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Abstract. To improve the robustness of subband adaptive filter (SAF) against 
impulsive interferences, we propose two modified SAF algorithms with an 
individual scale function for each subband, which are derived by maximizing 
correntropy-based cost function and minimizing logarithm-based cost function, 
respectively, called MCC-SAF and LC-SAF. Whenever the impulsive 
interference happens, the subband scale functions can sharply drop the step size, 
which eliminate the influence of outliers on the tap-weight vector update. 
Therefore, the proposed algorithms are robust against impulsive interferences, 
and exhibit the faster convergence rate and better tracking capability than the 
sign SAF (SSAF) algorithm. Besides, in impulse-free interference 
environments, the proposed algorithms achieve similar convergence 
performance as the normalized SAF (NSAF) algorithm. Simulation results have 
demonstrated the performance of our proposed algorithms. 

Keywords. subband adaptive filter • maximum correntropy cost function • 
logarithmic cost function • impulsive interference 

1 Introduction  

Adaptive filtering algorithms have found a large amount of applications such as 
system identification, acoustic echo cancellation (AEC) and channel equalization, etc 
[4], [10], [18]. It is well-known that the least mean square (LMS) algorithm and its 
normalized version (NLMS) are very popular due to their simplicity. However, its 
convergence speed continues to be unsatisfactory for colored input signals. In order to 
speed up the convergence in practical applications that entail colored input signals, an 
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attractive approach is to use the subband adaptive filter (SAF), because it partitions 
the colored input signal into nearly white subband signals [4], [23]. In [5], Lee and 
Gan developed the normalized SAF (NSAF) algorithm, which provides faster 
convergence rate and almost the same computational complexity as compared to the 
NSAF. Afterwards, to overcome a compromise of the NSAF between fast 
convergence rate and low steady-state error, several variable step size NSAF 
algorithms were proposed [2], [8], [11], [12], [19], [20]. Regrettably, most of the 
aforementioned algorithms were derived by solving the L2-norm-based optimization 
problem, thus their convergence performances are seriously damaged by impulsive 
interferences (which are often encountered in practical applications).  

It has been shown that some adaptive filtering algorithms that minimize the L1-
norm of the error signal offer strong anti-jamming capability to impulsive 
interferences [6], [14]. In [7], Ni et al proposed a sign SAF (SSAF) algorithm by 
incorporating the L1-norm optimization into the subband filter, which exhibits good 
robustness against impulsive interferences and fast convergence for colored input 
signals, and also proposed a variable regularization parameter SSAF (VRP-SSAF) 
algorithm to further reduce the steady-state error. Following these works, many 
researchers have developed various variants to further improve the performance of the 
SSAF algorithm, such as variable step size SSAF algorithms [3], [13], [22], affine 
projection SSAF (AP-SSAF) algorithm [9] and proportionate SSAF (P-SSAF) 
algorithm [9].  

Recently, both the maximum correntropy criterion (MCC) [1], [15] and minimum 
logarithm criterion (LC) [16], [17] were applied to the LMS-type filtering algorithms, 
respectively, by using the gradient rule. However, in my opinion, these two strategies 
reflect a common phenomenon in the adaptation of the resulting algorithms, even if 
their principles are different. Namely, the step size will immediately become very 
small as long as the impulsive interference occurs. This is the reason why these MCC- 
and LC-based LMS algorithms possess the robustness to impulsive interferences. 
Therefore, this paper incorporates these two criteria into the SAF to deal with the 
impulsive interferences, respectively, and thus derives MCC-SAF and LC-SAF 
algorithms. Both proposed algorithms have the following features: 

1) Both proposed algorithms use an individual scale function for each subband, 
which instantly shrinks the step size whenever the impulsive interference 
happens. This leads to the robustness of the proposed algorithms against 
impulsive interferences.  

2) Compared with the SSAF and AP-SSAF algorithms, both proposed 
algorithms have faster convergence rate and better tracking capability. 

3) Both proposed algorithms reach the convergence performance similar to the 
NSAF in impulse-free interference environments. 

