality (4) now reads, for
λ = B(u),

QtfB(u)(x) = e−(A(t+u)−A(u))−B(t+u)x. (8)
This structural property actually holds for all λ ∈ R+.
Proposition 3.4. (Qt) is a Feller semigroup. Moreover, we have

Qtfλ(x) = e−ρ(t,λ)−σ(t,λ)x, ∀t, λ, x ∈ R+, (9)

for some functions ρ(t, λ) and σ(t, λ) which are analytic in λ ∈ R◦+, continuous in
λ ∈ R+ and in t ∈ R+, and satisfy

ρ(t, B(u)) = A(t + u)−A(u), σ(t, B(u)) = B(t + u). (10)

Proof. Clearly Q0f = f and by the Markov property of r

Qt+sf(x) = Ex

[

e−
R t+s
0 ru duf(rt+s)

]

= Ex

[

e−
R t
0 ru du

(

e−
R s
0 ru du ◦ θt

)

f(rs ◦ θt)
]

= Ex

[

e−
R t
0 ru duQsf(rt)

]

= QtQsf(x), for all f ∈ B(R+).

Moreover 0 ≤ Qt1 ≤ 1, whence (Qt) is a positive contraction semigroup on B(R+).
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Let qt(x, dy) denote the corresponding transition function, see [9, Chapt. II,
Theorem 2.1]. For t and x fixed we have

Qtfλ(x) =
∫

R+

e−λyqt(x, dy),

which is the Laplace transform of qt(x, dy) and hence analytic in λ ∈ R◦+. By (8)
we have Qtfλ(x) > 0 and

Qtfλ(x)Qtfλ(y) = Qtfλ(0) Qtfλ(x + y), ∀λ ∈ I. (11)

But the product of two analytic functions is again analytic, hence equality (11)
holds for all λ ∈ R+ (notice that 0 ∈ I). Now fix t, λ ∈ R+ and define g(x) :=
Qtfλ(x)
Qtfλ(0) . The function g is measurable, positive, bounded and satisfies the functional
equation g(x)g(y) = g(x+ y). Hence there exist a nonnegative number σ(t, λ) such
that g(x) = e−σ(t,λ)x, see [1, Theorem 1.1.8.]. Clearly, we can write Qtfλ(0) =
e−ρ(t,λ) for some ρ(t, λ) ∈ R+, and thus (9) and (10) hold.

It remains to prove the Feller property of (Qt), or, equivalently, the continuity
of ρ(t, λ) and σ(t, λ) in t. Fix x ∈ R+. First notice that every sequence (qtn(x, dy))
with tn → 0 contains a subsequence (qtnk

(x, dy)) which converges weakly to a
measure µ(x, dy) on R+. This implies

lim
k→∞

Qtnk
fλ(x) =

∫

R+

e−λyµ(x, dy) = µ̃(x, λ), ∀λ ∈ R◦+

where µ̃(x, λ) denotes the Laplace transform of µ(x, dy). On the other hand

lim
t→0

Qtfλ(x) = fλ(x), (12)

for all λ ∈ I, by continuity of A and B. Uniqueness of the weak limit and analyticity
of the Laplace transform yield µ̃(x, λ) = fλ(x) and (12) holds for all λ ∈ R+.

Notice that Qtfλ′ ≤ Qtfλ for λ′ ≥ λ and Qtfλ ∈ C0(R+) for λ ∈ I \ {0}. From
(12) it now follows easily that limt→0 ‖Qtfλ − fλ‖ = 0 for all λ ∈ R◦+. Since L(Λ)
is dense in C0(R+), the proof is complete. �

4. CBI-Processes

Feller semigroups with property (9) have been well studied. They appear as limits
of Galton–Watson branching processes with immigration. We refer to [16] and [21]
for background and further reference. Following their terminology we define

Definition 4.1. A Feller semigroup (Tt) on C0(R+) which satisfies

Ttfλ(x) = e−φ(t,λ)−ψ(t,λ)x, ∀t, λ, x ∈ R+,

is called a CBI-semigroup. The Laplace exponents φ and ψ are denoted as CBI-
exponents, and the corresponding Feller process as CBI-process (continuous state
branching process with immigration).

Remark 4.2. In the notation of [16] this is in fact a stochastically continuous
CBI-process.

Kawazu and Watanabe [16] provide a complete characterization of the generator
of a CBI-semigroup (Tt) and of its CBI-exponents φ(t, λ) and ψ(t, λ). For the
convenience of the reader we restate their main results and sketch the proofs.
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Theorem 4.3. Let (Tt) be a CBI-semigroup with generator G. Then L(Λ) ⊂ D(G)
and there exist real numbers

α ≥ 0, b ≥ 0, β, c ≥ 0, γ ≥ 0, (13)

and nonnegative Borel measures m(dy) and µ(dy) on R◦+ satisfying
∫

R◦+
(1 ∧ y) m(dy) +

∫

R◦+
(1 ∧ y2) µ(dy) < ∞, (14)

such that for f ∈ L(Λ)

Gf(x) = αxf ′′(x) + (b′ + βx)f ′(x)− (c + γx)f(x)

+
∫

R◦+

(

f(x + y)− f(x)− f ′(x)(1 ∧ y)
)(

m(dy) + xµ(dy)
)

,
(15)

where b′ := b +
∫

R◦+
(1 ∧ y)m(dy). Moreover, if we set

R(λ) := −αλ2 + βλ + γ +
∫

R◦+

(

1− e−λy − λ(1 ∧ y)
)

µ(dy) (16)

