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Abstract. Existing visual-based SLAM systems mainly utilize the three-
dimensional environmental depth information from RGB-D cameras to
complete the robotic synchronization localization and map construction
task. However, the RGB-D camera maintains a limited range for work-
ing and is hard to accurately measure the depth information in a far
distance. Besides, the RGB-D camera will easily be influenced by strong
lighting and other external factors, which will lead to a poor accuracy
on the acquired environmental depth information. Recently, deep learn-
ing technologies have achieved great success in the visual SLAM area,
which can directly learn high-level features from the visual inputs and
improve the estimation accuracy of the depth information. Therefore,
deep learning technologies maintain the potential to extend the source
of the depth information and improve the performance of the SLAM
system. However, the existing deep learning-based methods are mainly
supervised and require a large amount of ground-truth depth data, which
is hard to acquire because of the realistic constraints. In this paper, we
first present an unsupervised learning framework, which not only uses im-
age reconstruction for supervising but also exploits the pose estimation
method to enhance the supervised signal and add training constraints
for the task of monocular depth and camera motion estimation. Further-
more, we successfully exploit our unsupervised learning framework to
assist the traditional ORB-SLAM system when the initialization mod-
ule of ORB-SLAM method could not match enough features. Qualitative
and quantitative experiments have shown that our unsupervised learning
framework performs the depth estimation task comparably to the super-
vised methods and outperforms the previous state-of-the-art approach by
13.5% on KITTTI dataset. Besides, our unsupervised learning framework
could significantly accelerate the initialization process of ORB-SLAM
system and effectively improve the accuracy on environmental mapping
in strong lighting and weak texture scenes.

Keywords: Robotic visual SLAM, monocular depth estimation, pose
estimation, unsupervised learning
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1 Introduction

Simultaneous Localization and Mapping (SLAM) has attracted increasing at-
tention in the robotic areas. SLAM technologies have wide applications in area
such as autonomous driving, localization and navigation. The goal of a SLAM
system is to construct the map of an unknown environment incrementally based
on the perception information, i.e., scene information acquired by a radar or
depth sensor when the robot is performing a complex task and confronted with
an unknown environment. In order to achieve a satisfying performance in the
visual SLAM tasks, the quality of the perception on the environmental depth,
i.e., the distance of the objects in the environment, will play an indispensable
role. Therefore, how to extract valuable depth information from the visual inputs
is an important problem in the visual SLAM systems.

Existing visual-based SLAM systems mainly utilize the three-dimensional
environmental depth information from RGB-D cameras. However, the RGB-D
camera maintains a limited range for working and is hard to accurately measure
the depth information in a far distance. Besides, in some special scenes, i.e.,
strong lighting and weak texture environments, robotic visual SLAM always
faces the problems of scale drift or scale error because of the inaccurate accuracy
on the acquired depth information. The reason of obtaining the imprecise depth
information is that most of the existing visual SLAM algorithms design sparse
image features manually, while the manually designed features often contain
certain assumptions about the environment, i.e., sufficient illumination, material
determination, which will lead to a poor performance on environmental depth
estimation when the environmental factors change.

Fig. 1: Illustration of our learning framework. The input to our system consists
solely of unlabeled video clips. Our learning framework estimates the depth in
the first image and the camera motion.
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Deep learning technologies have recently emerged as a powerful tool for im-
proving the accuracy on monocular depth estimation [10,[15,[23,[34]. One of the
advantages of deep learning technologies over common alternatives is that fea-
tures are learned directly from data, and do not have to be chosen or designed
by the algorithm developers for the specific problem on which they are applied.
However, existing methods [10}|1523] are mainly supervised and need a large
amount of ground-truth data, which is hard to acquire because of the expen-
sive radar sensors and the limited working range. A promising branch in the
depth estimation field is unsupervised learning [34], which exploits image re-
construction as supervision signal and significantly reduce the burden to collect
high-quality depth training data in advance. However, the existing unsupervised
method [34] does not fully exploit the heuristic knowledge during the image ac-
quisition process, which can strengthen the supervised signal and further improve
the accuracy on depth estimation. Therefore, how to enhance the supervised sig-
nal and utilize the unsupervised learning technologies to assist the traditional
visual SLAM systems remains a great challenge.

In this paper, we first propose a novel unsupervised learning framework which
exploit the pose estimation method to enhance the supervised signals and fur-
ther promote the accuracy of extracting the depth information from monocular
image sequences. In concrete, we utilize a large number of scene image sequences
to train a model for camera motion prediction and scene structure prediction
(shown in Fig. 1). In the pose estimation stage, we set up a continuous frame
window and exploit the pose transformation relationships to construct the pose
graph, which can partially eliminate the cumulative error. Furthermore, we suc-
cessfully exploit our unsupervised learning framework to assist the traditional
ORB-SLAM system, a widely used visual SLAM system, when the initializa-
tion module of ORB-SLAM method could not match enough features. Extensive
experiments have shown that our method can significantly accelerate the initial-
ization process of ORB-SLAM system and effectively improve the accuracy on
environmental mapping in strong lighting and weak texture scenes.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and the highly related work. Section 3 describes the methodology of our
work as well as the architecture designed for training and prediction. Section
4 describes the details of our unsupervised learning-based depth estimation-
aided visual SLAM system. The validation and evaluation of our work based
on different public datasets are described in Section 5. Section 6 presents the
experimental results implemented in the real-world settings. We conclude and
provide our future direction in Section 7.

