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UPPER BOUNDS FOR EDGE-ANTIPODAL AND
SUBEQUILATERAL POLYTOPES

KONRAD J. SWANEPOEL

ABSTRACT. A polytope in a finite-dimensional normed space is subequi-
lateral if the length in the norm of each of its edges equals its diame-
ter. Subequilateral polytopes occur in the study of two unrelated sub-
jects: surface energy minimizing cones and edge-antipodal polytopes.
We show that the number of vertices of a subequilateral polytope in
any d-dimensional normed space is bounded above by (% +1)4 for any
d > 2. The same upper bound then follows for the number of vertices
of the edge-antipodal polytopes introduced by I. Talata (Period. Math.
Hungar. 38 (1999), 231-246). This is a constructive improvement to
the result of A. Pér (to appear) that for each dimension d there exists
an upper bound f(d) for the number of vertices of an edge-antipodal
d-polytopes. We also show that in d-dimensional Euclidean space the
only subequilateral polytopes are equilateral simplices.

1. NOTATION

Denote the d-dimensional real linear space by R, a norm on R? by ||-||, its
unit ball by B, and the ball with centre x and radius r by B(x,r). Denote
the diameter of a set ¢ C R?% by diam(C), and (if it is measurable) its
volume (or d-dimensional Lebesgue measure) by vol(C'). The dual norm
|I-]|* is defined by ||z||* := sup{(z,y) : ||y|| < 1}, where (-,-) is the inner
product on R%. Denote the number of elements of a finite set S by |S|. The
difference body of a set S C R%is S — S :={x —y: 2,y € S}. A polytope
is the convex hull of finitely many points in some R%. A d-polytope is a
polytope of dimension d. A convex body C is a compact convex subset of
R? with nonempty interior. The boundary of C' is denoted by bd C. Given
any convex body C we define the relative norm ||-||c determined by C to be
the norm with unit ball C' — C, or equivalently,

|lz||c == sup{\ > 0:a+ Az € C for some a € C}.
See [9} [T}, T7] for background on polytopes, convexity, and finite-dimensional

normed spaces.

This material is based upon work supported by the South African National Research
Foundation under Grant number 2053752.
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2. INTRODUCTION

2.1. Antipodal and edge-antipodal polytopes. A d-polytope P is an-
tipodal if for any two vertices  and y of P there exist two parallel hyper-
planes, one through z and one through y, such that P is contained in the
closed slab bounded by the two hyperplanes. Klee [T0] posed the problem of
finding an upper bound for the number of vertices of an antipodal d-polytope
in terms of d. Danzer and Griinbaum [7] proved the sharp upper bound of
29, See [12] for a recent survey.

A d-polytope P is edge-antipodal if for any two vertices x and y joined
by an edge there exist two parallel hyperplanes, one through z and one
through y, such that P is contained in the closed slab bounded by the
two hyperplanes. This notion was introduced by Talata [I8], who con-
jectured that the number of vertices of an edge-antipodal 3-polytope is
bounded above by a constant. Csikés [6] proved an upper bound of 12, and
K. Bezdek, Bisztriczky and Boroczky [2] gave the sharp upper bound of 8.
Pér [I5] proved that the number of vertices of an edge-antipodal d-polytope
is bounded above by a function of d. However, his proof is existential, with
no information on the size of the upper bound. Our main result is an explicit
bound.

Theorem 1. Let d > 2. Then the number of vertices of an edge-antipodal
d-polytope is bounded above by (% + 1),

In the plane, an edge-antipodal polytope is clearly antipodal, and in this
case the above theorem is sharp. The bound given is not sharp for d > 3
(since the bound in Theorem B below is not sharp). In [2] it is stated
without proof that all edge-antipodal 3-polytopes are antipodal. On the
other hand, Talata has an example of an edge-antipodal d-polytope that
is not antipodal for each d > 4 (see [6] and Section Hl below). Most likely
the largest number of vertices of an edge-antipodal d-polytope has an upper
bound exponential in d, perhaps even 2¢. We also mention the paper by
Bisztriczky and Boroczky [3] discussing edge-antipodal 3-polytopes.

Theorem [0 is proved by considering a metric relative of edge-antipodal
polytopes, discussed next.

2.2. Equilateral and subequilateral polytopes. A polytope P is equi-
lateral with respect to a norm |[|-|| on R? if its vertex set is an equidistant
set, i.e., the distance between any two vertices is a constant. This notion
was first considered by Petty [14], who showed that equilateral polytopes
are antipodal, hence have at most 2% vertices. We now introduce the fol-
lowing natural weakening of this notion, analogous to the weakening from
antipodal to edge-antipodal. We say that a d-polytope P is subequilateral
with respect to a norm ||-|| on R? if the length of each of its edges equals its
diameter.
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Although not explicitly given a name, the vertex sets of subequilateral
polytopes appear in the study of surface energy minimizing cones by Lawlor
and Morgan [IT]); see Section Ml for a discussion.

