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Line Spectral Estimation Based on Compressed
Sensing with Deterministic Sub-Nyquist Sampling

Shan Huang, Hong Sun, Haijian Zhang, and Lei Yu

Abstract—As an alternative to the traditional sampling theory,
compressed sensing allows acquiring much smaller amount of
data, still estimating the spectra of frequency-sparse signals ac-
curately. However, compressed sensing usually requires random
sampling in data acquisition, which is difficult to implement in
hardware. In this paper, we propose a deterministic and simple
sampling scheme, that is, sampling at three sub-Nyquist rates
which have coprime undersampled ratios. This sampling method
turns out to be valid through numerical experiments. A complex-
valued multitask algorithm based on variational Bayesian in-
ference is proposed to estimate the spectra of frequency-sparse
signals after sampling. Simulations show that this method is
feasible and robust at quite low sampling rates.

Index Terms—Line spectral estimation, Compressed sensing,
Deterministic sub-Nyquist sampling.

I. I NTRODUCTION

L INE spectral estimation has numerous applications in
sonar, radar, underwater surveillance, communications,

geophysical exploration, speech analysis, nuclear physics and
other fields. In general, the sampling rate of the signal is
required to be higher than twice the highest frequency (i.e.,
Nyquist rate). In some applications, high-speed analog-to-
digital converters that increase the sampling rate or density
are very expensive. Emerging compressed sensing (CS) goes
against the common knowledge in data acquisition. CS theory
asserts that one can recover certain signals and images from
far fewer samples or measurements than traditional methods
use [1].

Many researchers have utilized CS to estimate the spectra
of frequency-sparse signals [2][3][4]. A source localization
method based on a sparse representation of sensor measure-
ments with an overcomplete basis was proposed in [5]. The au-
thors in [6] addressed the problem of estimating spectral lines
from irregularly sampled data within the framework of sparse
representations. The uniqueness conditions of the sparse solu-
tion with different patterns of samples were analyzed. In [7],
the effect of ”basis mismatch” caused by grid discretization
was analyzed. To deal with basis mismatch, some articles used
grid refinement to approximate the true grid [8][9][10]. The
atomic norm-based methods make line spectral estimation cast
into a convex semidefinite program optimization, which deals
with continuous-valued frequencies and completely eliminates
basis mismatch [11][12][13]. However, these methods usually
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require random sampling, which is difficult or complicated to
implement.

In this paper, we focus on line spectral estimation with
deterministic sub-Nyquist sampling. The union of three series
of undersampled samples at coprime ratios is enough to
estimate the spectra of frequency-sparse signals. Then an
algorithm based on variational Bayesian inference is employed
to connect the samples. This method may be realized through
three undersampled channels, the hardware is convenient to
implement. The paper is organized as follows: Section II gives
the smapling strategy. Section III demonstrates our algorithm.
Simulation results are shown in Section IV. The last section
draws conclusions.

II. SAMPLING STRATEGY

Consider the line spectral estimation problem where the
observed signal is a summation ofK complex sinusoids:

y(m) =

K∑

k=1

cke
jωkm, (1)

where j =
√
−1, ωk ∈ [0, 2π) and ck denote the angular

frequency and the complex amplitude of thek-th component,
respectively. Whenm = 1, 2, · · · ,M , it implies normal
sampling, which is studied in conventional methods such as
MUSIC [14]. In the methods based on CS,m is selected at
random from the index set[N ]

∆
= {1, 2, · · · , N}. However,

this pattern of sampling often leads to complex hardware.
For example, a new type of data acquisition system called
a random demodulator is studied to ensure the randomness of
sampling in [15].

The proposed deterministic scheme is to sample at three
coprime undersampled ratiosp, q, r, in other words, we need
the samples with indices

I = {p, 2p, · · ·} ∪ {q, 2q, · · ·} ∪ {r, 2r, · · ·} . (2)

It is worth mentioning that sampling at two coprime undersam-
pled ratios sometimes also yields correct results but threerates
guarantee a high probability of success. The process diagram
of sampling is shown in Fig. 1.