2 Related Work

Our method covers three research areas, including depth estimation optimiza-
tion, monocular depth estimation and motion estimation from images.
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2.1 Depth Estimation optimization

The existing mechanism of depth estimation optimization can be mainly divided
into three categories based on how to utilize the deep learning technologies.

The first kind of methods directly substitute the depth information acqui-
sition module with deep learning technologies [12]. This method can effectively
suit for the environments which are hard for traditional visual SLAM methods
to deal with, i.e., strong lighting and weak texture environments. However, this
method will require a more complex system with a stronger computing and pro-
cessing ability. In addition, deep learning technologies are easily over-fit to the
dataset and will lead to a poor performance in the unfamiliar environments. Last
but not least, there does not exist a method which fully substitute the depth
information acquisition module with deep learning technologies in realistic ap-
plications. Therefore, this kind of method needs further validation.

The second kind of methods exploit the environmental depth information
from the deep learning technologies and the traditional SLAM system simulta-
neously [22]. This method can optimize the environmental depth information
used by the visual SLAM system and indirectly improve the accuracy on map-
ping and localization. However, this method needs to implement the two depth
information acquisition methods simultaneously and require a stronger ability
of computing and processing. In addition, the complex evaluation process to se-
lect the optimal depth information needs to be accurately implemented, which
is hard to satisfy the quality of service.

The third kind of methods complement the drawbacks of the deep learning
technologies and the depth information acquisition module of traditional SIAM
algorithm [32]. In concrete, deep learning technologies is only applied when the
traditional SLAM algorithms can not obtain high-accuracy depth information.
This method can effectively improve the accuracy of the depth estimation while
maintaining the ability to guarantee the QoS requirement. There are very limited
works which exploit the deep learning technologies to acquire the environmen-
tal depth estimation. A deep learning-aided LSD-SLAM algorithm is proposed
in [11], which achieves a better result than the traditional LSD-SLAM algo-
rithm and a stronger adaptability to the strong lighting and weak texture en-
vironments. We choose ORB-SLAM as our baseline method, which has wide
applications in visual SLAM area but performs an unsatisfied performance in
strong lighting and weak texture environments. To the best of our knowledge,
this is the first work which combines the deep learning technologies and the
ORB-SLAM system.

2.2 Monocular Depth Estimation

Monocular depth estimation is a basic low-level challenge problem which has
been studied for decades. Early works on depth estimation using RGB images
usually relied on hand-crafted features and probabilistic graphical models. [16]
introduced photo pop-up, a fully automatic method for creating a basic 3D
model from a single photograph. In [18], the authors design Depth Transfer, a
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non-parametric approach where the depth of an input image is reconstructed by
transferring the depth of multiple similar images and then applying some warping
and optimizing procedures. Delage et al. in [7] proposed a dynamic Bayesian
framework for recovering 3D information from indoor scenes. A discriminatively-
trained multi-scale Markov Random Field (MRF) was introduced in [29], in order
to optimally fuse local and global features. Depth estimation is considered as an
inference problem in a discrete-continuous CRF in [24].

More recent approaches for depth estimation are based on convolutional neu-
ral network(CNN). As a pioneer work, Eigen et al. proposed a multi-scale ap-
proach for depth prediction in [10]. It considers two deep networks, one perform-
ing a coarse global prediction based on the entire image, and the other refining
predictions locally. This approach was extended in 9] to handle multiple tasks
(e.g. semantic segmentation, surface normal estimation). In [23], authors com-
bine a deep CNN and a continuous conditional random field, and attain visually
sharper transitions and local details. In [21], a deep residual network is devel-
oped, based on the ResNet and achieved higher accuracy than [23]. Unlike our
approach, these methods require explicit depth for training. Unsupervised learn-
ing setups have also been explored for disparity image prediction. For instance,
Godard et al. formulate disparity estimation as an image reconstruction prob-
lem in [15], where neural networks are trained to warp left images for matching
the right one. Though these methods show similarity with ours, which are un-
supervised without requiring ground-truth depth data for training, they assume
camera poses known in advance, which is treated a large simplification. Our work
is inspired by that of [34], which proposes to use view synthesis as the supervi-
sory signal. However, the further advantage of our approach which demonstrated
in the following evaluations is that, the idea of continuous frame window used
in traditional SLAM approach is applied to enhance the supervisory signal and
capture more constraints which can guide the training process for more accuracy
results.

2.3 Motion Estimation from Images

The motion estimation has a long history in computer vision. The underlying
3D geometry is a consolidated field. They consist of a long pipeline of meth-
ods, start from descriptor matching for finding a sparse set of correspondences
between images [26], to estimating the essential matrix to determine the cam-
era motion. Bundle adjustment [33] is used in the pipeline of method to refine
the final structure and camera position. The bundle adjustment minimizes the
reprojection error of the three-dimensional point in the two-dimensional image
sequence by Levenberg-Marquardt (LM) nonlinear algorithm to get the optimal
motion model [25]. The accuracy of the bundle adjustment method is related to
the number of frames of the image. The more the number of image frames, the
more accurate the camera motion parameters can obtain.