2 Review the NSAF Algorithm 

Consider the desired signal ( )d n  that is the output signal of the system 

( ) ( ) ( )T
od n n nu w η= + ,                                         (1) 



where the superscript T denotes transposition, ow  is an unknown M-dimension 
impulse response that needs to be identified, 

( ) [ ( ),  ( 1),  ..., ( 1)]Tn u n u n u n Mu = − − +  is the input signal vector, 
( ) ( ) ( )n n nη υ θ= +  is the additive noise including the measurement noise ( )nυ  and 

impulsive interference ( )nθ . Fig. 1 shows the multiband structure of SAF [5], where 
N denotes number of subbands. The desired signal ( )d n  and the input signal ( )u n  are 
divided into N subband signals by using analysis filters { }( ),  [0,  1]iH z i N∈ − , 
respectively. Then, the subband signals ( )iy n  and ( )id n  for [0,  1]i N∈ −  are 
critically decimated to yield , ( )i Dy k  and , ( )i Dd k , respectively, where n and k are 
used to indicate the original sequences and the decimated sequences. The ith subband 
output signal is described by , ( ) ( ) ( )T

i D iy k k ku w= , where ( )kw  is the tap-weight 

vector of adaptive filter, and ( ) [ ( ),  ( 1),  ..., ( 1)]T
i i i ik u kN u kN u kN Mu = − − + . The 

output error of the ith subband is defined as 

, , , , ( ) ( ) ( ) ( ) ( ) ( ) T
i D i D i D i D ie k d k y k d k k k= − = − u w                       (2) 

where , ( ) ( )i D id k d kN= .  
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Fig. 1. Structure of subband adaptive filter 

The conventional NSAF algorithm can be derived by minimizing the cost function, 
defined by [5] 
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where i  denotes the L2-norm of vector. Based on the gradient descent theory, the 
tap-weight vector of the NSAF is updated as  
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where μ  is the step size. 

3 Proposed Algorithms 

To improve the robustness of SAF combating impulsive interferences, in this section, 
the MCC-SAF and LC-SAF algorithms are derived. 

3.1 MCC-SAF algorithm 

As described in [1], [15], the correntropy can measure local similarity between two 
arbitrary random variables X and Y, which is defined as follows: 

[ ] , ( ,  ) ( ,  ) ( ,  ) ( ,  )X YV X Y E X Y x y dF x yκ κ= = ∫                         (5) 

where ( ,  )x yκ  is a shift-invariant Mercer kernel, and , ( ,  )X YF x y  denotes the joint 
distribution function of ( ,  )X Y . In the correntropy, the most widely used kernel is the 
Gaussian kernel, i.e.,  

2

2
1( ,  ) exp( )

22
ex yκ
σπσ

= −                                     (6) 

where 0σ>  is the kernel width, and e x y= − . Given , ( )i Dx d k=  and 

, ( )i Dy y k= , we can obtain the following correntropy-based cost function to derive 
the MCC-SAF, i.e., 
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where β  is called the kernel parameter associated with the kernel width σ  in (6) by 
21 2β σ= . Taking the gradient of MCC ( )J k  with respect to ( )kw , we have 
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By using the gradient ascent approach that maximizes the cost function MCC ( )J k , 
the tap-weight update of the proposed MCC-SAF algorithm is expressed as  

MCC
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3.2 LC-SAF algorithm 

Motivated by the robustness of the logarithmic-based cost function against impulsive 
interferences [16], [17], we introduce it into the SAF, and then obtaining a new cost 
function 
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where 0γ>  is a flexible parameter. Note that when 1N = , (10) has been reported in 
[16] to derive the NLMS-type algorithm. 

Taking the gradient of LC ( )J k  with respect to ( )kw , we achieve 
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Similar to the previous described NSAF, we obtain the tap-weight update of the 
LC-SAF algorithm via using the gradient descent approach,  
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3.3 Discussions 

Remark 1: Without loss of generality, the proposed MCC-SAF and LC-SAF 
algorithms, i.e., (9) and (12), can be described in an unified form as  
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where ( )if i  denotes the scale function of the ith suband with regard to the 

corresponding normalized error , D ( ) ( )i ie k ku . In the MCC-SAF, the subband scale 

functions ( )if i  for [0,  1]i N∈ −  are given by 
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and the subband scale functions of the MCC-SAF are expressed as 
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Evidently, for the standard NSAF algorithm, the scale function for each subband is 
a constant 1, i.e.,  

