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Abstract Sparse representation has been widely used in machine learning, signal
processing and communications. K-SVD, which generalizes k-means clustering, is
one of the most famous algorithms for sparse representation and dictionary learn-
ing. K-SVD is an iterative method that alternates between encoding the data sparsely
by using the current dictionary and updating the dictionary based on the sparsely
represented data. In this paper, we introduce a single-pass K-SVD method. In this
method, the previous input data are first summarized as a condensed representation
of weighted samples. Then, we developed a weighted K-SVD algorithm to learn a
dictionary from the union of this representation and the newly input data. Experi-
mental results show that our approach can approximate K-SVD’s performance well
by consuming considerably less storage resource.
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1 Introduction

Codeword learning is fundamental in signal processing. A real-world signal can usu-
ally be represented as a linear combination of a few codewords in an overcomplete
dictionary. This representation is beneficial to applications in audio/image process-
ing, pattern recognition and image restoration. To construct the codewords, clustering
or vector quantization has been used in the past decades, which separates the training
data into disjoint groups. Among many clustering methods, k-means [5, 17] is known
as the most widely adopted. Given the cluster number k, the goal of k-means is to
choose k centers that minimizes the total squared distances between the data points
to their closest centers. Recently, k-means has been extended to K-SVD [4], where
each of the training data is not associated to only a single codeword but a linear com-
bination of few codewords. K-SVD alternates between encoding the data sparsely
with the presently calculated dictionary and then updating the dictionary atoms from
the sparse representation of the data. This method is effective in finding the code-
words and the associated sparse representation of a dataset, which has received much
attention for applications such as de-noising [20, 21], source separation [2], restora-
tion [20, 25], channel estimation [13], face and object-category recognition [16, 24],
and so on. Details of K-SVD will be introduced in Sect. 2.

Although K-SVD has been extensively used for dictionary learning and sparse
representation, it is hard to scale when the dataset is large. In this situation, we could
only allow part of the data to be loaded, and thus are able to process only partial data
at a time. Moreover, some data collected from the Internet or mobile devices are gen-
erated from time to time, which are not allowed to be kept for future use; hence, when
dealing with them, we should drop out the old data when the new data are coming,
and the old data cannot be retrieved again. In this paper, we propose a single-pass
algorithm for K-SVD. In our algorithm, the data have to be scanned only once, and
the data already processed can be abandoned. Moreover, for hardware implementa-
tions, data retrieval time is critical. Scanning the dataset multiple times increases the
computational complexity and could increase the system overhead extensively.

As a special case of sparse representation, clustering also suffers from the scala-
bility problem. Bradley et al. [7] and Farnstorm et al. [12] solved k-means clustering
by scanning the database in a single pass. Similar idea has been adopted for soft
clustering, where each datum could belong to multiple clusters with different mem-
bership degrees. In [14], previous data are categorized into several soft clusters, and
each cluster is summarized as its center point with the weight equal to sum of the
membership degrees of the data in this cluster. Then, the weighted fuzzy c-means
algorithm is adopted to find clusters for the combination of the weighted samples and
the current data.

Some other works [18, 19] developed on-line algorithms to speed up dictionary
learning. Previous data are aggregated for codewords construction and updating.
However, for a given dataset, multiple passes of scans are required to obtain a satisfied
convergent result (as suggested by their works). In this paper, we focus on scanning
the dataset in a single pass, where each datum can be retrieved only once. In the inter-
est of enhancing K-SVD’s capability in dealing with on-line and large data, we pro-
pose an improved K-SVD algorithm that learns the dictionary by a single-pass scan



Circuits Syst Signal Process (2014) 33:309–320 311

of the whole dataset. Our method cannot only perform incremental learning based
on an infinite data stream, but is also applicable to learning from a fixed-size dataset
by scanning it only once. The principle introduced in this paper can be employed for
extending other dictionary-learning methods to single-pass methods as well.

