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Abstract

In this paper, the five-percent maximum overshoot design of uniformly-
damped binomial filters (transfer-functions) is introduced. First, the butter-
worth filter response is represented as a damped-binomial filter response. To
extend the maximum-overshoot response of the second-order butterworth to
higher orders, the binomial theorem is extended to the uniformly-damped
binomial theorem. It is shown that the five-percent uniformly-damped bino-
mial filter is a compromise between the butterworth filter and the stan-
dard binomial filter, with respect to the filter-approximation problem in the
time and frequency domain. Finally, this paper concludes that in applica-
tions of interest, such as step-tracking, where both strong filtering and a fast,
smooth transient-response with negligible overshoot are desired, the response
of the normalized five-percent uniformly-damped binomial form is a candi-
date replacement for both the butterworth and standard binomial filter forms.

Keywords: Filter Design, Linear Filters, Damping, Binomial Polynomial, Feedback
Control, Maximum Overshoot
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1 Introduction

1.1 Background

Transient Response. The requirement of a good transient response is important in
the selection of filters that condition the input signals of a feedback controller like
the proportional-integral-derivative controller (PID) [1, 2]. This need for filtering
is mostly motivated by the need to attenuate measurement or set-point noise fed in
as input to a controller. This indirectly connotes the design objectives of smooth
tracking (or regulation) and strong filtering [3]. Often, the controller and the filter
are implemented as digital signal processing systems but conveniently designed as
analog signal processing systems.

In this context, the oscillatory transient behaviour of most analog filter design
forms are not acceptable, as it leads to misinterpretation of the input sequence and
therefore inappropriate sequence of control actions. Maximum overshoot is an impor-
tant and visible index of transient response performance [4]. The transient response
of signals, in this context, require negligible maximum overshoot. Selection of these
filters is therefore, often restricted to the second-order butterworth filter, because of
the characteristics of five-percent maximum overshoot, satisfactory noise-reduction,
and smaller phase-delay.

Phase-delays represent another problem. However in the case of step-tracking of
signals, this delay consideration is sometimes secondary and could be reduced with
the extra complexity overhead of lead-lag filters [2, 5].

All-Pole Transfer Functions. Interestingly, frequency-selective low-pass filters
for noise attenuation are simply all-pole transfer-functions[6]. It is well known in
the literature that the maximum overshoot is related to the presence of a damping
constant in the transfer-function (input—output) response of such filters. However,
except for the all-pole second-order standard response, exact values for this damp-
ing constant that obtains a defined negligible amount of maximum overshoot from
higher-order all-pole transfer-functions, remains unknown.

Linear filtering, a quintessential operation in signal processing and control, can
be viewed abstractly as a unity-gain transfer-function mapping [7, 8]. The unity-
gain all-pole filter transfer-function design problem can be simplified to specifying
only the filter order and a cut-off frequency [9]. Many interesting properties of these
transfer-functions are strongly related to polynomial theory. The filtering problem
then reduces to using a standard all-pole filter-design form to specify the denominator
polynomial of the transfer-function. The denominator polynomial gives the filter’s
characteristic equation. This then simplifies the filter-design problem to specifying
the poles of the filter in terms of the positive real coefficients of the denominator
polynomial.

1.2 Motivation

1, |w| < Wwp,
H = 1
) {0 , otherwise. )
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The behaviour of these standard all-pole filter transfer-function forms is then
fully described by the denominator polynomial selected to minimize a certain per-
formance criteria [4, 6, 10]. These standard forms are used to approximate the ideal
transfer-function (frequency) response given by (1). As the transfer-function order
increases, the presence of excessive ringing (oscillations or ripples) becomes visible
in the transient-response of these frequency-selective filters. This phenomenon is an
important fundamental limitation in many control and filtering applications [3, 11].
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=X

£

Il
Nl (@)

o.}| < 2w,

H(w):{é [1+COS (ﬁ)} , 3)

, otherwise.

Raised cosine functions. It is known that the study of raised-cosine functions (2)
illustrate how much this transient ringings in the time-domain can be damped, while
still retaining an approximation to the ideal-filter (¢ = 0) [11].

