UPPER BOUNDS FOR EDGE-ANTIPODAL AND SUBEQUILATERAL POLYTOPES

KONRAD J. SWANEPOEL

Abstract

A polytope in a finite-dimensional normed space is subequilateral if the length in the norm of each of its edges equals its diameter. Subequilateral polytopes occur in the study of two unrelated subjects: surface energy minimizing cones and edge-antipodal polytopes. We show that the number of vertices of a subequilateral polytope in any d-dimensional normed space is bounded above by $\left(\frac{d}{2}+1\right)^{d}$ for any $d \geq 2$. The same upper bound then follows for the number of vertices of the edge-antipodal polytopes introduced by I. Talata (Period. Math. Hungar. 38 (1999), 231-246). This is a constructive improvement to the result of A. Pór (to appear) that for each dimension d there exists an upper bound $f(d)$ for the number of vertices of an edge-antipodal d-polytopes. We also show that in d-dimensional Euclidean space the only subequilateral polytopes are equilateral simplices.

1. Notation

Denote the d-dimensional real linear space by \mathbb{R}^{d}, a norm on \mathbb{R}^{d} by $\|\cdot\|$, its unit ball by B, and the ball with centre x and radius r by $B(x, r)$. Denote the diameter of a set $C \subseteq \mathbb{R}^{d}$ by $\operatorname{diam}(C)$, and (if it is measurable) its volume (or d-dimensional Lebesgue measure) by $\operatorname{vol}(C)$. The dual norm $\|\cdot\|^{*}$ is defined by $\|x\|^{*}:=\sup \{\langle x, y\rangle:\|y\| \leq 1\}$, where $\langle\cdot, \cdot\rangle$ is the inner product on \mathbb{R}^{d}. Denote the number of elements of a finite set S by $|S|$. The difference body of a set $S \subseteq \mathbb{R}^{d}$ is $S-S:=\{x-y: x, y \in S\}$. A polytope is the convex hull of finitely many points in some \mathbb{R}^{d}. A d-polytope is a polytope of dimension d. A convex body C is a compact convex subset of \mathbb{R}^{d} with nonempty interior. The boundary of C is denoted by $\operatorname{bd} C$. Given any convex body C we define the relative norm $\|\cdot\|_{C}$ determined by C to be the norm with unit ball $C-C$, or equivalently,

$$
\|x\|_{C}:=\sup \{\lambda>0: a+\lambda x \in C \text { for some } a \in C\}
$$

See [9, 1. 17) for background on polytopes, convexity, and finite-dimensional normed spaces.

[^0]
2. Introduction

2.1. Antipodal and edge-antipodal polytopes. A d-polytope P is $a n$ tipodal if for any two vertices x and y of P there exist two parallel hyperplanes, one through x and one through y, such that P is contained in the closed slab bounded by the two hyperplanes. Klee [10] posed the problem of finding an upper bound for the number of vertices of an antipodal d-polytope in terms of d. Danzer and Grünbaum 7 proved the sharp upper bound of 2^{d}. See [12] for a recent survey.

A d-polytope P is edge-antipodal if for any two vertices x and y joined by an edge there exist two parallel hyperplanes, one through x and one through y, such that P is contained in the closed slab bounded by the two hyperplanes. This notion was introduced by Talata [18, who conjectured that the number of vertices of an edge-antipodal 3-polytope is bounded above by a constant. Csikós [6] proved an upper bound of 12, and K. Bezdek, Bisztriczky and Böröczky [2] gave the sharp upper bound of 8 . Pór [15] proved that the number of vertices of an edge-antipodal d-polytope is bounded above by a function of d. However, his proof is existential, with no information on the size of the upper bound. Our main result is an explicit bound.

Theorem 1. Let $d \geq 2$. Then the number of vertices of an edge-antipodal d-polytope is bounded above by $\left(\frac{d}{2}+1\right)^{d}$.

In the plane, an edge-antipodal polytope is clearly antipodal, and in this case the above theorem is sharp. The bound given is not sharp for $d \geq 3$ (since the bound in Theorem 2 below is not sharp). In 2] it is stated without proof that all edge-antipodal 3 -polytopes are antipodal. On the other hand, Talata has an example of an edge-antipodal d-polytope that is not antipodal for each $d \geq 4$ (see [6] and Section 4 below). Most likely the largest number of vertices of an edge-antipodal d-polytope has an upper bound exponential in d, perhaps even 2^{d}. We also mention the paper by Bisztriczky and Böröczky [3] discussing edge-antipodal 3-polytopes.