( )NSAF, 1if =i    for   [0,  1]i N∈ − .                               (16) 



Hence, we can conclude that both the proposed MCC-SAF and LC-SAF algorithms 
can be considered as the NSAF algorithm with particular subband scale functions. 
Moreover, (14) and (15) will become (16) when the parameters β  and γ  tend to 
zero, thereby both the proposed MCC-SAF and LC-SAF algorithms will be reduced 
to the NSAF. However, two proposed algorithms have good robustness against 
impulsive interferences, see Remark 2. 

Remark 2: To visually see the property of the proposed algorithms, Fig. 2 shows 
the shapes of the subband scale functions given by (14) and (15) with respect to the 
normalized subband error , D ( ) ( )i ie k ku , respectively, using the various values of 
β  and γ . Cleary, no matter when the impulsive interference happens, 

, D ( ) ( )i ie k ku  has very large magnitude, and then the corresponding scale function 
dramatically reduces the step size to a very small value. It was found in [16] that a 
small step size can suppress the influence of wrong information caused by outliers 
such as the impulsive interferences on the update of the tap-weight vector. Therefore, 
the proposed algorithms provide good robustness against impulsive interferences by 
shrinking the step size. On the other hand, if there is no impulsive interference, the 
magnitude of , D ( ) ( )i ie k ku  will be very small. In this case, the proposed 
algorithms behave like the NSAF, since the subband scale functions are 
approximately equal to 1. In other words, the subband scale functions shown in (14) 
and (15) only work in the case of the appearance of impulsive interferences. More 
importantly, the proposed subband scale functions, i.e., (14) and (15), can be directly 
applied to the existing variable step size NSAF algorithms (e.g., [2], [8], [11], [12], 
[19]) to improve their robustness against impulsive interferences. 

Remark 3: It has been found that the NSAF is stable for convergence as long as the 
step size satisfies  

0 2μ< < .                                               (17) 
And according to Remark 1 and 2, there are always ( )MCC, 1if ≤i  and ( )LC, 1if ≤i  in 
the MCC-SAF and LC-SAF algorithms, respectively. Thus, (17) is also the 
convergence condition of both proposed algorithms.  
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Fig. 2. Scale function of the ith subband. 

Remark 4: Table 1 provides the computational complexities of both proposed 
algorithms and some existing SAF algorithms in terms of the total number of 
multiplications, additions, divisions, and exponents for each input sample. Compared 
with the NSAF algorithm, the additional cost of both proposed MCC-SAF and LC-
SAF algorithms stem from the computation of (14) and (15), respectively. Since 

2
, D ( ) ( )i ie k ku  computation is already available from (13), the MCC-SAF 

algorithm only requires an additional 3 multiplications and 1 exponent for each 
fullband input sample, and the LC-SAF algorithm requires an additional 3 
multiplications, 1 division and 1 addition. For the MCC-SAF algorithm, the exponent 
calculation can be implemented by the form of table look-at to alleviate the 
complexity at the expense of memory space. So, both proposed algorithms are almost 
the same in the computation complexity. Importantly, the slight increase of these two 
proposed algorithms in computational complexity in comparison with the NSAF can 
be compromised by their robustness against impulsive interferences.  

Table 1. Computational complexity of various SAF algorithms for each input sample. The 
integer L denotes the length of the prototype filter of the filter bank, and P denotes the affine 

projection order. 

Algorithms Multiplications Additions Divisions exponent 
NSAF 3M+3NL+1 3M+3N(L–1) 1 0 

SSAF M+2M/N+3NL
2M+M/N+3NL–

2N–1
1/N 0 

AP-SSAF PM+2M/N+3NL
2PM+M/N+3NL–

2N–1
1/N 0 

LC-SAF 3M+3NL+4 3M+3N(L–1)+1 2 0 
MCC-SAF 3M+3NL+4 3M+3N(L–1) 1 1 



4 Simulations 

In this section, the proposed MCC-SAF and LC-SAF algorithms are evaluated using 
Monte Carlo (MC) simulations (average of 50 independent runs). The unknown ow  is 
a realistic acoustic impulse response with M = 512 taps. In our simulations, the 
measurement noise ( )nυ  is white Gaussian noise, with a signal-to-noise rate (SNR) 
of 30dB; and a four-subband (i.e., N = 4) cosine modulated filter bank is used, with 60 
dB stop-band attenuation, whose prototype has 32 tap-weights [4], [21]. The 
normalized mean square deviation (NMSD), 2 2

10 2 210log ( ( ) / )o okw w w− , dB, is 

used as a measure of the algorithm performance. 