The raised-cosine function in (3) with ( = 1, is a compact representation of the
standard binomial polynomial with no transient overshoot. The raised cosine function
(4) was discussed in [12], as an alternative form of binomial expansion. The bino-
mial polynomial is a widely used finite impulse response filter in computer vision
and image processing for approximating the gaussian filter function [13, 14]. The lit-
erature on the use of this polynomial is quite rich. For instance, the binomial window
was introduced for interpolating narrow-band signals in [15, 16]. [17] approximated
the ideal fractional-delay operator using generalized binomial coefficients.

Ho (@) = {cos" (%) ;

0 , otherwise.

w‘ < 2w,

“4)

Notwithstanding, in [9, 18, 19], it is claimed that in practise, most filtering require
only a unity dc-gain and butterworth response. The Butterworth Filter (BWF) pro-
posed in [20], therefore remains arguably the most widely used among the class of
available frequency-selective filters. Although, of slower roll-off (attenuation), the
characteristic equation of the butterworth lead to evenly distributed poles in the unit-
circle of the normalized complex s-plane, with an added single real pole in the case
of odd transfer-function orders [21, 22].

Further, it was shown in [12], that the butterworth filter is a flat-top raised cosine
filter. This butterworth transfer-function is regarded as the best achievable transfer-
function approximation to the ideal, based on the maximally flat magnitude design
criterion in both the pass band and the stop band, among all transfer functions of
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a given order [3, 6, 23]. They can be represented as cascade of first and second-
order polynomials with relative damping constants [24]. More recently, in [25], the
butterworth filter has been classified under a unified theory of Critical Monotonic
Amplitude Characteristic (CMAC) all-pole filters. The integer-order butterworth fil-
ter was generalized to fractional-order in [26, 27]. Also, there are other all-pole
transfer-functions detailed in [10] that outperform the frequency response perfor-
mance of the butterworth. However, none of them offer a better transient to frequency
response compromise like the butterworth. Also, the butterworth filter phase-delay is
linear when close to the origin, and is shorter than either the bessel or binomial filter.

Interestingly, the butterworth-filter which shows no ripple in its frequency
response bands starts to show considerable ringings in its transient response as the
order increases. This flaw corresponds to a poor transient performance index in
terms of the maximum overshoot. Consequently, as noted, this constitutes a fun-
damental limitation in the transient-performance of higher-order transfer-functions
designed using the butterworth polynomial. This fundamental fact that the transient
performance and sensitivity properties are not consistent with each other, indicates
trade-offs inherent in the design of the denominator polynomial. It turns out that
the polynomial coefficients of these frequency-selective filters are optimised for
frequency response performance at the expense of the transient performance or
vice-versa in the case of the bessel filter [11] .

Damped Binomial Polynomials. The synthesis of a denominator polynomial
with a balanced (good) transient response and frequency response for all positive
integer orders is therefore very useful. For higher orders, in connection to the design
of the characteristic equation of transfer functions, this problem has been attacked
by the use of Standard Binomial Filter(s) (BMF) [28-32] which directly correspond
to (3). This denominator polynomial is specified by the use binomial coefficients
with uniform damping-constant ( = 1. The binomial filter can be viewed as the
upper-limit of the ideal all-pole transfer-function. Therefore, it can be named the
Zero-Percent Uniformly-Damped Binomial Filter (UDBMF). With its smoother (no
overshoot) transient-performance, it poses as a superior design choice for desired
transfer functions compared to the butterworth filter and other least-square filters
in certain cases [28]. Although of higher sensitivity, the inherent requirement of no
overshoot present (or naturally encoded) in the standard binomial polynomial (real
poles only) may not always be a practical choice. It leads to a much slower rise-
time in the transient response and a poorer filter-selectivity [3]. A faster transient-
response with some form of negligible overshoot is usually preferred. The design of
the denominator polynomial in the standard binomial form is therefore limiting.

