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Abstract An effective way to increase noise robustness in automatic speech
recognition (ASR) systems is feature enhancement based on an analytical dis-
tortion model that describes the effects of noise on the speech features. One of
such distortion models that has been reported to achieve a good tradeoff be-
tween accuracy and simplicity is the masking model. Under this model, speech
distortion caused by environmental noise is seen as a spectral mask and, as a
result, noisy speech features can be either reliable (speech is not masked by
noise) or unreliable (speech is masked). In this paper we present a detailed
overview of this model and its applications to noise-robust ASR. Firstly, using
the masking model, we derive a spectral reconstruction technique aimed at
enhancing the noisy speech features. Two problems must be solved in order to
perform spectral reconstruction using the masking model: i) mask estimation,
i.e. determining the reliability of the noisy features, and ii) feature imputation,
i.e. estimating speech for the unreliable features. Unlike missing-data impu-
tation techniques where the two problems are considered as independent, our
technique jointly addresses them by exploiting a priori knowledge of the speech
and noise sources in the form of a statistical model. Secondly, we propose an
algorithm for estimating the noise model required by the feature enhancement
technique. The proposed algorithm fits a Gaussian mixture model (GMM) to
the noise by iteratively maximising the likelihood of the noisy speech signal so
that noise can be estimated even during speech-dominating frames. A compre-
hensive set of experiments carried out on the Aurora-2 and Aurora-4 databases
shows that the proposed method achieves significant improvements over the
baseline system and other similar missing-data imputation techniques.
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1 Introduction

Despite major recent advances in the field of automatic speech recognition
(ASR), ASR performance is still far from that achieved by humans on the
same conditions [2, 3]. One of the main reasons of the performance gap be-
tween ASR and humans is the fragility of current ASR systems to mismatches
between training and testing conditions. These mismatches are due to differ-
ent factors such as speaker differences (i.e. gender, age, emotion), language
differences (i.e. different accents and speaking styles), and, being the topic
of this paper, noise. Noise, which can refer to channel noise, reverberation,
or acoustic noise, degrades ASR performance due to the distortion it causes
on the speech signals. In extreme cases, e.g. at very low signal-to-noise ratio
(SNR) conditions, ASR systems may become almost unusable when used in
such noisy conditions.

It is therefore not surprising that noise robustness in ASR has been a
very active area of research over the past three decades. We refer the reader
to [25,26,48] for a comprehensive overview of this topic. In general, techniques
for noise-robust ASR can be classified into two categories: feature-domain and
model-domain techniques. Feature-domain techniques attempt to extract a
set of features from the noisy speech signals that are less affected by noise
or that better match the features used to train the system. This category
can be further divided into three sub-categories: robust feature extraction
techniques, which remove from the speech signals the variability irrelevant
to ASR, feature normalisation techniques, in which the distribution of the
testing features is normalised to match that of the training dataset, and feature
compensation, where speech features are enhanced in order to compensate for
the noise distortion. Model-domain techniques, on the other hand, attempt
to adapt the pre-trained acoustic model to better match the environmental
testing conditions. This typically involves the estimation of a transformation
from an adaptation set for compensating the mismatch between the training
and testing conditions and, then, applying the estimated transformation to
update the acoustic model parameters.

From the above classification, one of the most effective ways to improve
ASR robustness against noise is that in which the effects of noise on the speech
features are explicitly modelled using an analytical distortion model. From the
distortion model one can either derive a feature-domain technique to enhance
the noisy features or, alternatively, the acoustic models can be adapted to the
noise in order to better represent the noisy speech statistics. In both cases
the challenge is to accurately estimate the characteristics of the distortion,
which normally involves estimating the noise itself. Representative methods
belonging to this subclass of techniques are the Wiener filter [27], vector Taylor
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series (VTS) compensation [1, 31, 45], and the missing-data techniques [7, 20,
36,37,42].

In this paper we focus on one of such distortion models that has proved
to be very effective on combating environmental noise [9, 33, 43]: the log-max
model or masking model, as we will refer to it in the rest of this paper. This
model was initially inspired by observations showing that the distortion caused
by noise on the speech features when they are expressed in a compressed spec-
tral domain (e.g. log-Mel features or log power spectrum) can be reasonably
well approximated as a kind of spectral masking: some parts of the speech
spectrum are effectively masked by noise while other parts remain unaltered.

The main objective of this work is to present an overview of the masking
model and describe in detail three specific applications of it for noise-robust
ASR: (i) speech feature enhancement, (ii) noise model estimation and (iii)
determining the reliability of the observed noisy speech features. Firstly, we
extend the work initiated by the authors in [18,19] and present a detailed and
comprehensive derivation of a feature enhancement technique based on the
masking model. Unlike other feature enhancement techniques derived from the
masking model (e.g. missing-data techniques), our technique has the advantage
that it does not require an a priori segmentation of the noisy spectrum in
terms of ‘reliable’ and ‘unreliable’ features, but the segmentation (a mask
in the missing-data terminology) is obtained as a by-product of the spectral
reconstruction process.

As we will see, the proposed technique uses prior speech and noise models
for enhancing the noisy speech features. While the speech model can be easily
estimated from a clean training dataset, the estimation of the noise model is
more subtle. Hence, another contribution of this paper is an algorithm which
estimates the statistical distribution of the environmental noise in each noisy
speech signal. The distribution is represented as a Gaussian mixture model
(GMM) whose parameters are iteratively updated to maximise the likelihood
of the observed noisy data. The main benefit of our algorithm in comparison
with other traditional approaches is that noise can be estimated even during
speech segments.

Finally, another contribution of this paper is the development of a common
statistical framework based on the masking model for making inferences about
the speech and noise in noise-robust signal processing. This framework has
enough flexibility for providing us with different statistics describing the noise
effects on the speech features. For example, as will be shown later, missing-
data masks, which identify the regions of the noisy speech spectrum that are
degraded by noise, can be easily estimated using the proposed framework.

The rest of this paper is organised as follows. First, in Section 2, we derive
the analytical expression of the masking model as an approximation to the
exact distortion model between two acoustic sources (i.e. speech and additive
noise) when they are expressed in the log-Mel domain. Using the masking
model, a minimum mean square error (MMSE) feature enhancement tech-
nique is derived in Section 3. Then, in Section 4, we introduce the iterative
algorithm for estimating the parameters of the noise model required by the
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enhancement technique. Section 5 discusses the relationship between the pro-
posed algorithms and some other similar techniques. Experimental results are
given in Section 6. Finally, this paper is summarised and the main conclusions
are drawn in Section 7.

2 Model of speech distortion

In this section we derive the analytical expression of the speech distortion
model that will be used in the rest of the paper for speech feature enhancement
and noise estimation. The model, which will be referred to as the masking

model, can be considered as an approximation to the exact interaction function
between two acoustic sources in the log-power domain or any other domain
that involves a logarithmic compression of the power spectrum such as the
log-Mel domain [43]. We start the derivation of the model with the standard
additive noise assumption in the discrete time domain,

y[t] = x[t] + n[t], (1)

where y, x, and n are the noisy speech, clean speech, and noise signals, respec-
tively. Denoting by Y [f ], X[f ], and N [f ] the short-time Fourier transforms of
the above signals (f is the frequency-band index), then the power spectrum
of the noisy speech signal is

|Y [f ]|2 = |X[f ]|2 + |N [f ]|2 + 2|X[f ]||N [f ]| cos θf , (2)

where θf = |θxf − θnf | is the difference between the phases of X[f ] and N [f ].
To simplify the derivation of the distortion model, it is common practice to

assume that speech and noise are independent (i.e. E[cos θf ] = 0). It is possible,
however, to account for the phase differences between both sources. This is
known as phase-sensitive model and although it has been shown that this
model is superior to its phase-insensitive counterpart (see e.g. [11, 15, 24,46]),
we will not consider it in this paper.

The power spectrum of the noisy signal is then filtered through a Mel-
filterbank with D filters, each of which being characterised by its transfer

function W
(i)
f ≥ 0 with

∑

f W
(i)
f = 1 (i = 1, ..., D). The relation between

the outputs of the Mel-filterbank for the noisy, clean speech and noise signals
is [11],

|Ỹi| = |X̃i|+ |Ñi|, (3)

with |Ỹi| =
∑

f W
(i)
f |Y [f ]|2, |X̃i| =

∑

f W
(i)
f |X[f ]|2, and |Ñi| =

∑

f W
(i)
f |N [f ]|2.