Theorem \square is proved by considering a metric relative of edge-antipodal polytopes, discussed next.
2.2. Equilateral and subequilateral polytopes. A polytope P is equilateral with respect to a norm $\|\cdot\|$ on \mathbb{R}^{d} if its vertex set is an equidistant set, i.e., the distance between any two vertices is a constant. This notion was first considered by Petty [14, who showed that equilateral polytopes are antipodal, hence have at most 2^{d} vertices. We now introduce the following natural weakening of this notion, analogous to the weakening from antipodal to edge-antipodal. We say that a d-polytope P is subequilateral with respect to a norm $\|\cdot\|$ on \mathbb{R}^{d} if the length of each of its edges equals its diameter.

Although not explicitly given a name, the vertex sets of subequilateral polytopes appear in the study of surface energy minimizing cones by Lawlor and Morgan [11; see Section 4 for a discussion.

It is well-known and easy to prove that an edge-antipodal polytope P is subequilateral with diameter 1 in the relative norm $\|\cdot\|_{P}$ determined by P [18, 6]. It is also easy to see that any subequilateral polytope is edgeantipodal. In order to prove Theorem $\mathbb{1}$ it is therefore sufficient to bound the number of vertices of a subequilateral d-polytope.

Theorem 2. Let $d \geq 2$. Then the number of vertices of a subequilateral d-polytope with respect to some norm $\|\cdot\|$ is bounded above by $\left(\frac{d}{2}+1\right)^{d}$.

The proof is in Section 3 In two-dimensional normed spaces subequilateral polytopes are always equilateral. Therefore, the above theorem is sharp for $d=2$. By analyzing equality in the proof of Theorem [2] it can be seen that the bound is not sharp for $d \geq 3$. Since edge-antipodal 3-polytopes have at most 8 vertices, with equality only for parallelepipeds [2], it follows that subequilateral 3 -polytopes with respect to any norm has size at most 8 , with equality only if the unit ball of the norm is a parallelepiped homothetic to the polytope.

We finally mention that in Euclidean d-space \mathbb{E}^{d} the only subequilateral polytopes are equilateral simplices, and give a proof. In the proof we have to consider subequilateral polytopes in spherical spaces, making it possible to formulate a more general theorem for spaces of constant curvature. Note that if we restrict ourselves to a hemisphere of the d-sphere \mathbb{S}^{d} in \mathbb{E}^{d+1}, the notion of a polytope can be defined without ambiguity. The definition of a subequilateral polytope then still makes sense in in a hemisphere of \mathbb{S}^{d}, as well as in hyperbolic d-space \mathbb{H}^{d}.

Theorem 3. Let P be a subequilateral d-polytope in either $\mathbb{E}^{d}, \mathbb{H}^{d}$, or a hemisphere of \mathbb{S}^{d}. Then P is an equilateral d-simplex.

Proof. The proof is by induction on $d \geq 1$, with $d=1$ trivial and $d=2$ easy. Suppose now $d \geq 3$. Let P be a subequilateral d-polytope in any of the three spaces. By induction all facets of P are equilateral simplices. In particular, P is simplicial. Since $d \geq 3$, it is sufficient to show that P is simple (see section 4.5 and exercise 4.8.11 of [9).

Consider any vertex v with neighbours $v_{1}, \ldots, v_{k}, k \geq d$. Then v_{1}, \ldots, v_{k} are contained in an open hemisphere S of the $(d-1)$-sphere of radius $\operatorname{diam}(P)$ and centre v. (This sphere will be isometric to some sphere in \mathbb{E}^{d}, not necessarily of radius $\operatorname{diam}(P)$.)

Consider the $(d-1)$-polytope P^{\prime} in S generated by v_{1}, \ldots, v_{k} and any facet of P^{\prime} with vertex set $F \subset\left\{v_{1}, \ldots, v_{k}\right\}$. There exists a great sphere C of S passing through F with P^{\prime} in one of the closed hemispheres determined by C. It follows that the hyperplane H generated by C and v passes through $F \cup\{v\}$, and P is contained in one of the closed half spaces bounded by H. Therefore, $F \cup\{v\}$ is the vertex set of a facet of P.