F (λ) := c + bλ +
∫

R◦+

(

1− e−λy
)

m(dy), (17)

then ψ(t, λ) and φ(t, λ) solve, for λ ∈ R+,
∂ψ
∂t

(t, λ) = R(ψ(t, λ)), ψ(0, λ) = λ (18)

φ(t, λ) =
∫ t

0
F (ψ(s, λ)) ds. (19)

Sketch of proof. By the semigroup property of (Tt) it follows that

φ(t + s, λ) = φ(t, λ) + φ(s, ψ(t, λ)), φ(0, λ) = 0 (20)

ψ(t + s, λ) = ψ(s, ψ(t, λ)), ψ(0, λ) = λ, (21)

for all t, s, λ ∈ R+. Write Ψ for the positive cone of functions of the form

ψ(λ) = c0 + c1λ +
∫

R◦+

(

1− e−λy)

n(dy),

with c0, c1 ∈ R+ and n(dy) a nonnegative Borel measure on R◦+ integrating 1 ∧ y.
Then Ψ is closed under composition and under pointwise convergence on any set
of uniqueness for analytic functions. It is well know that ψ ∈ Ψ if and only if e−ψ

is the Laplace transform of an infinitely divisible probability measure on R+.
Using these facts and (20), one shows that φ(t, λ) is differentiable in t ∈ R+ and

(19) holds for some F ∈ Ψ, which is just (17).
Now write X = (Xt) for the Feller process corresponding to (Tt). Without loss

of generality we assume that X is cadlag in R+, see [18, Theorem 2.7, Chapt. III].
We have

fλ(Xt) = Fλ(u1(Xt)),
where u1 ∈ D(G)∩C∞(R+) with u′1(x) > 0, for all x ∈ R+, and Fλ := fλ ◦u−1

1 has
bounded first and second order derivatives for all λ ∈ (λ0,∞), for some λ0 ∈ R+.
In fact,

u1(x) =
∫ t

0
Ttfλ(x) dt,
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for some t, λ ∈ R◦+. Moreover, u1(Xt) −
∫ t
0 Gu1(Xs) ds is a square integrable mar-

tingale. By Itô’s formula, Ttfλ(x) = Ex[Fλ(u1(Xt))] is of bounded variation in t,
hence differentiable at t = 0, for all λ ∈ L0, where L0 is a dense set in (λ0,∞).
Consequently, R(λ) = ∂tψ(0, λ) exists and fλ ∈ D(G) ∩ C2

0 (R+) for λ ∈ L0. Hence
Lemma A.1 applies and one can write

Gfλ(x0) = h(x0, λ) e−λx0 ,

where

h(x0, λ) = α(x0)λ2 + β(x0)λ− γ(x0) +
∫

R+\{x0}

(

e−λy − 1 + λχ(y − x0)
)

ν(x0, dy)

with coefficients given by Lemma A.1. On the other hand

Gfλ(x0) =
∂
∂t

e−φ(t,λ)−ψ(t,λ)x0 |t=0 = (−x0R(λ)− F (λ)) e−λx0 . (22)

One concludes R(λ) = −h(1, λ) − F (λ) and finally derives (16) and (18), by ana-
lyticity of ψ(t, λ) in λ ∈ R◦+. Equality (15) now follows easily by (22). �

Remark 4.4. As a corollary we have that any conservative CBI-process X is a
semimartingale. Indeed, as shown in the preceding proof, u1(X) is a (cadlag) semi-
martingale. Moreover, u1 : [0,∞) → (0, u1(0)] is a diffeomorphism, which yields
the assertion.
Remark 4.5. For any f ∈ C2

c (R+) there exists a sequence (fn) in L(Λ), such
that fn → f , f ′n → f ′ and f ′′n → f ′′ uniformly on R+. To see this, consider
f̃(y) := f(log(y−1)). Clearly, f̃ ∈ C2([0, 1]). A version of the Stone–Weierstrass
approximation theorem yields a sequence of polynomials (pn) which converges in the
above sense towards f̃ on [0, 1], see [4, Section II.4]. Now set fn(x) = pn(e−x) to
get the desired sequence.

Consequently, we have ‖Gfn−Gf‖ → 0, where Gf ∈ C0(R+) is defined pointwise
by (15). By the closedness of G we conclude that C2

c (R+) ⊂ D(G) and (15) holds
also for f ∈ C2

c (R+).
Conversely, we have

Theorem 4.6. Let α, b, β, c and γ be real numbers and m(dy), µ(dy) nonnegative
Borel measures on R◦+ such that (13) and (14) hold. Then G, given by (15) on
L(Λ), extends uniquely to the generator of a positive contraction semigroup (Tt)
on B(R+). In fact, (Tt) is a CBI-semigroup with CBI-exponents given by (18)
and (19).

Sketch of proof. Note that R(λ) is analytic in λ ∈ R◦+ and continuous in λ ∈ R+

with R(0) = γ ≥ 0. Differentiating (16) gives, for λ ∈ R◦+,

R′(λ) = −2αλ + β +
∫

R◦+

(

ye−λy − (1 ∧ y)
)

µ(dy) (23)

R′′(λ) = −2α−
∫

R◦+
y2e−λy µ(dy).

