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UPPER BOUNDS FOR EDGE-ANTIPODAL AND

SUBEQUILATERAL POLYTOPES

KONRAD J. SWANEPOEL

Abstract. A polytope in a finite-dimensional normed space is subequi-
lateral if the length in the norm of each of its edges equals its diame-
ter. Subequilateral polytopes occur in the study of two unrelated sub-
jects: surface energy minimizing cones and edge-antipodal polytopes.
We show that the number of vertices of a subequilateral polytope in
any d-dimensional normed space is bounded above by ( d

2
+ 1)d for any

d ≥ 2. The same upper bound then follows for the number of vertices
of the edge-antipodal polytopes introduced by I. Talata (Period. Math.
Hungar. 38 (1999), 231–246). This is a constructive improvement to
the result of A. Pór (to appear) that for each dimension d there exists
an upper bound f(d) for the number of vertices of an edge-antipodal
d-polytopes. We also show that in d-dimensional Euclidean space the
only subequilateral polytopes are equilateral simplices.

1. Notation

Denote the d-dimensional real linear space by R
d, a norm on R

d by ‖·‖, its
unit ball by B, and the ball with centre x and radius r by B(x, r). Denote
the diameter of a set C ⊆ R

d by diam(C), and (if it is measurable) its
volume (or d-dimensional Lebesgue measure) by vol(C). The dual norm

‖·‖∗ is defined by ‖x‖∗ := sup{〈x, y〉 : ‖y‖ ≤ 1}, where 〈·, ·〉 is the inner
product on R

d. Denote the number of elements of a finite set S by |S|. The
difference body of a set S ⊆ R

d is S − S := {x − y : x, y ∈ S}. A polytope

is the convex hull of finitely many points in some R
d. A d-polytope is a

polytope of dimension d. A convex body C is a compact convex subset of
R
d with nonempty interior. The boundary of C is denoted by bdC. Given

any convex body C we define the relative norm ‖·‖C determined by C to be
the norm with unit ball C − C, or equivalently,

‖x‖C := sup{λ > 0 : a+ λx ∈ C for some a ∈ C}.

See [9, 1, 17] for background on polytopes, convexity, and finite-dimensional
normed spaces.

This material is based upon work supported by the South African National Research
Foundation under Grant number 2053752.
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2. Introduction

2.1. Antipodal and edge-antipodal polytopes. A d-polytope P is an-
tipodal if for any two vertices x and y of P there exist two parallel hyper-
planes, one through x and one through y, such that P is contained in the
closed slab bounded by the two hyperplanes. Klee [10] posed the problem of
finding an upper bound for the number of vertices of an antipodal d-polytope
in terms of d. Danzer and Grünbaum [7] proved the sharp upper bound of
2d. See [12] for a recent survey.

A d-polytope P is edge-antipodal if for any two vertices x and y joined
by an edge there exist two parallel hyperplanes, one through x and one
through y, such that P is contained in the closed slab bounded by the
two hyperplanes. This notion was introduced by Talata [18], who con-
jectured that the number of vertices of an edge-antipodal 3-polytope is
bounded above by a constant. Csikós [6] proved an upper bound of 12, and
K. Bezdek, Bisztriczky and Böröczky [2] gave the sharp upper bound of 8.
Pór [15] proved that the number of vertices of an edge-antipodal d-polytope
is bounded above by a function of d. However, his proof is existential, with
no information on the size of the upper bound. Our main result is an explicit
bound.

Theorem 1. Let d ≥ 2. Then the number of vertices of an edge-antipodal

d-polytope is bounded above by (d
2
+ 1)d.

In the plane, an edge-antipodal polytope is clearly antipodal, and in this
case the above theorem is sharp. The bound given is not sharp for d ≥ 3
(since the bound in Theorem 2 below is not sharp). In [2] it is stated
without proof that all edge-antipodal 3-polytopes are antipodal. On the
other hand, Talata has an example of an edge-antipodal d-polytope that
is not antipodal for each d ≥ 4 (see [6] and Section 4 below). Most likely
the largest number of vertices of an edge-antipodal d-polytope has an upper
bound exponential in d, perhaps even 2d. We also mention the paper by
Bisztriczky and Böröczky [3] discussing edge-antipodal 3-polytopes.