Let us now define the vector with the noisy log-Mel energies as y =
(log |Ỹ1|, . . . , log |ỸD|) and similarly for the clean speech and noise signals as
x and n, respectively. Then, these variables are related as follows

y = log(ex + en). (4)
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This expression can be rewritten as

y = log(emax(x,n) + emin(x,n))

= max(x,n) + log
(

1+ emin(x,n)−max(x,n)
)

= max(x,n) + ε(x− n), (5)

with max(x,n) and min(x,n) being the element-wise maximum and minimum
operations and

ε(z) = log
(

1+ e−|z|
)

. (6)

The additive term ε in (5) can be thought of as an approximation error
that depends on the absolute value of the signal-to-noise ratio (SNR) between
speech and noise. Fig. 1a shows a plot of (6) for different SNR values. It can be
seen that ε achieves its maximum value at 0 dB where ε(0) = log(2) ≈ 0.69.
On the other hand, this term becomes negligible when the difference between
speech and noise exceeds 20 dB. A more detailed analysis of the statistics of
ε computed over the whole test set A of the Aurora-2 database [23] for all the
D = 23 log-Mel filterbank channels is shown in Figs. 1b and 1c. In particular,
Fig. 1b shows an histogram of ε estimated from all the SNR conditions in the
test set A of Aurora-2. We used the clean and noisy recordings available in this
database to estimate x and n required for computing ε(z). From the figure,
it is clear that the error is small and mostly concentrated around zero with an
exponentially-decaying probability that vanished in its maximum value log(2).
Fig. 1b also shows that ε can take negative values. These negative values are
due to the phase term in (2) which we ignore in this work1. Nevertheless, the
probability of the negative error values is very small. An histogram of the
relative errors |ε(zi)/yi| (i = 1, . . . , D) is shown in Fig. 1c. Again, the relative
error is mostly concentrated around zero and it very rarely exceeds y more
than 10 % in magnitude.

From the above discussion, we conclude that ε(z) can be omitted from
(5) without sacrificing much accuracy. After doing this, we finally reach the
following speech distortion model,

y ≈ max(x,n). (7)

This model, which was originally proposed in [32,47] for noise adaptation,
is known in the literature as the log-max approximation [33,44,47], MIXMAX
model [32, 34, 43] and, also, masking model [18, 19]. Here, we will employ the
last name because the approach reminds the perceptual masking phenomena
of the human auditory system. It must be pointed out that although it is an
approximation in nature, it can be shown that the masking model turns to be
the expected value of the exact interaction function (i.e. distortion model) for

1 According to (2), the power spectrum of the clean speech and noise signals at a given
frequency band f can exceed that of the noisy speech signal if cos θf < 0 and, thus, the
difference y −max(x,n) can be negative
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Fig. 1 Error of the log-max distortion model. (a) Plot of ε(z) in (6) for different SNR
values. (b) Histogram of ε(z) estimated from all the utterances in test set A of the Aurora-2
database. A parametrization consisting of D = 23 log-Mel filterbank features is employed.
(c) Histogram of relative errors also computed from the set A of Aurora-2.

two acoustic sources when the phase difference θf in (2) between the sources
is uniformly distributed [34,43].

According to (7), the effect of additive noise on speech simplifies to a
binary masking in the log-Mel domain. Thus, the problem of speech feature
compensation can be reformulated as two independent problems:

1. Mask estimation: this problem involves the segmentation of the noisy
spectrum into masked and non-masked regions [6]. As a result, a binary
mask m is usually obtained. This mask indicates, for each element yi of
the noisy spectrum, whether the element is dominated either by speech or
noise, i.e.,

mi =

{
1, if xi > ni

0, otherwise
. (8)

2. Spectral reconstruction: this problem involves the estimation of the
clean speech features for those regions of the noisy spectrum that are
masked by noise. To do so, the redundancy of speech is exploited by taking
into account the correlation among the masked and non-masked speech
features.
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Fig. 2 Noise compensation approach proposed for ASR. An MMSE-based estimator pro-
vides clean speech estimates from noisy features using speech and noise priors and masks
from the masking model. The noise model (based on GMMs) is also obtained by means of
the masking model by applying an iterative EM algorithm which maximises the likelihood
of the observed noisy data.

This approach based on two independent steps, mask estimation and spec-
tral reconstruction, is the one followed by missing-data techniques [7, 16, 20,
35–37, 42]. In the next section we present an alternative, statistical approach
for feature enhancement in which both problems are jointly addressed under
the constraints imposed by the masking model. As we will see, our technique
can be considered as a more general and robust approach which contains as
particular cases the mask estimation and spectral reconstruction steps.

3 Spectral reconstruction using the masking model

The masking model derived in the last section provides us with an analytical
expression that relates the (observed) noisy features with the (hidden) clean
speech and noise features. This, together with statistical models for speech
and noise, enables us to make inferences about the clean speech and noise
sources. For speech feature enhancement we will see later that the posterior
distribution p(x|y) need to be estimated. Section 3.1 will address this issue.
Once this distribution is estimated, it can be used to make predictions about
the clean speech features and, thus, compensating for the noise distortion. The
details of this estimator will be presented in Section 3.2.

It is worth mentioning here that the estimation algorithm presented in this
section is similar in some aspects to other algorithms proposed in the liter-
ature for feature compensation [18, 19, 33], model decomposition [43, 47] and
single-channel speaker separation [40, 41]. Nevertheless, contrary to previous
work, the problem we address here is that of speech feature enhancement for
noise-robust ASR under the assumption that the corrupting source (noise) is
distributed according to a GMM.

Figure 2 shows a block diagram of the proposed noise-robust system com-
prising speech feature enhancement (Clean speech estimation) and noise model
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estimation. As can be observed, GMM models are used for modelling both the
distributions of speech and noise. As will be shown in Section 4, the masking
model together with the inference machinery developed in this section will
allow us not to only estimate the clean speech features, but also to perform
noise model estimation.

3.1 Posterior of clean speech features

To compute the posterior distribution p(x|y), we assume that the feature
vectors x and n are i.i.d. and can be accurately modelled using GMMs2 Mx

and Mn for speech and noise, respectively. Thus,

p(x|Mx) =

Kx∑

kx=1

π(kx)Nx(x;µ
(kx)
x ,Σ(kx)

x ), (9)

p(n|Mn) =

Kn∑

kn=1

π(kn)Nn(n;µ
(kn)
n ,Σ(kn)

n ), (10)

where {π(kx),µ
(kx)
x ,Σ

(kx)
x } are the prior probability, mean vector, and co-

variance matrix of the kx-th Gaussian distribution in the clean-speech GMM,

and {π(kn),µ
(kn)
n ,Σ

(kn)
n } denote the parameters of the kn-th component in the

noise model. The parameters of the clean-speech GMM can be easily estimated
from the clean-speech training dataset using the Expectation-Maximisation
(EM) algorithm [10]. Similarly, as we will see in Section 4, an iterative pro-
cedure based on the EM algorithm can be employed to estimate the noise
distribution in each utterance.

Equipped with these prior models, we are ready now to make inferences
about the clean speech features given the observed noisy ones. Inference in-
volves the estimation of p(x|y), which can be expressed as

p(x|y) =
Kx∑

kx=1

Kn∑

kn=1

p(x|y, kx, kn)P (kx, kn|y), (11)

where we have omitted the dependence on the models Mx and Mn to keep
notation uncluttered. It can be observed that this probability requires the
computation of two terms, P (kx, kn|y) and p(x|y, kx, kn). Let us first focus on
the computation of P (kx, kn|y), which can be expressed through Bayes’ rule
as,

P (kx, kn|y) =
p(y|kx, kn)π

(kx)π(kn)

∑Kx

k′

x=1

∑Kn

k′

n=1 p(y|k
′
x, k

′
n)π

(k′

x)π(k′

n)
. (12)

2 Besides GMMs, other generative models can also be used for modelling these distri-
butions. In particular, spectral reconstruction can benefit from the use of more complex
speech priors such as hidden Markov models (HMMs) along with language models, as it is
usually done in automatic speech recognition. These priors are expected to provide more
accurate estimates of the posterior distribution p(x|y) and, thus, leading to better clean
speech estimates.
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where the likelihood p(y|kx, kn) is defined as the following marginal distribu-
tion,

p(y|kx, kn) =

∫∫

p(x,n,y|kx, kn)dxdn

=

∫∫

p(y|x,n)p(x|kx)p(n|kn)dxdn, (13)

In this equation we have assumed that y is conditionally independent of
Gaussians kx and kn given x and n. As p(x|kx) and p(n|kn) just involve the
evaluation of two Gaussian distributions, p(y|x,n) is the only unknown term
in (13). According to the masking model in (7), each noisy feature yi is the
maximum of xi and ni. Therefore, p(y|x,n) can be expressed as the following
product

p(y|x,n) =
1

K

D∏

i=1

p(yi|xi, ni), (14)

where K is an appropriate normalization factor that assures p(y|x,n) inte-
grates to one and p(yi|xi, ni) is defined as

p(yi|xi, ni) = δ (yi −max(xi, ni))

= δ(yi − xi)1ni≤xi
+ δ(yi − ni)1xi<ni

(15)

with δ(·) being the Dirac delta function and 1C is an indicator function that
equals to one if the condition C is true, otherwise it is zero.