Similarly, it follows that for any vertex set F of a facet of P containing $v, F \backslash\{v\}$ is the vertex set of a facet of P^{\prime}. Therefore, any edge $v_{i} v_{j}$ of P^{\prime} is an edge of P, hence of length the diameter of P. It follows that the distance between v_{i} and v_{j} in H is the diameter of P^{\prime} as measured in H. This shows that P^{\prime} is subequilateral in H, and so by induction is an equilateral $(d-1)$ simplex. Therefore, $k=d$, giving that P is a simple polytope, which finishes the proof.

3. A measure of non-Equidistance

The key to the proof of Theorem 2 is a lower bound for the distance between two nonadjacent vertices of a subequilateral polytope. For any finite set of points V we define

$$
\lambda(V ;\|\cdot\|)=\operatorname{diam}(V) / \min _{x, y \in V, x \neq y}\|x-y\| .
$$

Since $\lambda(V ;\|\cdot\|) \geq 1$, with equality if and only if V is equidistant in the norm $\|\cdot\|$, this functional measures how far V is from being equidistant. The next lemma generalizes the theorem of Petty [14] and Soltan [16] that the number of points in an equidistant set is bounded above by 2^{d}. In [8 a proof of the 2^{d}-upper bound was given using the isodiametric inequality for finitedimensional normed spaces due to Busemann (equation (2.2) on p. 241 of [4]; see also Mel'nikov [13]). However, since the isodiametric inequality has a quick proof using the Brunn-Minkowski inequality [5], it is not surprising that the latter inequality occurs in the following proof.

Lemma 1. Let V be a finite set in a d-dimensional normed space. Then $|V| \leq(\lambda(V ;\|\cdot\|)+1)^{d}$.

Proof. Let $\lambda=\lambda(V ;\|\cdot\|)$. By scaling we may assume that $\operatorname{diam}(V)=\lambda$. Then $\|x-y\| \geq 1$ for all $x, y \in V, x \neq y$, hence the balls $B(v, 1 / 2)$, $v \in V$, have disjoint interiors. Define $C=\bigcup_{v \in V} B(v, 1 / 2)$. Then $\operatorname{vol}(C)=$ $|V|(1 / 2)^{d} \operatorname{vol}(B)$ and $\operatorname{diam}(C) \leq 1+\lambda$. By the Brunn-Minkowski inequality [5] we obtain $\operatorname{vol}(C-C)^{1 / d} \geq \operatorname{vol}(C)^{1 / d}+\operatorname{vol}(-C)^{1 / d}$. Noting that $C-C \subseteq$ $(1+\lambda) B$, the result follows.

In order to find an upper bound on the number of vertices of a subequilateral polytope with vertex set V, it remains to bound $\lambda(V ;\|\cdot\|)$ from above.

Lemma 2. Let $d \geq 2$ and let V be the vertex set of a subequilateral d polytope. Then $\lambda(V ;\|\cdot\|) \leq d / 2$.

Proof. Let P be a subequilateral d-polytope of diameter 1, and let V be its vertex set. We have to show that $\|x-y\| \geq 2 / d$ for any distinct $x, y \in V$. Since this follows from the definition if $x y$ is an edge of P, we assume without loss that $x y$ is not an edge of P. Then $x y$ intersects the convex hull P^{\prime} of $V \backslash\{x, y\}$ in a (possibly degenerate) segment, say $x^{\prime} y^{\prime}$, with $x, x^{\prime}, y^{\prime}, y$
in this order on $x y$. Let F_{x} and F_{y} be facets of P^{\prime} containing x^{\prime} and y^{\prime}, respectively.