In applications where both fast, smooth transient-response and strong frequency
filtering characteristics are design objectives, we would desire a polynomial represen-
tation that is a compromise between the butterworth and binomial standard response,
side-stepping the main flaws, while keeping a balanced set of merits, namely: a max-
imally flat monotonic amplitude in the second-order sense; a quicker roll-off around
the cut-off frequency with increasing order; and a faster rise-time with negligible
maximum overshoot in the transient response for any order.
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Non-Uniformly Damped Binomial Polynomials. Consider the butterworth
denominator polynomials (two-decimal place approximated) from (5)-(10). It can
be observed that the binomial coefficients (excluding boundary coefficients) are
non-uniformly damped for all except the first three cases, where the damping is
constant.

Di(s) =s+1 ®)
Do(s) = 2(0.71)s+1 (6)
Ds(s) = s> +3(0.67) s> +3(0.67)s+ 1 @)
Dy(s) = s* +4(0.65)s” + 6 (0.57) s* +4(0.65) s + 1 ®)
Ds(s) = s° +5(0.65) s* +10(0.52) s> + 10 (0.52) s> + 5(0.65) s + 1 )
Dg(s) = s° + 6 (0.64) s° + 15 (0.49) s* + 20 (0.46) s> + 15 (0.49) s> + 6 (0.64) s + 1

(10)

From this, it is clear that the choice of damping constants for coefficients (excluding

boundary coefficients) of the binomial polynomial influences the transient-response
characteristics of the filter.

Main Contributions. Therefore, in the case of the binomial polynomial as
observed from the BWF with respect to our filter design objectives, proper choice
of damping constants can avoid the flawed transient-response of higher-order cases.
Generalizing this design problem, we can impose two possible constraints on the
damping constant choice. One, the damping constant should be always uniform
in the denominator polynomial, as observed in the standard BMF or Zero-percent
Uniformly-Damped Binomial Filter (UDBMFO0). Two, for signal reconstruction and
control purposes, the desired percentage of maximum-overshoot should be at most
five-percent, as realized from (6). This then reduces the design problem to one
question. How exactly should the uniform damping constant (,, be defined for any
nth-order denominator polynomial?

Therefore, the main goal of this paper is to present a closed-form solution to
this question. Given that the uniformly-damped binomial polynomial is optimised
on a transient-response criterion. This criterion is the maximum negligible overshoot
value observed in the second-order butterworth response. This paper provides the
explicit closed-form definition of the exact damping-constant that achieves a transient
response with five-percent maximum overshoot for the uniformly-damped binomial
polynomial without the use of explicit numerical optimization.

In all, the contributions of this paper is three-fold. One, extension of the bino-
mial expansion theorem to the uniformly-damped binomial theorem. Two,definition
of the exact damping-constant for a transient response with five-percent maximum
overshoot. Three, design and analysis of the Five-percent Uniformly-Damped Bino-
mial Filter (UDBMF5), which more compactly we name Somefun Filter (SFF)
transfer-function.

The rest of this paper is ordered as follows: First, in section 2 we start with
the introduction of the damped binomial coefficient, and then extend the binomial
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theorem to the uniformly-damped binomial theorem which leads to the uniformly-
damped binomial polynomial. In section 2.4, the solution to the exact uniform
damping constant that achieves the desired criterion is defined. Table 2 illustrates
the coefficients (up to the tenth order) of the normalized uniformly-damped bino-
mial polynomial that satisfies the desired transient-response criterion. Definition and
analysis of the UDBMFS transfer-function is presented in section 3. Some numer-
ical performance comparisons of the UDBMFS5 to the BMF and BWF is given in
section 4. Finally, section 5 concludes the discussion in this paper.

Note that the dynamical system which functions as the frequency-selective fil-
ter is represented as a proper transfer function #,,, and its denominator polynomial
which is an improper transfer function is represented as D.

2 Uniformly-Damped Binomial Theorem

In this section, we will introduce the first main result—the uniformly-damped binomial
theorem. First, we start by defining the damped binomial coefficients.

2.1 Damped Binomial Coefficients

Definition 1 Following, the standard definition of binomial (combinatorial) coefficients, for
any natural number n, the damped binomial coefficient can be written in the form:

sn n _ C
ai_ci:(i)czi!(n—i)! (an

where,
¢-nl ,0<i<n
c=<n! ,i=0Vi=n (12)
0 ,n<i<0

andn,i € N,n > 0,n > i > 0. It follows that, Cj = Cj = 1,and also C]' = C]!_,.