After expanding the multiplication in (14) and grouping terms, we can
rewrite (14) as,

p(y|x,n) ∝ [δ(y1 − x1)δ(y2 − x2) . . . δ(yD − xD)1n1≤x1
1n2≤x2

. . .1nD≤xD
]

+ [δ(y1 − x1)δ(y2 − x2) . . . δ(yD − nD)1n1≤x1
1n2≤x2

. . .1xD<nD
]

+ . . .

+ [δ(y1 − n1)δ(y2 − n2) . . . δ(yD − nD)1x1<n1
1x2<n2

. . .1xD<nD
] .

(16)

Each expression enclosed in brackets in the above equation represents a
different segregation hypothesis for y. For instance, the first expression is the
hypothesis y = x, while the last one corresponds to y = n. The rest of the
expressions represent hypotheses in which some elements in y are dominated
by the speech and the rest by the noise.

Inference in the above model is analytically intractable since, after using
(16) in (13), the likelihood p(y|kx, kn) results in the evaluation of 2D double
integrals. For a typical front-end consisting of D = 23 Mel channels, the com-
putational cost of evaluating the integrals is clearly prohibitive. Furthermore,
the integrals involve the evaluation of Gaussian cumulative density functions
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(cdfs) for which no closed-form analytical solution exists in case of using dis-
tributions with full covariance matrices. To address the above two problems,
we simplify the likelihood computation in (13) by assuming that the noisy fea-
tures are conditionally independent given the Gaussian components kx and kn.
Thus, instead of evaluating the 2D possible segregation hypotheses, only 2 hy-
potheses are evaluated for each noisy feature: those corresponding to whether
the feature is masked by noise or not. Under the independence assumption,
the likelihood p(y|kx, kn) in (13) becomes,

p(y|kx, kn) =
D∏

i=1

p(yi|kx, kn), (17)

with

p(yi|kx, kn) =

∫∫

p(yi|xi, ni)p(xi|kx)p(ni|kn)dxidni. (18)

By substituting the expression of the observation model in (15) into (18),
we obtain the following likelihood function:

p(yi|kx, kn)

=

∫∫

p(xi|kx)p(ni|kn)δ(yi − xi)1ni≤xi
dxidni+

∫∫

p(xi|kx)p(ni|kn)δ(yi − ni)1xi<ni
dxidni

= p(yi|kx)

∫ yi

−∞

p(ni|kn)dni + p(yi|kn)

∫ yi

−∞

p(xi|kx)dxi

= p(xi = yi, ni ≤ yi|kx, kn) + p(ni = yi, xi < yi|kx, kn) (19)

where

p(xi = yi, ni ≤ yi|kx, kn) = Nx

(

yi;µ
(kx)
x,i , σ

(kx)
x,i

)

Φn

(

yi;µ
(kn)
n,i , σ

(kn)
n,i

)

(20)

p(ni = yi, xi < yi|kx, kn) = Nn

(

yi;µ
(kn)
n,i , σ

(kn)
n,i

)

Φx

(

yi;µ
(kx)
x,i , σ

(kx)
x,i

)

(21)

and N (·;µ, σ) and Φ(·;µ, σ) are, respectively, the Gaussian pdf and cdf with
mean µ and standard deviation σ. We can observe that the likelihood has
two terms: p(xi = yi, ni ≤ yi|kx, kn) is the probability of speech energy being
dominant, while p(ni = yi, xi < yi|kx, kn) is the probability that speech is
masked by noise.

We now focus on the computation of the posterior p(x|y, kx, kn) in (11).
Assuming again independence among the features, this probability can be
expressed as the following marginal distribution:
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p(xi|yi, kx, kn) =

∫

p(xi, ni|yi, kx, kn)dni

=

∫
p(yi|xi, ni)p(xi|kx)p(ni|kn)dni

p(yi|kx, kn)

=
Nx

(

xi;µ
(kx)
x,i , σ

(kx)
x,i

)

Φn

(

yi;µ
(kn)
n,i , σ

(kn)
n,i

)

δ(xi − yi)

p(yi|kx, kn)
+

Nn

(

yi;µ
(kn)
n,i , σ

(kn)
n,i

)

Nx

(

xi;µ
(kx)
x,i , σ

(kx)
x,i

)

1xi<yi

p(yi|kx, kn)
(22)

To derive this equation we have proceeded as in (19), that is, p(xi|yi, kx, kn)
is expressed as the sum of two terms: one for the hypothesis that speech energy
is dominant, and the other for the hypothesis that speech is masked by noise.
We will see in the next section that these two terms may be interpreted as
a speech presence probability (SPP) and a noise presence probability (NPP),
respectively.

3.2 MMSE estimation

Equation (11) together with (19) and (22) form the basis of the procedure that
will be used in this section to perform speech feature enhancement. This will
be done using MMSE estimation as follows,

x̂ = E[x|y] =

∫

xp(x|y)dx, (23)

that is, the estimated clean feature vector is the mean of the posterior distri-
bution p(x|y), which is given by (11). Then,

x̂ =

Kx∑

kx=1

Kn∑

kn=1

P (kx, kn|y)

∫

xp(x|y, kx, kn)dx
︸ ︷︷ ︸

x̂
(kx,kn)

. (24)

In the above equation, P (kx, kn|y) is computed according to (12), while
x̂(kx,kn) denotes the partial clean-speech estimate given the Gaussian compo-
nents kx and kn. For computing x̂(kx,kn) we again assume that the features
are independent. Then,

x̂
(kx,kn)
i =

∫

xip(xi|yi, kx, kn)dxi, (25)

By replacing p(xi|yi, kx, kn) by its value given in (22), we finally arrive at
the following expression for computing the partial estimates,

x̂
(kx,kn)
i = w

(kx,kn)
i yi +

(

1− w
(kx,kn)
i

)

µ̃
(kx)
x,i (yi), (26)
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where w
(kx,kn)
i is the following speech presence probability

w
(kx,kn)
i =

Nx

(

yi;µ
(kx)
x,i , σ

(kx)
x,i

)

Φn

(

yi;µ
(kn)
n,i , σ

(kn)
n,i

)

p(yi|kx, kn)
, (27)

and µ̃
(kx)
x,i (yi) is the expected value of the kx-th Gaussian when its support

is xi ∈ (∞, yi]. For a general Gaussian distribution N (x;µ, σ), the mean and
variance of the so-called right-truncated distribution for x ∈ (∞, y] are (see
e.g. [12]),

µ̃(y) = E[x|x ≤ y, µ, σ] = µ− σρ(y), (28)

σ̃2(y) = Var[x|x ≤ y, µ, σ] = σ2
[
1− yρ(y)− ρ(y)2

]
, (29)

where y = (y − µ)/σ and ρ(y) = N (y)/Φ(y) represents the quotient between
the pdf and cdf of standard normal distribution.