We show that $\left\|x-x^{\prime}\right\| \geq 1 / d$. For each vertex z of $F_{x}, x z$ is an edge of P, hence $\|x-z\|=1$. By Carathéodory's theorem [1, (2.2)], there exist d vertices z_{1}, \ldots, z_{d} of the ($d-1$)-polytope F_{x} and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
x^{\prime}=\sum_{i=1}^{d} \lambda_{i} z_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i=1}^{d} \lambda_{i}=1 .
$$

Suppose without loss that $\lambda_{d}=\max _{i} \lambda_{i}$. Then $\lambda_{d} \geq 1 / d$. By the triangle inequality we obtain

$$
\begin{aligned}
\left\|x^{\prime}-z_{d}\right\| & =\left\|\sum_{i=1}^{d-1} \lambda_{i}\left(z_{i}-z_{d}\right)\right\| \leq \sum_{i=1}^{d-1} \lambda_{i}\left\|z_{i}-z_{d}\right\| \\
& \leq \sum_{i=1}^{d-1} \lambda_{i}=1-\lambda_{d} \leq 1-\frac{1}{d}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|x-x^{\prime}\right\| & \geq\left\|x-z_{d}\right\|-\left\|x^{\prime}-z_{d}\right\| \\
& \geq 1-\left(1-\frac{1}{d}\right)=\frac{1}{d} .
\end{aligned}
$$

Similarly, $\left\|y-y^{\prime}\right\| \geq 1 / d$, and we obtain $\|x-y\| \geq 2 / d$.
Lemmas 1 and 2 now imply Theorem 2

4. Concluding remarks

4.1. Sharpness of Lemma 2, The following example shows that Lemma 2 cannot be improved in general. Consider the subspace $X=\left\{\left(x_{1}, \ldots, x_{d+1}\right)\right.$: $\left.\sum_{i=1}^{d} x_{i}=0\right\}$ of \mathbb{R}^{d+1} with the ℓ_{1} norm $\left\|\left(x_{1}, \ldots, x_{d+1}\right)\right\|_{1}:=\sum_{i=1}^{d+1}\left|x_{i}\right|$. Let the standard unit vector basis of \mathbb{R}^{d+1} be e_{1}, \ldots, e_{d+1}. Let $c=\sum_{i=1}^{d} e_{i}$. Then $V=\left\{d e_{i}-c: i=1, \ldots, d\right\} \cup\left\{ \pm 2 e_{d+1}\right\}$ is the vertex set of a d polytope P in X, with all intervertex distances equal to $2 d$, except for the distance between $\pm 2 e_{d+1}$, which is 4 . It follows that P is subequilateral and $\lambda(V ;\|\cdot\|)=d / 2$.

However, the above polytope P is in fact antipodal, and so it is equilateral in $\|\cdot\|_{P}$, which gives $\lambda\left(V ;\|\cdot\|_{P}\right)=1$. It is easy to see that for any polytope P subequilateral with respect to some norm $\|\cdot\|$, and with vertex set V, we have $\lambda(V,\|\cdot\|) \leq \lambda\left(V,\|\cdot\|_{P}\right)$. One may therefore hope that for the norm $\|\cdot\|_{P}$ the upper bound in Lemma 2 may be improved, thus giving a better bound in Theorem The following example shows that any such improved upper bound will still have to be at least $(d-1) / 2$, indicating that essentially new ideas will be needed to improve the upper bounds in Theorems 1 and 2

We consider Talata's example [6] of an edge-antipodal polytope that is not antipodal. Let $d \geq 4, e_{1}, \ldots, e_{d}$ be the standard basis of $\mathbb{R}^{d}, p=$
$\frac{2}{d-1} \sum_{i=1}^{d-1} e_{i}$, and $\lambda=(d-1) / 2-\varepsilon>1$ for some small $\varepsilon>0$. Then the polytope P with vertex set $V=\left\{o, e_{1}, \ldots, e_{d}, p, e_{d}+\lambda p\right\}$ is edge-antipodal but not antipodal. In fact, $\operatorname{diam}(V) \leq 1$ by definition of $\|\cdot\|_{P}$, and since $\left\|e_{d}-o\right\|_{P}=1$ and $\|p-o\|_{P}=1 / \lambda$, we obtain $\lambda\left(V,\|\cdot\|_{P}\right) \geq \lambda$, which is arbitrarily close to $(d-1) / 2$.
4.2. Subequilateral polytopes in the work of Lawlor and Morgan. Define the $\|\cdot\|$-energy of a hypersurface S in \mathbb{R}^{d} to be $\|S\|:=\int_{S}\|n(x)\| d x$, where $n(x)$ is the Euclidean unit normal at $x \in S$. In [11] a sufficient condition is given to obtain an energy minimizing hypersurface partitioning a convex body. We restate a special case of the "General Norms Theorem I" in [11, pp. 66-67] in terms of subequilateral polytopes. (In the notation of [11] we take all the norms $\Phi_{i j}$ to be the same. Then the points p_{1}, \ldots, p_{m} in the hypothesis form an equidistant set with respect to the dual norm. The weakening of the hypothesis in the last sentence of the General Norms Theorem I is easily seen to be equivalent to the requirement that p_{1}, \ldots, p_{m} is the vertex set of a subequilateral polytope.) We refer to [11 for the simple and enlightening proof using the divergence theorem.