2.2 Uniformly-Damped Pascal’s Rule

Damped binomial coefficients form the famous universal symmetric pattern, known
as the Pascal’s triangle. In the uniformly-damped case, this pattern can be defined.

Definition 2 The uniformly-damped Pascal’s rule is expressed as:
¢-Clqi+C i=1
crtt={¢r  +er-¢ yi=n (13)
Cr,+C} , otherwise.

Next, we will present the uniformly-damped binomial expansion theorem, where
the damping constant ¢ is spread uniformly across all of the binomial coefficients,
except for the boundary (first and last) coefficients which are not damped.



Springer Nature 2021 IXTgX template

7

Uniformly-Damped Binomial Filters

T+ 80T + ;5967 + ¢5"00TT + $590TC + 5“988T + ¢ “I01G + ,5“D08T + ¢5'“IGT + (5“90T + ;5 ||0T/28 M| 0T
T+5%6 + ;599€ + S"“OF8 + ;5"09CT + (S“I9TT + ¢S “OF8 + ,5“99€ + o596 + (5 6/99M | 6
T+ 58+ ,5"98C + 509G + ;5"00L + (509G + 45"98¢ + ,5"08 + ¢ 8/0GN | 8

T+ S"L+ SUTC + SU9GE + 151068 + SOTT + o5“IL + 8 LILEN | L

T+5%9 4 SU9GT + (5908 + 5"IGT + (509 + o5 9/9g N | 9

T+ 896+ ,5“0T + ¢S“20T + ,5*IC + o5 G/LIN| S

T+ Y% + ;899 + s"9p + .8 V/OIN | ¥

T+5%¢+ 5"+ 8 e/sp | €

T+ + 5 ¢lep | @

“+s I I

(s)"q rerwoukjoq [ = [u

?w:@ = ($)%n uonoun, J9Jsuel], 1)1 [erwoulq padweq-Auiojiun judiad-oal] T e




Springer Nature 2021 IEXTgX template

8 Uniformly-Damped Binomial Filters

Table 2: Five-percent Uniformly-Damped Binomial Filter Polynomial Coefficients
H..(z) = Dn(z) (Even n orders only is shown)

’n ‘ (n H Polynomial Dy, (2)

1 1 11

2 | Vv2/2 1 26, 1

4 | v/10/4 1 4Cn 6Cn 4Cn 1

6 | V26/6 1 6Cn 15Cn 20Cn 15Cn 6Cn 1

8 | v50/8 1 8Cn 28Cn 56(n T0C(n 56Cn 28(n 8Cn 1
10[v82/10||1 10¢n 45C, 120¢n 210(n 252(n 210(n 120Cn 45Cn, 10¢, 1

2.3 Uniformly-Damped Binomial Polynomial

The denominator polynomial of the all-pole transfer function, can now be defined,
by stating the uniformly-damped binomial theorem.

Theorem 1. For any natural number n € N,n > 0, where n is the order or degree of
the polynomial, the uniformly-damped binomial polynomial expansion can be written
as:

D, = (s +wp,)" =Chs" +C)s"~ 1wn+C" n—2 i—|—

+C_jswl T+ Rt = Z Crs" Wl (14)

where variables: s is the complex laplace variable, and w,, represents the cut-off
frequency. The proof of Theorem 1 is shown below.

Proof First, consider the normalized form of the binomial expansion
n n
Pn)=(s+1)"=> Crs""1'=> Cfs" "
=0 =0
From the principle of mathematical induction, we show that n = 1 is true.
PAl)y=(6s+1)=(s+1)

Assume n = a is true.
Pa)=(s+1)* ZCa a=i

Then, we show that n = a + 1 is true.
a+1 )
P(a+ 1) _ (S + 1)CL+1 _ Zég«+18a+171
i=0
Expanding the left-hand side expression, we have:
(s+1) T =(s+1)*(s+1) =

(Seren) o (Sere)

