
Math Meth Oper Res (1999) 49 :211±219

999999

Scheduling identical jobs with chain precedence
constraints on two uniform machines

Peter Brucker1,*, Johann Hurink2, Wieslaw Kubiak3,**

1UniversitaÈt OsnabruÈck, Fachbereich Mathematik/Informatik, D-49069 OsnabruÈck, Germany
(e-mail: peter@mathematik.uni-osnabrueck.de)
2University of Twente, Faculty of Mathematical Sciences, P.O. Box 217, 7500 AE Enschede,
The Netherlands (e-mail: j.l.hurink@math.utwente.nl)
3Memorial University of Newfoundland, Faculty of Business Administration, St. John's,
Newfoundland, Canada (e-mail: wkubiak@morgan.ucs.mun.ca)

Abstract. The problem of scheduling identical jobs with chain precedence
constraints on two uniform machines is considered. It is shown that the cor-
responding makespan problem can be solved in linear time.

Key words: Scheduling, uniform machines, identical jobs, chain precedence
constraints

1 Introduction

We consider the problem Qjprec; pj � 1jCmax of scheduling identical jobs with
precedence constraints on m uniform machines M1; . . . ;Mm with the objective
to minimize the makespan. Each job has the same processing time pi on
machine Mi. If there are no precedence constraints between the jobs this
problem can be solved in O�n log m� time (Lawler et al. [1993]) even for the

objective functions
Pn
i�1

fi�Ci� and max
i A f1; ...;ng

fi�Ci� where fi is a monotone

function of the ®nish time Ci of job i. Despite the fact that there is an O�n6�-
algorithm for problem Q2jpmtn; prec; rjjLmax, where jobs with arbitrary
processing times, release times, and arbitrary precedence constraints are to be
processed preemptively on two uniform machines to minimize maximum
lateness (Lawler [1982]), only two polynomial algorithms have been developed
for special precedence constraints. Namely, Kubiak [1989] gives a polynomial
time algorithm for problem Q2jtree; pj � 1jCmax with one processor b times

* Supported by Deutsche Forschungsgemeinschaft, Project Br 389/15-1, `Komplexe Machinen-
Schedulingprobleme'.
** Supported by the Natural Sciences and Engineering Research Council of Canada under Grant
OGP0105675, and by the Komitet Badan Naukowych of Poland under Grant 8T11C04012.
Manuscript received: February 1997/®nal version received: May 1998

faster than the other one, where b is integer. Gabow [1982] tackles the same
problem for b � 1� 1=k, where k is an integer. The complexity of the corre-
sponding problem with arbitrary rational b is unknown.

In this paper we will present an algorithm for problem Q2jchains;
pj � 1jCmax with two uniform processors, identical jobs, chain precedence
constraints, and makespan minimization. The algorithm works in O�k� time,
where k is the number of chains. The results give some insight in the loss that
may be incurred in case of the problem Q2jpmtnjCmax (with integer processing
times) when preemption is allowed at integral points of time only.

Throughout this paper we assume that M2 is faster than M1 and that
p2 � p < p1 � 1 where p is a rational number. Furthermore, we assume that

we have k chains with n1 U n2 U � � � U nk jobs in each chain, where n �Pn
j�1

nj

is the total number of jobs.

2 The solution procedure

In Sections 2.1 and 2.2 we will discuss solutions to two relaxations of
Q2jchains; pj�1jCmax, namely, Q2jchains; pmtn; pj�1jCmax (which is equiv-

alent to Q2jpmtnjCmax with integer processing times) and Q2jpj � 1jCmax.
These solutions are useful guidelines for the solution procedure for
Q2jchains; pj � 1jCmax presented in Section 2.3.