4.1 System identification 

In this scenario, the colored input signal ( )u n  is generated by filtering a zero-mean 
white Gaussian signal through a first-order autoregressive (AR(1)) system 

1( ) 1/ (1 0.9 )G z z−= −  [3], [13]. The impulsive interference ( )nθ  is usually modeled 
as a Bernoulli-Gaussian (BG) process, i.e., ( ) ( ) ( )n c n A nθ =  [3], [13], where ( )c n  is 
a Bernoulli process with the probability mass function described by { }( ) 1 rp c n P= =  

and { }( ) 0 1 rp c n P= = −  (with rP  being the probability of the occurrence of the 
impulsive interference), and ( )A n  is a white Gaussian process with zero mean and 

variance ( )22 100 ( )T
A oE nσ ⎡ ⎤= ⎢ ⎥⎣ ⎦

u w .  

1) Effect of β  and/or γ  
Fig. 3 shows the steady-state NMSDs of the MCC-SAF and LC-SAF algorithms 

versus the parameters β  and γ , respectively, in impulsive interference environments 
with 0.001rP = , 0.005, 0.01 and 0.05. Here, the step size for both algorithms is 
selected to be the same value, i.e., 0.1μ=  or 0.5μ= ; and the results are obtained 
by time-averaging 500 instantaneous NMSDs in the steady-state. Clearly, both 
algorithms have larger steady-state NMSD for larger values of rP . Values of β  
and/or γ  are higher, the steady-state NMSDs of both algorithms are smaller, since 
the capabilities of the subband scale functions in (14) and (15) to shrink the step size 
are stronger (also see Fig. 2). However, their values can not be too large, because we 
also need to consider the convergence rate of gradient-based adaptive methods. In 
addition, using the same step size and β γ= , the steady-state NMSD of the LC-SAF 
algorithm is not as low as that of the MCC-SAF algorithm. 



 
(a) 0.1μ =  

 
(b) 0.5μ =  

Fig. 3. Steady-state NMSDs of the MCC-SAF and LC-SAF algorithms using different values of 
β  and γ  , respectively. 

2) No impulsive interference 
This example compares the performance of the proposed algorithms with that of 

the NSAF, SSAF and AP-SSAF algorithms, where there is no impulsive interference 
(i.e., 0rP = ), as shown in Fig. 4. To assess the tracking capability of the algorithms, 

the unknown ow  changes as ow−  at the 48 10× th input samples. To obtain a fair 
comparison, we select values of parameters in such a way that all algorithms reach the 
same steady-state NMSD. The affine projection order in the AP-SSAF is chosen as P 
= 4, since its computational complexity increases as P increases. It is clear that the 
performance of SSAF algorithm is the worst in convergence rate in the absence of 



impulsive interferences, due to the fact that it only uses the sign information of 
subband errors to update the tap-weight vector. The AP-SSAF algorithm can improve 
convergence performance, but it sacrifices computation cost. Interestingly, the 
proposed algorithms are slightly slower than the NSAF algorithm in terms of 
convergence rate and tracking capability. This reason is that the normalized subband 
errors , D , D( ) ( )i ie k ku  will be very small when the impulsive interference does not 

appear, and thus the subband scale functions are approximately equal to a constant 1. 

 
Fig. 4. The NMSD curves of various SAF algorithms for AR(1) input, in the absence of 
impulsive interference. NSAF: 0.65μ = ; SSAF: 0.004μ = ; AP-SSAF: 0.0085,  4Pμ = = ; 
MCC-SAF: 0.65,  10μ β= = ; LC-SAF: 0.65,  10μ γ= = . 