Further expanding and then applying the Damped Pascal rule,
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a—1
=Cos" T+ > (Gl + 0] s T+ Cas”
=0
a—1
Ca-i-l a+1 + an_:-llsa 7 +ngr-%80
=0
Shifting the summation index,
a+1 )
Ca+1 a+1 +an+1 at+l—1 CZI% 0 _ ZC;IJrlSaJrlfz
=1 =0
Thus, we have shown by inductive hypothesis that since the damped binomial theorem is true
for any arbitrary natural number a, then it is true for a + 1 that is P (a) — P (a+1). As
P (1) is true, it follows therefore from mathematical induction that P (n) is true for all nat-
ural numbers and so the theorem is established. Since the normalized expression is true, the
denormalised expression also follows as true. This is proved by noting that

n
(s +wn)" = wy (i + 1)

Wn

n—i s 0

5N
—orla (@) e () e ()]
:C_()S +chn1w%+cnwnizcnnzz

O

Axiom 1. The sum of the coefficients in a uniformly-damped binomial polynomial
is:24 (2" =2)¢,Vn > 0.

Recall, we desire to achieve a maximum overshoot less or equal to that of the
second-order butterworth filter (BWF). At this point, the problem is to determine,
for each order, what the damping constant applied uniformly to the binomial coeffi-
cients will exactly be in numeric value. This could be solved by employing numerical
optimization, however in this paper, we define a simpler, direct and straight-forward
closed-form expression that solves this problem.

2.4 Uniform-Damping Constant

The core result of this paper lies in the explicit definition of the uniform-damping
constant solution to the five-percent maximum overshoot filtering design using a
binomial polynomial.

Consider the nth order uniformly-damped binomial polynomial in Theorem 1.
The exact uniform-damping constant that satisfies the maximum overshoot optimiza-
tion criterion M), of the second-order BWF can be defined as follows:

Axiom 2. The uniform-damping constant that satisfies a M), < 5%, for the nth order
uniformly-damped binomial polynomial in Theorem 1 is:

Vn(n—1)—(n-2)

n

C: C’rb = (15)
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Fig. 1: Semi-log plot showing the behaviour, as n — oo, of the uniform damping-
constant ¢ that satisfies the M}, < 5% constraint

The result or expression in (15) represents the solution to the ringing problem
present in the specification of damped binomial polynomial representations such as
the BWF. It constrains the M, to be no more than five-percent. We note that the
design choice of five-percent M, in this paper is because it is the most common
allowable M, in filtering for control tasks [33, 34].

Also, it can be observed that for large n, the numerator of (15) is

(n?2 —2n+2) = n. This implies that for very large n in the limit such as
n >= 28, the damping value becomes numerically equivalent to 1. More, formally,
as n — oo, then ¢ — 1. That is as illustrated in (Fig. 1), for n > 1, as n is increased,

the value of ( gradually moves from ? back to 1.

. . . ¢
Axiom 2 can be proved using the M,, formula: exp ( \/@) x 100% for a
second-order prototype system response. Also, this is empirically illustrated of the
transient step and impulse response of the UDBMFS5 transfer-function in (Fig. 2).

The synthesis of the UDBMFS5 is discussed in the next section.

3 Uniformly-Damped Binomial Filter
(Transfer-Function)

Applying Theorem 1 and Axiom 2 to the synthesis of the unity-gain continuous-time
transfer-function, where ky = 1. The uniformly-damped binomial filter #,, is defined
as:
kowl k
Hn (S) - DO L(un) - n n - n—i
n\$ 2i—o CF (s/wn)

(16)



Springer Nature 2021 IXTgX template

Uniformly-Damped Binomial Filters 11

0 10 20 30
Normalized time ¢ (in seconds)
@

0 10 20 30
Normalized time ¢ (in seconds)
(b)
Fig. 2: Step (2a) and Impulse Response (2b) plot of the uniformly-damped binomial
low-pass filter transfer-function with normalized cut-off frequency for values of n =
1 (blue) to n = 10 (brown).

The expressions in (17) and (18) respectively give the magnitude, and squared-
magnitude of the UDBMFS.