By substituting (26) into (24), we obtain the following final expression for
the MMSE estimate of the clean speech features,

x̂i =

Kx∑

kx=1

Kn∑

kn=1

P (kx, kn|y)
[

w
(kx,kn)
i yi +

(

1− w
(kx,kn)
i

)

µ̃
(kx)
x,i (yi)

]

= miyi +

Kx∑

kx=1

(

P (kx|y)−m
(kx)
i

)

µ̃
(kx)
x,i (yi), (30)

with

mi =

Kx∑

kx=1

Kn∑

kn=1

P (kx, kn|y)w
(kx,kn)
i , (31)

m
(kx)
i =

Kn∑

kn=1

P (kx, kn|y)w
(kx,kn)
i . (32)

For convenience, we will refer to the estimator in (30) as the masking-
model based spectral reconstruction (MMSR) from now on. As can be seen
in (30), the MMSR estimate x̂i is obtained as a weighted combination of two
terms. The first term, yi, is the estimate of the clean feature when the noise
is masked by speech and, hence, the estimate is the observation itself. On
the other hand, the second term in (30) corresponds to the estimate when
speech is completely masked by noise. In this second case the exact level of
speech energy is unknown, but the masking model enforces it to be upper

bounded by the observation yi. In this manner, the sums µ̃
(kx)
x,i (yi) in (30) are

the means for the truncated Gaussians kx = 1, . . . ,Kx when xi ∈ (−∞, yi].
An interesting aspect of the MMSR estimator is that, as a by-product of the
estimation process, it automatically computes a reliability mask mi for each
element of the noisy spectrum. The elements of this mask are in the interval
mi ∈ [0, 1], thus indicating the degree in which the observation yi is deemed to
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Fig. 3 Example of Log-Mel spectrograms for the utterance “three six one five” from the
Aurora-2 database. [Top panel] Noisy speech signal distorted by car noise at 0 dB. [Left
column: top and bottom] Original and enhanced speech signals. To obtain the enhanced
signal, 256-mixture and 1-mixture GMMs are used to model speech and noise, respectively.
[Right column: top and bottom] Oracle and estimated missing-data masks. White represents
reliable regions (i.e. dominated by speech) and black unreliable regions (i.e. dominated by
noise). The oracle mask is obtained from the clean and noisy signals using a 0 dB SNR
threshold. The estimated soft-mask is computed using (31).

be dominated by speech or noise. As we will see in the next section, this mask
will play an important role when estimating the model of the environmental
noise in each utterance.

Fig. 3 shows examples of a signal reconstructed by the proposed method
and the corresponding estimated soft-mask mi in (31). In the example, the
method is able to suppress the background noise while keeping those spectral
regions dominated by speech. Also, the method is able to some extent to re-
cover the speech information on those regions masked by noise by exploiting
the correlations with the ‘reliable’ observed features and the prior information
provided by the clean speech model. Finally, it is worth pointing out the sim-
ilarity between the estimated soft-mask and the oracle mask computed from
the clean and noisy signals.
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4 Noise model estimation

The MMSR algorithm introduced in the last section requires a model of
the corrupting noise for computing the corresponding speech and noise pres-
ence probabilities. Often, a voice activity detector (VAD) [38, 39] is used to
detect the speech and non-speech segments in the noisy signal and, then,
noise is estimated from the latter segments. Other traditional noise estimation
methods are based on tracking spectral minima in each frequency band [29],
MMSE-based spectral tracking [21] or comb-filtering [30]. These approaches
have, however, several limitations. First, noise estimation accuracy tends to
be poor at low SNRs. Second, noise estimates for the speech segments are usu-
ally unreliable, particularly for non-stationary noises, since the estimates are
normally obtained through linear interpolation of the estimates obtained for
the adjacent non-speech segments. Hence, we propose in this section a fully-
probabilistic noise estimation procedure that works by iteratively maximising
the likelihood of the observed noisy data (see Fig. 2).

Formally, the goal of the proposed algorithm is to find the set of noise
model parameters M̂n that, together with the speech model Mx, maximises
the likelihood of the observed noisy data Y = (y1, . . . ,yT ),

M̂n = argmax
Mn

p(Y |Mn,Mx). (33)

To optimise (33) we will make use of the EM algorithm [10]. Denoting the
current noise model estimate by Mn and its updated version by M̂n, we can
write the auxiliary Q-function used in the EM algorithm as

Q(Mn,M̂n) =

T∑

t=1

Kx∑

kx=1

Kn∑

kn=1

γ
(kx,kn)
t log p(yt, kx, kn)

∝
T∑

t=1

Kx∑

kx=1

Kn∑

kn=1

γ
(kx,kn)
t

[

log p(yt|kx, kn) + log π̂(kn)
n

]

, (34)

where we have used the following short notations: π̂
(kn)
n = P (kn|M̂n) and

γ
(kx,kn)
t = P (kx, kn|yt,Mn,Mx). The latter posterior probability is given by

(12) and it is computed using the speech model Mx and the current estimate
of the noise model Mn. It should be noted that the dependence on the speech
and noise models has been omitted from the previous equation to keep the
notation uncluttered.

By assuming that the elements of yt are conditionally independent given
Gaussians kx and kn, the auxiliary Q-function becomes

Q(Mn,M̂n) =

T∑

t=1

Kx∑

kx=1

Kn∑

kn=1

γ
(kx,kn)
t

[
D∑

i=1

log p(yt,i|kx, kn) + log π̂(kn)
n

]

,

(35)

where p(yt,i|kx, kn) is given by (19).
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To obtain the expressions for updating the noise model parameters, we
set the derivatives of (35) w.r.t. the parameters equal to zero and solve. This

yields the following set of equations for updating the Gaussian means µ̂
(kn)
n,i ,

variances σ̂
(kn)

2

n,i and mixture weights π̂
(kn)
n (kn = 1, . . . ,Kn; i = 1, . . . , D):

π̂(kn)
n =

1

T

T∑

t=1

γ
(kn)
t (36)

µ̂
(kn)
n,i =

∑T

t=1 m
(kn)
t,i µ̃

(kn)
n,i (yt,i) +

(

γ
(kn)
t −m

(kn)
t,i

)

yt,i
∑T

t=1 γ
(kn)
t

, (37)

σ̂
(kn)

2

n,i =

∑T

t=1 m
(kn)
t,i η

(kn)
n,i +

(

γ
(kn)
t −m

(kn)
t,i

)

ε
(kn)
n,i

∑T

t=1 γ
(kn)
t

, (38)

where

γ
(kn)
t =

Kx∑

kx=1

γ
(kx,kn)
t , (39)

m
(kn)
t,i =

Kx∑

kx=1

γ
(kx,kn)
t w

(kx,kn)
t,i , (40)

η
(kn)
n,i =

[

σ̃
(kn)

2

n,i (yt,i) +
(

µ̃
(kn)
n,i (yt,i)− µ̂

(kn)
n,i

)2
]

, (41)

ε
(kn)
n,i =

(

yt,i − µ̂
(kn)
n,i

)2

. (42)

Similarly to what has been previously discussed for the speech estimates,
the masking model imposes the constraint nt,i ∈ (−∞, yt,i] when noise is

masked by speech. Therefore, µ̃
(kn)
n,i (yt,i) and σ̃

(kn)
2

n,i (yt,i) in the previous equa-
tions are the mean and variance of the estimate obtained when noise is masked
by speech. Both quantities are computed using (28) and (29) given the current
estimate of the noise model Mn.

As can be seen, the updating equations (37) and (38) for the means and
variances of the noise model again involve a weighted average of two different
terms: one for the case when noise is masked by speech and vice versa. The

weights of the average are m
(kn)
t,i and (γ

(kn)
t − m

(kn)
t,i ) that play the role of a

missing-data mask and a complementary mask, respectively, for the Gaussian

component kn. In particular, as can be seen from (40), m
(kn)
t,i is the proportion

of the evidence of yt,i being masked by speech that can be explained by the
kn-th component.

Equations (36)-(38) form the basis of the iterative procedure for fitting a
GMM to the noise distribution in each utterance. In each iteration the pa-
rameters of the GMM estimated in the previous iteration, Mn, are used to
compute the sufficient statistics required for updating those parameters, thus
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Fig. 4 Example noise estimates computed by the MMSR technique in (30) using the GMMs
obtained by the proposed noise estimation algorithm. [Top] Sentence “He doesn’t” from
the Aurora-4 database distorted by street noise at 8 dB. [2nd row] True noise spectrogram
computed from the clean and noisy signal available in the database. [3rd row] Noise estimates
obtained using 1-mixture (left) and 6-mixture (right) noise models. [Bottom] Relative errors
of the estimates w.r.t. the true noise signal.

yielding the updated model M̂n. In this work, the parameters of the initial
GMM are found by fitting a GMM to the first and last frames of the utter-
ance (i.e. we assume that these segments correspond to silence). Finally, the
equations (36)-(38) are applied until a certain stopping criterion is met (e.g.
a number of iterations is reached).