Lawlor-Morgan Theorem. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}, and let $p_{1}, \ldots, p_{m} \in$ \mathbb{R}^{n} be the vertex set of a subequilateral polytope of $\|\cdot\|$-diameter 1 . Let $\Sigma=$ $\bigcup H_{i j} \subset C$ be a hypersurface which partitions some convex body C into regions R_{1}, \ldots, R_{m} with R_{i} and R_{j} separated by a piece $H_{i j}$ of a hyperplane such that the parallel hyperplane passing through $p_{i}-p_{j}$ supports the unit ball B at $p_{i}-p_{j}$.

Then for any hypersurface $M=\bigcup M_{i j}$ which also separates the $R_{i} \cap \mathrm{bd} C$ from each other in C, with the regions touching $R_{i} \cap \mathrm{bd} C$ and $R_{j} \cap \mathrm{bd} C$ facing each other across $M_{i j}$, we have $\|\Sigma\|^{*} \leq\|M\|^{*}$, i.e. Σ minimizes $\|\cdot\|^{*}$ energy, where $\|\cdot\|^{*}$ is the norm dual to $\|\cdot\|$.

References

[1] A. Barvinok, A Course in Convexity, American Mathematical Society, Providence, RI, 2002.
[2] K. Bezdek, T. Bisztriczky, and K. Böröczky, Edge-antipodal 3-polytopes, Discrete and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.), MSRI Special Programs, Cambridge University Press, 2005.
[3] T. Bisztriczky and K. Böröczky, On antipodal 3-polytopes, manuscript, 5 pages, 2005.
[4] H. Busemann, Intrinsic area, Ann. Math. 48 (1947), 234-267.
[5] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Heidelberg, 1988.
[6] B. Csikós, Edge-antipodal convex polytopes - a proof of Talata's conjecture, Discrete Geometry, Monogr. Textbooks Pure Appl. Math., vol. 253, Dekker, New York, 2003, pp. 201-205.
[7] L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee, Math. Z. 79 (1962), 95-99.
[8] Z. Füredi, J. C. Lagarias, and F. Morgan, Singularities of minimal surfaces and networks and related extremal problems in Minkowski space, Discrete and computational
geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc., Providence, RI, 1991, pp. 95-109.
[9] B. Grunbaum, Convex polytopes, 2nd ed., Springer, New York, 2003.
[10] V. Klee, Unsolved problems in intuitive geometry, Mimeographed notes, Seattle, 1960.
[11] G. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166 (1994), 55-83.
[12] H. Martini and V. Soltan, Antipodality properties of finite sets in Euclidean space, Discrete Math. 290 (2005), 221-228.
[13] M. S. Mel'nikov, Dependence of volume and diameter of sets in an n-dimensional Banach space (Russian), Uspehi Mat. Nauk 18 (1963), 165-170.
[14] C. M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc. 29 (1971), 369-374.
[15] A. Pór, On e-antipodal polytopes, 2005, submitted.
[16] P. S. Soltan, Analogues of regular simplexes in normed spaces (Russian), Dokl. Akad. Nauk SSSR 222 (1975), no. 6, 1303-1305. English translation: Soviet Math. Dokl. 16 (1975), no. 3, 787-789.
[17] A. C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996.
[18] I. Talata, On extensive subsets of convex bodies, Period. Math. Hungar. 38 (1999), 231-246.

Department of Mathematical Sciences, University of South Africa, PO Box 392, Pretoria 0003, South Africa

E-mail address: swanekj@unisa.ac.za

[^0]: This material is based upon work supported by the South African National Research Foundation under Grant number 2053752.