Recent works [8] propose learning frame-to-frame motion fields with deep
neural networks supervised with ground-truth motion obtained from simulation
or synthetic movies. This enables efficient motion estimation that learns to deal
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with lack of texture using training examples rather than relying only on smooth-
ness constraints of the motion field, as previous optimization methods [31]. Our
approach draws on the respective advantages of the geometry-based motion esti-
mation in SLAM and the learning-based motion estimation. Multiview pose net-
work is used to estimate pose transformation matrix between adjacent frames.
We set up a continuous frame window to construct the pose graph and use the
pose transform relationship to calculate more pose transform matrices which
perfect the pose graph.

3 Pose Estimation-based Monocular Depth Estimation
Method

The accuracy of existing monocular depth estimation methods is hard to satisfy
the requirement realistic applications. Therefore, it is meaningful to improve the
accuracy of monocular depth estimation. In this section, we introduce our pose
estimation-based monocular depth estimation method from the following three
aspects: the basic framework, learning and geometry-based pose estimation and
image recovery-based training method.

3.1 Framework

Given a single image frame I, the goal of our method is to provide two functions
f1 and fy which can predict the per-pixel scene depth d = f1I and the camera
pose p/ = foI. We design two deep neural networks (depth estimation neural
network and pose estimation neural network) to learn these two functions. Most
existing methods treat the learning task as a supervised learning problem, where
the color input images, the corresponding target depth and pose values are pro-
vided. However, it is not practical to acquire such large amount of ground-truth
depth and pose data in various scenes because of the expensive lidar sensor
and the limited working range. Besides, existing methods always neglect the
traditional pose estimation methods and do not take the prior knowledge from
traditional algorithms into account.

We propose an unsupervised learning method, which exploits the pose es-
timation approach in traditional SLAM algorithms to augment the supervised
signals by image reconstruction. In concrete, based on a short image sequences
I, I; 11, I;yocaptured by a moving camera, we can reconstruct the image I; by
the predicted the depth image D; and the predicted pose estimation matrix.
The difference between the image I; and the reconstructed image I; can be used
as the supervised signals to train the depth estimation and the pose estima-
tion neural networks. The framework of our unsupervised method is illustrated
in Fig. 2. The monocular video sequences are used for training the single-view
depth estimation and the multi-view pose estimation networks. The output of
the single-view depth estimation network is the depth map of the input image.
For the pose estimation part, a continuous frame window are used as the input
and the output of the multi-view pose estimation network is the pose transform
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Fig.2: The overview of the training pipeline based on image reconstruction.
The depth network takes only the first image I; as input and outputs a per-
pixel depth map D,. The continuous frame window takes images (e.g., Ii, Ili+1,
[i+2) as input, through the pose network, outputs the relative camera pose
matrices of adjacent frames ( ﬁ_>H_1, Ti+1_>i+2) and we can use the camera pose
matrices to calculate more camera poses ( Ti+1_>i+2). The outputs of both models
have then used to inverse warp images to reconstruct the target image, and the
photometric reconstruction loss is used for training the CNNs. By utilizing image
reconstruction as supervision, we are able to train the entire framework in an

unsupervised manner from videos.
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Fig. 3: lllustration of the camera pose estimation pipeline. For example, we main-
tain a continuous frame window whose length is 3 frames for estimating the
camera pose transform matrix. For each sequence images (e.g., I;, I;+1, Li12), we
will get the adjacent camera pose transform matrix (TZ—HZ-H, Tiﬂﬁwg). We can
use the camera pose transformation to get more camera poses Tzq”g.

matrices between all adjacent frames in the continuous frame window. We then
optimize the pose graph in the continuous frame window by calculating more
nonadjacent pose transform matrices using a pose transform relationship. Then,
we can reconstruct the image by the depth map and the pose transform matri-
ces and train the two neural networks by calculating the difference between the
input and the reconstructed images.

3.2 Estimation based on Learning and Geometry Pose Graph

Given a frame I;, the single-view depth estimation network can directly predict
the corresponding depth map D;. For the pose estimation part, our method is
based both on the unsupervised learning technologies and the traditional geome-
try pose graph. A continuous frame window is set up before the multi-view pose
estimation network in order to make the network learn the pose relationship
between the continuous images < I, Is, - - - , I, > simultaneously. The length of
the continuous frame window stands for the number of input images in a train-
ing episode. In other words, the continuous frame window sequentially reads n
images from the training set and then sends the training data to the multi-view
pose estimation network for further processing. During the training process, the
multi-view pose estimation network will sequentially predict the transformation
matrix between two adjacent frames in the continuous frame window (shown in
Fig. 3). For a better illustration, denote the the input image sequences in the
continuous frame window as < Iy, Is,- -+ , I, >, the output of the multi-view pose
estimation network is Tlg”l. Then, we can build a preliminary pose graph us-
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ing the pose transformation matrices between the adjacent frames. However, the
preliminary pose graph lacks the pose transform matrices between non-adjacent
frames, so we calculate the non-adjacent pose transformation relationships by
using the following function:

Tisiv1 X Tiv1ive = Tisigo (1)