To illustrate the proposed algorithm, Fig. 4 shows example Log-Mel spec-
trograms of the noise estimates obtained using 1-mixture and 6-mixture GMMs.
To obtain the noise estimates from the noise models, a similar procedure to
that described in Section 3.2 for computing the speech estimates is used. That
is, we use the MMSR technique in (30) for computing the noise estimates, but
now the models Mx and Mn play opposite roles. From the comparison with
the true noise spectrum, it can be seen that more accurate noise estimates
are obtained using the 6-mixture GMM because it offers more flexibility for
modelling less stationary noises (e.g. from seconds 0.5 to 1.0). In the example,
an average root mean square error (RMSE) of 0.093 is achieved with the single
mixture GMM while 0.090 is achieved with the 6-mixture GMM.
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5 Comparison with other missing-data techniques

The MMSR and noise model estimation techniques presented in the previous
sections share some similarities with other techniques developed within the
missing data (MD) paradigm to noise-robust ASR. In this section we briefly
review several well-known MD techniques and highlight the similarities and
differences with our proposals.

Missing-data techniques reformulate the problem of enhancing noisy speech
as a missing data problem [7, 35]. This alternative formulation appears nat-
urally as a result of expressing the spectral features in a compressed domain
and adopting the masking model in (7) for modelling the effects of noise in
speech. Contrary to MMSR, MD techniques tend to make very little assump-
tions about the corrupting noise. Thus, instead of estimating the noise in each
utterance as we do in here, MD techniques assume that a mask is available a

priori identifying the reliable and unreliable time-frequency bins of the noisy
spectrum. The masks can be binary, but soft masks are generally preferred
since they are known to provide better reconstruction performance [5]. It must
be pointed out, however, that although MD techniques make no assumptions
about the noise, in practice the missing data masks are usually obtained from
noise estimates. Thus, in a way or other, both approaches, MMSR and MD
techniques, require the noise to be estimated. In this sense, we see the joint
conception of the noise-robustness problem developed in this paper as an ad-
vantage compared to traditional MD techniques.

There are two alternative MD approaches to perform speech recognition in
the presence of missing data. The first approach is known as the marginalisa-

tion approach and, in brief, it basically involves modifying the computation of
the observation probabilities in the recogniser to take into account the missing
information [7,8]. The second approach, known as imputation, involves “filling
in” the missing information in the noisy spectrum before speech recognition
actually happens [16, 20, 36, 37, 42]. For MD imputation techniques, the esti-
mate of the missing speech features is obtained as follows (see [17,36] for more
details),

x̂i = miyi + (1−mi)

Kx∑

kx=1

P (kx|y)µ̃
(kx)
x,i (yi), (43)

where mi represents the value of the missing-data mask (either binary or soft)
for the i-th element of the noisy spectrum.

We can see that there is a clear parallelism between the MD imputation
technique in (43) and the MMSR algorithm in (30). First, both techniques
involve a linear combination of the observed feature yi (case of speech masking
noise) and an speech estimate for the case of noise masking speech. Second, the
weights of the linear combination depend on the reliability of the observation
captured by the missing-data mask mi. Nevertheless, a notable advantage of
MMSR compared to the MD techniques is that it requires no prior information
about the reliability of the elements of the noisy spectrum, as the soft-mask
mi appears naturally as a by-product of the estimation process. In fact, as we



18 Jose A. Gonzalez et al.

will see later on Section 6, the soft masks obtained by MMSR in (31) can be
directly used to perform MD imputation.

Another interesting MD approach for performing speech recognition in
the presence of other interfering sources is the speech fragment decoder (SFD)
of [4]. Unlike the above mentioned marginalisation method, the SFD technique
carries out both mask estimation and speech recognition at the same time by
searching for the optimal segregation mask and HMM state sequence given a
set of time-frequency fragments identified prior to the decoding stage. These
fragments correspond to patches in the noisy spectrum that are dominated
by the energy of an acoustic source [28]. Thus, the SFD approach determines
the most likely set of speech fragments among all the possible combinations of
source fragments by exploiting knowledge of the speech source provided by the
speech models in the recogniser. We can see that the way the SFD proceeds is
somehow similar to our MMSR proposal. However, there are some differences
between both approaches. First, SFD is an extended decoding algorithm in
the presence of other interfering acoustic sources, while MMSR is a feature
compensation technique. Second, the way missing-data masks are estimated
in both approaches differs. In SFD, mask estimation is obtained as a by-
product of the extended search among all the possible fragments. In MMSR,
the source models (i.e. speech and noise models) are used to obtain the most
likely segmentation of the observed noisy spectrum. Finally, the requirements
of both techniques are different: SFD requires a clean speech model and an a

priori segmentation of the noisy spectrum in terms of source fragments, while
our proposal only requires models for the speech and noise sources.

6 Experimental results

To evaluate the proposed methods, we employed two metrics in this paper.
Firstly, we computed the root mean square error (RMSE) between the esti-
mated enhanced speech signals and the corresponding clean ones. Similarly,
for noise estimation, the RMSE measure was computed between the estimated
noise log-Mel spectrum and the true noise estimated from clean and noisy
speech signals. Since lower RMSE values might not necessarily imply better
ASR performance, we also conducted a second evaluation using speech recog-
nition experiments on noisy speech data.

For both evaluations we used the Aurora-2 [23] and Aurora-4 [22] databases.
Aurora-2 is a small vocabulary recognition task consisting of utterances of En-
glish connected digits with artificially added noise. The clean training dataset
comprises 8440 utterances with 55 male and 55 female speakers. Three differ-
ent test sets (set A, B, and C) are defined for testing. Every set is artificially
contaminated by four types of additive noise (two types for set C) at seven
SNR values: clean, 20, 15, 10, 5, 0, and -5 dB. The utterances in set C are also
filtered using a different channel response. Because in this work we only ad-
dress the distortion caused by additive noise, we only evaluated our techniques
on sets A and B. Aurora-4 on the other hand is a medium-large vocabulary
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database which is based on the Wall Street Journal (WSJ0) 5000-word recog-
nition task. Fourteen hours of speech data corresponding to 7138 utterances
from 83 speakers are included in the clean training dataset. Fourteen different
test sets are defined. The first seven sets, from T-01 to T-07, are generated
by adding seven different noise types (clean condition, car, babble, restaurant,
street, airport, and train) to 330 utterances from eight speakers. The SNR val-
ues considered range from 5 dB to 15 dB. The last seven sets are obtained in
the same way, but the utterances are recorded with different microphones than
the one used for recording the training set. We only evaluated our techniques
on the sets T-01 to T-07 with no convolutive distortion.

In this work the acoustic features used by the recogniser were extracted by
the ETSI standard front-end [13], which consisted of 12 Mel-frequency cepstral
coefficients (MFCCs) along with the 0th order coefficient and their respective
velocity and acceleration parameters. Spectral reconstruction, however, was
implemented in the log-Mel domain. Thus, the 23 outputs of the log-Mel fil-
terbank were first processed by the spectral reconstruction technique before
the discrete cosine transform (DCT) was applied to the enhanced features
to obtain the final MFCC parameters. Cepstral mean normalisation (CMN)
was applied as a final step in the feature extraction pipeline to improve the
robustness of the system to channel mismatches.

The acoustic models of the recogniser were trained on clean speech using
the baseline scripts provided with each database. In particular, left to right
continuous density HMMs with 16 states and 3 Gaussians per state were used
in Aurora-2 to model each digit. Silences and short pauses were modelled by
HMMs with 3 and 1 states, respectively, and 6 Gaussians per state. In Aurora-
4 continuous cross-word triphone models with 3 tied states and a mixture of
6 Gaussians per state were used. The language model used in Aurora-4 is the
standard bigram for the WSJ0 task.

