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Abstract

This paper considers the problem of distributed estimation in an incremen-

tal network when the measurements taken by the node follow a widely linear

model. The proposed algorithm which we refer to it as incremental augmented

affine projection algorithm (incAAPA) utilizes the full second order statisti-

cal information in the complex domain. Moreover, it exploits spatio-temporal

diversity to improve the estimation performance. We derive steady-state per-

formance metric of the incAAPA in terms of the mean-square deviation (MSD).

We further derive sufficient conditions to ensure mean-square convergence. Our

analysis illustrate that the proposed algorithm is able to process both second

order circular (proper) and noncircular (improper) signals. The validity of the

theoretical results and the good performance of the proposed algorithm are

demonstrated by several computer simulations.

Keywords: adaptive networks, incremental, complex data, affine.

1. Introduction

In many practical applications the ultimate goal is to estimate an unknown

parameter of interest by using observations acquired by spatially distributed

nodes [1, 2]. Different solutions (algorithms) have been introduced in the lit-

erature to solve the decentralized estimation problem. In some algorithms
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(known as consensus methods) such as [3, 4] the nodes collect all the data

first, perform local estimation and then interact iteratively with their neigh-

bors. Networks that rely on in-network processing at each node while allow-

ing the node to learn with new observations are known as adaptive networks

[5, 6]. An adaptive network consists of a collection of spatially distributed nodes

that are able to communicate with each other through a topology. Two ma-

jor class of adaptive networks, based on the network topology are incremental

networks [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] or diffusion algorithms

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In the incremental algorithms, a cyclic

path through the network is established, and nodes communicate with neigh-

bors within this path. In adaptive diffusion implementations, information is

processed locally at the nodes and then diffused in real-time across the network.

1.1. Motivation for current work

An important factor in learning abilities of adaptive networks is the adap-

tive filter that is embedded at the nodes. The mentioned adaptive networks use

different types of adaptive filters such as leas meant-square (LMS) [8, 14], recur-

sive least-squares (RLS) [7, 21], affine projection algorithm (APA) [10, 11] and

normalized least mean squares (NLMS) [31]. The LMS algorithm is a popular

choice due to its stability and low complexity. On the other hand, the algorithms

based on the least squares criterion such as the RLS algorithm, converge faster.

However, they suffer from the high computational complexity issue [32]. The

affine projection algorithm has the benefits of both approaches that is stability,

low computational complexity and fast convergence [32, 33].

The APA was originally introduced for real-value signals [34, 35]. The com-

plex domain provides a natural processing framework for signals with inten-

sity and direction components [36, 37]. Statistical signal processing in C has

traditionally been viewed as a straightforward extension of the corresponding

algorithms in the real domain R. However, recent developments in augmented

complex statistics show that they do not make full use of the algebraic struc-

ture of the complex domain [36]. For example, it was shown that the covariance
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matrix is not sufficient to model the statistics of noncircular signals and it is

necessary to introduce the pseudocovariance matrix to fully capture the relation

between the real and imaginary components of random vectors. It is also shown

that the standard linear model is only sufficient for modelling ’proper’ signals,

whereas an optimal model for ’improper’ signals is provided by a widely linear

model [38, 39].

1.2. Contributions

The aforementioned adaptive networks rely on linear model and signal pro-

cessing in R domain. In this paper, we develop and analyze an incremental

adaptive network based on the widely linear model which employs the affine

projection algorithm as learning entity to process the complex-valued signals.

