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Abstract End-to-end text-to-speech synthesis systems achieved immense success
in recent times, with improved naturalness and intelligibility. However, the end-to-
end models, which primarily depend on the attention-based alignment, do not offer
an explicit provision to modify/incorporate the desired prosody while synthesiz-
ing the signal. Moreover, the state-of-the-art end-to-end systems use autoregressive
models for synthesis, making the prediction sequential. Hence, the inference time
and the computational complexity are quite high. This paper proposes Prosody-
TTS, an end-to-end speech synthesis model that combines the advantages of sta-
tistical parametric models and end-to-end neural network models. It also has a
provision to modify or incorporate the desired prosody by controlling the funda-
mental frequency (f0) and the phone duration. Generating speech samples with
appropriate prosody and rhythm helps in improving the naturalness of the syn-
thesized speech. We explicitly model the duration of the phoneme and the f0 to
have control over them during the synthesis. The model is trained in an end-to-
end fashion to directly generate the speech waveform from the input text, which
in turn depends on the auxiliary subtasks of predicting the phoneme duration, f0,
and mel spectrogram. Experiments on the Telugu language data of the IndicTTS
database show that the proposed Prosody-TTS model achieves state-of-the-art
performance with a mean opinion score of 4.08, with a very low inference time.
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1 Introduction

Text-to-Speech Synthesis (TTS) is the process of generating the natural-sounding
expressive speech from the given text. Although several techniques were proposed
for speech synthesis, generating natural-sounding speech signals is still a chal-
lenging task. The allophonic variations and coarticulation make it challenging to
generate the natural-sounding speech from the text [25]. Major applications of
the TTS system include human-machine interactions, speech-to-speech transla-
tion (automatic dubbing), screen readers, etc., where the speech samples have to
be synthesized with the desired prosody and emotion. Duration of the phones,
fundamental frequency (f0), and the energy of the speech signal are considered as
the crucial parameters responsible for the prosody and the emotion in the speech
signal [20]. So, having explicit control over these crucial parameters helps in syn-
thesizing the speech signal with desired prosody and emotion. For example, in
the task of automatic dubbing [17], the source language speech duration should
be incorporated in the target language speech to match with the events in the
source video. So, we need to have control over the predicted durations to alter
them during the synthesis. Most state-of-the-art end-to-end models do not have
the provision to control the duration of the phones, fundamental frequency, and
energy. In this work, we propose an end-to-end speech synthesis system with a
provision to control the duration and the f0, which would better suit for real-time
practical applications like expressive conversational speech synthesis, automatic
dubbing (subtitle synthesis), emotion conversion, etc.

Before the advent of deep neural networks (DNNs), unit selection [8] and sta-
tistical parametric speech synthesis (SPSS) [3] were the most successful speech
synthesis frameworks. Unit selection based speech synthesis is a data-driven ap-
proach that generates the speech signal by concatenating the prestored temporal
waveforms of the subword units like phonemes and syllables, based on the target
and the concatenation cost. The database should be large enough to cover all the
possible allophonic variations and coarticulation contexts of the sound units. The
performance of the unit selection system degrades when there is a domain mis-
match or when the context of the inference text doesn’t occur in the training data.
This system doesn’t offer control over the prosodic parameters as it concatenates
the prestored temporal waveforms during the synthesis.

SPSS system has several hand-engineered modules such as a text analyzer for
linguistic feature extraction, a duration model to predict the duration of each
phoneme, an acoustic model to estimate the acoustic parameters from the lin-
guistic features, and finally, a vocoder to synthesize the speech signal from the
predicted acoustic parameters. Instead of storing the temporal waveforms of the
phonemes/syllables, the SPSS system models the speech parameters using stochas-
tic generative models like the hidden Markov model (HMM). In the HMM-based
SPSS [30], the context-dependent HMMs are used to model the probability den-
sity function (pdf) of acoustic parameters conditioned on linguistic contexts such
as parts of speech, tone, lexical stress, and pitch. The HMM states are modeled
as Gaussian density functions parameterized by the mean vectors and covariance
matrices. The duration of the phonemes is modeled by the transition probabilities
of the HMM. During synthesis, the acoustic (spectral and excitation) parameters
are generated by sampling from the HMM states [24]. Since the SPSS system mod-
els f0 as one of the acoustic parameters, it can be controlled/modified during the
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synthesis. The SPSS system can generate the speech from the unseen context in
the inference text as it models the statistical properties of the parameters. But,
the generated excitation and spectral parameters from the HMMs are often over-
smoothed, making the synthesized speech sound muffled. The major drawback of
the SPSS system is the quality of synthesized speech, which is affected due to over
smoothing, the accuracy of the acoustic model and the vocoder [3].