This paper is organized as follows. Section 2 reviews K-SVD. Section 3 introduces
our algorithm. Experimental results are shown in Sect. 4. Finally, conclusions are
given in Sect. 5.

2 Review of K-SVD

Recently, K-SVD [4] has become popular for sparse representation and codeword
learning. Given an l × N data matrix as input,

X = [x1, x2, . . . , xN ],
which consists of N vectors, xi ∈ Rl . K-SVD decomposes X ∼= WC with W : l × m

and C : m × N by solving

min
W,C

‖X − WC‖2
F , (1)

where ‖·‖F is the Frobenius norm of matrix. W is called the codeword matrix whose
columns are the codewords and m is the number of codewords. C is the coefficient
matrix. Let the j th column be cj . The j th datum xj is approximated by a linear
combination of the codewords, xj

∼= Wcj .
The decomposition is imposed with the constraint that the sparse degree of the

m-dimensional vector cj , i.e., the number of cj ’s non-zero elements or its zero-norm,
‖cj‖0, equals s for all j = 1, . . . ,N ,

‖cj‖0 = s, j = 1, . . . ,N. (2)

Since we hope to represent each datum by using only very few codewords (so as to
achieve the ‘sparseness’), we usually set s � m.

K-SVD is effective in finding codewords and the associated sparse representation
for a dataset. The codewords then serve as basis vectors for the data. Each datum is
associated with only few codewords since most coefficients in the linear combination
are zero.

The K-SVD algorithm finds W and C via iterations of the following two alterna-
tive steps:

(1) Given W , find the sparse coefficient matrix C by any pursuit algorithms. As the
exact solution is NP-hard, these pursuit algorithms find approximate solutions
instead.

(2) Given C, refine both W and C by multiple rank-one updates performed by sin-
gular value decompositions (SVDs).

Most K-SVD algorithms adopted orthogonal matching pursuit (OMP) [22] in Step 1,
which reaches the zero-norm constraint by sequential forward search. In the K-SVD
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algorithm [4], the codeword matrix W is initialized by randomly selecting some train-
ing data, and we follow this approach for initialization too.

There are a variety of codeword learning studies for sparse representation, includ-
ing the approaches employing p-norm penalty of distinct p and/or their variations
[3, 9–11, 15, 23]. A thorough review is beyond the scope of this paper. Readers can
refer to [8] for general information. This paper focuses on K-SVD and its extension
to single-pass incremental learning.

3 Method

Since we are only allowed to scan the data once, we have to summarize previous data
as a concise representation and seek to refine it via the updated data. In our approach,
the old data having been processed were summarized into a fixed number of samples,
where each sample is associated with a weight reflecting its importance.

At each run, there are two kinds of data for the proposed single-pass algorithm.
One is the old data that are summarized as some representative samples and the corre-
sponding importance weights, denoted as XPre = {(xj , σj ) ∈ Rl ×R+ | j = 1, . . . , n},
where σj is the weight of the importance sample xj . The other is the new data,
XNew = {(xj , σj ) | j = (n + 1), . . . ,2n}, σj = 1. The union of these two data,

X = XPre ∪ XNew = {
(x, σj ) | j = 1, . . . ,N

}
(3)

constitutes the training data at the current time, where N = 2n.
The new data are real samples that should be more reliable but their amount is lim-

ited. On the other hand, despite the number of old data is unlimited, their importance
samples are only approximations. Hence, both kinds of data have their pros/cons. To
balance their influence, we keep their total weights the same at every time:

n∑

j=1

σj =
2n∑

j=n+1

σj = n. (4)

The rest of this section is organized as follows. Since the dataset X to be pro-
cessed at each run consists of weighted samples, we first introduce weighted-samples
K-SVD in Sect. 3.1, which is an extension of K-SVD when the training data are
weighted. Then, we introduce the summarization of X by importance samples XPre

in Sect. 3.2.

3.1 Weighted-Samples K-SVD

We follow the notation convention: if a matrix is denoted by an upper-case character,
say A, then its low-case notation aj denotes its j th column, and a(i) denotes its ith
row, respectively. Let aij denote the ij th entry of A.