The proposed algorithm, which we refer to as incremental augmented affine pro-

jection algorithm (incAAPA), exploits spatio-temporal diversity to improve the

estimation performance. Moreover, at the same time, it employs augmented

complex statistics which it turn enables it to process both types of proper and

improper signals. To analyze the steady-state performance of the IncAAPA by

resorting to the weighted energy conservation approach and derive a closed-form

expression, in terms of the mean-square deviation (MSD) that explains how the

algorithm performs in the steady-state. We further derive the stability bound

of the proposed algorithm to ensure mean-square convergence. We use different

synthetic benchmark signals including circular complex-valued signal, the non-

circular complex-valued signal and noncircular chaotic Ikeda map signal in our

simulations to evaluate the performance of the proposed algorithm. Simulation

results validate the theoretical results and reveal the advantage of using the

proposed algorithm for processing of both second order circular (proper) and

noncircular (improper) signals.

1.3. Paper organization and notation

The remainder of this paper is organized as follows. In Section 2, we formu-

late the estimation problem and derive the proposed algorithm. In Section 3,
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Table 1: Symbols and their descriptions.

x, x, X Scalar, column vector, matrix;

Tr[A] Trace of matrix A,

(·)T, (·)H, (·)∗ Transpose, Hermitian transpose, Complex conjugation

E[·] Statistical expectation operator;

⊗ Kronecker product

<{}, ={} Real, Imaginary parts of a complex number

vec{·} This notation will be used in two ways: x = vec{Σ} is a M2 × 1 column vector

whose entries are formed by stacking the successive columns of an M ×M matrix

on top of each other, and X = vec{x} is a matrix whose entries are recovered from x.

‖u‖2Σ = uHΣu the weighted square norm of u.

λmax(A) The largest eigenvalue of matrix A.

performance analysis of the incAAPA algorithm is provided. In Section 4, we

present simulation results to verify our theoretical analysis, and we conclude in

Section 5.

We adopt small boldface letters for vectors and bold capital letters for ma-

trices. The other symbols used in this paper are listed in Table. 1.

2. Proposed Algorithm

2.1. The estimation problem

Let denote by set K = {1, 2, · · · , N} a network with N nodes which commu-

nicate according to the incremental protocol. This protocol require a Hamilto-

nian cycle through which local information are sequentially circulated from node

to node (See Fig. 1). At any time i, node k measures data {dk(i),xk,i} where

dk(i) ∈ C is the desired signal and xk,i = [xk,i(1), xk,i(2), · · · , xk,i(L)]T ∈ CL×1

denotes the input vector at node k. we consider the following assumptions on

our data model.

Assumption 1. The desired signal dk(i) and the input vector xk,i are related

through a widely linear model as [36]

dk(i) = xT
k,ih

o + xH
k,ig

o + vk(i), (1)
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Figure 1: An incremental network with N nodes.

where {ho,go} ∈ RL×1 are the unknown parameters, and vk(i) ∈ C denotes

samples of doubly white noise with variance σ2
v,k. The measurement noises

{vk(i)} for all nodes k = 1, . . . , N , and all observation times i ≥ 1, are indepen-

dent of each other and the regression vectors xk,i.

Assumption 2. For k = 1, . . . , N and i ≥ 1, the regression vectors xk,i are

independent over node indices k and observation times i.

The measurements model (1) appears in many practical applications, such as

the frequency estimation problem in three-phase power systems [40], and in

simultaneous modelling and forecasting of wind signals [41, 42].

Definition 1. (Noncircular signals) To define the noncircular (or improper)

signals, let define the augmented vector xak,i as

xak,i ,

xk,i

x∗k,i

 , (2L× 1)

The covariance matrix Ca
xx,k for the augmented vector xak,i is given by

Ca
xx,k = E[xak,ix

aH
k,i] =

Cxx,k Pxx,k

P∗xx,k C∗xx,k

 (2)

when the pseudo-covariance matrix Pxx,k = 0, the complex random vector is

called circular (proper).
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2.2. Algorithm derivation

To develop the proposed algorithm we denote by {dk,i,Xk,i} the T most

recent observations at node k as

Xk,i = [xk,i, ...,xk,i−T+1], (L× T ) (3)

dk,i = [dk(i), ..., dk(i− T + 1)]T, (T × 1) (4)

Our objective is to develop a distributed and adaptive algorithm that is able

to estimate the unknown parameters {ho,go} at every node k ∈ K. To achieve

this objective, we formulate the desired estimation problem as the following

constrained optimization problem which is based on the minimum disturbance

[43]

minimize f(hi,gi) ,
(
‖hi − hi−1‖2 + ‖gi − gi−1‖2

)
(5)

subject to

K∑
k=1

<
{

(dk,i −XT
k,ihi −XH

k,igi)
H
}

= 0

In the following theorem we discuss the solution of the problem (5).