3) Under impulsive interference 
In Figs. 5 and 6, the NMSD performances of these algorithms are compared in the 

presence of impulsive interferences, where 0.005rP =  for Fig. 5 and 0.01rP =  for 
Fig. 6. Among these algorithms, only the NSAF algorithm based on the L2-norm is 
divergent. Although the SSAF and AP-SSAF algorithms derived from the L1-norm 
optimization are robust to impulsive interferences, their weaknesses are slow 
convergence and also the AP-SSAF requires high computation. Interestingly, the 
proposed MCC-SAF and LC-SAF algorithms work well in impulsive interference 
environments, and can faster converge than the SSAF and AP-SSAF as well as track 
the change of the unknown system (e.g., at the 45 10× th input samples). This is 
because that the subband scale functions, shown by (14) and/or (15), can promptly 
reduce the step size as long as the impulsive interference appears.  



 
Fig. 5. The NMSD curves of various SAF algorithms for AR(1) input, with impulsive 
interference 0.005rP = . NSAF: 0.25μ = ; SSAF: 0.015μ = ; AP-SSAF: 0.018,  4Pμ = = ; 
MCC-SAF: 0.45,  80μ β= = ; LC-SAF: 0.25,  80μ γ= = . 

 
Fig. 6. The NMSD curves of various SAF algorithms for AR(1) input, with impulsive 
interference 0.01rP = . Parameters’ setting is the same as Fig. 5. 

4.2 Acoustic echo cancellation with double-talk 

In this example, we examine the performances of both proposed algorithms in an 
acoustic echo cancellation application with double-talk, as shown in Fig. 7. The main 
goal of echo cancellation is to identify the echo path ow , but the far-end input signal 

( )u n  is a speech signal. Besides, the near-end signal that can be considered as the 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-25

-20

-15

-10

-5

0

5

10

15

Input samples

N
M

S
D

 (d
B

)

 

 
NSAF
SSAF
AP-SSAF
MCC-SAF
LC-SAF

0 1 2 3 4 5 6 7 8 9 10

x 104

-20

-15

-10

-5

0

5

10

15

Input samples

N
M

S
D

 (d
B

)

 

 
NSAF
SSAF
AP-SSAF
MCC-SAF
LC-SAF



impulsive interference ( )nθ  is a speech signal. As one can see, all algorithms except 
the NSAF are robust against double-talk happened in the period with sample index of 

4[2,  4] 10× . Moreover, both proposed algorithms have better performance than the 
SSAF and AP-SSAF algorithms.  

 
Fig. 7. The NMSD curves of various SAF algorithms in acoustic echo cancellation with double 
talk. NSAF: 0.35μ = . The parameters of other algorithms are the same as Fig. 5. 

5 Conclusions 

In this study, the MCC-SAF and LC-SAF algorithms have been introduced by 
maximizing the correntropy-based cost function and minimizing the logarithm-based 
cost function, respectively. In the tap-weight vector update, each subband receives an 
individual scale function, which instantly shrinks the step size whenever the 
impulsive interference appears. This eliminates the influence of outliers (e.g., 
impulsive interferences) on the convergence performance of the proposed algorithms. 
Simulation results have shown that the proposed algorithms outperform the SSAF and 
AP-SSAF algorithms in terms of convergence rate and tracking capability in 
impulsive interference situations. Furthermore, their convergence performance is 
comparable to the NSAF algorithm in the absence of impulsive interferences. The 
performance analysis of both proposed algorithms is our future work. 

Acknowledgments 

This work was partially supported by National Science Foundation of P.R. China 
(Grant: 61271340, 61571374, 61134002, 61433011 and U1234203), the Sichuan 
Provincial Youth Science and Technology Fund (Grant: 2012JQ0046), and the 
Fundamental Research Funds for the Central Universities (Grant: SWJTU12CX026). 

0 1 2 3 4 5 6 7 8 9 10

x 104

-20

-15

-10

-5

0

5

Input samples

N
M

S
D

 (d
B

)

 

 
NSAF
SSAF
AP-SSAF
MCC-SAF
LC-SAF

double talk



Reference 

1. B. Chen, L. Xing, J. Liang, N. Zheng, J. C. Príncipe, Steady-state mean-square error 
analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal 
Process. Lett. 21(7), 880–884 (2014). 