1

|Hn (w) | = a7

\/(w/wn)2n+/€+1

2 1
n = Tin n\—5) = 18
[Ho (@) | = Ha (5) Ha (=) o Tt (18)

1
K= Z oy (w/wn)* (19)
i=n—1

a =) +23 (~1erey (20)

and
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0] : 0.8
2-10f
< < 06
= g —O— sff (udbmf5)
2 ool = —O— bmf (udbmfe)
= kS bwf
g 3 04f
9 —O— sff (udbmf5) e
% 80y —O—bmf (udbmfe) <
2 bwf 4
B S 02r
= 401 =

-50 0
10° 10 10° 10
Polynomial order Polynomial order

(a) (b)
Fig. 3: The Minimum Attenuation at the normalized cut-off frequency for orders
n = 1to n = 16: shown in decibels in (a.) and in dimensionless units in (b.)

P> (" U and odd n

) , otherw1se.

r

) z}% and even n
n—1

where,t =n—14,j =t—r, k=t +rand oy = ay,_;. Also, for any order n, the
minimum attenuation at a given frequency is given by (21), and the bandwidth given
a minimum attenuation can be obtained by solving the polynomial equation (22).
From inspection of the slope of the magnitude (in dB) plot in Fig. 4a, as w >> wy,,
it is clear that high-frequency roll-off is —20 n dB/decade.

Aup = 101og ((w/wn)% - 1) 21)

(w/wn)®™ + 5 + (1 _ 10Ad3/10) —0 22)

The minimum attenuation at the normalized cut-off frequency for increasing
orders of the binomial filters under consideration in this work are illustratively com-
pared in Fig. 3. It can be observed that of the three while the BWF has a constant
and maximum Agg (-3dB or 0.7071), the UDBMFS5 gives the median Agp and
approaches that of the UDBMFO having the smallest Ay at the cut-off frequency,
as m increases in value.

The UDBMFS5 becomes a digital infinite impulse response (IIR) filter by s — z
bilinear transformation. Also, the denominator polynomial can be directly applied
as a digital finite impulse response (FIR) filter (sliding window filter) by directly
replacing s = z and w,, = 1 as shown in (23), having N = n + 1 coefficients or
components.

D(z)=(z+1)" Zc"“ (23)
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Fig. 4: Magnitude Response Plots of the UDBMF5 with normalized cut-off fre-
quency for orders n = 1 (blue) to n = 10 (brown): shown in decibels in (4a)
compared to (4b).

3.1 Flatness and Selectivity of Filter

Given the magnitude of the filter, the magnitude flatness and selectivity of the fil-
ter can be investigated by respectively finding the derivative of the magnitude with
respect to the frequency and the negative derivative of the magnitude with respect to
the frequency at the origin.

d[Hn ()| s{n fw\"" dk
7(100 = _’Hn (UJ) | ;n (%) + @ (24)
dk ! ) w2t
where, -~ = i—;lata (Wn> (25)

From (24), it is easy to see that, since (17) is positive, the derivative monotonically
decreases with no ripple. The kth, (k = 1, ...00) derivatives of the gain are zero at
the origin (w = 0) of the closed left-half complex plane for all n, except for even
indexed kth derivatives, k = 2i up to 2n, where ¢ = 1,2, ..., n, provided n > 2.
As illustrated in Fig. 5, this results in a maximal flatness for n <= 2, a flatness in
between that of the BWF and UDBMFO for n > 2, and a flatness approximately
that of the UDBMFO as n increases in the allowable finite integer limit.
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Fig. 5: Magnitude Response comparison with normalized cut-off frequency for
orders(a.)n=1(M)n=2(c.)n=4and(d.)n =16

L .
PO DR
=== 3 (26)

o sl

_d[H, (w)]
dw

It is obvious from (26), that the frequency selectivity of UDBMFS5 is the same as that
of the BWF for n <= 2, it is between that of the BWF and UDBMFO for n > 2,
and then it is approximately the same as that of the UDBMFO for n — inf.

3.2 Phase-Delay and Group-Delay

The phase response of the UDBMFS is illustrated in (Fig. 6). The linear response
can be investigated through the expressions (27) for the phase-delay and (28) for the
group-delay.

S (D ()
S (D20 ()’

Tp (W) = %arctan (27)

7y (W) = ‘"Hn (w) ‘2 ((w/wn)%k2 4+ + n) (28)
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1
5= M(wfwn)” (29)
i=n—2
A=) (-1)ierey (30)
r=1

and,

. i > 5 and evenn
= n=t (1)
7= > and odd n

1+1 ,otherw1se.

wheret=n—1—14,j=t+1—r,k=t+rand \t = \y—¢_1.