Theorem 1. Let hk,i and gk,i denote the local estimates of ho and go at node k

at time i respectively. The optimal wights {ho,go} can be recursively estimated

at every node k via the following update equations

hk,i = hk−1,i + µkX
∗
k,iBk,iek,i (6)

gk,i = gk−1,i + µkXk,iBk,iek,i (7)

where

Ak,i , XH
k,iXk,i + XT

k,iX
∗
k,i (8)

Bk,i , (Ak,i + δI)−1 (9)

Moreover, δ > 0 is the regularisation parameter, µ > 0 is the step-size parameter

and ek,i is the local error signal which is defined as

ek,i , dk,i −XT
k,ihk−1,i −XH

k,igk−1,i (10)
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Proof. See [45].

Remark 1. It must be noted that a non-cooperative solution for the problem

(5) based on the affine projection algorithm is given by

hk,i = hk,i−1 + µkX
∗
k,iBk,iek,i (11)

gk,i = gk,i−1 + µkXk,iBk,iek,i (12)

where reveals that in this solution every node uses solely its local information.

An important question now is, how well does the adaptive incremental solution

(6) and (7) perform? That is, how close does each {hk,i,gk,i} get to the desired

solutions {ho,go} as time evolves? In the next section, we provide a framework

for studying the performance of such network by examining the flow of energy

through the network both in time and space.

3. Performance Analysis

In order to study the performance of the IncAAPA algorithm, we extend the

weighted energy conservation argument for the stand alone adaptive filters [32]

to the case of incremental networks. we evaluate the steady-state performances

at each individual node in terms of mean-square deviation (MSD). To begin the

analysis we define the following weight error vectors as

g̃k,i = g0 − gk,i, h̃k,i = h0 − hk,i (13)

using (13), the update equations in (6) and (7) can be rewritten in terms of the

weight error vectors as

h̃k,i = h̃k−1,i − µkX∗k,iBk,iek,i (14)

g̃k,i = g̃k−1,i − µkXk,iBk,iek,i (15)

Multiplying both sides of (14) and (15) by XT
k,iΣk and XH

k,iΣk respectively

gives

XT
k,iΣkh̃k,i = XT

k,iΣkh̃k−1,i − µkXT
k,iΣkX

∗
k,iBk,iek,i (16)

XH
k,iΣkg̃k,i = XH

k,iΣkg̃k−1,i − µkXH
k,iΣkXk,iBk,iek,i (17)
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The weighted a-posteriori and weighted a-priori error vectors {eΣk

p,k, e
Σk

a,k} are

introduced as

eΣk

p,k = XT
k,iΣkh̃k,i + XH

k,iΣkg̃k,i (18)

eΣk

a,k = XT
k,iΣkh̃k−1,i + XH

k,iΣkg̃k−1,i (19)

If we add (16) and (17) and use the definitions of eΣk

p,k and eΣk

a,k we get

eΣk

p,k = eΣk

a,k − µkFk,iBk,iek,i (20)

where

Fk,i , XH
k,iΣkXk,i + XT

k,iΣkX
∗
k,i (21)

using (20), we can be expressed ek,i as

ek,i =
1

µk
B−1k,1F

−1
k,i

(
eΣk

a,k − eΣk

p,k

)
(22)

Now we define the augmented quantities w̃k,i and Uk,i as

w̃k,i ,

 h̃k,i

g̃k,i


2L×1

, Uk,i ,

X∗k,i

Xk,i


2L×T

, (23)