Consider the training data X defined in (3). Let B be the codeword matrix and D

the coefficient matrix. We hope to represent each xj as a sparse combination of the
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codewords,

xj
∼=

m∑

i=1

dij bi, (5)

such that

‖dj‖0 = s. (6)

Since the data are associated with weights, we hope to minimize the sum of
weighted errors for solving B and D:

min
B,D

N∑

j=1

σj

∥∥∥∥∥
xj −

m∑

i=1

dij bi

∥∥∥∥∥

2

. (7)

First, assume the codeword matrix B is fixed. Since each term in (7) is independent
to the data index j , the terms

∥∥∥∥
∥
xj −

m∑

i=1

dij bi

∥∥∥∥
∥

2

, (8)

j = 1, . . . ,N , can be minimized independently no matter what σj is. This is the same
situation occurred in the original K-SVD when the codeword matrix is fixed. Hence,
to find the coefficient matrix D (with B fixed), we also use OMP to find the coefficient
vector dj for all j in (8), so that the constraint ‖dj‖0 = s is satisfied.

Second, we seek to refine both the coefficients D and the codewords B . Let us
re-formulate the objective in (7) as

N∑

j=1

∥∥
∥∥∥
yj −

m∑

i=1

√
σjdij bi

∥∥
∥∥∥

2

, (9)

where yj = √
σjxj and the data matrix is reweighted as Y = [y1, y2, . . . , yN ]. The

equivalent matix-form of (9) is

min
B,D

‖Y − BDΛ‖2
F , (10)

where Λ is an N × N diagonal matrix with the j th entry being
√

σj . By denoting
E = DΛ, (10) is expressed as

min
B,E

‖Y − BE‖2
F . (11)

Note that (11) becomes exactly the same form of the original unweighted K-SVD.
Hence, we can also use iterated rank-one updates to solve B and E. Like K-SVD,
we only modify the non-zero entries in E; that is, the zero entries in E obtained in
the first step remain zeros. Also, only B’s entries that are associated with the non-
zero entries in E are processed when modifying B . When E is solved, D is uniquely
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determined since the weights σj are positive for all j and so the non-zero entries of
E and D are the same. More specifically, let bi and e(i) be the ith column and row of
B and E, respectively, i = 1, . . . ,m. Then (11) becomes

min
B,E

∥∥∥∥∥
Y −

m∑

i=1

bie
(i)

∥∥∥∥∥

2

F

. (12)

Denote ē(i) to be the condensed vector of e(i), consisting of only the non-zero entries
of e(i); let b̄i be the condensed vector of bi with respect to ē(i). When updating b̄k

and ē(k) for a particular k, we assume that the other bi and e(i) are fixed for i �= k,
yielding

min
B,E

∥∥Z − b̄k ē
(k)

∥∥2
F
, (13)

where Z = Ȳ − ∑
i �=k b̄i ē

(i) and Ȳ is the submatrix of Y associated with the non-

zero entries of e(k). This rank-one fitting problem in (13) is solved by the SVD of
Z with (b̄k, ē

(k)) = (u1, γ1v
T
1 ), where γ1 is Z’s largest singular value and u1, v1 are

its left and right singular vectors, respectively. Then, via back substitution, we obtain
(b̄k, d̄

(k)) = (u1, γ1Λ̄
−1vT

1 ) , where d̄(k) is the condensed vector associated with d(k)

and Λ̄ is defined accordingly. By modifying (b̄k, d̄
(k)) for every k in a random order,

B and D are refined in the second step.
Both of the above two steps reduce the objective function in (7) and are iterated

alternatively. The procedure stops when the error converges (the error of the current
iteration is larger than that of the previous iteration) or when it achieves a pre-set
maximal number of allowed iterations.