Similarly, we can increase the length of the frame window to get more non-
adjacent pose transformation relationships (e.g., ﬁ_)i+5) and improve the pose
graph. The acquired pose transformation relationships maintain the following
two advantages. First, the cumulative error is partially eliminated. In the con-
tinuous frame window, the error of pose estimation between adjacent frames will
accumulate gradually. But if we use the calculated pose matrix to reconstruct
the image, we can sequentially adjust the parameters of the pose network and
partially eliminate the cumulative error. The second advantage is that this mech-
anism can avoid the estimation errors between the frames which are far apart in
the frame sequence. Experiments have shown that learning-based methods
could not predict a satisfying relationship between the two frames which main-
tain a far distance in the frame sequence. Our method solve this problem by
calculating the far apart pose relationships based on the pose estimation of the
adjacent frames.

3.3 Geometry-based Image Reconstruction

Fig. 4: Illustration of image reconstruction based on camera pose matrix. For
each point (e.g., z1) in the first image, we project it onto the other image base
on the predicted depth and camera pose and then use bilinear interpolation to
obtain the value of the warped image (I5) at location (z).
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Image reconstruction through the means of warps and camera projection is
an important application of geometric scene understanding. The goal of image
reconstruction is to reconstruct a new viewpoints image from other viewpoints
through warps and camera projection. In our learning framework, we reconstruct
the target image I; by sampling pixels from the other images I, based on the
predicted depth map ﬁt and the predicted 4 x 4 camera pose transformation
matrix Tt—>r~

Our camera model is the pinhole model. Denote K as the camera intrinsic
matrix, I; and I, as the first and the second image in a training episodes.
The transformation matrices of the two images to the world coordinates are
represented as T _,,, and T5_,,,, and the homogeneous coordinates of a pixel in
the first image is represented as z1. We can acquire the projected coordinates of
x1 onto the second image xo by zo ~ KTg_m,TQ__l,wK_lf)l(xl)a:l. Notice that
the camera transformation matrix between I and I is equal to T, 17 _ ie.,

Tiyo = Tgawa_l,. We substitute Tl%wT{_l)w with T]HQ so the formula becomes

—w?

Ty ~ KTy oK ’1ﬁ1(xl)x1. Furthermore, when we get a short image sequences
< I,I,---, I, > at the training time, denote I; as the target view image, and
I, as the other images. The pixel project procedure can be formulated as:

Ly KTt%TK_llA)t(xt)xt. (2)

Based on Eq.2, we can project the pixels on the target image I; onto other
images I,.. After that, our image reconstruction model uses the image sampler
from the spatial transformer network (STN) to sample the projected image I,..
The STN uses bilinear sampling where the output pixel is the weighted sum
of the four pixel neighbors mgl),xg)w?(ng),x&) of z,, ie., fr(xt) = L(z,) =
2?21 w1, (x%), where w® is linearly proportional to the spatial proximity
between z, and z¢, and Z?zl w® = 1 (shown in Fig. 4). Contrast with the
alternative approaches [13], the bilinear sampler is locally fully differentiable and
integrates seamlessly into our fully convolutional network, which means that we
do not require any simplification or approximation of our cost function.

Finally, we use the predicted depth map D, and the predicted 4 x 4 camera
pose transformation matrix Ty, of the previous step to reconstruct the target

image through projection and the differentiable bilinear sampling mechanism.

3.4 Image Reconstruction as Supervision

Image reconstruction has been used to learn end-to-end unsupervised optical
flow [17], disparity flow in a stereo rig [15] and video prediction [28]. These
methods reconstruct the images by transforming the input based on depth maps
or flow fields. Our work considers dense structure estimation and uses monocular
videos to obtain the necessary self-supervision, instead of static images. The
depth information could also be predicted from a single image supervised by
photometric error [13]. However, the methods above do not infer camera pose
transform or object motion and require stereo pairs with known baseline in the
training process. Our work estimates the camera motion between frames, which
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effectively removes the constraint that the ground-truth pose of the camera is
known in the training process.

In concrete, denote the first and the second images acquired from a moving
monocular camera in chronological order as I; and Is. Instead of directly pre-
dicting the depth and the camera pose of the first view image Iy, we use the
second image I to reconstruct I7, which is illustrated in the previous section.
Every pixel point x in I coordinates is warped to the target coordinate image.
Let z indexes over the pixel coordinate, and denote I, as the second image I
warped to the first coordinate frame based on the image reconstruction process.

When we use image reconstruction as a supervised signal, the difference
between the reconstructed image and the target image can be calculated by
C = Y .|L(xz) — Iy(x)|. Similarly, denote the short image sequences as <
Ii,I5,--- I, > in the training process, I; as the target view image, and I,
as the other images. The image reconstructs procedure can be formulated as:

Cvr - ZZ |It(x) - jr(x)‘7 (3)

where the supervisory signal C,,. adjust the parameters of our depth estima-
tion and pose estimation networks.

3.5 Network Architecture and Training Loss

* Prediction

“=-* Upsample + Concat

Fig. 5: Network architecture for our depth and pose prediction modules. (a) For
single-view depth network, we adopt the DispNet architecture with multi-scale
side predictions. All conv layers are followed by ReLU activation except for the
prediction layers. (b) For pose network, the input is sequences of consecutive
frames. All conv layers are followed by ReLLU except for the last layer where no
nonlinear activation is applied.

