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Line Spectral Estimation Based on Compressed
Sensing with Deterministic Sub-Nyquist Sampling
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Abstract—As an alternative to the traditional sampling theory, require random sampling, which is difficult or complicated t
compressed sensing allows acquiring much smaller amount of implement.

data, still estimating the spectra of frequency-sparse sitls ac- In this paper, we focus on line spectral estimation with

curately. However, compressed sensing usually requires maom N . . . .
sampling in data acquisition, which is difficult to implement in deterministic sub-Nyquist sampling. The union of thregeser

hardware. In this paper, we propose a deterministic and simfe  Of _undersampled samples at coprime rati0§ is enough to
sampling scheme, that is, sampling at three sub-Nyquist ras estimate the spectra of frequency-sparse signals. Then an

which have coprime undersampled ratios. This sampling metbd  algorithm based on variational Bayesian inference is eygalo
turns out to be valid through numerical experiments. A compeX- {4 connect the samples. This method may be realized through

valued multitask algorithm based on variational Bayesian - three undersampled channels, the hardware is convenient to
ference is proposed to estimate the spectra of frequency-afse P !

signals after sampling. Simulations show that this method s implemen?. The paper is organized as follows: Section Idegiv
feasible and robust at quite low sampling rates. the smapling strategy. Section Il demonstrates our algori

Index Terms—Line spectral estimation, Compressed sensing, Simulation results are shown in Section IV. The last section
Deterministic sub-Nyquist sampling. draws conclusions.

II. SAMPLING STRATEGY

Consider the line spectral estimation problem where the

INE spectral estimation has numerous applications #pserved signal is a summation &f complex sinusoids:
sonar, radar, underwater surveillance, communications, K
geophysical exploration, speech analysis, nuclear physid y(m) = Z Ccrpelwrm, (1)
other fields. In general, the sampling rate of the signal is k=1

required to be higher than twice the highest frequency, (i'%herej = V—1, wy € [0,27) and ¢, denote the angular

Nyquist rate). In some applications, high-speed analeg-ipeqyency and the complex amplitude of theh component,
digital converters that increase the sampling rate or dﬁnﬁiespectively. Whenm = 1,2,---,M, it implies normal
are very expensive. Emerging compressed sensing (CS) 9@&8\piing, which is studied in conventional methods such as

against the common knowledge in data acquisition. CS theqy;g|c [14]. In the methods based on C&, is selected at

asserts that one can recover certain signals and images frr Miom from the index seltV] A {1,2,-.-,N}. However,

far fewer samples or measurements than traditional methq R pattern of sampling often leads to complex hardware
use [1]. For example, a new type of data acquisition system called

Many researchers hgve utilized CS to estimate the_ Specglr?andom demodulator is studied to ensure the randomness of
of frequency-sparse signals! [2][3][4]. A source localiaat sampling in [15]

method based on a sparse representation of sensor measureR proposed deterministic scheme is to sample at three

ments with an overcomplete basis was proposedin [5]. The %’prime undersampled ratigsg, r, in other words, we need
thors in [6] addressed the problem of estimating spectnakli the samples with indices

from irregularly sampled data within the framework of sgars
representations. The uniqueness conditions of the spalse s Z={p,2p, -} U{q,2q,---yU{r,2r,---}. 2

tion with different patterns of samples were analyzed I [7¢ js worth mentioning that sampling at two coprime undersam

the effect of "basis mismatch” caused by grid discretizatiqyeq ratios sometimes also yields correct results but trates

was anz_;\Iyzed. To deal With basis mismatch,_some articles Ufiarantee a high probability of success. The process diagra
grid refinement to approximate the true grid [8][9][10]. The¢ sampling is shown in Fig 1.

atomic norm-based methods make line spectral estimatisin ca pfier sampling, the samples are in chronological order, we

into a convex semidefinite program optimization, which dealg|ect consecutivas samples with indices,, to, - - , ¢y t0
with continuous-valued frequencies and completely elatés ,nstitute a column vector T

basis mismatch [11][12][13]. However, these methods ugual T
y=1[yt) ylt2) - ylta) |, (3)
The authors are with Signal Processing Laboratory, SchdoElec- .
tronic Information, Wuhan University, Wuhan 430072, Chirta-mail: where[x]” denotes the transpose operation. Assume that the
staronice@whu.edu.cn; hongsun@whu.edu.cn; haijiang@avhu.edu.cn; frequencies are aligned with a uniform grid, i.e.,
ly.wd@whu.edu.cn).
wp=2mn/N, n=1,2,--- /| N. (4)
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» A/D > Next we give an example in order to clearly illustrate our

y(pt) sampling scheme. If the three undersampled ratiospare
Undf;;f)ﬂ;pled 9,q = 10 andr = 11, and the number of discrete grid points
is N = 100, the configuration of the samples is
» AD —>» I
y(®) — y(qt)
el y(9)  y(10) y(11)
y(10) y(11) y(18)
> AD > y(11) y(18) y(20)
ot Y y(18)  y(20) (22) M. 9)
ratio r y(20) y(22) y(27)
Fig. 1. The process diagram of the proposed sampling scheme.