3.2 Incremental Importance Sampling

Let the weighted data at time t be X[t] = {(x[t]
j , σ

[t]
j ) | j = 1, . . . , 2n}. Via the

weighted-samples K-SVD in Sect. 3.1, we can obtain the codewords at time t . After
that, we condense X[t] into n importance samples, so that the old data from time 1 to
time t are summarized as X

[t+1]
Pre = {(x[t+1]

r , σ
[t+1]
r ) | r = 1, . . . , n} for time t + 1. To

find the importance samples X
[t+1]
Pre from X[t], we simply adopt the k-means cluster-

ing algorithm [5, 17].
More specifically, since each x

[t]
j is weighted by σ

[t]
j , the k-means algorithm em-

ployed in our work is the one that can deal with weighted samples, which is sim-
ply a special case of the expectation-maximization (EM) algorithm for learning the
Gaussian-mixture model when the variance of each Gaussian component approaches
to zero [6].

After performing weighted k-means on X[t], the n cluster centers are obtained and
serve as the important samples x

[t+1]
r , r = 1, . . . , n. The associated weights of impor-

tant samples, σ
[t+1]
r , are then set by summing up the weights of the data contained in

the r th cluster,

σ [t+1]
r =

∑

x
[t]
j ∈ the rth cluster

σ
[t]
j /2, (14)
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r = 1, . . . , n. The division by 2 in (14) is to normalize the total weight of the sum-
marization samples to n, so that the constraint in (4) is satisfied. It can be verified as
follows:

n∑

r=1

σ [t+1]
r = 1

2

∑

all clusters

{
∑

x
[t]
j ∈the rth cluster

σ
[t]
j

}

= 1

2

2n∑

j=1

σ
[t]
j = n. (15)

The x
[t+1]
r and σ

[t+1]
r obtained then constitute the importance samples X

[t+1]
Pre for

the old data at time t + 1.
The single-pass K-SVD algorithm is summarized in Algorithm 1

Algorithm 1 Single-pass K-SVD
Input: the data matrix Xinput = [x1, x2, . . . , xN , . . .]
Output:

1: Initially, t ← 1. X
[t]
Pre = {(xj ,1) | j = 1, . . . , n}.

2: Input X
[t]
New = {(xj ,1) | j = (tn + 1), . . . , (t + 1)n}.

3: Let X[t] = X
[t]
Pre ∪ X

[t]
New.

4: Run weighted K-SVD (Sect. 3.1) for X[t]; obtain the codeword matrix B and
coefficient matrix D.

5: Run weighted k-means (Sect. 3.2) on X[t] and set the weights by (14); obtain
X

[t+1]
Pre = {(x[t+1]

r ,σ [t+1]
r ) | r = 1, . . . , n}.

6: If no data are available, stop; else t ← t + 1 and goto Step 2.
7: return the codeword matrix B;

4 Experimental Results

4.1 Datasets

To validate our approach, we apply it to several datasets as shown in Table 1. For
each dataset, we permute its data randomly and divide it into p disjoint subsets. Each
subset contains n = Ntotal/p samples. For example, for the MNIST dataset, the data
amount of each subset is n = 7000 for p = 10 and n = 700 for p = 100. We denote

Table 1 Datasets in our
experiments Database Dimension Number of data

MIT-CBCL 361 (19 × 19) 2,429

COIL 1,024 (32 × 32) 7,200

Extended Yale B 32,256 (192 × 168) 2,414

MNIST 784 (28 × 28) 70,000
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Table 2 Reconstruction errors
for 10 % downsize ratio and
sparse degree s = 3, where the
format in each blank is mean ±
standard deviation (rel_err)

One-patch Our single pass Batch K-SVD

MIT-CBCL 406.45 ± 2.91 (2.0 %) 398.58

COIL 1781.81 ± 11.02 (1.5 %) 1755.41

Extended Yale B 706.18 ± 2.92 (2.1 %) 691.49

MNIST 35469.48 ± 80.71 (0.4 %) 35341.00

1/p as the downsize ratio, which are 10 % and 1 % , respectively. Note that each sub-
set is used only once in our single-pass setting. They are not allowed to be retrieved
repeatedly.