Corollary 1. Using the definition in (23) we have

eΣk

p,k = UH
k,iΣkw̃k,i, (24a)

eΣk

a,k = UH
k,iΣkw̃k−1,i (24b)

Fk,i = UH
k,iΣkUk,i (24c)

This definitions in (23) allows us to rewrite equations (14) and(15) as the fol-

lowing equivalent form

w̃k,i = w̃k−1,i −Uk,iF
−1
k,i

(
eΣk

a,k − eΣk

p,k

)
(25)

To derive the desired steady-state performance metric, we need to derive the

mean-square variance relation that explains how {hk,i,gk,i} evolves in time.

Thus, we assert the following theorem on the mean-square variance relation of

the incAAPA.
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Theorem 2. The mean-square variance relation of the incAAPA is given by

the following expression.

E
[
‖w̃k,i‖2Σk

]
= E

[
‖w̃k−1,i‖2Σ′k

]
+ µ2

kE
[
vH
k,iDk,iΣkDk,ivk,i

]
(26)

Σ′k = Σk − µkΣkE[Dk,i]− µkE[Dk,i]Σk + µ2
kE[Dk,iΣkDk,i] (27)

Proof. See Appendix B for details.

To derive the desired metric we apply the vec(·) operator on both sides of (26)

and (27) and get1

vec{ΣkE[Dk,i]} =
(
E[DT

k,i]⊗ I
)
σk (28)

vec{E[Dk,i]Σk} = (I⊗ E[Dk,i])σk (29)

vec{E[Dk,iΣkDk,i]} =
(
E[DT

k,i]⊗ E[Dk,i]
)
σk (30)

Therefore, using (28)-(30), we obtain a linear relation between the corresponding

vectors {σ′k,σk}, namely

σ′k = Fkσk (31)

where Fk is given by

Fk = I− µk
(
E[DT

k,i]⊗ I
)
− µk (I⊗ E[Dk,i]) + µ2

k

(
E[DT

k,i]⊗ E[Dk,i]
)

(32)

1For any matrices of compatible dimensions {Z1,Z2,Σk}, it holds that

vec{Z1ΣkZ2} = (ZT
2 ⊗ Z1)vec{σk}
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The second term in right hand side of (26) can be rewritten as

sk = E
[
vH
k,iDk,iΣkDk,ivk,i

]
= Tr

[
E
[
vH
k,iDk,iΣkDk,ivk,i

]]
= E

[
Tr
[
vH
k,iDk,iΣkDk,ivk,i

]]
= E

[
Tr
[
Dk,ivk,iv

H
k,iDk,iΣk

]]
= σ2

v,kγ
T
kσk (33)

where vk,i = [vk(i), ..., vk(i− T + 1)]T, Dk,i = Uk,iBk,iU
H
k,i and

γk = vec{E[D2
k,i]} (34)

As a result, expression (26) becomes

E
[
‖w̃k,i‖2σk

]
= E

[
‖w̃k−1,i‖2σ′k

]
+ µ2

kδ
2
v,kγ

T
kσk (35)

Observe, that (35) is a coupled equation: it involves both E[‖w̃k,i‖2σk
] and

E[‖w̃k−1,i‖2σ′k ], i.e., information from two spatial locations. The ring topology

together with the weighting matrices can be exploited to resolve this difficulty

[8] where a similar equation is solved for incremental LMS algorithm. If we

follow the steps given in [8] we can obtain the following equation for incAAPA

algorithm

E

[
‖w̃k−1‖2σk−1

]
= E

[
‖w̃k−1‖2Fk...FNF1...Fk−1σk−1

]
+skFk+1 . . .FNF1 . . .Fk−1σk−1

+sk+1Fk+2 . . .FNF1 . . .Fk−1σk−1

+sk−2Fk−1σk−1 + sk−1σk−1 (36)