In order to overcome the issues involved with HMM-based acoustic modeling,
neural network models were employed to capture the non-linear relationship be-
tween the linguistic and the acoustic features. Neural parametric speech synthesis
systems like Merlin [31] contains similar modules as the SPSS system, with the
duration and acoustic models replaced with simple feed-forward neural networks.
The neural network models are trained to estimate the acoustic parameters from
the context-dependent linguistic features extracted from the text. Usually, pen-
taphone context, with two phones on either side of the current phone, is used to
predict the duration of the phoneme [31]. The predicted durations are used to
upsample the linguistic features to the acoustic frame rate and fed to the acoustic
model. The speech parameters predicted from the acoustic model are given to the
vocoder to synthesize the speech signal.

The Merlin system can be trained with relatively lesser data (3 to 4 hours) as
it uses explicit alignments obtained from the duration model. The overall perfor-
mance of the Merlin system depends on the accuracy of all individual modules,
as they are trained separately. The intelligibility of the synthesized samples has
improved when compared to the SPSS system. Although the neural paramet-
ric speech synthesis systems have the provision to change or incorporate the de-
sired prosody by modifying the f0 and phoneme duration, the synthesized samples
are not natural because of the lack of coordination between individual modules-
Text analyzer, duration model, acoustic model, and vocoder. The signal processing
based vocoders rely on several assumptions in modeling human speech production
mechanism as the source-filter model, which causes the degradation in the nat-
uralness of the synthesized samples. Parametric speech synthesis systems require
a language-dependent text analyzer to extract the linguistic features. But, most
languages do not have better text analyzers to extract reliable linguistic features
from the text.

With the development of DNNs in the recent times, several end-to-end speech
synthesis models such as Tacotron [26], Transformer TTS [11], Deep Voice [1],
Char2wav [22], Clarinet [19] etc., are developed. The end-to-end models do not
require explicit extraction of the context-dependent linguistic features from the
text. Instead, they learn them from the text data using a text encoder module.
They convert the input text into character embeddings and use a text encoder
module to encode them into a representation, which captures the required context
information. They rely on the attention mechanism to learn the alignment between
linguistic and acoustic features, as they operate at different rates. An autoregres-
sive decoder estimates the linear spectrogram or the mel spectrogram frame by
frame from the encoded representations, making the prediction sequential [26].
The speech signal is generated from the predicted spectrograms using the signal
processing based vocoders like Griffin-Lim [6], or neural vocoders like WaveNet
[18], WaveRNN [9], etc.

The synthesized speech samples from the end-to-end models are highly intel-
ligible with improved naturalness, but the inference time is very high because of
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the autoregressive architecture. We also observed the problem of missing words
while synthesizing longer utterances and repetition of words while synthesizing
shorter utterances, which could be attributed to the maximum decoder steps
hyper-parameter in the attention-based alignment1. Although the end-to-end mod-
els do not require the language-dependent text analyzer, they need a huge amount
of training data, about 25 to 40 hours, to extract context-dependent information
and align the linguistic and acoustic features. Furthermore, they do not offer a
provision to control the duration of the phoneme and the f0.

We propose Prosody-TTS, a hybrid model that combines the advantages of
SPSS and end-to-end neural synthesizers to achieve naturalness with lesser data
and lower inference time. Further, having control over the phoneme duration and
f0 makes the TTS systems useful for various applications like emotion conver-
sion, automatic dubbing, expressive speech synthesis, etc. So, instead of using the
attention-based alignment in the proposed model, we explicitly model the dura-
tion of the phonemes to have control over it. The f0 of each frame is also modeled
explicitly and used for conditioning the mel spectrogram prediction and to create
the excitation input signal for the neural vocoder [27].

The Prosody-TTS system generates the speech signal from the input text se-
quence, represented as fixed non-learnable character embeddings. The model is
trained end-to-end using supervised auxiliary learning since it improves the abil-
ity of the model to generalize on the unseen data [12,23]. The individual modules
(duration estimator, f0 estimator, acoustic decoder, and neural vocoder) in the
proposed architecture are considered as the subtasks, whereas the primary task is
to predict the speech samples from the character embeddings of the given text. The
major limitation of supervised auxiliary learning is obtaining the auxiliary target
data for each subtask. The proposed model overcomes this limitation inherently
since each subtask has the corresponding target data (duration, f0, mel spectro-
gram, etc.). Each subtask is intended to perform a certain function, allowing us to
improve a specific module easily. The salient features of the Prosody-TTS model
are:

– Duration and f0 are explicitly modeled, as they can be controlled to modify
the prosody or incorporate the desired prosody.