As shown in Fig. 5, the architecture consists of two different networks: the
single-view depth network and the pose network. The single-view depth network
is inspired by DispNet but several important modifications are made to enable
the training process without ground-truth depth data. The single-view network
is mainly composed of two parts: the encoder (from cnvl to cnv7b) and the
decoder (from deconv7). The decoder uses skip connection layers to connect
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the activation blocks of the encoder, which enables the ability to obtain more
representative features. The disparity are predicted at four different scales (from
disp4 to displ). The function of the pose network is to predict the relative poses
between the target image and other input images, which are accurately described
by the 6-dimensional camera pose transform matrix (3-dimensional euler angles
and 3-dimensional translation).

In our learning framework, the gradients are mainly derived from the pixel
intensity difference between the four-pixel neighbors of z, and xz;. Therefore,
the training process will be inhibited when the correct z, (projected using the
ground-truth depth and pose) is located in a low-texture region or far from the
current estimation. We solve this problem by using multi-scale and smoothness
loss which allows gradients to be derived from larger spatial regions directly.

Denote the loss at each output scale as Cj, so the total loss can be represented
as C = Z§:1 Cs. Our loss module calculates C; as a combination of the two
main terms:

Cs = Cvr + )\Csmootha (4)

which encourages the reconstructed image to appear similar to the corre-
sponding training input, indexes the minimized norm of the second-order gra-
dients for the predicted depth maps. A denotes the weighting for the depth
smoothness loss.

4 Visual SLAM System with the Assistance of
Unsupervised Learning-based Depth Estimation

Existing visual SLAM system always acquires the depth information from the
depth sensor. The depth sensor can directly obtain the environmental depth
information within a certain distance. However, the depth sensors suffer from
the limited working range and are sensitive to the interference, which will de-
crease the acquired accuracy. In Section 3, we propose an image depth estimation
method based on camera pose transformation relationship, which can directly
obtain the depth information from the image through unsupervised learning. In
this section, we introduce our method which extends the source of the three-
dimensional environmental depth information and improves the accuracy of the
depth information on the basis of ORB-SLAM algorithm.

4.1 Traditional ORB-SLAM Algorithm

The ORB-SLAM algorithm is mainly composed of the following three parts: the
tracking module, the local map building module and the closed-loop detection [3]
module. The tracking module aims to locate the camera through each frame and
determines whether the frame should join the key-frame set. The tracking task
first extracts the features of the frame, then initializes the camera pose and
map and tracks the local map, finally determines the key frame. The local map
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building module aims to process the new key-frames and rebuild the map through
local BA [2]. The closed-loop detection module mainly judges the newly added
key-frame and determines whether the scene has been encountered before.

In the initialization phase of ORB-SLAM, the monocular camera first reads
the RGB image, and the depth sensor acquires the depth data. Then, feature
point matching process is performed on the two consecutive frames in the time
series to determine the motion of the camera. The image and depth acquisition
process is implemented until the number of matched feature points on the two
consecutive frames reaches a specified threshold. Then, the ORB-SLAM algo-
rithm utilizes the existing geometric relationship between the matched feature
points to calculate the current pose of the camera, and further creates an initial
map or updates the local map.

4.2 Depth Estimation Optimizing Mechanism

By analyzing the ORB-SLAM algorithm, we decide to optimize the depth in-
formation acquisition process in the initialization phase. In concrete, our unsu-
pervised learning-based depth estimation mechanism is applied only when the
ORB-SLAM system does not match enough feature points. In this way, the
accuracy of the ORB-SLAM will be effectively optimized while maintaining a
reasonable computing ability and satisfying the QoS requirement.

The initialization phase of ORB-SLAM algorithm is optimized as follows.
When there are not enough matched feature points between two consecutive
frames, the RGB image will be transmitted to our monocular depth estimation
network instead of making the system read the next frame. Then, our depth
estimation network will re-estimate the environmental depth information of the
input image and further implement the feature point matching process. The
complete depth information optimization mechanism on the basis of ORB-SLAM
algorithm is illustrated below:

4.3 Implement of Depth Estimation Assisted Visual SLAM System
based on Unsupervised Learning

We now introduce the details to realize the optimized ORB-SLAM system us-
ing our unsupervised learning-based depth estimation method. For the training
process of our monocular depth estimation networks, the training dataset in-
cludes samples from various scenes (i.e., indoor scenes, outdoor scenes) as well
as samples of weak texture and strong light. After the training process, we de-
coupled the trained network because the optimization mechanism only uses the
depth estimation network. In addition, we establish the transmission channel
of the ORB-SLAM initialization module and the trained depth estimation net-
work. When the ORB-SLAM algorithm does not match enough feature points,
the RGB image is transmitted to the depth estimation network, which keeps the
running state to guarantee a immediate output.
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Algorithm 1 The initialization process of the optimized ORB-SLAM algorithm
using our monocular depth estimation network.