Let

Pk,l = Fk+l−1 . . .FNF1 . . .Fk−1, l = 1, 2, . . . , N (37)

fk = skPk,2 + sk+1Pk,3 + . . .+ sk−2Pk,N + sk−1 (38)
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where in (37) the subscripts are all mod N . Using (37) and (38), we can represent

(36) in the following form

E
[
‖w̃k−1‖2(I−Pk,1)σk−1

]
= fkσk−1 (39)

Expression (39) can be exploited to evaluate the desired performance measures

at node k. In fact, since we are free to select the weight vector σk−1, choosing

σk−1 = (I −Pk,1)−1vec{I} results in the expression for the steady-state MSD

at node k as follows

MSDk = fk(I −Pk,1)−1vec{I} (40)

(41)

To derive the required mean-square stability condition we refer to (35). The

recursion is stable if the matrix Fk is stable. From (32), we can rewrite Fk as

Fk = I− µkMk + µ2
kN k (42)

where

Mk =
(
E[DT

k,i]⊗ I
)

+ (I⊗ E[Dk,i]) (43)

N k =
(
E[DT

k,i]⊗ E[Dk,i]
)

(44)

Following the same approach in [44], the condition on step-size that guarantees

the convergence of the proposed algorithm in the mean-square is given as

0 < µk < min

{
1

λmax(M−1
k N k)

,
1

λmax(Hk)

}
(45)

where

Hk =

 1
2Mk − 1

2N k

I 0

 (46)

4. Simulation Results

In order to illustrate the performance of the proposed algorithm, in this

section we present the simulation results for a network with N = 10 nodes. We

consider three different models for the input vectors including

11



• The synthesized circular complex-valued signal which is generated at every

node by a AR(1) model as 2

xk,i(t) = 0.5xk,i(t− 1) + qk,i (47)

where qk,i is complex valued doubly white Gaussian noise with unit vari-

ance.

• The synthesized noncircular complex-valued signal which is generated at

every node by a ARMA model as

xk,i(t) = 0.5xk,i(t− 1) + 2qk,i + 0.5q∗k,i + qk,i−1 + 0.9q∗k,i−1 (48)

• The noncircular chaotic Ikeda map signal which is given by

a(t) = 1 + 0.9(a(t− 1) cos(rk(t− 1))− b(t− 1) sin(rk(t− 1)));

b(t) = 0.9(a(t− 1) sin(rk(t− 1)) + b(t− 1) cos(rk(t− 1))); (49)

where xr(t) = <{xk,i(t)}, b(t) = ={xk,i(t)}, xk,i(t) = a(t) + jb(t) and

rk(t) = 0.4− (6/(1 + a(t)2 + b(t)2));

Fig. 2 shows the scatter plots of the synthesized circular complex-valued signal,

synthesized noncircular complex-valued signal and the nonlinear and noncircular

chaotic Ikeda map signal. We also consider the measurement model (1) with

L = 4 and ho = go = [1 1 1 1]T. The measurement noise profile σ2
v,k is plotted

in Fig. 3. We set µ = 02 for the proposed algorithm, however, to compare the

MSD of non-cooperative scheme with the proposed algorithm, we need to replace

µ with Nµ in (11). The MSD learning curves for non-cooperative scheme (11)

and the proposed algorithm have been plotted in Fig. 4. All the graphs were

produced by averaging 100 independent trials. For the proposed algorithm, we

have averaged MSD over all of the nodes, i.e.

MSD =
1

N

N∑
k=1

MSDk (50)

2Note that xk,i = [xk,i(1), xk,i(2), · · · , xk,i(L)]
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Figure 2: Geometric view of the synthesized circular complex-valued signal (left), synthesized

noncircular complex-valued signal (middle) and the nonlinear and noncircular chaotic Ikeda

map signal (right).
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Figure 3: The measurement noise profile σ2
v,k.