Theorem 1 is proved by considering a metric relative of edge-antipodal
polytopes, discussed next.

2.2. Equilateral and subequilateral polytopes. A polytope P is equi-
lateral with respect to a norm ‖·‖ on R

d if its vertex set is an equidistant

set, i.e., the distance between any two vertices is a constant. This notion
was first considered by Petty [14], who showed that equilateral polytopes
are antipodal, hence have at most 2d vertices. We now introduce the fol-
lowing natural weakening of this notion, analogous to the weakening from
antipodal to edge-antipodal. We say that a d-polytope P is subequilateral

with respect to a norm ‖·‖ on R
d if the length of each of its edges equals its

diameter.
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Although not explicitly given a name, the vertex sets of subequilateral
polytopes appear in the study of surface energy minimizing cones by Lawlor
and Morgan [11]; see Section 4 for a discussion.

It is well-known and easy to prove that an edge-antipodal polytope P
is subequilateral with diameter 1 in the relative norm ‖·‖P determined by
P [18, 6]. It is also easy to see that any subequilateral polytope is edge-
antipodal. In order to prove Theorem 1 it is therefore sufficient to bound
the number of vertices of a subequilateral d-polytope.

Theorem 2. Let d ≥ 2. Then the number of vertices of a subequilateral

d-polytope with respect to some norm ‖·‖ is bounded above by (d
2
+ 1)d.

The proof is in Section 3. In two-dimensional normed spaces subequilat-
eral polytopes are always equilateral. Therefore, the above theorem is sharp
for d = 2. By analyzing equality in the proof of Theorem 2, it can be seen
that the bound is not sharp for d ≥ 3. Since edge-antipodal 3-polytopes
have at most 8 vertices, with equality only for parallelepipeds [2], it follows
that subequilateral 3-polytopes with respect to any norm has size at most 8,
with equality only if the unit ball of the norm is a parallelepiped homothetic
to the polytope.

We finally mention that in Euclidean d-space E
d the only subequilateral

polytopes are equilateral simplices, and give a proof. In the proof we have
to consider subequilateral polytopes in spherical spaces, making it possible
to formulate a more general theorem for spaces of constant curvature. Note
that if we restrict ourselves to a hemisphere of the d-sphere S

d in E
d+1, the

notion of a polytope can be defined without ambiguity. The definition of a
subequilateral polytope then still makes sense in in a hemisphere of Sd, as
well as in hyperbolic d-space H

d.

Theorem 3. Let P be a subequilateral d-polytope in either E
d, H

d, or a

hemisphere of Sd. Then P is an equilateral d-simplex.

Proof. The proof is by induction on d ≥ 1, with d = 1 trivial and d = 2
easy. Suppose now d ≥ 3. Let P be a subequilateral d-polytope in any of
the three spaces. By induction all facets of P are equilateral simplices. In
particular, P is simplicial. Since d ≥ 3, it is sufficient to show that P is
simple (see section 4.5 and exercise 4.8.11 of [9]).

Consider any vertex v with neighbours v1, . . . , vk, k ≥ d. Then v1, . . . , vk
are contained in an open hemisphere S of the (d−1)-sphere of radius diam(P )
and centre v. (This sphere will be isometric to some sphere in E

d, not
necessarily of radius diam(P ).)

Consider the (d − 1)-polytope P ′ in S generated by v1, . . . , vk and any
facet of P ′ with vertex set F ⊂ {v1, . . . , vk}. There exists a great sphere C
of S passing through F with P ′ in one of the closed hemispheres determined
by C. It follows that the hyperplaneH generated by C and v passes through
F ∪ {v}, and P is contained in one of the closed half spaces bounded by H.
Therefore, F ∪ {v} is the vertex set of a facet of P .
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Similarly, it follows that for any vertex set F of a facet of P containing
v, F \ {v} is the vertex set of a facet of P ′. Therefore, any edge vivj of P

′ is
an edge of P , hence of length the diameter of P . It follows that the distance
between vi and vj in H is the diameter of P ′ as measured in H. This shows
that P ′ is subequilateral in H, and so by induction is an equilateral (d− 1)-
simplex. Therefore, k = d, giving that P is a simple polytope, which finishes
the proof. �

3. A measure of non-equidistance

The key to the proof of Theorem 2 is a lower bound for the distance
between two nonadjacent vertices of a subequilateral polytope. For any
finite set of points V we define

λ(V ; ‖·‖) = diam(V )/ min
x,y∈V,x 6=y

‖x− y‖.