Hence R is concave. However, as we shall see below, R(λ) may fail to be Lipschitz
continuous in λ = 0. Nevertheless, there exists a unique global solution ψ(t, λ) to
(18) for all λ ∈ R◦+. Moreover, ψ(t, λ) → ψ(t, 0) for λ → 0, which still solves (18).
The same applies for φ(t, λ) and (19). It has been shown in [22, Theorem 4], see
also [25, p. 456], that ψ(t, ·) ∈ Ψ, for all t ∈ R+. By approximating the integral
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in (17), also φ(t, ·) ∈ Ψ. Hence, for any t, x ∈ R+, there exists a unique infinitely
divisible probability measure qt(x, ·) on R+ with Laplace transform e−φ(t,λ)−ψ(t,λ)x.
Uniqueness of φ and ψ yields the flow properties (20) and (21), respectively. As in
the proof of Proposition 3.4, it now follows that (qt(x, dy)) is the transition function
of a Feller process on R+ which in fact is a CBI-process with generator G.

The CBI-semigroup property yields Tt(L(Λ)) ⊂ L(Λ). Thus Lemma 4.7 below
applies with D = L(Λ). Hence L(Λ) is a core for G, and the proof is complete. �

Lemma 4.7 (Uniqueness). Let (Tt) and (T ′t ) be two contraction semigroups on
B(R+) with generators G and G′. Assume that G = G′ on a set D ⊂ D(G) ∩ D(G′)
with T ′t (D) ⊂ D. Then (Tt) = (T ′t ) on the closure D.

Proof. Take g ∈ D. Then Ts(T ′t−sg) is differentiable in s ∈ (0, t). It is easily
seen that d

dsTs(T ′t−sg) = Ts(GT ′t−sg) − Ts(G′T ′t−sg) = 0. Hence by continuity
Ts(T ′t−sg) = T ′tg for all s ≤ t and thus Ttg = T ′tg. �

Remark 4.8. The proof of Theorem 4.6 shows that any CBI-process has a transi-
tion function of the form

qt(x, dy) = nt(dy) ∗ νt(x, dy),

where nt(dy) and νt(x, dy) are infinitely divisible probability measures on R+ and
correspond to the Laplace transforms e−φ(t,λ) and e−ψ(t,λ)x, respectively. In fact,
(νt(x, dy))x∈R+ is a continuous convolution semigroup on R+. In the discrete time
analog this factorization of qt(x, dy) no longer holds, see [13].

Shiga and Watanabe [21] actually showed the following stronger result. Let
D(R+) be the subset of Ω consisting of all cadlag paths. Denote by (Qx)x∈R+ a
family of probability measures on D(R+) and define

Definition 4.9. The family (Qx)x∈R+ is called infinitely decomposable if for all
n ∈ N there exists a family (Q(n)

x )x∈R+ of probability measures on D(R+) satisfying

Qx1+···+xn = Q(n)
x1
∗ · · · ∗Q(n)

xn
, ∀xi ∈ R+.

If (Qx)x∈R+ corresponds to a Markov process, we call the Markov process itself
infinitely decomposable.

Theorem 4.10. Every infinitely decomposable homogeneous Markov process having
the strong Markov property and cadlag paths is a conservative CBI-process and vice
versa.

Finally, we shall give a characterization of the conservative CBI-processes. Let
R(λ) be as in Theorem 4.3. By monotone convergence, see (23),

lim
λ↓0

R′(λ) = β +
∫

(1,∞)
(y − 1) µ(dy) ≤ +∞. (24)

Hence we see that R′(0) = limλ↓0 R′(λ) exists if and only if
∫

(1,∞) y µ(dy) < ∞.
In that case R(λ) is Lipschitz continuous also at λ = 0 and equation (18) has a
unique global solution ψ(t, λ) for all λ ∈ R+. If R(λ) is not Lipschitz continuous
at λ = 0 then necessarily the right hand side of the equality in (24) equals +∞.
Accordingly, there exists λ∗ ∈ (0,∞] such that R(λ) > 0 for λ ∈ (0, λ∗).

We now have the following result, see [16, Theorem 1.2].
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Theorem 4.11. The CBI-semigroup (Tt) from Theorem 4.3 is conservative if and
only if γ = c = 0 and

∫ λ∗∧1

0

1
R+(λ)

dλ = ∞, (25)

where λ∗ := inf{λ > 0 | R(λ) = 0} ∈ (0,∞].

Proof. Notice that (Tt) is conservative if and only if ψ(t, 0) = φ(t, 0) ≡ 0.
If R(λ) is Lipschitz continuous at λ = 0 then (25) is trivially true, and it is clear

by the preceding remarks that the theorem holds in that case.
Hence in the remainder of the proof we assume that R(λ) is not Lipschitz con-

tinuous at λ = 0. By the preceding discussion we then have R(λ) > 0 for all
λ ∈ (0, λ∗).

Suppose first that (Tt) is conservative. Since any solution u(t) of (18) with
u(0) = 0 satisfies u′(0) = γ we must have γ = 0, since otherwise ψ(t, 0) > 0 for
t ∈ R◦+. Similarly, we derive c = 0. Denote by um(t) the maximal solution of
(18) with um(0) = 0. We claim that um ≡ 0 if and only if (25) holds. Indeed, if
um(t) > 0 for some t ∈ R◦+ then, by its very definition, um(t) > 0 for all t ∈ R◦+.
Consequently

t2 − t1 =
∫ t2

t1

u′m(t)
R(um(t))

dt =
∫ um(t2)

um(t1)

1
R(λ)

dλ, ∀0 < t1 ≤ t2.