When50 tasks are used, i.el; = 50, it is better to choose
M = 27 to prevent the corresponding sensing matrices from

The observation model can be written more compactly as having duplicate rows. The sensing mats amounts to

y = ®(w)s, (5) picking partial rows from theN x N Fourier matrix. The
sensing property of this deterministic partial Fourier mxat
where ®(w) = [ ¢(w1) é(w2) -~ @lwn) |, ¢(w) = approximates a random partial Fourier matrix, which hasibee
Jwti jwtay 1T _ =~ =~ T . i 1
[ e e ] and s = [ ¢1 -+ CN ] is a proven to be appropriate as a CS matrix| [17].

K-sparse vector. In generalf < N is set and[(b) is solved We select®; to present the statistical RIP a@b; intu-

as a problem of sparse recovery. However, the proper@ ofitively, the maximum and minimum eigenvalues of its Gram

as a CS matrix is difficult to certify in theory. To improvematrices are plotted. These eigenvalues of a random partial

the probability of success, we utilize more samples to forfourier matrix are also plotted for comparison. The data are

multiple tasks and synthesize the effects of these taskselya obtained fromk2N sub-Gram matrices for eadh The solid
lines sketch the average values of maximum and minimum

Y=, 1=12,--, L ©) eigenvalues of all sub-Gram matrices and the dashed lines

where sketch the limiting values. Fif] 2 shows that the eigenwabfe
®,’s sub-Gram matrices distribute slightly further away from
" (tl ) " (tl ) 1 than the random partial Fourier matrix. In Section IV we

eI eI T will see that the probability of success increases sigmifiga

él — . . 9 (7) :
: : when more tasks are introduced.
edwitiem—1—t) ... giwn(tirm—1—t)
T I1l. PROPOSEDALGORITHM

y = [yt) ylti) - y(em—) ] and s = i th _ exvalued multitask alaorithm

[ Geit ... Gyedont }T' The total number of samples n this section, a complex-valued multitask algorithm lahse

is I + M — 1. Note that all ofs, share the same sparsityon variational Bayesian inference is proposed to solve the

profile and®; repeat after a certain period/ is expected to apc_)ve modgl._ In[L18], the mult|ta§k Bayesian CS qlgonthm
be as large as possible, but an appropriate valud/afust utilized empirical Bayesian analysis to recover multipdelr

ensure®; not to contain duplicate rows. The joint estim:’;\tioﬁlaluﬁfj spa;‘s_e Isoéutlon_s. V\?e also adkdriss the ptrr(])blem within
can achieve satisfactory results as shown in Section 1\ e\}g'e ierarchical bayesian framework. Assume e measure-
though®, may not have good property. ment noise to be independent and complex Gaussian with

- i 1
The most widely used criterion to evaluate the property szaero_trtnean and variance equal fo°, the model[(B) can be
CS matrix isrestricted isometry property (RIP). The CS matrix rewritten as

& has the K, 6)-RIP if Y =B+, [=1,2,-- L. (10)

2 2 2
(1 =0) [lzlly < [|@ll5 < (1+0) [l (8)  The likelihood function for the parametessand 3 may be

holds for allk-sparse vectors:, ||z||, denotests-norm of z  €XPressed as

[16]. The smallest for (k, 6)-RIP is the restricted isometry M 2

constant (RIC)d,. A small 6, implies good performance p(yils, B) = (n/B) " exp (—BHyl - ‘I>lsl|\2)- (11)
when recovering &-sparse signal. Left be a matrix with
ly-normalized columnspy, s, -« , N, i€, |[enlls = 1
for n = 1,2,---,N, the condition [(B) is equivalent to
that the Gram matrix®Z &, of every column submatrix
P (K C {1,2,---,N},|K|] < k) has all its eigenvalues in
the interval[l — 6, 1 + §x), where[«]? denotes the conjugate
transpose operation.

The hierarchical Gaussian prior is typically imposedsn
in sparse Bayesian leaning to induce sparsity. Denote ibe pr
variance of the-th element ofs, as%._l, the prior distribution
of s; is

p(si|a) = exp (—stAsl) , (12)

VA"
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Substituting[(1b) into[(16), after some arrangement we find
that the vector; obeys a complex Gaussian distribution, i.e.,

q(s)) =CN (si|p, %)), 1=1,2,--- , L. (19)

The meanu; and covariance matri¥; are given by
= (8) @]y, (20)
0= ((8) @f' @+ (4)) . (21)

According to [I5) and[{17), it can be shown that the
posterior density ofy is

Maximum and minimum eigenvalues

N
= HGamm i, b ), (22)
[]camma(afa.5:)
where
a=a+ 1L, (23)