Require: The threshold M, which stands for the number of the matched feature
points required by the ORB-SLAM algorithm.
1: The monocular camera reads the RGB image and the depth sensor acquires
the depth information.
2: Feature point matching process is implemented on the two consecutive
frames in time series based on the RGB image and the depth information.
3: if the number of matched feature points is less than the threshold M then

4: Transmit the current image to the monocular depth estimation network
and get the new depth image.
5: Implement the feature point matching process on the two consecutive

frames in time series based on the RGB image and the new depth image.

6: if the matched feature points still less than M then

7 Read the next RGB image and get the corresponding depth informa-
tion.

8: else

9: Get the pose of the camera by utilizing the geometric relationship
between the matched feature points.

10: end if

11: else

12: Get the pose of the camera by utilizing the geometric relationship be-
tween the matched feature points.

13: end if

14: Create the initial map or update the local map.

5 Evaluation on the Testing Set

In this section, we evaluate the performance of our approach and make compar-
ison with the existing methods on single-view depth and ego-motion estimation.
We choose KITTI dataset as the test benchmark. To evaluate the cross-dataset
generalization ability of our approach and demonstrate the superiority on the
strong lighting and weak texture environments, we also use the Make3D dataset
for a better illustration.

5.1 Training Details

We implement our system in TensorFlow [1]. In all experiments, the value of A
is set to 0.5. During the training process, we use the Adam optimizer [19] with
By of 0.9, learning rate of 0.0002 and mini-batch size of 4. All the experiments
are performed with image sequences captured with a monocular camera and the
images are resized to 128 x 416 during training. In the test phase, the depth and
pose networks can be applied independently for images of arbitrary size.
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5.2 Single-view Depth Estimation
We present results for the KITTI dataset using two different test splits, to

enable comparison to existing works. In its raw form, the dataset contains 42382
images from 61 scenes. The length of the continuous frame window is set to 3.

Our prediction

Fig. 6: The sample prediction on Cityscapes dataset using our approach trained
on Cityscapes only.

To the best of our knowledge, among the methods which learn single-view
depth estimation from monocular videos using unsupervised mechanism, state-
of-the-art performance is achieved in Zhou . We also make comparison with
methods using supervised mechanism (depth ground-truth with depth supervi-
sion or calibrated stereo images with pose supervision) for training. Our method
uses a scale factor to define the predicted depth so in the test phase, we multi-
ply the predicted depth maps with a scalar which matches the median with the
ground-truth data. Fig. 6 illustrates the predictions of our approach training on
Cityscapes dataset @ We also make comparison with Godard by taking
the same training strategy which first pre-train the system on the Cityscapes
dataset and then fine-tune on the KITTI dataset.
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Table 1: Single-view depth results on the KITTI dataset and Cityscapes dataset.

Method Dataset Supervision Error metric Accuracy metric

Depth Pose Abs Rel Sq Rel RMSE RMSE log § < 1.25§ < 1.252 § < 1.253

Train set mean K v 0.403 5.530 8.709  0.403 0.593  0.776 0.878
Eigen et al. Coarse K v 0.214 1.605 6.563  0.292 0.673 0.884 0.957
Eigen et al. Fine K v 0.203 1.548 6.307  0.282 0.702  0.890 0.958
Liu et al. K v 0.202 1.614 6.523  0.275 0.678  0.895 0.965
Godard et al. K v 0.148 1.344 5.927  0.247 0.803 0.922 0.964
Godard et al. CS+K v 0124 1.076 5.311 0.219 0.847  0.942 0.973
Zhou et al. K 0.208 1.768 6.856  0.283 0.678  0.885 0.957
Zhou et al. CS+K 0.198 1.836 6.565  0.275 0.718  0.901 0.960
Ours K 0.180 1.510 6.349 0.256 0.741 0.906 0.966
Ours CS 0.236 2.476 7.249 0.307 0.645 0.861 0.946
Ours CS+K 0.170 1.429 6.082 0.245 0.786 0.927 0.969

KITTI We follow the experimental settings proposed by [10] with the the test
set of 697 images covering 29 scenes. Table 1 shows the performance comparison
between our method and the baseline methods. Here, K stands for the KITTI
dataset and C'S stands for the Cityscapes dataset. Compared with the meth-
ods using depth supervision [104[23], our method performs better. However, our
unsupervised method performs a little worse than the methods using pose su-
pervision mechanism [13}/15]. [15] uses calibrated stereo images with left-right
cycle consistency loss for training. In future work, we will apply the similar cycle
consistency loss to our framework.

Compared with previous state-of-the-art method [34] using unsupervised
mechanism, our method decreases the depth estimation error of nearly 13.5%.
This validates that our learning framework can effectively take advantage of the
knowledge gained from the camera pose in traditional SLAM algorithms. We
further compare the depth images obtained by our method with the baseline
methods. From Fig. 7, we can see that our results have no explicit difference
with those of the supervised approaches. Furthermore, our method can even
better represent the depth of the boundary information in some special scenes.
Fig. 8 visualizes the testing results of our method using the strategy of [15] (first
pre-train on the Cityscapes dataset and then fine-tune the model on the KITTI
dataset).