Since um(t1) → 0 for t1 → 0, and um(t2) → λ∗ for t2 → ∞, we conclude that the
left hand side of (25) is finite. On the other hand, if the left hand side of (25) is
finite, then

∫ u(t)

0

1
R(λ)

dλ = t

defines a local non-zero solution u(t) of (18). Whence um(t) > 0 for t ∈ R◦+.
Now assume that um(t) > 0 for t ∈ R◦+. By uniqueness of ψ(t, λ) for λ ∈ R◦+ we

have, for any s, t ∈ R◦+, um(t + s) = ψ(t, um(s)). But um(s) → 0 for s → 0, hence
ψ(t, um(s)) → ψ(t, 0) = um(t) > 0, which is impossible.

Conversely, suppose that c = γ = 0 and that (25) holds. As shown above we
then have um ≡ 0. This in turn implies ψ(t, 0) = φ(t, 0) ≡ 0. Hence (Tt) is
conservative. �

Remark 4.12. It is clear that R(λ) is Lipschitz continuous in λ if and only if so
is

G(λ) :=
∫

R◦+

(

1− e−λy − λ(1 ∧ y)
)

µ(dy).

Moreover, if G(λ) is not Lipschitz continuous in λ = 0, then it is not hard to see
that

1
2
G+(λ) ≤ R+(λ) ≤ 2G+(λ),

for λ small enough. Hence Theorem 4.11 remains true if one replaces (25) by the
condition

∫ λ̃∧1

0

1
G+(λ)

dλ = ∞, (26)

with λ̃ := inf{λ > 0 | G(λ) = 0}, which is a property of µ(dy) only.
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5. The Short Rates as CBI-Process

So far we have shown that, if r induces an ATS, the pricing semigroup (Qt) given
by (7) is necessarily a CBI-semigroup. Its generator B accordingly is given by the
right hand side of (15), for some coefficients α, b, β, c, γ, m(dy) and µ(dy) as
in Theorem 4.3. We shall prove that also r has to be a CBI-process in this case.
Therefore we apply the Feynman–Kac formula and characterize the generator A of
(Pt), the semigroup related to r.

Introduce the unbounded closed operator V on B(R+) by V f(x) := xf(x). We
denote the resolvent of B by RBλ . Observe that

RBλf(x) =
∫

R+

e−λtQtf(x) dt

is well defined for any f ∈ B(R+), since (Qt) is Feller. We shall use two versions
of the Feynman–Kac formula.
Lemma 5.1 (Feynman–Kac I).

RBλg = Rλ(g − V (RBλg))

for all g ∈ B(R+) with RBλg ∈ D(V ).

Proof. It is enough to consider the case g ≥ 0. Now proceed as in [19, p. 273],
taking into account (A1). �

We can now prove the following particular version.
Lemma 5.2 (Feynman–Kac II). We have L(Λ) ⊂ D(B) ∩ D(A) ∩ D(V ) and

Bf = Af − V f

for f ∈ L(Λ).

Proof. From Theorem 4.3 we know that L(Λ) ⊂ D(B). Moreover, it is clear that
L(Λ) ⊂ D(V ). It remains to show L(Λ) ⊂ D(A).

Let f ∈ L(Λ). Then there exists a unique g ∈ C0(R+) with RBλg = f . Since
RBλg ∈ D(V ) Lemma 5.1 applies and f = Rλ(g − V f) ∈ Rλ(B(R+)) ⊂ B0(R+).
Thus L(Λ) ⊂ B0(R+). Since B0(R+) is closed therefore

C0(R+) = L(Λ) ⊂ B0(R+).

Consequently, we have Rλ(C0(R+)) ⊂ Rλ(B0(R+)) = D(A). Take f and g as
above. Clearly g − V f ∈ C0(R+), whence f = Rλ(g − V f) ∈ D(A). We have thus
shown that L(Λ) ⊂ D(A).

Let f and g be as above. From Lemma 5.1 we have Rλg = f + Rλ(V f). Since
f ∈ D(A) and V f ∈ C0(R+) ⊂ B0(R+) we can solve this equation and get g =
(λ−A)f + V f . On the other hand g = (λ− B)f . We conclude

(λ− B)f = (λ−A)f + V f

and the lemma follows. �

As a consequence of Lemma 5.2, the generator A of (Pt) can be represented on
L(Λ) by the right hand side of (15) with γ replaced by γ̃ = γ − 1. It is not a priori
clear whether γ̃ is negative or not. However, apply the positive maximum principle
(see e.g. [18, Proposition 1.5, Chapter VII]) to Af with f(x) = e−λx − e−2λx ∈
D(A), and let λ tend to zero to see that γ̃ < 0 is impossible. Theorem 4.6 now
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yields that r is a CBI-process. Since r is conservative we have that c = γ̃ = 0 and
µ(dy) satisfies (26), see Theorem 4.11.

We arrive at our main result.

Theorem 5.3 (Main theorem). Let r be a homogeneous Markov process in R+ as
given in Section 2, satisfying:

(A1): The process r is progressively measurable and
∫ t

0
rs ds < ∞, Px-a.s. ∀t ∈ R+.

(A2): Each Px is a risk neutral measure, x ∈ R+, see (1).

Then the following four conditions are equivalent:

i) r provides a non-trivial ATS, see (6).
ii) r is a CBI-process, uniquely characterized by its generator on L(Λ)∪C2

c (R+)

Af(x) = αxf ′′(x) + (b′ + βx)f ′(x)

+
∫

R◦+

(

f(x + y)− f(x)− f ′(x)(1 ∧ y)
)(

m(dy) + xµ(dy)
)

,
(27)

where b′ := b +
∫

R◦+
(1 ∧ y) m(dy), for some numbers α, b ∈ R+, β ∈ R and

nonnegative Borel measures m(dy) and µ(dy) on R◦+ satisfying (14) and
(26).

iii) The pricing semigroup (Qt), given by (7), is a CBI-semigroup whose CBI-
exponents ρ(t, λ) and σ(t, λ) satisfy the system of equations, for λ ∈ R+,

∂σ
∂t

(t, λ) = R(σ(t, λ)), σ(0, λ) = λ (28)

ρ(t, λ) =
∫ t

0
F (σ(s, λ)) ds, (29)

where

R(λ) := −αλ2 + βλ + 1 +
∫

R◦+

(

1− e−λy − λ(1 ∧ y)
)

µ(dy) (30)

F (λ) := bλ +
∫

R◦+

(

1− e−λy
)

m(dy) (31)

with α, b, β, m(dy) and µ(dy) as in condition ii).
iv) r is an infinitely decomposable Feller process.