– Requires a significantly less amount of training data, which helps in building
the TTS systems for low resource languages.

– An end-to-end model with a very low real-time factor of 0.13

The rest of the paper is organized as follows: The architecture of the Prosody-
TTS system, along with the prosody incorporation, is explained in section 2. Sec-
tion 3 describes the speech synthesis experiments and compares the Mean opinion
scores (MOS) of synthesized speech samples with different state-of-the-art models.
Section 4 describes the proposed prosody control method and compares the MOS
of prosody modified and prosody incorporated samples with the other systems.
Section 5 concludes the paper with few insights about the future work.

1 Samples are available at: https://siplabiith.github.io/prosody-tts.html



Prosody-TTS: An end-to-end speech synthesis system with prosody control 5

Text

Character 
embeddings

Conv1D bank

Conv1D projections

Bidirectional GRU

Duration of phoneme

Speech

Upsample to 
Acoustic frame rate

Concatenate

Conv1D bank

Conv1D projections

Bidirectional GRU

Mel Spectrogram Neural 
Vocoder

fo

f0 embeddings

Dense, ReLU

Duration Modifier 
(Optional)

ℒdur

ℒmel

ℒf0

Text Encoder Acoustic DecoderDuration 
Estimator

f0, BAP

BAP
ℒBAP

fo Estimator

f0 Modifier (Optional)

Fig. 1: Architecture of the Prosody-TTS system

2 Architecture of Prosody-TTS

The Prosody-TTS system uses a hybrid approach by utilizing the advantages from
the parametric synthesis models and the end-to-end models. The parametric speech
synthesis models require a lesser amount of training data as the phoneme durations
are explicitly modeled. Although the inference time and computational complexity
are very low, the lack of coordination between the individual modules and the
accuracy of the vocoder makes the synthesized samples sound unnatural. The end-
to-end model uses attention-based alignment, which requires a larger amount of
training data. But, the model is trained in an end-to-end fashion, which improves
the naturalness of the synthesized samples. So, advantages of the parametric and
end-to-end models are exploited in developing the architecture of the Prosody-TTS
system, which is shown in the figure 1.

Prosody-TTS system consists of a text encoder module, duration estimator,
f0 estimator, acoustic decoder module, and a neural vocoder. The text encoder
module encodes the input text sequence into hidden representations that capture
the linguistic context information present in the text. The duration estimator uses
these context-dependent encoded representations to estimate the duration of each
phoneme in the given text. The text encoder module operates at the linguistic
phoneme rate, while the acoustic decoder module operates at the acoustic frame
rate. So, we upsample the bottleneck representations of the text encoder to the
acoustic frame rate using the predicted durations and feed to the acoustic decoder.
Upsampling is done by replicating encoded representations of each phoneme based
on the predicted duration of the corresponding phoneme. The f0 estimator takes
the upsampled representations, predicts the f0 and band aperiodicity (BAP) of
each frame. f0 estimator is followed by an acoustic decoder module, which gener-
ates the mel spectrogram of the speech signal by conditioning on the f0. An exci-
tation signal is created from the f0 and BAP, which is fed to the neural vocoder
along with the predicted mel spectrogram to generate the corresponding speech
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signal. The Prosody-TTS model uses a non-autoregressive neural vocoder [27]. The
model is trained in an end-to-end fashion using supervised auxiliary learning, with
each module of the Prosody-TTS architecture acting as a subtask. The individual
modules are briefly explained in the following subsections.

2.1 Text-Encoder module

The input text is converted to the international phonetic alphabets (IPA), which
is a phonetic transcription of text and a standardized representation of speech
sounds [21]. Each character in the encoded IPA text is referred to as a phoneme.
A 128-dimensional fixed and non-learnable random vector is used to represent each
phoneme of the input text. In contrast to the fixed pentaphone context information
in parametric methods, we use a text encoder module consisting of CNNs to model
the coarticulations and allophonic variations of the speech as the CNNs capture
the context information.