2. J. J. Jeong, K. Koo, G. T. Choi, S. W. Kim, A Variable Step Size for Normalized Subband 
Adaptive Filters. IEEE Signal Process. Lett. 19(12), 906–909 (2012). 

3. J. H. Kim, J. H. Chang, S. W. Nam, Sign subband adaptive filter with l1-norm 
minimisation-based variable step-size. Electron. Lett. 49(21), 1325–1326 (2013). 

4. K. A. Lee, W. S. Gan, S. M. Kuo, Subband Adaptive Filter: Theory and Implementation. 
Hoboken (NJ: Wiley, 2009). 

5. K. A. Lee, and W. S. Gan, Improving convergence of the NLMS algorithm using 
constrained subband updates,” IEEE Signal Process. Lett. 11(9), 736–739 (2004).  

6. V. J. Mathews, S. H. Cho, Improved convergence analysis of stochastic gradient adaptive 
filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–
454 (1987).  

7. J. Ni, F. Li, Variable regularisation parameter sign subband adaptive filter. Electron. Lett. 
46(24), 1605–1607 (2010). 

8. J. Ni, and F. Li, A variable step-size matrix normalized subband adaptive filter. IEEE 
Trans. Audio Speech Lang. Process. 18(6), 1290-1299 (2010). 

9. J. Ni, X. Chen, J. Yang, Two variants of the sign subband adaptive filter with improved 
convergence rate. Signal Process. 96, 325–331 (2014). 

10. A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken (NJ: Wiley, 2003). 
11. J. Shin, N.Kong, P. Park, Normalised subband adaptive filter with variable step size. 

Electron. Lett. 48(4), 204–206 (2012). 
12. J. H. Seo, P. G. Park, Variable individual step-size subband adaptive filtering algorithm. 

Electronics Lett. 50(3), 177–178 (2014). 
13. J. W. Shin, J. W. Yoo, P. G. Park, Variable step-size sign subband adaptive filter. IEEE 

Signal Process. Lett. 20(2), 173–176 (2013).  
14. T. Shao, Y. R. Zheng, J. Benesty, An affine projection sign algorithm robust against 

impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010). 
15. A. Singh, J. C. Principe, Using correntropy as a cost function in linear adaptive filters. in 

Proc. Int. Joint Conf. Neural Networks (IJCNN), (2009), pp. 2950–2955. 
16. I. Song, P. Park, R. W. Newcomb, A normalized least mean squares algorithm with a step-

size scalar against impulsive measurement noise. IEEE Trans. Circuits Syst. II: Exp. 
Briefs. 60(7), 442–445 (2013). 

17. M. O. Sayin, N. D. Vanli, S. S. Kozat, A novel family of adaptive filtering algorithms 
based on the logarithmic cost. IEEE Transactions on Signal Process. 62(17), 4411–4423, 
(2014). 

18. Y. Yu, H. Zhao, B. Chen, Sparseness-controlled proportionate affine projection sign 
algorithms for acoustic echo cancellation. Circuits, Systems, and Signal Process. 34(12), 
3933–3948 (2015). 

19. Y. Yu, H. Zhao, B. Chen, A new normalized subband adaptive filter algorithm with 
individual variable step sizes. Circuits, Systems, and Signal Process. 2015. doi: 
10.1007/s00034-015-0112-7. 

20. Y. Yu, H. Zhao, Z. He, B. Chen, A robust band-dependent variable step size NSAF 
algorithm against impulsive noises. Signal Process. 119, 203–208 (2016).  

21. Y. Yu, H. Zhao, Novel sign subband adaptive filter algorithms with individual weighting 
factors, accept for publication, 2015. 



22. J. W. Yoo, J. W. Shin, P. G. Park, A band-dependent variable step-size sign subband 
adaptive filter. Signal Process. 104, 407–411 (2014). 

23. W. Yin, A. S. Mehr, Stochastic analysis of the normalized subband adaptive filter 
algorithm. IEEE Trans. Circuits Syst. I: Reg. Pap. 58(5), 1020-1033 (2011). 