We observe that the proposed algorithm provides smaller MSD than the non-

cooperative solution for all kind of the test signals.

In the next experiment we compare the theoretical and simulation result

values, which are provided by the proposed algorithm at individual nodes for

the synthesized noncircular complex-valued signal. The steady-state values are

obtained by averaging over 100 independent trials and over 50 time samples after

convergence. Fig. 5 shows the numerical results for both simulation and the

theoretical expression. We can observe that the simulation results match well

the theoretical expressions. Fig. 6 shows the steady-state MSD of proposed

algorithm for different values of T . We observe that increasing T leads to a large

steady-state MSD, while at the same time improves the convergence speed.
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Figure 4: The MSD learning curves for non-cooperative scheme and the proposed algorithm

for different signals: circular complex-valued (top), synthesized noncircular complex-valued

signal (middle) and the nonlinear and noncircular chaotic Ikeda map signal (bottom).

5. Conclusion

In this paper we proposed an adaptive estimation algorithm for in-network

processing of complex signals over distributed networks. In the proposed al-

gorithm (incAAPA), nodes cooperate to exploit the spatio-temporal diversity;

while the affine projection learning rules enables the network (algorithm) to pro-

cess proper and improper signals. We extracted closed-form expressions that

show how the proposed algorithm performs in the steady-state. We further

have derived the required conditions for mean-square stability. Simulation re-

sults showed validity of the theoretical results and the good performance of the
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proposed algorithm.

Appendix A

If we equate the weighted energies of both sides of (25), we arrive the follow-

ing space-time version of the weighted energy conservation relation for IncAAPA

as:

‖w̃k,i‖2Σk
+ eΣkH

a,k F−1k,ie
Σk

a,k = ‖w̃k−1,i‖2Σk
+ eΣk

p,kF
−1
k,ie

Σk

p,k (51)

Substituting (20) into (51) and rearranging the result, we obtain

‖w̃k,i‖2Σk
= ‖w̃k−1,i‖2Σk

−µkeΣkH
a,k Bk,iek,i−µkeH

k,iBk,ie
Σk

a,k+µ2
ke

H
k,iBk,iFk,iBk,iek,i

(52)

By using the error signal ek,i = UH
k,iw̃k−1,i + vk,i we have

‖w̃k,i‖2Σk
= ‖w̃k−1,i‖2Σk

− µkw̃H
k−1,iΣkUk,iBk,i(U

H
k,iw̃k−1,i + vk,i)

− µk(w̃H
k−1,iUk,i + vH

k,i)Bk,iU
H
k,iΣkw̃k−1,i

+ µ2
k(w̃H

k−1,iUk,i + vH
k,i)Bk,iFk,iBk,i(U

H
k,iw̃k−1,i + vk,i) (53)
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Figure 6: The steady-state MSD values of proposed algorithm at every node k for different

values of T .

Taking expectations of both sides of (53) and applying the Assumptions. 1 and

2 we obtain

E
[
‖w̃k,i‖2Σk

]
= E

[
‖w̃k−1,i‖2Σ′k

]
+ µ2

kE
[
vH
k,iBk,iFk,iBk,ivk,i

]
(54)

where

Σ′k = Σk − µkE
[
ΣkUk,iBk,iU

H
k,i

]
− µkE

[
Uk,iBk,iU

H
k,iΣk

]
+ µ2

kE
[
Uk,iBk,iU

H
k,iΣkUk,iBk,iU

H
k,i

]
(55)

Then, (54) and (55) can be rewritten as

E
[
‖w̃k,i‖2Σk

]
= E

[
‖w̃k−1,i‖2Σ′k

]
+ µ2

kE
[
vH
k,iDk,iΣkDk,ivk,i

]
(56)

Σ′k = Σk − µkΣkE[Dk,i]µkE[Dk,iΣk] + µ2
kE[Dk,iΣkDk,i] (57)

and the proof is complete.
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