The phoneme representations are fed to the bank of one-dimensional convolu-
tional filters with ReLU activations to capture the context information through the
receptive field. In the Prosody-TTS, we use eight one-dimensional convolutional
filters in the bank, where kth filter has the kernel size of k. Thus, the convolution
bank captures the context information up to 8 phonemes as the maximum recep-
tive field in the bank is 8. The output of each convolutional filter in the bank is
stacked horizontally and projected into a fixed (lower) dimensional representation
using two convolutional projection layers with a kernel size of 3. This results in
the effective receptive field of 12, indicating that we provide a maximum of 12
phoneme context information. The input phoneme representations are added with
the fixed dimensional representations through the residual connection to provide
the lost phoneme identity and fed to the bidirectional gated recurrent unit (GRU).

Although the random embeddings are used for representing the phoneme, the
text encoder module incorporates the context-dependent information in the en-
coded representations, which is required for modeling the durations and allophonic
variations of the speech. For example, consider phoneme /a/, which is initially
represented with a context-independent random vector, and they correspond to a
point. But, the encoded representations from the text encoder module contain the
phoneme context information. The t-SNE plot in the figure 2 shows the encoded
representations of /a/ in four different contexts (/sam/, /rav/, /tam/ and /man/).
We can observe the similar context representations are grouped, indicating that
the context information is captured. There is a slight overlap in the encoded repre-
sentation of /a/ in the context of /sam/ and /tam/ as the right context phoneme
is similar in both cases. We should also note that no loss function is involved in
training the text encoder module, and it learns along with the other modules as we
employ end-to-end training. Thus, we can eliminate the need for the text analyzer
to extract linguistic features, which requires language-specific knowledge.

2.1.1 Importance of contextual information in duration modeling

Speech signal exhibits a high degree of temporal dependencies, and the prosody
of the speech signal depends on the context in which the corresponding phonemes
occur. Duration and intonation are the two crucial prosodic features responsible
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Fig. 2: t-SNE plot of the encoded representations of phoneme /a/
occurred in different contexts.
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Fig. 3: Duration distribution of phoneme /n/ (a): without any context, (b): in
the context of /a/ and /ã/, (c): in the context of /ma/ and /ãa/.

for generating natural sounding speech [7], which in turn depends on the contex-
tual information. Thus, contextual information affects the prediction of phoneme
durations and the naturalness in continuous speech. Figure 3(a) shows the dis-
tribution of durations (in ms) of the context-independent phoneme /n/. We can
observe that the variance of the distribution is higher, with the minimum and
maximum duration being 25 ms and 215 ms, respectively. Since the durations of
the context-independent phoneme are distributed in a wider range, it is difficult
to model and predict them accurately.

Figure 3(b) shows the distribution of durations of phoneme /n/ in the context
of /a/ and /ã/, which are the left and right phonemes of the current phoneme
/n/, respectively. We can observe that the durations are distributed in the smaller
range, where the minimum and maximum durations are 25 ms and 90 ms, respec-
tively. So, the addition of left and right context information makes the distribution
sharper and reduces uncertainty.
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Figure 3(c) shows the distribution of durations of phoneme /n/ in the context
of /ma/ and /ãa/, which are the two left and the two right phonemes of the
current phoneme /n/, respectively. There is a further decrease in the variance
of the distribution, with the minimum and maximum values of 25 ms and 70 ms,
respectively. Thus, contextual information reduces the variance of the distribution,
which is essential for training the accurate duration model. In this paper, we use 12
phoneme context information captured in the text encoder for duration estimation.
So, the uncertainty in predicting the phoneme duration reduces to a great extent.
We didn’t consider further higher context information, as the number of training
examples is minimal for such higher contexts, and the model gets over-fitted to
the training data. The proposed model is also evaluated with various phoneme
contexts, and the results are compared in the experimental section.

2.2 Duration estimator

Let X = {x1, x2, x3, . . . , xN} be the input phoneme sequence of an utterance, E
= {e1, e2, e3, . . . , eN} be the embeddings obtained from the text encoder mod-
ule, where N is the total number of phonemes in the given utterance. Let T =
{t1, t2, t3, . . . , tN} be the duration sequence of the phonemes, where tn is the du-
ration of the phoneme xn in milliseconds (ms). The task of duration estimator is
to predict the duration sequence t1, t2, . . . , tN from the embeddings e1, e2, . . . , eN .
Since the context information required for duration modeling is already captured
in the text encoder, we use a simple affine transformation to estimate the dura-
tions. So, the duration estimator contains only a single dense layer with a ReLU
activation function. The optimum values (t∗) are found by reducing the mean
absolute percentage error (MAPE) between the original and predicted durations.
Arnaud et al. [15] showed the existence of an optimal model regarding MAPE and
also proved the empirical risk minimization. This error particularly helps when the
target variable is positive and quite far from zero, as it calculates the percentage of
error. The stop consonants have shorter durations (around 50ms) when compared
to the vowels (150-250ms) as they are impulsive in nature. So, vowels can have an
error of around 30ms, but stop consonants can’t afford such large errors. Thus,
the error is made in proportion to their duration by using the percentage of error.
The loss associated with the duration estimator is given by:

Ldur =
1

N

N∑
n=1

|tn − t̂n|
tn

(1)

where t̂ are the predicted durations obtained from the duration estimator. Fig-
ure 4 shows the comparison between the original and predicted durations for the
utterance "nAlugu saθvaÁtsarAla ÁkriÁtam, mruÁtuni Ácelli ammaÁkkaÁtO, gedel
SrInuÁku, vivAham jarigiθdi." We can observe that the durations are much closer,
which also demonstrates the efficiency of the text encoder.

2.3 f0 estimator

The f0 is modeled explicitly in the Prosody-TTS system to have control over it
during the synthesis. f0 estimator is a subtask that predicts the f0 of each frame
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from the encoded representations, which are initially at linguistic phoneme rate.
So, they are upsampled to acoustic frame rate by replicating them according to the
corresponding phoneme duration and fed to the f0 estimator. As the upsampled
representations are identical for all the frames of a phoneme, the predicted f0 is
also identical for all the frames of the corresponding phoneme. As a result of this,
f0 contour looks piece-wise continuous, as shown in the figure 5. The resulting
speech sounds unnatural as it uses constant f0 for all the frames of a phoneme.
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In order to generate a continuous f0 contour, we need to get the unique repre-
sentations for each frame of a phoneme. So, frame position information is concate-
nated to the upsampled encoder representations. First, we obtain the total number
of frames of each phoneme by dividing its duration by frameshift. The position
of the frame from both the beginning and the end of a phoneme is encoded with
a 16-dimensional non-learnable vector. This 32-dimensional vector, named frame
position information, is concatenated to the upsampled encoder representations
to make them unique. These concatenated representations are fed to the convo-
lutional projection layers to predict the f0 and BAP. BAP is defined as the ratio
between the periodic energy and the total energy in the given frequency band,
where periodic energy is obtained by taking the sum of energies of all the har-
monic components in the corresponding band. The correlation between the f0 and
BAP helps in using a single module for predicting both f0 and BAP. The predicted
f0 contour looks continuous, as shown in the bottom plot of the figure 5 when the
frame position information is incorporated.

The f0 estimator consists of three one-dimensional convolutional layers with
a kernel size of 5, as shown in the figure 6. So, the effective receptive field is
13 frames, which indicates that 13-frame context information is used to model
the f0 prediction. The logarithm of f0 is modeled since it follows the Gaussian
distribution [31], and thus we can use mean square error (MSE) as the loss function.
The default f0 value of the silence and unvoiced frames is set to 1Hz to ensure that
the log f0 is non-negative. We have used the ReLU activation function as log f0
and BAP are positive. The loss functions related to f0 and BAP are given by

Lf0
=

1

K

K∑
k=1

| log f0k − log f̂0k|
2 (2)

LBAP =
1

K

K∑
k=1

|bapk − b̂apk|
2 (3)

where f0 and f̂0 are the original and predicted f0, respectively, K is the total
number of frames in the utterance, bap and b̂ap are the original and predicted
BAP, respectively.
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2.4 Acoustic decoder module

Most state-of-the-art speech synthesis models use an autoregressive-based decoder,
where the prediction is sequential. The autoregressive models require significantly
more inference time than the non-autoregressive models, which are at least as
accurate as the autoregressive models [28]. The accuracy of speech synthesis models
can be improved by incorporating the knowledge of human speech production
mechanism. So, we choose to use a non-autoregressive acoustic decoder module and
to overcome the limitation of accuracy, we incorporate the knowledge of speech
production mechanism. The module takes the predicted f0 and the bottleneck
representations from the f0 estimator as the input. Instead of supplying the f0
input as a single neuron, we use a 32-dimensional continuous vector encoding for
each f0 value to match the magnitude range of the f0 input with the other inputs
[13]. We can also use the continuous wavelet transform (CWT) to convert the f0
contour to higher dimension representation [32]. The predicted f0 is rounded to the
nearest integer, and its corresponding 32-dimensional encoding is obtained from
the stored lookup table. We must ensure that the range of the lookup table should
also include the minimum and maximum values of the modified f0 like x0.75, x1.5,
etc. The lookup table may be replaced with the sinusoidal positional encoding, as
the nearest f0 values will have closer encodings. The extracted f0 encodings are
then used for conditioning the mel spectrogram prediction.