Proof. Only the implication ii)⇒iii) remains to be proved. Again we will use the
Feynman–Kac formula to identify the generator B of (Qt). Let RBλ denote the
resolvent of B. Analogously to Lemma 5.1 one shows

Rλg = RBλ (g + V (Rλg)), (32)

for all g ∈ B(R+) with Rλg ∈ D(V ). If one exchanges the roles of A and B in the
proof of Lemma 5.2 and uses (32) instead of Lemma 5.1 one gets that L(Λ) ⊂ D(B)
and

Bf = Af − V f, for f ∈ L(Λ).

Hence (Qt) is a CBI-semigroup and the assertion follows. �
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The functions A(u) and B(u) appearing in the term structure (3) are given by
A(u) = ρ(u, 0) and B(u) = σ(u, 0), see (10). Hence condition iii) of Theorem 5.3
yields
Corollary 5.4. The functions A and B solve uniquely the generalized Riccati equa-
tions

B′(u) = R(B(u)), B(0) = 0

A(u) =
∫ u

0
F (B(s)) ds,

where R and F are defined in (30) and (31).

Proof. Only the uniqueness has to be verified. But any solution u(t) of (28) with
u(0) = 0 satisfies u(t) > 0 for t ∈ R◦+, since u′(0) = 1. Hence, by uniqueness of
σ(t, λ) for λ ∈ R◦+, we have u(t + s) = σ(t, u(s)) for all t, s ∈ R◦+. Letting s → 0 we
conclude u(t) = σ(t, 0), which gives our assertion. �

6. Pricing a European Bond Option

Here and subsequently, r = (rt) is a Markov short rate process satisfying the
conditions of Theorem 5.3. Then the price today of a European claim f(rT ), f ∈
B(R+), due at time T , is given by the pricing semigroup

QT f(x) =
∫

R+

f(y) qT (x, dy),

given that r0 = x, see (1). For

f(x) =
(

e−A(S−T )−B(S−T )x −K
)+

=
(

e−A(S−T )−B(S−T )x −K
)

1[0,r∗](x),

with
r∗ := (− log(K)−A(S − T ))+/B(S − T ), (33)

we get the price π(x) of a European call option on a bond maturing at time S with
strike price K and expiry date T ≤ S. Let U ≥ T and recall the definition of the
U -forward measure

dPU
x

dPx
=

e−
R U
0 rs ds

e−A(U)−B(U)x ,

see e.g. [17]. It then follows that

qU
T (x, dy) := eA(U)−A(U−T )+B(U)x e−B(U−T )y qT (x, dy)

is the distribution of rT under PU
x , and the Laplace transform of qU

T (x, dy) is given
by

∫

R+

e−λy qU
T (x, dy) = eA(U)−A(U−T )−ρ(T,λ+B(U−T )) e−(σ(T,λ+B(U−T ))−B(U))x.

(34)
We now can write

π(x) = e−A(S)−B(S)xqS
T (x, [0, r∗])−Ke−A(T )−B(T )xqT

T (x, [0, r∗]). (35)

Thus, if we can invert the Laplace transform (34) analytically, we get a closed form
expression for π(x) by (35).
Remark 6.1. Given that ρ(t, λ) and σ(t, λ) are analytic at λ = 0, one can use
saddle-point approximations to compute numerically the tail probabilities appearing
in (35). See Rogers and Zane [20] for that approach.
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Similarly, one derives the analogous expression for the price of a put option.
That way, one can price any cap, floor and swaption within the present model.

7. An Example: CIR With Jumps

We shall now derive an extension of the CIR model including jumps which still
allows for a closed form expression (35). We choose the parameters according to
Theorem 5.3 as follows:

α, b, β ∈ R+, m(dy) = ce−d y dy, µ = 0,

for some c, d ∈ R+, d > 0, and let the generator of r be given by

Af(x) = αxf ′′(x) + (b− βx)f ′(x) + c
∫

R◦+

(

f(x + y)− f(x)
)

e−d y dy,

see (27). Thus r can be realized as a jump-diffusion process whose (positive) jump
size and inter-arrival times are exponentially distributed with parameters d and
c/d, respectively, see e.g. [10, p. 163]. Now (30) and (31) become

R(λ) = −αλ2 − βλ + 1

F (λ) = bλ +
cλ

dλ + d2 .

The solutions σ and ρ of (28) and (29) are given subsequently. Write γ :=
√

β2 + 4α.
The following singularities have to be treated separately, namely α = 0 and d =
d0 := (β + γ)/(2α). We shall discuss the cases in the order i) α > 0 and d < d0,
ii) α > 0 and d > d0, iii) α > 0 and d = d0, and finally iv) α = 0.

We remark that the present process r has already been introduced by Duffie and
Gârleanu [6] for financial applications. They also derived the equations (28) and
(29) and the general solutions σ and ρ, given in (36) and (37) below.