At w = wy, the total phase in radians is “F. At the origin w = 0, the phase-

delay (Fig. 7) seen at the output of the filter is i—" and the group-delay (Fig. 8)
seen at the output of the filter is 2 for n = 1 and WL for n > 1. Both delays are
exactly proportional to the order of the filter, and increase nonlinearly as the order is
increased. Notably, we see that with the help of the damping constant the phase-delay
of the UDBMFS is less than the standard BMF (UDBMFO).

The transient and frequency response analysis of the UDBMFS5 poses it as a
balanced compromise between the butterworth and binomial standard forms. It pro-
vides a balance of: excellent transient performance in its time-response (Fig. 2) with
a good sensitivity and selectivity performance across the passband and stopband in
its frequency response (Fig. 4 and Fig. 6).

1072

_10-1 B

_100 E

_101 E

1072 107 10° 10t
Normalized frequency w (in radians)
Fig. 6: Phase Response Plot (in radians) of the uniformly-damped binomial low-pass
filter with normalized cut-off frequency for orders n = 1 (blue) to n = 10 (brown).

4 Simulation

In this section, we compare the UDBMFS5, with other related binomial filters: BWF,
UDBMEFO. In the FIR case, we also compare the binomial filters with a cubic least-
square polynomial fitted Savitzky-Golay Filter (SGF). The implemented filter specs
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10

1072 107t 10° 10t
Normalized frequency w (in radians)
Fig. 7: Phase Delay of the uniformly-damped binomial low-pass filter with normal-
ized cut-off frequency for orders n = 1 (blue) to n = 10 (brown).

102

10t

100 L

10»2 L

1072 10t 10° 10t
Normalized frequency w (in radians)
Fig. 8: Group Delay (in seconds) of the uniformly-damped binomial low-pass filter
with normalized cut-off frequency for orders n = 1 (blue) to n = 10 (brown).

are of even filter polynomial order n, implying symmetric odd-number of coefficients
N, and hence ideal for smoothing applications [28].

4.1 Case 1: Online Signal Filtering

In application to higher-order digital infinite impulse response filtering of a noisy
signal, with negligible overshoot, the UDBMFS5 is contrasted to both the BWF and
standard UDBMFO as illustrated in (Fig. 9a and Fig. 9b).

4.2 Remarks

It can be distinctly observed from the signal waveforms in Fig. 9 that the UDBMF5
(or SFF) is a compromise response with respect to the other two binomial filter types,
useful where fast, smooth transient response and strong filtering are both required
for the binomial filter polynomial orders. This is the core motivation and context for
designing the UDBMFS5.
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(a)
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original
bwf

bmf (udbmfo)
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-0.21

-0.4

0 0.2 0.4 0.6 0.8 1
time (in seconds)

(b)
Fig. 9: IIR filtered output response of a real-time tracked noisy step signal. (a.):
8th-order. (b.): 16th-order.

4.3 Case 2: Offline Data Filtering
4.3.1 Case 2.1: Noisy Pulse Data

In many cases, logged raw sensor data, for further system design and analysis are
used to perform more experiments or to make predictions. In this case, we consider
a logged synthetic data containing normalized speed values of a dc-motor obtained
via a sensor sampled at 1ms. For, clarity, we only show a section of the offline pulse
sequence between the time-window of the 60th and 120th index.

We illustrate and compare the behaviour and response of four filter classes for a
polynomial order of 16: low pass filtering in Fig. 10.

4.3.2 Case 2.2: Noisy ECG Data

The electrocardiography (ECG) signals (electrical activity of the heart) play a key
role in diagnosing diverse kinds of cardiovascular activities and diseases. Extracting
certain features from raw ECG data is common for bio-informatics and bio-medical
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Fig. 10: 16th-order filtering of a noisy pulse data. (a.) IIR output, (b.) FIR output, (c.)

step signal
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Frequency response, (d.) Impulse response.
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purposes. Logged or recorded ECG data are usually noisy, as such it is known that fre-
quency selective filters must balance both smoothing and signal preservation, without
distorting accurate diagnosis and interpretation. In a very noisy case, such is use-
ful in detecting, for example the QRS wave complex feature in ECG signals, which
is further used to make diagnostic predictions of the healthy state of the heart [35].
Typically for healthy adults, this is a short-duration electrical impulse activity lasting
between 0.06s and 0.10s.