The architecture of the acoustic decoder module is shown in the figure 7. It
consists of a bank of one-dimensional convolution layers, followed by a bidirectional
GRU to estimate the mel spectrogram. We use a set of 16 convolutional filters in
the bank, where the kth filter in the bank has the kernel size of k. The output of
each convolution filter in the bank is stacked horizontally, projected into the lower
dimension using the convolution projection layer, and fed to the bidirectional GRU.
The effective receptive field obtained with the convolutional layers is 21 frames,
with ten frames on either side of the current frame. The formant trajectories
in the magnitude spectrum are captured through this receptive field, and ReLU
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activations are used to ensure that the predicted mel spectrogram is positive. The
task of mel spectrogram prediction uses MSE as the loss function in the logarithmic
domain, which is given by:

Lmel =
1

K

K∑
k=1

| log Yk − log Ŷk|2 (4)

where Yk and Ŷk are the original and predicted mel spectrograms of the kth frame,
respectively, K is the total number of frames in the utterance. The total loss of
the auxiliary tasks associated with the acoustic parameters is given by

Lacst = Lf0
+ LBAP + Lmel (5)

The predicted mel spectrogram from the acoustic decoder module is fed to the
neural vocoder along with the excitation signal, which is generated from the f0
and BAP.

2.5 Neural Vocoder

The architecture of the neural vocoder is shown in the figure 8. We use a slightly
modified version of Waffler [27], a non-autoregressive neural vocoder, to generate
the speech signal from the mel spectrogram and excitation input. An excitation
signal is generated using the f0 and BAP, obtained from the f0 estimator. First,
the sequence of fundamental periods (1/f0) is converted into the sample domain
by multiplying with the sample rate (sample rate/f0 sequence). A sawtooth pulse
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is created for each value in the sequence, and concatenation of them will result in
a sawtooth pulse train. Gaussian noise, with BAP value as the standard deviation,
is generated at 16kHz sample rate and added to the sawtooth pulse train to obtain
the excitation signal, shown in the figure 9. The predicted mel spectrogram, which
is at the acoustic frame rate, is upsampled to the sample rate of the speech signal
and fed to the convolutional neural network along with the excitation signal to
generate the speech signal. Similar to Waffler [27], the neural vocoder is trained
using the combination of time-domain loss (Ltd) and cepstral-domain loss (Lcd),
which are given by

Ltd =
1

T

T∑
n=1

|s(n)− ŝ(n)|2 (6)

Lcd =
1

K

K∑
k=1

| logSk − log Ŝk|2 (7)

where s(n) is the original speech sample, ŝ(n) is the predicted speech sample from
the vocoder, T is the total number of samples in the speech signal, K is the total
number of frames, Sk and Ŝk are the original and predicted mel spectrograms of
kth frame extracted from the s(n) and ŝ(n), respectively. The loss function of the
vocoder is considered as the combination of Ltd and Lcd.

Lvocoder = λLtd + (1− λ)Lcd (8)
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where λ is the hyper-parameter, which decides the importance given to each loss.
The model is trained in an end-to-end fashion using auxiliary learning with the
primary task of predicting speech from the text input. The total loss of the model
is the sum of loss functions of all the subtasks.

Ltotal = Ldur + Lacst + Lvocoder (9)

3 Speech Synthesis Experiments

The Prosody-TTS system is trained on the Telugu language speech data from
the IndicTTS database [2], collected from a male speaker. The database consists
of text and the corresponding speech file at a 16kHz sample rate. It has around
2450 utterances, which corresponds to 4 hours of speech data. There are a total of
58 unique phonemes along with the punctuation marks in the database. Twenty
utterances containing 28 percent of unseen words are held out to evaluate the
performance of the trained model. We can also extend the proposed method to
other languages since we do not require a language-specific text analyzer to ex-
tract the linguistic context information. Instead, the context information and the
coarticulation constraints are learned from the data.