L
ho— b4 <z |sl,i|2> | (24)
=1

s1,; is thei-th element ofs;. Similarly, we obtain

Maximum and minimum eigenvalues

a(8) = Gamma( B¢, d) . (25)
(b) The random partial Fourier matrix where
Fig. 2. Maximum and minimum eigenvalues of sub-Gram madrife =c+ LM, (26)
different k. (a) ®1; (b) The random partial Fourier matrix.
2
d d+<Z||yz—<I’le||2>- (27)
=1

wherea = [ o1 -+ an }T and A = diag(a). Gamma
priors are placed on the hyperparametersand similarly on
the noise precisior, i.e.,

Utilizing the property of Gamma distribution, the required
expected values can be computed as

N () = i, (28)
p(aa,b) = H Gammg«;|a, b), (13) ZZZ

=1 (B) == (29)
p (Ble,d) = GammaS|c,d) . (14) d

Based on the above results, the procedure of the algorithm
can be summarized as follows:

1) Set the iteration count t0. Initialize u;, 3;, « and S.

2) According to [2R){(29) and the current estimated values

The parameters, b, c andd are typically set to very small
values (e.g.a = b = ¢ = d = 107%), which amounts to
assuming uninformative priors fex and s [19].

thgijilg'?}:oza[biﬁ o'f. aatgL L;?ggte:rs[afwa h. ' .er SaLre}r,setOf w; and 2, update the posterior distributions of and 3.
i J P y P yperp 3) According to[(IP){(211) and the current posterior deasiti

of a and 3, update the the estimated valuesigfand X3;.
p(Y,S,,8) =p(Y|S,3) p(S|a)-p(ala,b)-p(Ble, d) 4) Return to Step 2) until the iteration count reaches the
I I maximum value.

_ After using this algorithm, the lowest several valleys of
N Up(yzlsl, llj[lp (sij) - plefa;b) - p(Ble,d). (19) a indicate the positions of the frequencies contained in the
N - ignal. When the frequencies do not fall onto the grid, the
Igorithm often finds the nearest grid point. So the closest
interval of the true frequencies can not be too small.

By applying the variational expectation maximization (EM
algorithm [20] and the above equations, the posterioritistr
tions of S, a and S can be approximately calculated as

Ing(S) = (Inp (Y, S, B))y(a)qs) T CONS (16) IV. SIMULATION RESULTS

_ We make experiments to verify the effect of multiple tasks

1 =l Y.S a, + cons 17 ) . .

ngle) = (np( @B asrae) ' 7 relative to single task. The signals contdin= 3 frequency
and components with amplitudes o2, 0.4 and 0.8 respectively

and random phase angles. The three undersampled ratios are

1 lnp (Y, 18 .

nq(B) = (Inp (Y, S, e, 8))ys)(a) +CONSE (18) settop = 9, ¢ = 10 andr = 11. According to the
where (x),(,) is the expectation with respect {gz). analysis in Section IIM = 27 and N = 100 are fixed. We
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set the frequencies to 0.178, 0.353 and 0.372, respectivelyThen we test the performance of the proposed method in
Complex white Gaussian noise at SNR=20dB is added to ttéferent noisy environment. The three undersampled satio
measurements. The power spectra with respect to differamé set top = 7, ¢ = 8 andr = 9. M = 32, N = 100
numbers of taskd. = 1, 10 and 30 are plotted. Meanwhile,and L = 30 are fixed and the SNR varies from 10dB to
in spite of impracticality of random sampling, we construc30dB. The signals contaid’ = 3 frequency components
multiple random samples in the program to compare with owith random amplitudes and random phase angles. To keep
method. As shown in Fid] 3, the performance of estimation its simple, we assumek is known, so theK frequencies
improved as the number of tasds When only one task is corresponding to maximunk peaks in power spectrum are
utilized, the first frequency component is not really obwouestimated results. If the deviation of all estimated freoies
WhenL =1 and L = 10, the last two frequency componentgrom true frequencies are withid.5/N, we say this trial is
are not clearly distinguished. Wheh = 30, the proposed successful. The probabilities of success are obtained H@on
method achieves the same effects with random sampling. trials for each SNR. We compare the success probabilities
of the proposed method with that of random sampling. The

o MUSIC algorithm using normal sampling is also considered

6 Froposed method for comparison. The same number of samples are used for
—— Random sampling H H
20} * e peaneee. | our method and MUSIC. As shown in Figl 4, the proposed

method and MUSIC have approximately the same probabilities
of success for different SNRs, which are slightly lower than
that of random sampling.
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10 1 0.76 L L L
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Fig. 4. The probabilities of success for different SNRs.

V. CONCLUSION

, , : In this letter, we proposed a deterministic sampling scheme
0 0.2 o408 08 1 to replace the unpractical random sampling. Three sub-Nyqu
analog-to-digital converters which have coprime undemath

(b) L =10 ratios are shown to be enough to estimate the spectra of
* o Froposed method frequency-sparse signals. The property of the correspgndi
20t * A - $;ned;:§q32:gggg ] CS matrices is verified through numerical simulations. Then

an algorithm based on variational Bayesian inference is pro
posed to solve the multitask model. Simulations show that
this method possesses as good performance as conventional
MUSIC with normal sampling. We believe that this method
can improve the practicability of CS in line spectral estima
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