In this case, we consider a synthetic Electrocardiogram (ECG) signal data wave-
form of length 500 and sampled at a frequency of 1kHz from an ECG data acquisition
and monitoring device. The following illustrates zero-phase filtering of the synthetic
electrocardiogram (ECG) waveform in order to smooth and also preserve features
exactly where they occur in the unfiltered signal. In this case, the electrical impulse
begins, as seen from the time-window at around time 0.16s and ends at about 0.22s,
which is an average duration of 0.06s.

We illustrate and compare the behaviour and response of four filter classes for a
polynomial order of 8: low pass filtering in Fig. 11.

Further, we again illustrate and compare the behaviour and response of four filter
classes for a polynomial order of 16: low pass filtering in Fig. 12.

4.4 Remarks

Generally, it can be observed from the presented simulated case-examples that
although with good attenuation characteristics, in the IIR case, the BWF distorts the
real-time signal badly. Meanwhile the overshoot is just once and minimal to within
five-percent for the SFF, while the UDBMFO shows no overshoot. For the FIR case,
we consider the SGF filter, and we see that like the BWF, the use of long sequences
of SGF polynomials lead to problems like overshoots, which in our application of
interest is not desirable. In comparison, we observe that the frequency-response of
the binomial polynomials give lesser overshoots and more noise attenuation. The
impulse response clearly shows that BWF, UDBMFO and SFF are binomial filter
polynomials.

5 Conclusions

In this paper, we have introduced and preliminarily discussed a new class of binomial
filter (or transfer-function) design. It was first shown that the butterworth filter is a
uniformly damped binomial filter for lower orders, and then non-uniformly damped
binomial filter for higher orders. In contrast this paper by extending the binomial
theorem and providing an explicit uniform damping constant formula introduced
the five-percent uniformly-damped binomial filter SFF or UDBMFS5. The basis is
a uniform-damping constant optimized on the popular 5% maximum-overshoot cri-
terion of the second-order butterworth filter. This class of filter or standard form
represent a compromise of the strong merits of both the butterworth and the stan-
dard binomial filter. The filter meets all imposed constraints (time-invariant, causal,
linear, proper rational transfer function of finite order, with positive real coefficients
given by the uniformly-damped binomial polynomial) that assure the realization of
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Fig. 11: 8th-order filtering of a ECG data. (a.) IIR output, (b.) FIR output, (c.)
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Fig. 12: 16th-order filtering of a ECG data. (a.) IIR output, (b.) FIR output, (c.)
Frequency response, (d.) Impulse response.
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a practical analog or digital filter. Clearly, in terms of simplicity and computational
effort, the UDBMFO (integer-valued separable polynomial coefficients) supersedes
the UDBMFS5 (real-valued polynomial coefficients). In addition, for higher orders,
like the BWF, IIR realization of the UDBMFS5 is affected by rounding-error
accumulation due to finite-precision machines.

Potential applications of this filter include: the design of linear output-state
estimators with their derivatives, and the design of characteristic equations for higher-
order control systems with balanced transient response (no ringing) and frequency
filtering objectives.

One important limitation, of the UDBMFS5 in this work, is that unlike the butter-
worth filter BWF and standard binomial filter UDBMFQO, there is currently no exact
closed-form formula for determining the pole positions of the five-percent uniformly-
damped binomial filter. Also, except for order n <= 2, the filter under consideration
has no unique roots or separable convolution kernels, that is higher order sequences
of the filter polynomial cannot be elegantly decomposed into a combination of lower
order forms. This problem poses as a interesting and challenging future work, which
readers may attempt to disproof. Possibly, in a future work, we will more explicitly
describe this class of binomial filters and its applications in offline signal processing,
for example as n-dimensional smoothing kernels, differentiating filter kernels, and
so on. Please see the Github repository [36] for the algorithms and scripts used for
producing the results in this paper.
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