In order to show the relationship between the length of the continuous frame
window and the performance of our system, we set the length of the window
to 5 and repeat the experiments above. As shown in Table 2, the performance
of 5-frame version version is better than that of the 3-frame version on all the
metrics, which is consistent with our suppose. The benefit is attributed to the
abundant transformation matrices between frames, which can further augment
the supervised signals.
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Input Image Eigen et al. Garg et al. Zhou er al. Our prediction Ground-truth

Fig.7: Comparison of single-view depth estimation between Eigen et al.
(with ground-truth depth supervision), Garg et al. (with ground-truth pose
supervision), Zhou et al. (unsupervised), and ours (unsupervised). The
ground-truth depth map is interpolated from sparse measurements for visual-
ization purpose.

Input Image Ours (CS) Ours (CS+KITTI)

Fig.8: Comparison of single-view depth predictions on the KITTI dataset by
our initial Cityscapes model and the final model (pretrained on Cityscapes and
then fine-tuned on KITTI). The Cityscapes model sometimes ignores structural
mistakes (e.g. roadside billboards and lamp posts) likely due to the domain gap
between the two datasets.
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Table 2: Results of different continuous frame window length versions of our
system.

Method The length of the Error metric

continuous frame window Abs Rel Sq Rel RMSE RMSE log
Zhou et al. 3 0.208 1.768  6.856 0.283
Ours 3 0.180 1.510 6.349 0.256
Ours 5 0.176  1.455 5.940 0.248

Input Image
_— |

Our prediction Our prediction

Input Image

Fig.9: Our sample predictions on the Make3D dataset. Note that our model is
trained on KITTI+Cityscapes only, and directly tested on Make3D.
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Make3D In order to evaluate the generalization ability and the adaptability
of our proposed method on the strong lighting and weak texture environments,
we choose Make3D [30] dataset for further experiments. In concrete, we pre-
train our network on Cityscapes dataset and fine-tune on KITTI dataset. Then,
we evaluate our model on Make3D dataset, which contains abundant strong
lighting and weak texture samples and maintains an explicit difference between
the other two datasets. As shown in Table 3, the results on Make3D dataset are
similar to those of KITTI dataset. In concrete, compared with the methods using
depth supervision mechanism, our method achieves a better performance than
[10,23], but a little worse than [15], which indicates that our method maintains a
satisfying generalization ability. Compared with the unsupervised method [34],
our method still achieves a better performance. We further visualize the sample
predictions of our method in Fig. 9 for a better illustration.

Table 3: Results on the Make3D dataset.

Method Supervision Error metric
Depth Pose Abs Rel Sq Rel RMSE RMSE log

Train set mean v 0.876 13.98 12.27 0.307
Karsch et al. v 0.428 5.079 8.389 0.149
Liu et al. v 0.475 6.562 10.05 0.165
Laina et al. v 0.204 1.840 5.683 0.084
Godard et al. v 0.544 10.94 11.76 0.193
Zhou et al. 0.383 5.321 10.47 0.478
Ours 0.343 4.739 8.201 0.455

5.3 Pose Estimation

We choose ORB-SLAM |27 as the baseline method to illustrate the effectiveness
of our proposed pose estimation network. We follow the experimental settings
in [34] and use the official KITTI odometry split method to guarantee a fair
comparison. The odometry benchmark is composed of 11 driving sequences with
ground-truth odometry. We choose the first 9 driving sequences (00-08) for train-
ing and the last 2 driving sequences (09-10) for testing. The ground-truth odom-
etry is used to evaluate our ego-motion estimation performance and the length
of the frame window is set to 5. We compare our ego-motion estimation with two
variants of monocular ORB-SLAM algorithm. The first one is ORB-SLAM (full)
which uses all frames of the driving sequence to recover odometry. The second
one is ORB-SLAM (short) which is lack of the loop closure and re-localization
modules and maintains the same input setting as our system (5-frame snippets).
Besides, the unsupervised method [34] is also selected as the baseline.

Notably, due to the reason that different methods have different scales, we
optimize the scaling factor for the predictions made by each method to make all
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Fig. 10: Pose estimation trajectories comparison.

the scaling factors consistent with the ground-truth. The Absolute Trajectory
Error (ATE) of the ground-truth and the estimated trajectory is chosen for
evaluation. All the methods are computed on 5-frame snippets except for ORB-
SLAM (full). For the ORB-SLAM (full) method, we break down the trajectory
of the full sequence into 5-frame snippets by adjusting the reference coordinate
frame to the central frame of each snippet.

Table 4: Absolute Trajectory Error (ATE) on the KITTI odometry (lower is

better).

Method Seq.09 Seq.10

ORB-SLAM(full) 0.014+0.008 0.012+0.011
ORB-SLAM(short) 0.064 +0.141 0.064 + 0.130
Mean Odom 0.032 +0.026 0.028 +0.023
ORB-SLAM(short) 0.064 4+ 0.141 0.064 + 0.130
Zhou et al. 0.021 +0.017 0.021 +0.017
Ours 0.017+0.008 0.015+0.017

As shown in Table 4, our approach performs comparably with the ORB-
SLAM (full) method, which utilizes the whole image sequences for loop closure
and re-localization to improve the pose estimation accuracy. The ATE value
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of our approach is about a quarter of that acquired by ORB-SLAM (short).
In future, it would be interesting to use our learned ego-motion instead of the
local estimation modules in monocular SLAM systems. Meanwhile, our pose
estimation outperforms the previous state-of-the-art unsupervised method ,
which is conceptually similar to ours. Fig. 10 illustrates the pose estimation
trajectories comparison between our method and the baseline methods.