Besides MMSR, the MD imputation (MDI) technique described in Section
5 was also considered for comparison purposes. MDI was evaluated using or-
acle binary masks (Oracle), which allow us to determine the reconstruction
performance using ideal knowledge of noise masking, and three types of esti-
mated masks: estimated binary masks (Binary), soft masks computed by the
MMSR technique in (31) (Soft MMSR), and soft masks obtained by applying
a sigmoid compression to SNR estimates, as proposed in [5] (Soft Sigmoid).
In all cases except the Soft MMSR masks, the masks were derived from the
SNR values estimated for each time-frequency element of the noisy spectrum.
For the Oracle masks, the true noise was used to compute the SNR values
and, then, a 7 dB threshold was employed to binarise the values in order to
obtain the final oracle mask. For the Binary and Soft Sigmoid masks, the noise
estimates described below were employed to estimate the SNR for each time-
frequency element. Then, the SNR values were thresholded (Binary masks) or
compressed using a sigmoid function (Soft Sigmoid). In both cases the param-
eters used to estimate the masks from the SNR values (i.e. binary threshold
and sigmoid function parameters) were empirically optimised for each database
using a development set.
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The spectral reconstruction techniques were initially evaluated using esti-
mated noise rather than using our proposed algorithm of Section 4. In this case,
noise was estimated as follows. For each frame, a noise estimate was obtained
by linear interpolation of two initial noise estimates computed independently
by averaging the N first and N last frames of each utterance (N = 20 for
Aurora-2 and N = 40 for Aurora-4). The noise estimates were then post-
processed to ensure they do not exceed the magnitude of the observed noisy
speech, as this would violate the masking model. For those techniques that
require the noise covariance (e.g. MMSR), a fixed, diagonal-covariance matrix
was estimated also from the N first and last frames. Thus, when using noise
estimates in MMSR, the noise model corresponds to a single, time-dependent
Gaussian whose mean at each frame is the noise estimate for the frame.

For spectral reconstruction a 256-component GMM with diagonal covari-
ance matrices was used in all the cases as prior speech model. The GMM was
estimated using the EM algorithm from the same clean training dataset used
for training the acoustic models of the recogniser.

6.1 Performance of the spectral reconstruction methods

Tables 1 and 2 show the average RMSE values obtained by the feature en-
hancement techniques on the Aurora-2 and Aurora-4 databases, respectively.
For Aurora-2, the results are given for each SNR value and are computed over
test sets A and B. Also, the overall average (Avg.) between 0 dB and 20 dB is
also shown, as it is common practice for Aurora-2. For Aurora-4, the results for
test sets T-01 to T-07 and the average RMSE value over all sets are reported.
For comparison purposes, the RMSE results directly computed from the noisy
signals with no compensation are also shown (Baseline).

It is clear from both tables that all the spectral reconstruction methods
significantly improve the quality of the noisy signals, particularly at low SNR
levels (e.g. 0 and -5 dB in Table 1). It can also be observed that the average
RMSE results obtained by these methods are significantly lower on Aurora-4
than on Aurora-2, owing this to the lower average SNR on Aurora-2 compared
to Aurora-4. As expected, the best results (lower RMSE values) are obtained
by MDI-Oracle, which uses oracle masks. Although oracle masks are not usu-
ally available in real-word conditions, it is interesting to analyse the results of
this technique since they are indicative of the upper bound performance that
can be expected from the enhancement techniques derived from the masking
model. For example, it can be seen in Table 1 that the performance of this
technique consistently decrease between the clean and -5 dB conditions. In
the latter condition, it is more difficult to estimate accurately the clean speech
energy in the spectral regions masked by noise because there is less reliable
evidence (i.e. less reliable speech features) for missing-data imputation.

When estimated masks are used, MDI with Binary masks is significantly
worse than the rest of the methods (paired t-test with p < 0.05). The reason
could be that this method is less robust to noise estimation errors due to the
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Method Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.

Baseline 0.00 1.01 1.32 1.67 2.06 2.50 2.97 1.71
MDI Oracle 0.00 0.37 0.48 0.61 0.75 0.91 1.10 0.62

Binary 0.19 0.79 0.97 1.19 1.51 2.01 2.38 1.29
Soft MMSR 0.06 0.58 0.75 0.93 1.15 1.45 1.83 0.97
Soft Sigmoid 0.12 0.59 0.75 0.94 1.16 1.43 1.76 0.97

MMSR 0.06 0.58 0.74 0.92 1.12 1.38 1.69 0.95

Table 1 RMSE values obtained by the proposed MMSR technique and other similar feature
enhancement methods on the Aurora-2 database.

Method T-01 T-02 T-03 T-04 T-05 T-06 T-07 Avg.

Baseline 0.00 1.14 1.51 1.50 1.62 1.41 1.64 1.26
MDI Oracle 0.00 0.38 0.53 0.52 0.57 0.47 0.57 0.43

Binary 0.07 0.62 1.05 1.08 1.07 0.97 1.03 0.84
Soft MMSR 0.12 0.57 0.95 1.01 0.94 0.93 0.91 0.78
Soft Sigmoid 0.13 0.59 0.91 0.96 0.96 0.86 0.93 0.76

MMSR 0.08 0.58 0.95 1.01 0.98 0.90 0.93 0.78

Table 2 RMSE values obtained by the proposed MMSR technique and other similar feature
enhancement methods on the Aurora-4 database.

hard decisions made when computing the binary masks from SNR estimates.
Nevertheless, important gains are observed for MDI-Binary over the baseline,
particularly at low and medium SNRs. There is no significant differences (at
the 95 % confidence level) between both types of soft masks (Soft MMSR and
Soft Sigmoid) on Aurora-2. On Aurora-4, on the other hand, MDI with Soft
Sigmoid masks achieves slightly better results than MDI with Soft MMSR
masks due to the sigmoid function parameters being empirically optimised
for this database using adaptation sets. However, the MMSR technique has
the advantage of requiring no such parameter tuning. Likewise, our MMSR
technique is significantly better (p < 0.05) than the rest of the techniques ex-
cept MDI-Oracle on the Aurora-2 database, being the differences particularly
noticeable at the medium-low SNR levels. On Aurora-4, however, MDI with
Soft Sigmoid masks is slightly superior to MMSR due to, again, the sigmoid
function parameters being empirically optimised for Aurora-4.

We also conducted a series of speech recognition experiments on noisy data
as a complementary evaluation for the spectral reconstruction techniques. The
average word accuracy results (WAcc) are given in Table 3 for Aurora-2 and in
Table 4 for Aurora-4. For both databases the relative improvement (R.I.) with
respect to the baseline system is also provided. For comparison purposes, the
recognition results obtained by the ETSI advanced front-end (ETSI AFE) [14],
which is especially designed for noise robustness, are also shown. One of the
first things we can observe is that despite the RMSE values shown in Tables
1 and 2 are better for Aurora-4, the recognition accuracies are significantly
higher in Aurora-2 than in Aurora-4. This is not surprising given that the
speech task in Aurora-4 is much more difficult than in Aurora-2: medium-
large vocabulary vs. connected-digit recognition.
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Method Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg. R.I.

Baseline 99.10 97.40 92.84 76.18 43.44 22.87 12.94 66.54 –
ETSI AFE 99.24 98.24 96.87 93.38 84.43 60.98 27.25 86.78 30.42
MDI Oracle 99.10 99.04 98.84 98.17 96.39 90.73 74.06 96.63 45.22

Binary 98.88 97.60 95.48 90.66 78.83 54.75 24.24 83.46 25.43
Soft MMSR 98.89 98.04 96.74 92.81 81.92 57.96 27.39 85.49 28.48
Soft Sigmoid 98.87 98.16 96.77 92.82 81.54 58.08 27.70 85.47 28.45

MMSR 98.88 98.22 97.06 93.72 84.09 61.54 28.56 86.93 30.64

Table 3 Performance results in terms of WAcc (%) of the MMSR method on the Aurora-2
database and comparison with other similar compensation techniques.

Again, the best results on both databases are obtained by MDI-Oracle.
Although not realistic, it is remarkable that the performance achieved by this
method on noisy data is close to clean conditions for medium-high SNRs. For
the rest of the techniques, the same performance pattern as for the RMSE
results is observed. MDI-Binary is the worst method on both databases while
MMSR is the best method on Aurora-2 and, on Aurora-4, MDI with Soft
sigmoid masks is the best method but followed very closely by MMSR. For
Aurora-4 it is especially noteworthy the performance gap between MDI-Binary
and the rest of the techniques. For example, the relative improvement of
MMSR over MDI-Binary is 10.90%. It is therefore interesting to analyze why
MDI-Binary is much more fragile than the rest of the methods in low SNR
conditions. In those conditions it is frequent that the estimated masks contains
errors: either some unreliable features are labelled as reliable or viceversa. In
the first case, the unreliable features are not treated by the imputation method.
The second case is even more problematic, since the reliable features will be
labelled as unreliable and will be replaced by the imputation method, hence,
further degrading the observed signal. Therefore, in the light of the results, it is
clear that a better strategy in those cases is to adopt a soft-decision approach,
such as those of MDI with soft masks or our method MMSR. In particular,
the approach adopted by our proposal MMSR, where a noise distribution is
assumed for the noise instead of just using noise estimated, seems to be more
suited for this high noise conditions.