It is well-known and easy to prove that an edge-antipodal polytope P
is subequilateral with diameter 1 in the relative norm ||-||p determined by
P [18, 6]. It is also easy to see that any subequilateral polytope is edge-
antipodal. In order to prove Theorem [0 it is therefore sufficient to bound
the number of vertices of a subequilateral d-polytope.

Theorem 2. Let d > 2. Then the number of vertices of a subequilateral
d-polytope with respect to some norm ||-|| is bounded above by (% + 1)%.

The proof is in Section Bl In two-dimensional normed spaces subequilat-
eral polytopes are always equilateral. Therefore, the above theorem is sharp
for d = 2. By analyzing equality in the proof of Theorem Bl it can be seen
that the bound is not sharp for d > 3. Since edge-antipodal 3-polytopes
have at most 8 vertices, with equality only for parallelepipeds [2], it follows
that subequilateral 3-polytopes with respect to any norm has size at most 8,
with equality only if the unit ball of the norm is a parallelepiped homothetic
to the polytope.

We finally mention that in Euclidean d-space E? the only subequilateral
polytopes are equilateral simplices, and give a proof. In the proof we have
to consider subequilateral polytopes in spherical spaces, making it possible
to formulate a more general theorem for spaces of constant curvature. Note
that if we restrict ourselves to a hemisphere of the d-sphere S¢ in E*+1 the
notion of a polytope can be defined without ambiguity. The definition of a
subequilateral polytope then still makes sense in in a hemisphere of S¢, as
well as in hyperbolic d-space H¢.

Theorem 3. Let P be a subequilateral d-polytope in either E¢, HY, or a
hemisphere of S¢. Then P is an equilateral d-simplex.

Proof. The proof is by induction on d > 1, with d = 1 trivial and d = 2
easy. Suppose now d > 3. Let P be a subequilateral d-polytope in any of
the three spaces. By induction all facets of P are equilateral simplices. In
particular, P is simplicial. Since d > 3, it is sufficient to show that P is
simple (see section 4.5 and exercise 4.8.11 of [9]).

Consider any vertex v with neighbours vy,...,vg, k > d. Then vy, ..., v
are contained in an open hemisphere S of the (d—1)-sphere of radius diam(P)
and centre v. (This sphere will be isometric to some sphere in E?, not
necessarily of radius diam(P).)

Consider the (d — 1)-polytope P’ in S generated by v1,...,v; and any
facet of P’ with vertex set F' C {v1,...,vx}. There exists a great sphere C
of S passing through F' with P’ in one of the closed hemispheres determined
by C. It follows that the hyperplane H generated by C and v passes through
F U {v}, and P is contained in one of the closed half spaces bounded by H.
Therefore, F'U {v} is the vertex set of a facet of P.
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Similarly, it follows that for any vertex set F' of a facet of P containing
v, F'\ {v} is the vertex set of a facet of P’. Therefore, any edge v;v; of P’ is
an edge of P, hence of length the diameter of P. It follows that the distance
between v; and v; in H is the diameter of P’ as measured in H. This shows
that P’ is subequilateral in H, and so by induction is an equilateral (d —1)-
simplex. Therefore, k = d, giving that P is a simple polytope, which finishes
the proof. O

3. A MEASURE OF NON-EQUIDISTANCE

The key to the proof of Theorem B is a lower bound for the distance
between two nonadjacent vertices of a subequilateral polytope. For any
finite set of points V we define

AWV [ = diam(V)/ - min [z —y]|.
z,yeV,x#y

Since A(V; ||-]|) > 1, with equality if and only if V' is equidistant in the norm
||I]|, this functional measures how far V is from being equidistant. The
next lemma generalizes the theorem of Petty [I4] and Soltan [16] that the
number of points in an equidistant set is bounded above by 2¢. In [8] a proof
of the 2%-upper bound was given using the isodiametric inequality for finite-
dimensional normed spaces due to Busemann (equation (2.2) on p. 241 of
[M]; see also Mel'nikov [13]). However, since the isodiametric inequality has
a quick proof using the Brunn-Minkowski inequality [5], it is not surprising
that the latter inequality occurs in the following proof.

Lemma 1. Let V be a finite set in a d-dimensional normed space. Then
V< V51D + 1)

Proof. Let A = A(V;||-]]). By scaling we may assume that diam(V) = A.
Then ||z —y|| > 1 for all z,y € V,  # y, hence the balls B(v,1/2),
v € V, have disjoint interiors. Define C' = |J, ¢y B(v,1/2). Then vol(C) =
[V](1/2)?vol(B) and diam(C) < 1+ \. By the Brunn-Minkowski inequality
[5] we obtain vol(C' — C)'/4 > vol(C)/4 + vol(—C)'/4. Noting that C —C C
(14 M) B, the result follows. O

In order to find an upper bound on the number of vertices of a sube-
quilateral polytope with vertex set V, it remains to bound A\(V;||-||) from
above.

Lemma 2. Let d > 2 and let V' be the vertex set of a subequilateral d-
polytope. Then A\(V;||-]]) < d/2.