After sampling, the samples are in chronological order, we
select consecutiveM samples with indicest1, t2, · · · , tM to
constitute a column vector

y =
[
y(t1) y(t2) · · · y(tM )

]T
, (3)

where[∗]T denotes the transpose operation. Assume that the
frequencies are aligned with a uniform grid, i.e.,

ωn = 2πn/N, n = 1, 2, · · · , N. (4)
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Fig. 1. The process diagram of the proposed sampling scheme.

The observation model can be written more compactly as

y = Φ(ω)s, (5)

whereΦ(ω) =
[
φ(ω1) φ(ω2) · · · φ(ωN )

]
, φ(ω) =

[
ejωt1 · · · ejωtM

]T
and s =

[
c̃1 · · · c̃N

]T
is a

K-sparse vector. In general,M < N is set and (5) is solved
as a problem of sparse recovery. However, the property ofΦ

as a CS matrix is difficult to certify in theory. To improve
the probability of success, we utilize more samples to form
multiple tasks and synthesize the effects of these tasks, namely

yl = Φlsl, l = 1, 2, · · · , L, (6)

where

Φl =








1 · · · 1

ejω1(tl+1−tl) · · · ejωN (tl+1−tl)

...
. . .

...
ejω1(tl+M−1−tl) · · · ejωN (tl+M−1−tl)







, (7)

yl =
[
y(tl) y(tl+1) · · · y(tl+M−1)

]T
and sl =

[
c̃1ejω1tl · · · c̃NejωN tl

]T
. The total number of samples

is L + M − 1. Note that all ofsl share the same sparsity
profile andΦl repeat after a certain period.M is expected to
be as large as possible, but an appropriate value ofM must
ensureΦl not to contain duplicate rows. The joint estimation
can achieve satisfactory results as shown in Section IV, even
thoughΦl may not have good property.

The most widely used criterion to evaluate the property of a
CS matrix isrestricted isometry property (RIP). The CS matrix
Φ has the (k, δ)-RIP if

(1− δ) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ) ‖x‖22 (8)

holds for all k-sparse vectorsx, ‖x‖2 denotesℓ2-norm of x
[16]. The smallestδ for (k, δ)-RIP is the restricted isometry
constant (RIC)δk. A small δk implies good performance
when recovering ak-sparse signal. LetΦ be a matrix with
ℓ2-normalized columnsϕ1,ϕ2, · · · ,ϕN , i.e., ‖ϕn‖2 = 1
for n = 1, 2, · · · , N , the condition (8) is equivalent to
that the Gram matrixΦH

K
ΦK of every column submatrix

ΦK(K ⊂ {1, 2, · · · , N}, |K| ≤ k) has all its eigenvalues in
the interval[1− δk, 1+ δk], where[∗]H denotes the conjugate
transpose operation.

Next we give an example in order to clearly illustrate our
sampling scheme. If the three undersampled ratios arep =
9, q = 10 andr = 11, and the number of discrete grid points
is N = 100, the configuration of the samples is












L
︷ ︸︸ ︷

y(9) y(10) y(11) · · ·
y(10) y(11) y(18) · · ·
y(11) y(18) y(20) · · ·
y(18) y(20) y(22) · · ·
y(20) y(22) y(27) · · ·

...
...

...
. . .


















M. (9)

When50 tasks are used, i.e.,L = 50, it is better to choose
M = 27 to prevent the corresponding sensing matrices from
having duplicate rows. The sensing matrixΦl amounts to
picking partial rows from theN × N Fourier matrix. The
sensing property of this deterministic partial Fourier matrix
approximates a random partial Fourier matrix, which has been
proven to be appropriate as a CS matrix [17].