Finally, another interesting result from Tables 3 and 4 is the good perfor-
mance achieved by MMSR in comparison with ETSI AFE, despite that this
front-end includes several complex noise-reduction blocks (e.g. blind equalisa-
tion) not implemented in our technique.

6.2 Performance of the noise model estimation algorithm

In this section we evaluate the performance of the noise model estimation
algorithm proposed in Section 4. In the first evaluation, we computed the
RMSE values between the noise estimates derived from the GMMs obtained
by this algorithm and the true noise signals computed from the clean and noisy
recordings in the speech databases. To obtain the noise estimates, we employed
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Method T-01 T-02 T-03 T-04 T-05 T-06 T-07 Avg. R.I.

Baseline 87.69 75.30 53.24 53.15 46.80 56.36 45.38 59.70 –
ETSI AFE 88.25 81.41 69.14 64.80 67.44 66.34 68.78 72.31 21.12
MDI Oracle 87.69 86.74 84.46 84.44 83.19 85.90 82.38 84.97 42.33

Binary 86.96 80.78 58.47 52.74 59.63 56.14 61.42 65.16 9.15
Soft MMSR 87.52 83.65 66.62 63.78 63.48 69.19 65.31 71.36 19.53
Soft Sigmoid 87.22 83.95 69.76 65.31 67.01 69.42 68.19 72.98 22.24

MMSR 87.54 83.28 69.23 64.49 64.88 70.63 66.93 72.43 21.32

Table 4 Performance results in terms of WAcc (%) of the MMSR method on the Aurora-4
database and comparison with other similar compensation techniques.

Noise model Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.

Interpolated 3.82 0.40 0.39 0.37 0.36 0.35 0.33 0.37
GMM 1 Gauss. 3.18 0.35 0.33 0.31 0.29 0.27 0.24 0.31

2 Gauss. 3.52 0.35 0.32 0.30 0.28 0.26 0.22 0.30

4 Gauss. 3.62 0.36 0.33 0.31 0.29 0.26 0.22 0.31
6 Gauss. 3.63 0.36 0.34 0.32 0.30 0.27 0.22 0.32
8 Gauss. 3.62 0.37 0.35 0.34 0.31 0.28 0.22 0.33

Table 5 Evaluation of the performance of different noise estimation methods on the
Aurora-2 database. RMSE values computed between the estimated noise spectrum and the
true noise spectrum, both expressed in the log-Mel domain, are reported.

the MMSR technique in (30), but instead of using it for speech enhancement
as we have been doing so far, we applied it to predict the noise energy in the
spectral regions masked by speech.

The RMSE results on the Aurora-2 database are shown in Table 5. The
results are presented as a function of the number of Gaussians in the noise
model: 1, 2, 4, 6, and 8 components. Also, for comparison purposes, the RMSE
values for the noise estimates obtained by linear interpolation are also shown
(Interpolated). From the results it is clear that the noise estimates obtained by
the proposed algorithm are significantly better (with a 95 % confidence level)
than those obtained by the interpolation method. Interestingly, the RMSE
values are better for the lower SNR levels than for the higher SNRs. The
reason of this apparent contradiction is that the true noise level for the higher
SNRs (i.e. clean or 20 dB) is zero or close to zero, while the estimate of our
method correspond to the energy level of the silences, which is not completely
zero. As can be seen, the best overall results are achieved when 2-mixture
GMMs are used. From the results, it seems that using more than 2 mixture
components degrades the performance because the GMMs are poorly trained
due to their high number of parameters. On the other hand, single-Gaussian
GMMs are unable to properly model non-stationary noises.

Fig. 5 shows the RMSE values for the GMM-based noise estimates on
the different noise types in Aurora-2. Again, 2-mixture GMMs achieve the
best results for most of the noise types. Nevertheless, the 1-mixture model is
significantly better than the other models on the most stationary noises (car
and exhibition). For less stationary noises (e.g. subway or street), however,
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Fig. 5 Average RMSE results between 0 dB and 20 dB for the GMM-based noise estimates
on the different noise types in the Aurora-2 database. Error bars are plotted at the 95%
confidence level.

Method T-01 T-02 T-03 T-04 T-05 T-06 T-07 Avg.

Interpolated 4.21 0.32 0.41 0.47 0.36 0.46 0.34 0.94
GMM 1 Gauss. 4.00 0.27 0.31 0.38 0.30 0.36 0.27 0.84

2 Gauss. 4.17 0.28 0.30 0.37 0.27 0.36 0.25 0.86
4 Gauss. 4.20 0.29 0.31 0.37 0.27 0.36 0.26 0.87
6 Gauss. 4.20 0.29 0.32 0.37 0.28 0.36 0.27 0.87
8 Gauss. 4.19 0.29 0.32 0.37 0.28 0.36 0.27 0.87
10 Gauss. 4.19 0.30 0.32 0.37 0.28 0.36 0.27 0.87

Table 6 Evaluation of the performance of different noise estimation methods in terms of
noise RMSE values on the Aurora-4 database.

the performance of the single-Gaussian models is significantly lower than that
achieved by the 2-mixture GMMs.

The RMSE values obtained by the noise estimation methods on Aurora-
4 are presented in Table 6. As in Aurora-2, the GMM-based method yields
significantly better estimates than the interpolation-based method on all the
test sets. Surprisingly, the best results on this database are achieved by using
single-mixture GMMs. Fig. 6 shows the detailed results per noise type, pro-
viding more insight about this result. As can be observed, the single-mixture
model only outperforms the other models on the car noise (T-02) and the clean
condition (T-01). For the rest of the noise types, 2-mixture models achieve
significantly better results than 1-mixture models, especially on the less sta-
tionary noises such as restaurant, street or train station. Because the clean
condition is not usually problematic for speech enhancement purposes, we can
neglect it when computing the average RMSE results. Thus, the average RMSE
values for test sets T-02 to T-07 for GMMs with 1 to 10 Gaussians are, respec-
tively, 0.32, 0.31, 0.31, 0.32, 0.32, and 0.32. Now it is clear that 2-mixture and
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Fig. 6 RMSE values for the GMM-based noise estimates on the different noise types in
the Aurora-4 database. Confidence intervals are plotted at the 95% level.

Noise model Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.

Interpolated 0.06 0.58 0.74 0.92 1.12 1.38 1.69 0.95
GMM 1 Gauss. 0.03 0.57 0.73 0.91 1.12 1.40 1.73 0.95

2 Gauss. 0.06 0.56 0.71 0.88 1.11 1.41 1.74 0.93

4 Gauss. 0.06 0.56 0.72 0.89 1.13 1.46 1.79 0.95
6 Gauss. 0.06 0.57 0.73 0.91 1.17 1.51 1.84 0.98
8 Gauss. 0.06 0.58 0.74 0.94 1.21 1.57 1.88 1.01

Table 7 Objective evaluation of the proposed MMSR technique for speech feature en-
hancement in terms of speech RMSE values on the Aurora-2 database.

Method T-01 T-02 T-03 T-04 T-05 T-06 T-07 Avg.

Interpolated 0.08 0.58 0.95 1.01 0.98 0.90 0.93 0.78
GMM 1 Gauss. 0.06 0.56 0.86 0.95 0.94 0.83 0.90 0.73

2 Gauss. 0.08 0.56 0.84 0.93 0.88 0.81 0.86 0.71
4 Gauss. 0.09 0.56 0.85 0.92 0.88 0.80 0.86 0.71

6 Gauss. 0.09 0.56 0.85 0.92 0.89 0.80 0.87 0.71
8 Gauss. 0.09 0.57 0.86 0.92 0.89 0.80 0.88 0.72
10 Gauss. 0.09 0.57 0.86 0.92 0.89 0.81 0.89 0.72

Table 8 Objective evaluation of the proposed MMSR technique for speech feature en-
hancement in terms of speech RMSE values on the Aurora-4 database.

4-mixture GMMs are, on average, better than the rest of the models on the
noisy conditions. Disappointingly, we can see that increasing the number of
Gaussians in the models do not necessarily produce better results. It might be
that the GMMs with many components are not robustly trained due to their
high number of parameters. Also, it could be that the speech model imposes
only weak constraints during the EM algorithm and, as a result, the noise
model ends up modelling some parts of the speech spectrum.
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Noise model Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.