Case i): α > 0 and d < d0. We have

σ(t, λ) =
L1(t)λ + L2(t)
L3(t)λ + L4(t)

(36)

ρ(t, λ) = − b
α

log
(

L5(t)
L3(t)λ + L4(t)

)

− c
1 + βd− αd2 log

(

e−
t
d
(L1(t) + dL3(t))λ + L2(t) + dL4(t)

L5(t) (λ + d)

)

, (37)

where

L1(t) := γ(eγt + 1)− β(eγt − 1)

L2(t) := 2(eγt − 1)

L3(t) := 2α(eγt − 1)

L4(t) := γ(eγt + 1) + β(eγt − 1)

L5(t) := 2γe(γ+β)t/2.
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Having in mind that A(t) = σ(t, 0) and B(t) = ρ(t, 0), one computes the right hand
side of (34)

∫

R+

e−λy qU
T (x, dy) =

(

C1(T, U)
(

C2(T, U) +
1

C3(T, U)λ + 1

)) c
1+βd−αd2

× e−C5(T,U)x+ C5(T,U)x
C4(T,U)λ+1

(C4(T,U)λ + 1)
b
α

,

(38)

where

C1(T, U) :=
(

1 + βd− αd2

2γ

)

L2(T )L4(U − T )
L2(U) + dL4(U)

C2(T, U) :=
(

1
1 + βd− αd2

)

(L1(T ) + dL3(T ))(L2(U − T ) + dL4(U − T ))
L2(T )L4(U − T )

C3(T, U) :=
L4(U − T )

L2(U − T ) + dL4(U − T )

C4(T,U) :=
L3(T )L4(U − T )

2γL4(U)

C5(T, U) :=
L1(T )
L3(T )

− L2(U)
L4(U)

.

Notice that c = 0 just yields the classical CIR model. Indeed, the second factor
in (38) is, up to scaling by 1/C4(T, U), the Laplace transform of a noncentral chi-
square distribution with 2b/α degrees of freedom and parameter of noncentrality
2C5(T,U)x. The density is therefore given by f2b/α,2C5(U,U)x(y/C4(T, U)), where

f2δ,2ζ(y) := e−ζ−y
√

(y/ζ)δ−1Iδ−1(2
√

ζy), δ, ζ ∈ R◦+.

Here Iν is the modified Bessel function of the first kind of order ν > −1, see
[11, Example XIII,3(e)] and also [15] for a description of the noncentral chi-square
distribution. That way we get the well-known formula for π(x) which was first
derived by Cox, Ingersoll and Ross in [5].

If c > 0 then (38) is the Laplace transform of the convolution of a infinitely divis-
ible distribution with the above noncentral chi-square distribution. In particular,
if we choose c

1 + βd− αd2 = n ∈ N

then the first factor in (38) can be expanded

C1(T,U)n
n

∑

k=0

(

n
k

)

C2(T, U)n−k
(

1
C3(T, U)λ + 1

)k

.

This is the Laplace transform of a mixture of gamma distributions with the density

C1(T, U)n
n

∑

k=0

(

n
k

)

C2(T,U)n−kg1/C3(T,U),k(y), (39)

where
gρ,ν(y) =

1
Γ(ν)

ρνyν−1e−ρy, ρ, ν ∈ R◦+, (40)

is the gamma density, and we set gρ,0(y) dy = δ0, the Dirac measure in 0. Hence
we arrive at a closed form expression for the pricing formula (35) consisting of
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a finite sum of convolutions of gamma distributions with a noncentral chi-square
distribution.

Case ii): α > 0 and d > d0 leads to a similar result. Only the first factor in (38)
has to be replaced by its inverse.

Case iii): α > 0 and d = d0. The second summand in (37) is replaced by a rational
function in λ. Accordingly, the first factor in (38) becomes

e−D1(T,U)+ D1(T,U)
D2(T,U)λ+1 (41)

for some positive numbers D1(T, U) and D2(T,U). We omit their explicit form. We
only mention that there is, unfortunately, no useful relation between D2(T,U) and
C4(T, U). Again, (41) corresponds to a mixture of gamma distributions. However,
this time involving an infinite sum, see [11, Example XIII,3(c)].

Case iv): α = 0. The dynamics of r are reduced to a drift term plus positive
jumps. On the other hand we get an extremely simple expression for the pricing
formula (35). Set

L6(t) :=
1− e−βt

β
L7(t) := eβt − 1 + βdeβt,

then we have

σ(t, λ) = e−βtλ + L6(t)

ρ(t, λ) = bL6(t)λ +
b
β

(t− L6(t)) +
c
d
t +

c
1 + βd

log
(

λ + d
λ + (d + L6(t))eβt

)

.

The Laplace transform (38) becomes
∫

R+

e−λy qU
T (x, dy) =

(

C6(T,U)
(

C7(T, U) +
1

C8(T, U)λ + 1

)) c
1+βd

× e−(e−βT x+bL6(T ))λ,

(42)

where

C6(T, U) :=
L7(U)− L7(U − T )

L7(U)

C7(T, U) :=
L7(U − T )

L7(U)− L7(U − T )

C8(T,U) :=
βeβ(U−T )

L7(U − T )
.

As in case i) we choose
c

1 + βd
= n ∈ N.

Then the first factor in (42) is the Laplace transform of a mixture of gamma dis-
tributions with the density given by (39), where C1(T, U)–C3(T, U) is replaced by
C6(T, U)–C8(T, U), respectively. The second factor in (42) is the Laplace transform
of the Dirac measure in the point rd(x, T ) := e−βT x + bL6(T ), which corresponds
to the deterministic drift part in the dynamics of r, i.e.