We selectΦ1 to present the statistical RIP ofΦl intu-
itively, the maximum and minimum eigenvalues of its Gram
matrices are plotted. These eigenvalues of a random partial
Fourier matrix are also plotted for comparison. The data are
obtained fromk2N sub-Gram matrices for eachk. The solid
lines sketch the average values of maximum and minimum
eigenvalues of all sub-Gram matrices and the dashed lines
sketch the limiting values. Fig. 2 shows that the eigenvalues of
Φ1’s sub-Gram matrices distribute slightly further away from
1 than the random partial Fourier matrix. In Section IV we
will see that the probability of success increases significantly
when more tasks are introduced.

III. PROPOSEDALGORITHM

In this section, a complex-valued multitask algorithm based
on variational Bayesian inference is proposed to solve the
above model. In [18], the multitask Bayesian CS algorithm
utilized empirical Bayesian analysis to recover multiple real-
valued sparse solutions. We also address the problem within
the hierarchical Bayesian framework. Assume the measure-
ment noise to be independent and complex Gaussian with
zero-mean and variance equal toβ−1, the model (6) can be
rewritten as

yl = Φlsl + ǫl, l = 1, 2, · · · , L. (10)

The likelihood function for the parameterss and β may be
expressed as

p (yl|sl, β) = (π/β)−M exp
(

−β ‖yl −Φlsl‖22
)

. (11)

The hierarchical Gaussian prior is typically imposed onsl
in sparse Bayesian leaning to induce sparsity. Denote the prior
variance of thei-th element ofsl asα−1

i , the prior distribution
of sl is

p (sl|α) =
1

πN |A|−1 exp
(
−sHl Asl

)
, (12)
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(a) Φ1
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(b) The random partial Fourier matrix

Fig. 2. Maximum and minimum eigenvalues of sub-Gram matrices for
different k. (a) Φ1; (b) The random partial Fourier matrix.

whereα =
[
α1 · · · αN

]T
andA = diag(α). Gamma

priors are placed on the hyperparametersα, and similarly on
the noise precisionβ, i.e.,

p (α|a, b) =
N∏

i=1

Gamma(αi|a, b), (13)

p (β|c, d) = Gamma(β|c, d) . (14)

The parametersa, b, c andd are typically set to very small
values (e.g.,a = b = c = d = 10−6), which amounts to
assuming uninformative priors forα andβ [19].

DefineY =
[
y1 · · · yL

]
andS =

[
s1 · · · sL

]
,

the joint probability of data, parameters and hyperparameters
is

p (Y ,S,α, β) = p (Y |S, β) ·p (S|α) ·p (α|a, b) ·p (β|c, d)

=

L∏

l=1

p (yl|sl, β) ·
L∏

l=1

p (sl|α) · p (α|a, b) · p (β|c, d) . (15)

By applying the variational expectation maximization (EM)
algorithm [20] and the above equations, the posterior distribu-
tions ofS, α andβ can be approximately calculated as

ln q(S) = 〈ln p (Y ,S,α, β)〉q(α)q(β) + const, (16)

ln q(α) = 〈ln p (Y ,S,α, β)〉q(S)q(β) + const, (17)

and

ln q(β) = 〈ln p (Y ,S,α, β)〉q(S)q(α) + const, (18)

where〈∗〉q(x) is the expectation with respect toq(x).

Substituting (15) into (16), after some arrangement we find
that the vectorsl obeys a complex Gaussian distribution, i.e.,

q(sl) = CN (sl|µl,Σl) , l = 1, 2, · · · , L. (19)

The meanµl and covariance matrixΣl are given by

µl = 〈β〉ΣlΦ
H
l yl, (20)

Σl =
(
〈β〉ΦH

l Φl + 〈A〉
)−1

. (21)

According to (15) and (17), it can be shown that the
posterior density ofα is

q(α) =

N∏

i=1

Gamma
(

αi|ã, b̃i
)