4.2 Results

First, we run the K-SVD algorithm for them, where the K-SVD Matlab code available
at [1] is used to generate the results. We set the number of codewords m = 50 and the
sparse degree s = 3. The reconstruction errors (1) obtained for MIT-CBCL, COIL,
Extended Yale B and MNIST are 398.58, 1755.41, 691.49 and 35341.00, respectively.
They are referred to as the batch K-SVD results since the entire data are used at the
same time.

Our approach is a single-pass version of K-SVD. Therefore, what we are interested
is how well it can approximate original K-SVD’s performance. When the downsize
ratio is 10 % and under the same settings that the sparse degree s = 3, the reconstruc-
tion errors obtained by our method are shown in Table 2. We define the relative error
to reflect the increment when treating the error of the batch K-SVD as one:

rel_err = 100 × (eobtained − ebatch)/ebatch %, (16)

where ebatch and eobtained are the errors obtained by using batch K-SVD and
single-pass K-SVD, respectively. Compared to the reconstruction errors of batch K-
SVD, the single-pass K-SVD can achieve the performance with the error-increasing
(rel_err) less than 2.5 % for all datasets by using only 10 % data per each time.

In another experiment, we vary the sparse degree from s = 1 to 29 when the
downsize ratio is kept as 10 %, and show the reconstruction error and rel_err for
MIT-CBCL and COIL in Fig. 1. We can observe that the relative error remains low
when the sparse degree is getting larger. Sometimes single-pass K-SVD is even more
accurate than batch K-SVD.

Figure 2 shows the reconstruction error and rel_err when the downsize ratio is
getting decreased. For the smaller dataset, Extended Yale B (size < 2500), we vary
the downsize ratio from 10 % to 2.5 %. For the larger one, MNIST (size > 35000),
we vary the downsize ratio from 10 % to 1 %. Basically, the results obtained follow
the principle: the smaller is the downsize ratio, the larger is the error. However, the
rel_err are still within a satisfied range when the downsize ratio is decreased for
both datasets. In particular, for the larger dataset, the relative error obtained is much
smaller by our single-pass approach.
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Fig. 1 Reconstruction errors of various sparse degree (downsize ratio = 10 %)

Fig. 2 Reconstruction errors and relative errors of various downsize ratios (under s = 3)
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Fig. 3 Computation time when downsize ratio is getting decreased

4.3 Computation Time

Our approach has the advantage that it requires only one scan of the dataset (with no
re-scans needed). The process is suspendible since resuming a stopped job is allowed.
It is thus helpful for scaling K-SVD to large databases and works within a given
limited RAM buffer.

The total computation time of single-pass K-SVD is the sum of the times of all
runs. Since the time complexities of both OMP and rank-one-SVDs are linear with
the data size (for either batch or single-pass K-SVD), the computation time depends
mainly on the number of iterations which is data-dependent. Figure 3 shows the com-
putation times for Extended Yale B and MINST when a 3.07 GHz PC is used. It can
be seen that the speed of single-pass K-SVD is faster in general. In particular, for the
larger dataset and smaller downsize ratio, the computation time is decreased in over-
all. For example, when the downsize ratio is smaller than 2.5 %, the computational
speeds are more than three-times faster than that of batch K-SVD for the MNIST
dataset.

5 Conclusions and Discussion

We introduce a weighted single-pass K-SVD that can learn an approximation of K-
SVD well by one scan of a dataset. It can incorporate additional data with existing
learned K-SVD models efficiently, and also has the on-line behavior where the most



Circuits Syst Signal Process (2014) 33:309–320 319

appropriate dictionary can be found by updating weighted new data. Experimental
results show that our approach is effective in dictionary learning by approximating
K-SVD’s performance with limited storage resource. Despite K-SVD is extended to
single-pass K-SVD in this work, the same principle can be applied to the extension
of other sparsity-based dictionary-learning approaches as well.
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