∂trd(x, t) = b− βrd(x, t).
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This would be the valued of rt if no jumps had occurred until time t. As a result
we get

qU
T (x, [0, r∗]) = C6(T, U)n

n
∑

k=0

(

n
k

)

C7(T,U)n−kG1/C8(T,U),k
(

(r∗ − rd(x, T ))+
)

,

where Gρ,ν denotes the cumulative distribution function of the gamma distribution
with density (40). Note that r∗ > rd(x, T ) is equivalent to, see (33),

K < e−A(S−T )−B(S−T )rd(x,T ). (43)

On the right hand side of (43) stands the time T price of the S-bond computed for
the “jump-less” short rate rd(x, T ). Hence we see that π(x) is non zero, see (35),
only if that “jump-less bond” is in the money at expiry date T .

8. The Multidimensional Case

If the bond model is driven by n ≥ 2 Markovian factors X1, . . . , Xn we do not have
such a strong result anymore. That is, affine term structure

P (t, T ) = e−A(T−t)−
Pn

i=1 Bi(T−t)Xi
t

does not imply the n-dimensional version of condition ii) of Theorem 5.3. This can
be seen from the following example, where n = 2.

Set A = 0, B1(u) = u and B2(u) = u2/2. It is not hard to see, compare e.g.
with [12, Proposition 3.2], that any diffusion X = (X1, X2) in R+×R+ of the form

dX1
t = X2

t dt +
√

β(X1
t , X2

t ) dWt

dX2
t = β(X1

t , X2
t ) dt

(44)

provides an arbitrage-free ATS model

P (t, T ) = e−(T−t)X1
t−

(T−t)2

2 X2
t .

Clearly, β(x1, x2) has not to be affine in (x1, x2) in order that SDE (44) has a strong
solution in R+ × R+.

To see this, take β(x1, x2) = β(x1) := (1 ∧ x1)+. Existence of a non-exploding
continuous weak solution of SDE (44) in R2 follows by continuity and linear growth
of the coefficients, see [14, Chapt. IV.2]. Proceeding as in the proof of [14, The-
orem 3.2] we show pathwise uniqueness, implying existence of a unique strong
solution in R2. Indeed, adapting their notation we can show that, whenever
X = (X1, X2) and Y = (Y 1, Y 2) are two weak solutions (on the same filtered
probability space and with the same Brownian motion) of SDE (44) with X0 = Y0,
then

E[ϕn(X1
t − Y 1

t ) + |X2
t − Y 2

t |] ≤ K
∫ t

0
E[|X2

s − Y 2
s |] ds +

t
n

,

where K is a constant independent of n. By Gronwall’s lemma X2
t = Y 2

t and, since
ϕn(x) ↑ |x| as n →∞, also X1

t = Y 1
t for all t ∈ R+ a.s.

It remains to check invariance of R+ × R+. Observe that X2
t ∈ R+ whenever

X2
0 ∈ R+ by positivity of β. Now let X0 ∈ R+ × R+. For δ, ε > 0 set

τδ,ε := inf{t ∈ R+ | X1
t ≤ −ε and X1

s < 0 for all s ∈ [t− δ, t]}.
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Then on {τδ,ε < ∞} we have

0 > X1
τδ,ε

−X1
τδ,ε−δ =

∫ τδ,ε

τδ,ε−δ
X2

s ds ≥ 0,

a contradiction. Hence τδ,ε = ∞ a.s. and therefore X1
t ∈ R+.

This example also shows that the assumptions of the proposition in [7] are really
needed. Indeed, they have to suppose linear independence of the functions Bi(u)
and Bi(u)Bj(u).

Conditions ii)–iv) of Theorem 5.3, however, remain equivalent also in higher
dimensions, see [25]. Moreover, condition iii) implies ATS. From a practical point
of view this is satisfactory, since it provides a tool for constructing multifactor ATS
models.

9. Conclusion

We have given a complete characterization of all nonnegative time homogeneous
Markov short rate processes which provide an ATS. These form exactly the class
of conservative CBI-processes. We have gained new insight into the structure of
the pricing formulas for interest rate sensitive European claims. A particular model
which extends the classical CIR model by involving jumping short rates is presented.
Within this model we have derived closed form expressions for the European type
bond options.

An extension towards more general multifactor pricing models is possible and is
actually work in progress. However, we have already seen in the previous section
that there is no such strong characterization result for multifactor ATS models
anymore.

Appendix A. Infinitesimal Generators of Feller semigroups

The following representation for infinitesimal generators of Feller semigroups goes
back to [24], see also [23, Chapt. 9.4] for a detailed discussion.

Set χ(x) := x
|x| (1 ∧ |x|).

Lemma A.1. Let (Pt) be a Feller semigroup on C0(R+) with generator A. Then
for each x0 ∈ R+ there exists real numbers

α(x0) ≥ 0, β(x0), γ(x0) ≥ 0, δ(x0) ≥ 0

and a nonnegative Borel measure ν(x0, dy) on R+ \ {x0} satisfying
∫

R+\{x0}
χ2(y − x0) ν(x0, dy) < ∞,

such that for all f ∈ D(A) ∩ C2
0 (R+) we have

δ(x0)Af(x0) = α(x0)f ′′(x0) + β(x0)f ′(x0)− γ(x0)f(x0)

+
∫

R+\{x0}

(

f(y)− f(x0)− f ′(x0)χ(y − x0)
)

ν(x0, dy).
(45)

Furthermore if α(x0) = β(x0) = γ(x0) = δ(x0) = 0 then ν(x0,R+ \ {x0}) > 0.