2.1 k chains with preemption

To solve problem Q2jchains; pmtn; pj � 1jCmax three cases are considered.
These cases and the corresponding optimal solutions are shown in Figure 1.
Notice, that at most two preemptions may be necessary in an optimal schedule
for Q2jchains; pmtn; pj � 1jCmax. Therefore, if we delete the preempted jobs
from machine M1 and add them at the end of the schedule on M2, then we
obtain a schedule which is at most 2p away from the optimum for
Q2jchains; pj � 1jCmax. However, a better solution for Q2jchains;

Fig. 1. Three cases for Q2jchains; pmtn; pj � 1jCmax

212 P. Brucker et al.

pj � 1jCmax may be obtained. To derive an optimal solution the second re-
laxation is quite useful.

2.2 Independent jobs

Now we consider the problem Q2jpj � 1jCmax with independent jobs. If we
schedule y jobs on M2 (and thus nÿ y jobs on M1) then the makespan is given
by

maxfpy; nÿ yg: �2:1�

We need to ®nd an integer y, 0U yU n, which minimizes (2.1). This is
accomplished by solving equation py � nÿ y and rounding up or down its

solution y � n

p� 1
depending on which (rounded) value minimizes (2.1).

Thus, the optimal solution y� of (2.1) is given by

y� �
n

p� 1

� �
if nÿ n

p� 1

� �
V p

n

p� 1

� �
n

p� 1

� �
otherwise

8>>><>>>:
(see Fig. 2). The corresponding makespan C is given by py� if y� � n

p� 1

� �
and by nÿ n

p� 1

� �
in the other case. Clearly y� and C can be calculated in

constant time.

2.3 k chains

Our idea to solve the k-chain problem is as follows. First, we will solve the
relaxed problem, i.e. Q2jpj � 1jCmax, where we consider all jobs to be inde-

Fig. 2. Functions de®ning the makespan according to (2.1)

Scheduling identical jobs with chain precedence constraints 213

pendent. Based on the optimal solution of this relaxation we will give some
feasible schedules for Q2jchains; pj � 1jCmax for which we can show that all
other schedules are dominated by at least one of them. Therefore, the shortest
of the given schedules is optimal. In the following we will give a detailed de-
scription of the procedure.

Let k chains 1; . . . ; k with n1Vn2V � � �Vnk jobs be given and let n�Pk
j�1

nj.

Furthermore, let m1�m2� be the number of jobs on M1�M2� in an optimal
solution for the corresponding relaxed problem with n independent jobs. In
the following we assume pn1 < C, since otherwise the solution, where chain 1
is scheduled on M2 and the remaining chains are scheduled on M1 has make-
span pn1 and, thus, is optimal.

Let x1 U n1 be the maximal integer with

x1 � p�n1 ÿ x1�UC;

i.e.

x1 � C ÿ pn1

1ÿ p

� �
: �2:2�

If x1 � n1, it is possible to schedule all jobs of chain 1 on M1. Therefore, we
may schedule the chains in order 1; . . . ; k in a wrap around manner. First, we
schedule jobs on M1 starting with the jobs of chain 1 and continuing with the
jobs of chains 2; 3; . . . until m1 jobs have been scheduled on M1. Let the job
scheduled last on M1 belong to chain i. We continue by scheduling the
remaining m2 jobs on M2 starting with the remaining jobs of chain i and
continuing with the jobs of chains i � 1; . . . ; k. If we reorder the jobs of chain i
in such a way that they respect the precedence constraints, the resulting
schedule is feasible and has makespan C, thus, it must be optimal.

It remains to consider the case 0U x1 U n1 in more detail. In this case a
feasible schedule of chain 1 is given in Figure 3. From (2.2) it follows that the
gap D between the last job of chain 1 on M1 and ®rst job of chain 1 scheduled
on M2 is smaller that 1ÿ p < 1.

If nk Um1 ÿ x1, we can extend the schedule of Figure 3 to a schedule with
makespan C as follows. Schedule the jobs of chain k directly after the jobs of
chain 1 on M1 (see Figure 4(a)). Afterwards, the jobs of the remaining chains
are scheduled arbitrarily in the remaining m1 ÿ �x1 � nk� positions on M1 and
in the m2 ÿ �n1 ÿ x1� positions before the jobs of chain 1 on M2. Since the ®rst
job of chain k on M1 covers the gap between x1 and x1 � D, the resulting
schedule is feasible and has makespan C.