Interpolated 98.88 98.22 97.06 93.72 84.09 61.54 28.56 86.93
GMM 1 Gauss. 99.10 98.42 97.09 93.37 82.81 58.07 25.12 85.95

2 Gauss. 99.08 98.29 97.17 94.06 84.91 61.48 27.75 87.18

4 Gauss. 99.03 98.27 97.02 94.02 84.64 61.79 28.70 87.15
6 Gauss. 99.07 98.38 96.98 93.96 84.13 60.03 27.86 86.70
8 Gauss. 99.04 98.32 97.13 93.92 83.80 58.55 26.86 86.34

Table 9 Comparison of the MMSR performance (in terms of WAcc) on Aurora-2 us-
ing either interpolated noise estimates or GMM noise models estimated with the iterative
algorithm proposed in Section 4.

Method T-01 T-02 T-03 T-04 T-05 T-06 T-07 Avg.

Interpolated 87.54 83.28 69.23 64.49 64.88 70.63 66.93 72.43
GMM 1 Gauss. 87.60 83.22 68.52 64.21 62.86 70.47 64.34 71.60

2 Gauss. 87.58 83.36 68.78 64.34 64.75 70.54 67.21 72.37
4 Gauss. 87.67 83.22 69.62 63.95 65.78 70.48 68.41 72.73

6 Gauss. 87.54 83.45 69.23 64.23 65.25 69.33 67.98 72.43
8 Gauss. 87.52 82.57 69.08 64.45 65.20 68.60 66.84 72.04
10 Gauss. 87.60 82.65 67.79 64.58 65.01 68.69 66.19 71.79

Table 10 Comparison of the MMSR performance (in terms of WAcc) on Aurora-4 us-
ing either interpolated noise estimates or GMM noise models estimated with the proposed
iterative algorithm.

Next, we evaluated the performance of the proposed algorithm for noise
model estimation on speech feature enhancement. To do so, we computed
the RMSE values between the speech estimates obtained by the MMSR tech-
nique and the corresponding clean signals. To obtain the speech estimates, the
MMSR technique directly used the noise GMMs estimated by the algorithm
instead of the noise estimates derived from the GMMs. The RMSE values on
the Aurora-2 and Aurora-4 databases are summarized in Tables 7 and 8, re-
spectively. It is worth noting that the Interpolated results are the same than
those reported in Tables 1 and 2 for the MMSR technique. As can be seen, the
MMSR technique greatly benefits from using GMMs for modelling the noise
distribution. Thus, the results for the GMM-based noise models are signifi-
cantly better than those for the Interpolated noise estimates except when an
excessive number of Gaussian components are employed (i.e. 6 and 8 Gaussians
in Aurora-2). On the Aurora-4 database, on the other hand, the GMM-based
enhancement method always outperforms the results achieved by the Interpo-
lated system. Despite the worst results on noise estimation were obtained for
the clean condition (Clean in Aurora-2 and T-01 in Aurora-4), it can be seen
that this does not affect spectral reconstruction performance and the RMSE
values for this condition are always close to zero.

Finally, we also carried out a series of speech recognition experiments us-
ing the signals enhanced by MMSR. The word accuracy results are shown in
Tables 9 and 10 for Aurora-2 and Aurora-4, respectively. As expected, signif-
icant improvements over both the baseline results reported in Tables 1 and 2
and the MMSR technique using Interpolated noise are achieved when MMSR
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employs GMMs for modelling the noise distribution. As can be observed, the
results obtained for Aurora-2 are in consonance with the RMSE values shown
in Table 7, where 2-mixture GMMs for noise modelling yield the best per-
formance. Although something similar happens in Aurora-4 (the best results
are achieved by using GMMs with 4 mixtures), it is worth to note that im-
provements in speech recognition are smaller than those reported Table 8 for
speech enhancement. This can be justified by the fact ASR is already able to
deal with certain amount of noise (mismatch) in the speech signals.

7 Summary and Discussion

In order to make ASR systems usable in real-life conditions, they must be
equipped with noise-resistant mechanisms to protect them from the degra-
dation caused by the environmental noise that is often present in these con-
ditions. In this paper we have introduced one of such mechanisms based on
an analytical model which describes how speech is distorted by noise in the
feature domain. Under this model, which has been referred to as the masking
model, noise corruption translates to an effective masking of the speech spec-
trum. Thus, two different problems must be solved to compensate for the noise
distortion: mask estimation, which involves the segmentation of the noisy spec-
trum into reliable and unreliable regions, and spectral reconstruction, which
involves estimating speech in the unreliable regions.

We have shown that the above two problems can be jointly addressed using
the proposed MMSE-based spectral reconstruction algorithm derived from the
masking model. Unlike other similar techniques, the proposed algorithm needs
no prior segmentation of the noisy spectrum (i.e. a mask). Instead, the seg-
mentation that best explains the noisy spectrum is automatically estimated
on the basis of available prior models for the speech and noise features. In
other words, the masks are estimated using a top-down approach under the
constraints imposed by the a priori speech and noise models.

To estimate the noise models required by the spectral reconstruction tech-
nique, we have also proposed a novel algorithm based on the EM method. The
proposed algorithm finds the noise model parameters (represented as a GMM)
by iteratively optimising the likelihood of the observed noisy data under the
constraints imposed by the clean speech model. This ensures the algorithm
convergence and, hence, that the parameters of the noise model properly rep-
resent the noise distribution in the utterance.

The proposed techniques were evaluated on the Aurora-2 digit recognition
task and on the Aurora-4 large vocabulary task. In both cases, the proposed
feature enhancement technique achieves significant relative improvements of
29.49% (for Aurora-2) and 25.72% (for Aurora-4) over the baseline. Further-
more, the results also show that the proposed MMSR method outperforms
comparable MD imputation techniques in most cases. In particular, it is shown
that the proposed method tends to be more robust than MD imputation to
errors in noise estimation, especially at medium and low SNR levels. Regard-
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ing the performance of the proposed noise model estimation algorithm, the
results show that significant improvements on speech enhancement and ASR
are achieved by this method over using simple noise estimates. It is also found
that increasing the number of Gaussian components in the noise model is
particularly beneficial when modelling non-stationary noises.

This work has several interesting directions for future research. First, the
perceptual interpretation of the masking model suggests that it could be en-
hanced by incorporating auditory features. Second, future work will aim to re-
duce the performance gap between our proposal and MDI using oracle masks.
In this regard, MMSR could be extended to also combat the degradation
caused by convolutive noise. Third, instead of using GMMs as prior speech
models, the proposed algorithms could be extended to exploit the HMMs used
by the recogniser as this would provide with additional temporal constraints
for further improvement. Another topic to be investigated is the automatic de-
termination of the number of mixture components when estimating the noise
model. Finally, inspired by the speech fragment decoding approach in [4], an
additional source information that could be exploited by the proposed algo-
rithms for further improvement are the source constraints derived from the
noisy signal itself. These constraints translate to bottom-up processes for seg-
menting the noisy signal into time-frequency fragments dominated by the en-
ergy of a particular sound source. Information that could be used to guide
the fragment generation process is the pitch of the different sources and the
common onsets or offsets. These bottom-up constraints, combined with the
top-down constrains imposed by the speech and noise models, could be help-
ful for estimating the missing-data masks.
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32. Nádas, A., Nahamoo, D., Picheny, M.A.: Speech recognition using noise-adaptive pro-
totypes. IEEE Trans. Acoust., Speech, Signal Process. 37(10), 1495–1503 (1989)

33. Nakatani, T., Yoshioka, T., Araki, S., Delcroix, M., Fujimoto, M.: Logmax observation
model with MFCC-based spectral prior for reduction of highly nonstationary ambient
noise. In: Proc. ICASSP, pp. 4029–4032 (2012)

34. Radfar, M.H., Banihashemi, A.H., Dansereau, R.M., Sayadiyan, A.: Nonlinear minimum
mean square error estimator for mixture-maximisation approximation. Electron. Lett.
42(12), 724–725 (2006)

35. Raj, B., Seltzer, M.L., Stern, R.M.: Reconstruction of missing features for robust speech
recognition. Speech Commun. 48(4), 275–296 (2004)

36. Raj, B., Singh, R.: Reconstructing spectral vectors with uncertain spectrographic masks
for robust speech recognition. In: Proc. ASRU, pp. 65–70 (2005)

37. Raj, B., Stern, R.M.: Missing-feature approaches in speech recognition. IEEE Signal
Process. Mag. 22(5), 101–116 (2005)
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