Since λ(V ; ‖·‖) ≥ 1, with equality if and only if V is equidistant in the norm
‖·‖, this functional measures how far V is from being equidistant. The
next lemma generalizes the theorem of Petty [14] and Soltan [16] that the
number of points in an equidistant set is bounded above by 2d. In [8] a proof
of the 2d-upper bound was given using the isodiametric inequality for finite-
dimensional normed spaces due to Busemann (equation (2.2) on p. 241 of
[4]; see also Mel’nikov [13]). However, since the isodiametric inequality has
a quick proof using the Brunn-Minkowski inequality [5], it is not surprising
that the latter inequality occurs in the following proof.

Lemma 1. Let V be a finite set in a d-dimensional normed space. Then

|V | ≤ (λ(V ; ‖·‖) + 1)d.

Proof. Let λ = λ(V ; ‖·‖). By scaling we may assume that diam(V ) = λ.
Then ‖x − y‖ ≥ 1 for all x, y ∈ V , x 6= y, hence the balls B(v, 1/2),
v ∈ V , have disjoint interiors. Define C =

⋃
v∈V B(v, 1/2). Then vol(C) =

|V |(1/2)d vol(B) and diam(C) ≤ 1+λ. By the Brunn-Minkowski inequality
[5] we obtain vol(C−C)1/d ≥ vol(C)1/d+vol(−C)1/d. Noting that C−C ⊆
(1 + λ)B, the result follows. �

In order to find an upper bound on the number of vertices of a sube-
quilateral polytope with vertex set V , it remains to bound λ(V ; ‖·‖) from
above.

Lemma 2. Let d ≥ 2 and let V be the vertex set of a subequilateral d-
polytope. Then λ(V ; ‖·‖) ≤ d/2.

Proof. Let P be a subequilateral d-polytope of diameter 1, and let V be its
vertex set. We have to show that ‖x − y‖ ≥ 2/d for any distinct x, y ∈ V .
Since this follows from the definition if xy is an edge of P , we assume without
loss that xy is not an edge of P . Then xy intersects the convex hull P ′ of
V \ {x, y} in a (possibly degenerate) segment, say x′y′, with x, x′, y′, y
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in this order on xy. Let Fx and Fy be facets of P ′ containing x′ and y′,
respectively.

We show that ‖x − x′‖ ≥ 1/d. For each vertex z of Fx, xz is an edge
of P , hence ‖x− z‖ = 1. By Carathéodory’s theorem [1, (2.2)], there exist
d vertices z1, . . . , zd of the (d− 1)-polytope Fx and real numbers λ1, . . . , λd

such that

x′ =

d∑

i=1

λizi, λi ≥ 0,

d∑

i=1

λi = 1.

Suppose without loss that λd = maxi λi. Then λd ≥ 1/d. By the triangle
inequality we obtain

‖x′ − zd‖ = ‖
d−1∑

i=1

λi(zi − zd)‖ ≤
d−1∑

i=1

λi‖zi − zd‖

≤

d−1∑

i=1

λi = 1− λd ≤ 1−
1

d
,

and

‖x− x′‖ ≥ ‖x− zd‖ − ‖x′ − zd‖

≥ 1− (1−
1

d
) =

1

d
.