Actually, this lemma holds for any positive contraction semigroup (Pt) on B(R+).
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Proof. The proof follows [23, Theorem 9.5.1]. Let pt(x, dy) denote the transition
function corresponding to (Pt), that is

Ptf(x) =
∫

R+

f(y) pt(x, dy), ∀f ∈ B(R+).

Fix x0 in R+ and let f ∈ D(A) ∩ C2
0 (R+). We decompose

1
t
(Ptf(x0)− f(x0)) =

1
t

∫

R+

(f(y)− f(x0)− f ′(x0)χ(y − x0)) pt(x0, dy)

+
1
t

(

∫

R+

χ(y − x0) pt(x0, dy)
)

f ′(x0)

+
1
t
(pt(x0,R+)− 1)f(x0)

=
1
t

∫

R+\{x0}
h(x0, y)χ2(y − x0) pt(x0, dy)

+ βt(x0)f ′(x0)− γt(x0)f(x0),

(46)

where

βt(x0) :=
1
t

∫

R+

χ(y − x0) pt(x0, dy)

γt(x0) :=
1
t
(1− pt(x0,R+)) ≥ 0

and

h(x0, y) :=
f(y)− f(x0)− f ′(x0)χ(y − x0)

χ2(y − x0)
.

Notice that h(x0, . ) ∈ Cb(R+) with h(x0, x0) = 1
2f ′′(x0) and

lim
y→∞

h(x0, y) = −f(x0)− f ′(x0).

We introduce a new measure to rewrite the last integral in equation (46). Set

lt(x0) :=
1
t

∫

R+

χ2(y − x0) pt(x0, dy) ≥ 0.

If lt(x0) > 0 define

µt(x0, dy) :=
1

tlt(x0)
χ2(y − x0) pt(x0, dy).

If lt(x0) = 0 then set µt(x0, dy) := δx0+1(dy), the Dirac measure in x0 + 1. In both
cases we have that µt(x0, dy) is a probability measure on R+ \ {x0} and we can
write

1
t
(Ptf(x0)− f(x0)) = lt(x0)

∫

R+\{x0}
h(x0, y)µt(x0, dy)

+ βt(x0)f ′(x0)− γt(x0)f(x0).
(47)

Now we pass to the limit in equation (47). We introduce the nonnegative functions

θn(x0) := l 1
n
(x0) + |β 1

n
(x0)|+ γ 1

n
(x0) ≥ 0, n ∈ N. (48)

We have to distinguish two cases:

Case i): lim infn→∞ θn(x0) = 0. There exists a subsequence (θnk(x0)) converging
to zero. Since the limit of the left hand side of equation (47) exists it has to
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be zero and the lemma is proved with δ(x0) = 1 and α(x0) = β(x0) = γ(x0) =
ν(x0,R+ \ {x0}) = 0.

Case ii): lim infn→∞ θn(x0) > 0. There exists a subsequence (θnk(x0)) converging
to θ(x0) with 0 < θ(x0) ≤ ∞. Divide both sides of equation (47) by θnk(x0) and
set tk := 1/nk to get

1
θnk(x0)

(Ptkf(x0)− f(x0)
tk

)

=
ltk(x0)
θnk(x0)

∫

R+\{x0}
h(x0, y)µtk(x0, dy)

+
βtk(x0)
θnk(x0)

f ′(x0)−
γtk(x0)
θnk(x0)

f(x0).
(49)

Since µtk(x0, dy) are probability measures on R+ \{x0} they converge weakly (after
passing to a subsequence if necessary) to a probability measure µ(x0, dy) on R+.
Moreover, by (48) the following limits exist

1
θnk(x0)

→ δ(x0),
ltk(x0)
θnk(x0)

→ l(x0),
βtk(x0)
θnk(x0)

→ β̃(x0),
γtk(x0)
θnk(x0)

→ γ̃(x0)

and satisfy

0 ≤ δ(x0) < ∞, 0 ≤ l(x0) ≤ 1, |β̃(x0)| ≤ 1, 0 ≤ γ̃(x0) ≤ 1,

and
l(x0) + |β̃(x0)|+ γ̃(x0) = 1. (50)

So the term with the integral in (49) converges to

l(x0)
∫

R+

h(x0, y)µ(x0, dy) =
1
2
l(x0)µ(x0, {x0})f ′′(x0)

+ l(x0)µ(x0, {∞})(−f ′(x0)− f(x0))

+ l(x0)
∫

R+\{x0}
h(x0, y)µ(x0, dy).

(51)

After all we get the representation (45) with

α(x0) :=
1
2
l(x0)µ(x0, {x0}) ≥ 0

β(x0) := β̃(x0)− l(x0)µ(x0, {∞})
γ(x0) := γ̃(x0) + l(x0)µ(x0, {∞}) ≥ 0

and

ν(x0, dy) :=
l(x0)

χ2(y − x0)
µ(x0, dy) on R+ \ {x0}.

Finally, we have to show that α(x0) = β(x0) = γ(x0) = δ(x0) = 0 implies
ν(x0,R+ \ {x0}) > 0. For case i) there is nothing to prove since δ(x0) = 1 anyway.
For case ii) it follows immediately from (50) that l(x0) > 0, which by definition of
γ(x0) implies that µ(x0, {∞}) = 0. Furthermore µ(x0, {x0}) = 0 by definition of
α(x0). This means µ(x0,R+ \ {x0}) = 1 and hence ν(x0,R+ \ {x0}) > 0. �
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