6 Evaluation in the Realistic Settings

In this section, we first introduce the details on our platform for implementing the
unsupervised learning-based depth estimation aided ORB-SLAM system using
cloud robotic infrastructure. Then, we present the testing results of our system
in various scenes.

6.1 Experimental Platform

Our system is composed of two parts: the robot and the server from the per-
spective of hardware.

The robot is deployed with multiple sensors, i.e., camera, ultrasonic radar
and sound sensor. In our system, the robot interacts with the real-world settings
by collecting the images from the RGB-D sensor and transmitting them to the
server. The server mainly deals with the data saving and data processing tasks. In
concrete, for our system, the depth estimation network and the pose estimation
networks are both deployed in the server and the server will also processes the
computing task and the simultaneous localization and mapping task. Fig. 11
illustrates the sparse point cloud image acquired by our system and the green
lines stand for the pose trajectory predicted by our system.

Fig.11: The sparse point cloud image acquired by our system on a indoor desk
scene.

The depth estimation network and the pose estimation network deployed in
the server are both well trained on KITTI, Cityscapes and Make3D datasets.
We choose TUM RGBD dataset to evaluate the performance and the server uses
NVIDA GeForce 1080P GPU for the processing tasks.
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6.2 Experimental Results in Strong Lighting and Weak Texture
Environments

ORB-SLAM

xim) xm)

Fig. 12: llustration of pose estimation in a normal scene (desk).

; ' ORB-SLAM

ximl x(ml

Fig. 13: Illustration of pose estimation in a weak texture scene Fr3/nst.

s

yimi
ylml

ORB-SLAM
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xim] x(m)

Fig. 14: Tllustration of pose estimation in a strong lighting scene Fr3/stf.

The standard for evaluating the performance of our system and the ORB-
SLAM system is ATE, which is widely used for testing in the SLAM area. We
compare the performances of the two methods in various scenes of TUM RGBD
dataset. The results are reported in Table 5, the first 5 scenes are in the normal
environments and the last 3 scenes are in the strong lighting or weak texture
environments. We can see that in normal scenes, our system performs compa-
rably to the traditional ORB-SLAM system. In the strong lighting and weak
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texture environments, our system achieves a better performance than that of
the traditional ORB-SLAM system. For a better illustration, we report the pose
estimation trajectories in normal, weak texture and strong lighting environments
respectively (shown in Fig. 12, Fig. 13, and Fig. 14).

Table 5: ATE Comparison of our method and traditional ORB-SLAM system in
different scenes.

Scene ORB-SLAM Ours

Fr1/desk 0.018490 0.017181
Fri/desk2 0.021034 0.021564
Fr2/desk 0.011296 0.010978
Fr1/room 0.061536 0.062283
Fr2/office 0.010999 0.010901
Fr2/stf 0.013178 0.012105
Fr2/stn 0.012706 0.012294
Fr2/nst 0.023507 0.022203

6.3 Testing on the Speed for Initialization

Due to the reason that our method optimizes the initialization process of the
traditional ORB-SLAM system, we design a series of experiments to test the
initialization speed of the two systems by recording the number of images used
for initialization.

ORB-SLAM

Fig. 15: Initialization speed comparison in a strong lighting scene.

Fig. 15 and Fig. 16 report the testing results in a strong lighting and weak
texture environments of the TUM RGBD dataset respectively. The lines in the
red square stand for the estimated trajectories in the initialization process. We
can see that the estimated trajectory of our method is longer than that of the
traditional ORB-SLAM system in both the two situations, which indicates that
our method can complete the initialization process and start to build the map in a
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Fig. 16: Initialization speed comparison in a weak texture scene.

faster speed. Table 6 reports the comparison on the number of images used in the
initialization process. For the first 5 normal scenes, our system uses comparable
number of images to the traditional ORB-SLAM system. However, towards the
last 3 scenes in the strong lighting and weak texture environments, the number
of images used by our system is explicitly less than that of the traditional ORB-
SLAM system, which indicates the effectiveness of our approach.

Table 6: Comparison on the number of images used in the initialization process.

Scene ORB-SLAM Ours
Fri/desk 4 2
Fri/desk2 5 2
Fr2/desk 4 4
Fri1/room 7 2
Fr2/office 6 5
Fr2/stf 38 10
Fr2/stn 145 84

7 Conclusion

We present an unsupervised learning framework for single-view depth and ego-
motion estimation. The proposed method exploits the pose estimation method
to enhance the supervised signal and add training constraints for the task of
monocular depth and camera motion estimation. The system is trained on unla-
beled videos and performs comparably to approaches that require ground-truth
depth or pose for training. Furthermore, our method outperforms the previous
state-of-the-art unsupervised learning method by 13.5% on KITTI dataset. Fi-
nally, we successfully exploit our unsupervised learning framework to assist the
traditional ORB-SLAM system when the initialization module of ORB-SLAM
method could not match enough features. Experiments have shown that our
method can significantly accelerate the initialization process of traditional ORB-
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SLAM system and effectively improve the accuracy on environmental mapping
in strong lighting and weak texture scenes.
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