Similarly, ‖y − y′‖ ≥ 1/d, and we obtain ‖x− y‖ ≥ 2/d. �

Lemmas 1 and 2 now imply Theorem 2. �

4. Concluding remarks

4.1. Sharpness of Lemma 2. The following example shows that Lemma 2
cannot be improved in general. Consider the subspace X = {(x1, . . . , xd+1) :∑d

i=1 xi = 0} of Rd+1 with the ℓ1 norm ‖(x1, . . . , xd+1)‖1 :=
∑d+1

i=1 |xi|. Let

the standard unit vector basis of Rd+1 be e1, . . . , ed+1. Let c =
∑d

i=1 ei.
Then V = {dei − c : i = 1, . . . , d} ∪ {±2ed+1} is the vertex set of a d-
polytope P in X, with all intervertex distances equal to 2d, except for the
distance between ±2ed+1, which is 4. It follows that P is subequilateral and
λ(V ; ‖·‖) = d/2.

However, the above polytope P is in fact antipodal, and so it is equilateral
in ‖·‖P , which gives λ(V ; ‖·‖P ) = 1. It is easy to see that for any polytope
P subequilateral with respect to some norm ‖·‖, and with vertex set V , we
have λ(V, ‖·‖) ≤ λ(V, ‖·‖P ). One may therefore hope that for the norm ‖·‖P
the upper bound in Lemma 2 may be improved, thus giving a better bound
in Theorem 1. The following example shows that any such improved upper
bound will still have to be at least (d− 1)/2, indicating that essentially new
ideas will be needed to improve the upper bounds in Theorems 1 and 2.

We consider Talata’s example [6] of an edge-antipodal polytope that is
not antipodal. Let d ≥ 4, e1, . . . , ed be the standard basis of R

d, p =
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2
d−1

∑d−1
i=1 ei, and λ = (d − 1)/2 − ε > 1 for some small ε > 0. Then the

polytope P with vertex set V = {o, e1, . . . , ed, p, ed + λp} is edge-antipodal
but not antipodal. In fact, diam(V ) ≤ 1 by definition of ‖·‖P , and since
‖ed − o‖P = 1 and ‖p − o‖P = 1/λ, we obtain λ(V, ‖·‖P ) ≥ λ, which is
arbitrarily close to (d− 1)/2.

4.2. Subequilateral polytopes in the work of Lawlor and Morgan.

Define the ‖·‖-energy of a hypersurface S in R
d to be ‖S‖ :=

∫
S‖n(x)‖dx,

where n(x) is the Euclidean unit normal at x ∈ S. In [11] a sufficient
condition is given to obtain an energy minimizing hypersurface partitioning
a convex body. We restate a special case of the “General Norms Theorem
I” in [11, pp. 66–67] in terms of subequilateral polytopes. (In the notation
of [11] we take all the norms Φij to be the same. Then the points p1, . . . , pm
in the hypothesis form an equidistant set with respect to the dual norm.
The weakening of the hypothesis in the last sentence of the General Norms
Theorem I is easily seen to be equivalent to the requirement that p1, . . . , pm
is the vertex set of a subequilateral polytope.) We refer to [11] for the simple
and enlightening proof using the divergence theorem.

Lawlor-Morgan Theorem. Let ‖·‖ be a norm on R
n, and let p1, . . . , pm ∈

R
n be the vertex set of a subequilateral polytope of ‖·‖-diameter 1. Let Σ =⋃
Hij ⊂ C be a hypersurface which partitions some convex body C into

regions R1, . . . , Rm with Ri and Rj separated by a piece Hij of a hyperplane

such that the parallel hyperplane passing through pi − pj supports the unit

ball B at pi − pj.
Then for any hypersurface M =

⋃
Mij which also separates the Ri∩bdC

from each other in C, with the regions touching Ri ∩ bdC and Rj ∩ bdC
facing each other across Mij, we have ‖Σ‖∗ ≤ ‖M‖∗, i.e. Σ minimizes ‖·‖∗-
energy, where ‖·‖∗ is the norm dual to ‖·‖.
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[3] T. Bisztriczky and K. Böröczky, On antipodal 3-polytopes, manuscript, 5 pages, 2005.
[4] H. Busemann, Intrinsic area, Ann. Math. 48 (1947), 234–267.
[5] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Heidel-

berg, 1988.
[6] B. Csikós, Edge-antipodal convex polytopes – a proof of Talata’s conjecture, Discrete

Geometry, Monogr. Textbooks Pure Appl. Math., vol. 253, Dekker, New York, 2003,
pp. 201–205.
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