3.1 Feature extraction

The text and its corresponding speech signal are required to train the Prosody-
TTS system. As the model is trained using supervised auxiliary learning, labeled
data like duration, f0, BAP, and mel spectrogram are required. The ground truth
durations of the phonemes are obtained using the state-level forced alignment
[29]. Then the total duration of the phoneme is obtained by taking the sum of
all the state durations of the corresponding phoneme. The acoustic parameters
f0 and BAP are obtained by using the WORLD vocoder [14]. 80-dimensional mel
spectrograms are extracted from speech signal with 2048 point discrete Fourier
transform (DFT). All the acoustic parameters are extracted with a frame length
of 25ms and a frameshift of 5ms.

3.2 Model Details and Training

The parameters of the Prosody-TTS model are shown in the table 1. The model
is trained with a batch size of 16. As shown in the equation (9), the total loss
of the model is the combination of loss functions of individual subtasks, which
is minimized using the Adam optimizer [10] with β1 = 0.9 and β2 = 0.999. We
use an initial learning rate of 0.002, which is reduced after 50000 iterations to a
learning rate of 10−4. The convergence of the loss functions of all the subtasks is
shown in the figure 10. The implementation2 of the model is made available online
to encourage reproducibility.

2 https://github.com/siplabiith/Prosody-TTS
Currently, the repository is password protected. Use the password tts@SipLab. It will be

made public once the paper is published.
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Table 1: Network parameters of the proposed model, K denotes kernel

Module Layer Parameters

Text Encoder &
Duration estimator

Character embedding 128D
Conv1D bank (8) 128, K=1,2,..,8, ReLU

2 X Conv1D projections 128, K=3, ReLU
Bidirectional GRU 128
Output(Duration) 1

f0 estimator
Frame positional encodings 16D, 16D
3 X Conv1D projection 128, K=5, ReLU

f0, BAP 1, 1

Acoustic decoder

f0 encodings 32D
Conv1D bank (16) 128, K=1,2,..16, ReLU

3 X Conv1D projection 128, K=3, ReLU
Bidirectional GRU 128
Mel spectrogram 80

Neural vocoder

Excitation input 16000
Mel spectrogram input 80

Upsampling layer x200
8 X Conv1D projection 64, K=3, ReLU
Output (Speech samples) 16000

1 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 15k 20k 25k 30k 40k
Number of epochs
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Fig. 10: Training loss curves of different auxiliary loss functions VS number of
epochs.

3.3 Results

We first evaluate the amount of context information required to model the phoneme
duration by experimenting with different convolution filters like 2, 4, 8, and 16 in
the convolution bank of the text encoder module. The context information depends
on the receptive field of the text encoder module, which depends on the number
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of convolutional filters. In all the experiments, the convolution bank is followed
by two projection layers with a kernel size of 3. The performance is evaluated
by predicting the phoneme durations and estimating the Root mean square error
(RMSE), Mean absolute error (MAE), Pearson’s correlation coefficient (PCC),
and the results are tabulated in the table 2. We can notice that the performance
of the model is degraded when the receptive field is very low, as the context infor-
mation used to predict the duration of the phoneme is lacking in such cases. The
performance of the model also degrades when we use a high receptive field like 20,
as there are fewer examples in the training data with such higher context depen-
dency, and the model gets over-fitted. So, we found that the model performs better
for the moderate receptive field of 12, which is obtained when eight convolutional
filters are used in the bank.

Table 2: Evaluation of the context information required for duration modeling

No. of filters in
Convolution bank

Receptive
field RMSE MAE PCC

2 6 4.653 2.787 0.802
4 8 4.609 2.775 0.809
8 12 4.437 2.694 0.818
16 20 4.813 2.996 0.787

3.3.1 Subjective Evaluation

The comparison between the original and predicted speech along with its acoustic
features is shown in the figure 11. The performance of the Prosody-TTS model is
evaluated using the 20 sentences, which are held out for testing. Text from this test
data is converted into the character embeddings and fed to the trained Prosody-
TTS model to synthesize the corresponding speech signal. The quality of the syn-
thesized speech3 is rated using the MOS by 30 native Telugu language speakers. We
compare the Prosody-TTS model with different parametric methods and end-to-
end models such as Parametric+WORLD, Parametric+WaveNet, WaveNet [18],
and Tacotron [26]. For the Parametric+WORLD system, we trained the Merlin
speech synthesis tool [31] and WORLD [14] is used as the vocoder. The WORLD
vocoder is replaced with the WaveNet vocoder in Parametric+WaveNet, which is
trained individually. Similarly, end-to-end speech synthesis models like WaveNet
and Tacotron are also trained with the same Telugu language male speaker data.
We can observe from the table 3 that the proposed model achieves better MOS
even when compared to the autoregressive models like WaveNet and Tacotron,
with very low inference time. The real time factor (RTF) is used as the evaluation
parameter for the inference time, which is defined as the ratio of time taken to
synthesize the speech and the duration of the speech synthesized. The RTFs for
all the models are evaluated on the Nvidia GeForce RTX 2080 Ti GPU.