If nk > m1 ÿ x1, we extend the schedule of Figure 3 by scheduling xk :�
m1 ÿ x1 jobs of chain k starting at time C on M1 from right to left. Afterwards,
we schedule the remaining nk ÿ xk jobs of chain k starting at time 0 on M2.
There are two possible outcomes:

Case 1: The jobs of chain k do not overlap (see Figure 4(b)).
In this case, the schedule of Figure 4(b) can be completed by scheduling the
jobs of the remaining chains arbitrarily in the free positions between the jobs
of chains k and 1 on M2. Since the jobs of chain k do not overlap, the resulting
schedule is feasible and has makespan C.

214 P. Brucker et al.

Case 2: The jobs of chain k overlap (see Figure 4(c)).
Since the jobs of chain k overlap, we must have xk V 1. In further consid-
erations we distinguish two cases.

Case 2.1: k � 2
We will determine a solution departing from the infeasible schedule of Figure
4(c). In fact we will construct three feasible schedules for the jobs of chains 1
and 2 such that all other feasible schedules are dominated by at least one of
them. The three schedules are given in Figure 5.

i) For schedule S1 in Figure 5 we have

Cmax�S1� � x2 � �n2 ÿ x2�p: �2:3�
We can conclude:

Fig. 3. Schedule of the jobs of chain 1

Fig. 4. Schedule of the job of chain 1 and k

Scheduling identical jobs with chain precedence constraints 215

Dominance 1: Schedule S1 is at least as good as any feasible schedule with
at least x2 jobs of chain 2 on M1.

ii) For schedule S2 in Figure 5 we have

Cmax�S2� � x1 � 1� �n1 ÿ x1 ÿ 1�p: �2:4�
Schedule S2 is feasible since

t2 � t1 � pU x1 � D� p < x1 � 1ÿ p� p � x1 � 1

and we can conclude:

Dominance 2: Schedule S2 is at least as good as any feasible schedule with
at least x1 � 1 jobs of chain 1 on M1.

iii) For schedule S3 is Figure 5 we have

Cmax�S3� � �m2 � 1�p: �2:5�

Schedule S3 is feasible since

x2 ÿ 1UC ÿ �x1 � 1� < C ÿ �x1 � D� � p�n1 ÿ x1�:
We can conclude:

Fig. 5. Three feasible schedules for two chains

216 P. Brucker et al.

Dominance 3: Schedule S3 is at least as good as any feasible schedule with
at least m2 � 1 jobs on M2.

Lemma 1. The best of the three schedules S1;S2 and S3 is optimal.

Proof: Let now an arbitrary feasible schedule S of the two chains 1 and 2 be
given and let ~x1�~x2� denote the number of jobs of chain 1(2) on M1 in this
schedule. If ~x1 V x1 � 1 schedule S is dominated by S2 (see Dominance 2) and
if ~x2 V x2, schedule S is dominated by S1 (see Dominance 1). It remains to
consider the case ~x1 U x1 and ~x2 U x2 ÿ 1. However, in this case we have
~x1 � ~x2Ux1 � x2 ÿ 1�m1 ÿ 1 and, therefore, at least m2�1 jobs are scheduled
on M2 in S. Thus, schedule S is dominated by S3 (see Dominance 3). Sum-
marizing, we can state that each feasible schedule is dominated by at least one
of the feasible schedules S1;S2, and S3. Thus, the best of the three schedules
S1;S2 and S3 is an optimal schedule.

Case 2.2: k V 3
We will distinguish two cases based on the number x1 of jobs of chain 1 on M1

in the schedule given in Figure 4(c).