, (22)

where

ã = a+ L, (23)

b̃i = b+

〈
L∑

l=1

|sl,i|2
〉

, (24)

sl,i is the i-th element ofsl. Similarly, we obtain

q(β) = Gamma
(

β|c̃, d̃
)

, (25)

where

c̃ = c+ LM, (26)

d̃ = d+

〈
L∑

l=1

‖yl −Φlsl‖22

〉

. (27)

Utilizing the property of Gamma distribution, the required
expected values can be computed as

〈αi〉 =
ã

b̃i
, (28)

〈β〉 = c̃

d̃
. (29)

Based on the above results, the procedure of the algorithm
can be summarized as follows:

1) Set the iteration count to0. Initialize µl,Σl,α andβ.
2) According to (22)-(29) and the current estimated values

of µl andΣl, update the posterior distributions ofα andβ.
3) According to (19)-(21) and the current posterior densities

of α andβ, update the the estimated values ofµl andΣl.
4) Return to Step 2) until the iteration count reaches the

maximum value.
After using this algorithm, the lowest several valleys of

α indicate the positions of the frequencies contained in the
signal. When the frequencies do not fall onto the grid, the
algorithm often finds the nearest grid point. So the closest
interval of the true frequencies can not be too small.

IV. SIMULATION RESULTS

We make experiments to verify the effect of multiple tasks
relative to single task. The signals containK = 3 frequency
components with amplitudes of0.2, 0.4 and0.8 respectively
and random phase angles. The three undersampled ratios are
set to p = 9, q = 10 and r = 11. According to the
analysis in Section II,M = 27 andN = 100 are fixed. We
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set the frequencies to 0.178, 0.353 and 0.372, respectively.
Complex white Gaussian noise at SNR=20dB is added to the
measurements. The power spectra with respect to different
numbers of tasksL = 1, 10 and 30 are plotted. Meanwhile,
in spite of impracticality of random sampling, we construct
multiple random samples in the program to compare with our
method. As shown in Fig. 3, the performance of estimation is
improved as the number of tasksL. When only one task is
utilized, the first frequency component is not really obvious.
WhenL = 1 andL = 10, the last two frequency components
are not clearly distinguished. WhenL = 30, the proposed
method achieves the same effects with random sampling.
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(b) L = 10
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(c) L = 30

Fig. 3. The estimated power spectra with respect to different numbers of
tasksL. (a) L = 1; (b) L = 10; (c) L = 30.

Then we test the performance of the proposed method in
different noisy environment. The three undersampled ratios
are set top = 7, q = 8 and r = 9. M = 32, N = 100
and L = 30 are fixed and the SNR varies from 10dB to
30dB. The signals containK = 3 frequency components
with random amplitudes and random phase angles. To keep
it simple, we assumeK is known, so theK frequencies
corresponding to maximumK peaks in power spectrum are
estimated results. If the deviation of all estimated frequencies
from true frequencies are within0.5/N , we say this trial is
successful. The probabilities of success are obtained from500
trials for each SNR. We compare the success probabilities
of the proposed method with that of random sampling. The
MUSIC algorithm using normal sampling is also considered
for comparison. The same number of samples are used for
our method and MUSIC. As shown in Fig. 4, the proposed
method and MUSIC have approximately the same probabilities
of success for different SNRs, which are slightly lower than
that of random sampling.
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Fig. 4. The probabilities of success for different SNRs.

V. CONCLUSION

In this letter, we proposed a deterministic sampling scheme
to replace the unpractical random sampling. Three sub-Nyquist
analog-to-digital converters which have coprime undersampled
ratios are shown to be enough to estimate the spectra of
frequency-sparse signals. The property of the corresponding
CS matrices is verified through numerical simulations. Then
an algorithm based on variational Bayesian inference is pro-
posed to solve the multitask model. Simulations show that
this method possesses as good performance as conventional
MUSIC with normal sampling. We believe that this method
can improve the practicability of CS in line spectral estimation.
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