Proof. Let P be a subequilateral d-polytope of diameter 1, and let V' be its
vertex set. We have to show that || — y|| > 2/d for any distinct x,y € V.
Since this follows from the definition if zy is an edge of P, we assume without
loss that zy is not an edge of P. Then zy intersects the convex hull P’ of
V \ {z,y} in a (possibly degenerate) segment, say z'y’, with z, 2/, v, y
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in this order on zy. Let F, and F, be facets of P’ containing z’ and ¥/,
respectively.

We show that ||z — 2'|] > 1/d. For each vertex z of F,, zz is an edge
of P, hence ||z — z|| = 1. By Carathéodory’s theorem [T}, (2.2)], there exist
d vertices z1,...,zq of the (d — 1)-polytope F, and real numbers \j,..., \g

such that
d d
x':Z)\izi, )\i 20, Z)\’ = 1.
i=1 i=1

Suppose without loss that Ay = max; \;. Then Ay > 1/d. By the triangle
inequality we obtain

d—1 d—1
2 = zqll = 11> Xilzi — za)ll <> Aillzi — 2dl
=1 i=1

d—1

1
< Ai=1-X<1——,
; d
=1
and
lz =2l 2 |z — zall — ll2" -zl
1 1
>1-(1—-)=-.
S0 =1
Similarly, ||y — ¢/|| > 1/d, and we obtain |z — y| > 2/d. O
Lemmas [l and 2 now imply Theorem B O

4. CONCLUDING REMARKS

4.1. Sharpness of Lemmal[2l The following example shows that Lemma Pl

cannot be improved in general. Consider the subspace X = {(z1,...,%441) :
Z?Zl z; = 0} of R4 with the ¢; norm |(@1,...,2411)|l1 := Zfill\xz\ Let
the standard unit vector basis of R¥! be ey,...,eqq1. Let ¢ = Zle €;.

Then V = {de; —c : i = 1,...,d} U {£2e4:1} is the vertex set of a d-
polytope P in X, with all intervertex distances equal to 2d, except for the
distance between +2e411, which is 4. It follows that P is subequilateral and
AWV |- = d/2.

However, the above polytope P is in fact antipodal, and so it is equilateral
in ||||p, which gives A\(V;||-||p) = 1. It is easy to see that for any polytope
P subequilateral with respect to some norm ||-||, and with vertex set V', we
have \(V, [|-]]) < A(V,||-]|p). One may therefore hope that for the norm ||| p
the upper bound in Lemma Pl may be improved, thus giving a better bound
in Theorem [ The following example shows that any such improved upper
bound will still have to be at least (d — 1)/2, indicating that essentially new
ideas will be needed to improve the upper bounds in Theorems [ and 21

We consider Talata’s example [6] of an edge-antipodal polytope that is
not antipodal. Let d > 4, ey,...,eq be the standard basis of R?, p =
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2 Zf;ll ei, and A = (d —1)/2 — e > 1 for some small ¢ > 0. Then the
polytope P with vertex set V = {o,e1,...,¢e4,p,eq4 + Ap} is edge-antipodal
but not antipodal. In fact, diam(V') < 1 by definition of ||-||p, and since
llea — o|lp = 1 and ||p — o||[p = 1/A, we obtain A(V,||-||p) > A, which is
arbitrarily close to (d —1)/2.

4.2. Subequilateral polytopes in the work of Lawlor and Morgan.
Define the ||-||-energy of a hypersurface S in R? to be ||S|| := [q|n(z)|dz,
where n(x) is the Euclidean unit normal at z € S. In [II] a sufficient
condition is given to obtain an energy minimizing hypersurface partitioning
a convex body. We restate a special case of the “General Norms Theorem
I” in [IIl pp. 66-67] in terms of subequilateral polytopes. (In the notation
of [I1] we take all the norms ®;; to be the same. Then the points p1,...,pm
in the hypothesis form an equidistant set with respect to the dual norm.
The weakening of the hypothesis in the last sentence of the General Norms
Theorem I is easily seen to be equivalent to the requirement that pi,...,pm
is the vertex set of a subequilateral polytope.) We refer to [I1] for the simple
and enlightening proof using the divergence theorem.

Lawlor-Morgan Theorem. Let ||-|| be a norm on R™, and let p1,...,pm €
R™ be the vertex set of a subequilateral polytope of ||-||-diameter 1. Let ¥ =
UH;i; C C be a hypersurface which partitions some convex body C' into
regions Ri, ..., Ry, with R; and R; separated by a piece H;; of a hyperplane
such that the parallel hyperplane passing through p; — p; supports the unit
ball B at p; — pj.

Then for any hypersurface M = |J M;; which also separates the R;Nbd C
from each other in C, with the regions touching R; " bdC and R; NbdC
facing each other across M;j;, we have ||X||* < ||M]]*, i.e. ¥ minimizes ||-||*-
energy, where ||-||* is the norm dual to ||-||.
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