Case 2.2.1: x1 V 1
In a feasible schedule for the independent job problem, the jobs of chains
2; . . . ; k ÿ 1 would have to be inserted in the gap between the jobs of chain k
and chain 1 on M2. However, this gap is smaller or equal to D < 1. Thus, with
n2 pV nk pV x1 V 1 we get a contradiction, and Case 2.2.1 can not occur.

Case 2.2.2: x1 � 0
In the following we will consider two schedules S4 and S5. Schedule S4 with
makespan Cmax�S4� � np schedules all jobs of all chains on M2 starting at
time 0. Schedule S5 is constructed in the following way (see Figure 6):

. schedule one job of chain k starting at time 0 on M1. schedule the remaining jobs of chain k and the jobs of chain 1 as last jobs
on M2, where the jobs of chain 1 are scheduled before the jobs of chain k

Fig. 6. Two possible schedules S5

Scheduling identical jobs with chain precedence constraints 217

. schedule the jobs of the remaining chains 2; . . . ; k ÿ 1 arbitrarily in the
remaining m1 ÿ 1 positions on M1 and m2 ÿ �n1 � nk ÿ 1� position on M2

before chain 1.

In this schedule jobs of the chains 2; . . . ; k ÿ 1 will not overlap since the ®rst
job of these chains on M1 starts at time 1 and the last job of these chains on
M2 ®nishes at time t3 which is bounded as follows:

t3 � p�m2 ÿ �n1 � nk ÿ 1�� � m2 pÿ �n1 � nk ÿ 1�p

UC ÿ n1 pÿ �nk ÿ 1�pUC ÿ n1 p < 1:

Therefore, if we do not start the last job of chain k on M2 before 1, then the
schedule S5 will be feasible.

The two possible outcomes of schedule S5 are given in Figure 6. In case (a)
of Figure 6, chain k determines the makespan, which is given by Cmax�S5� �
1� �nk ÿ 1�p. Since k is the shortest chain, each schedule with at least one job
on M1 must have a makespan greater or equal Cmax�S5�. In case (b) of Figure
6, schedule S5 has makespan C, and therefore S5 is optimal. Summarizing,
we get

Dominance 4: Schedule S5 is at least as good as any schedule with at least one
job on M1.

Therefore, the better of the two schedules S4 and S5 is an optimal schedule.
Summarizing, we can solve the k-chain problem by

. determining the total number n of jobs, the length n1 of the longest chain,
and the length nk of the shortest chain (O�k� time),. solving an independent job problem with n jobs (constant time), and. carrying through the case analysis described in 2.2 (constant time).

Thus, the overall complexity is O�k�. However, with the knowledge of n, n1,
nk the problem can be solved in constant time. Notice, that the presented
approach works also if p is a real number.

3 Concluding remarks

We have presented a linear time algorithm for problem Q2jchains;
pj � 1jCmax. The complexity of problem Q2jtree; pi � 1jCmax, which we get
by replacing the chains by a tree, and problem Q3jchains; pj � 1jCmax, which

we get by enlarging the number of machines by one, are still open.

References

Gabow HN (1982) An almost-linear algorithm for two-processor scheduling. Journal Assoc.
Comput. Mach. 29:766±780

Kubiak W (1989) Optimal schedules of unit-time tasks on two uniform processors under tree-like
precedence constraints. ZOR 33:423±437

218 P. Brucker et al.

Lawler EL (1982) Preemptive scheduling of precedence-constrained jobs on parallel machines. In:
Dempster MAH, Lenstra JK, Rinnooy Kan AHG (Eds.) Deterministic and stochastic
scheduling, Reidel, Dordrecht

Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1993) Sequencing and scheduling:
algorithms and complexity. In: Graves SC, Rinnooy Kan AHG, Zipkin P (Eds.) Handbook in
operations research and management science, Volume 4: Logistics of production and
inventory, North-Holland, pp. 445±522

Scheduling identical jobs with chain precedence constraints 219