3 Synthesized samples are available at: https://siplabiith.github.io/prosody-tts.html
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Fig. 11: Comparison between the original and predicted speech along with the
acoustic features. (a): Speech (b): mel spectrogram, (c): f0 in Hz and (d): BAP

Table 3: The MOS of different models with 95% confidence interval and the
corresponding Real time factors

Model MOS RTF
Parametric + WORLD 2.76 ± 0.13 0.24
Parametric + WaveNet 3.16 ± 0.11 232.1

WaveNet 3.46 ± 0.08 254.6
Tacotron 3.87 ± 0.07 183.2

Prosody-TTS 4.06 ± 0.08 0.37

3.3.2 Objective Evaluation

We have conducted the quantitative analysis to evaluate the performance of the
Prosody-TTS using the predicted f0 and durations. Gross pitch error (GPE) [16],
Voicing decision error (VDE) [16], and f0 frame error (FFE) [4] are used to compare
the performance of different systems based on f0. GPE is defined as:

GPE =
Nf0err

v

Nv
× 100 (10)
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where Nv is the total number of voiced frames in the utterance and Nf0err
v is

the number of voiced frames in which the predicted f0 doesn’t lie in the range of
±20% of the original f0 value. VDE is defined as:

V DE =
Nerr

v +Nerr
u

N
× 100 (11)

where N is the total number of frames in the given utterance, Nerr
v is the number

of voiced frames predicted as unvoiced, and Nerr
u is the number of unvoiced frames

predicted as voiced. WORLD vocoder is used to extract the f0 and voiced/unvoiced
labels from the synthesized signals of all the systems. f0 frame error uses three
different types of errors, which is defined as:

FFE =
No. of error frames

N
× 100

=
Nf0err

v +Nerr
v +Nerr

u

N
× 100

=
Nv

N
×GPE + V DE

(12)

Thus FFE is a combination of GPE and VDE. Similarly, duration related errors
like RMSE, MAE, and PCC are evaluated to analyze the predicted durations. The
obtained quantitative results of the different systems are compared in the table 4.

Table 4: Comparison of the different errors related to f0 and duration.

Model f0 errors (%) Duration errors
GPE VDE FFE RMSE MAE PCC

Parametric 22.13 7.16 23.29 7.104 5.039 0.728
Tacotron 9.95 5.76 12.65 - - -

Prosody-TTS 3.72 2.96 4.23 4.381 2.694 0.816

4 Prosody control

Since the proposed system explicitly estimates the phoneme duration and f0, we
can control them before estimating the acoustic parameters for speech synthesis.
This is an effective way of controlling the prosody, as we operate at the feature
level instead of operating at the waveform level. We can either modify the prosody
or incorporate the desired/target prosody in the synthesized speech. Based on the
type of control, they are classified as Prosody modification and Prosody incorpora-
tion. Prosody modification aims to alter the prosodic parameters without a target
or reference prosody, for example, a constant factor multiplication to the duration
and f0. Prosody incorporation aims at incorporating the desired prosody in the
synthesized signal. In this paper, we have evaluated the Prosody-TTS system on
both the prosody modification and prosody incorporation tasks.
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4.1 Prosody modification

In the Prosody modification task, the phoneme duration and f0 are multiplied
with a constant factor ranging from 0.5 to 1.5 at the feature level to modify the
prosody. Although the prosodic parameters are multiplied with a constant factor,
it has several applications like emotion conversion, expressive speech synthesis,
etc. Govind et al. [5] proposed an emotion conversion method based on modifying
f0 and duration of the neutral speech according to the multiplication factors ob-
tained from the emotional speech data. The prosody modified speech signals are
also evaluated using the MOS and compared with the neural parametric speech
systems, as they have the provision for altering the prosody, which is shown in
table 5. Although the speech rate and the pitch are modified, there is no con-
siderable degradation in the naturalness and intelligibility, which can be inferred
from the obtained MOS. There is no substantial improvement in the MOS as the
prosodic parameters are multiplied with a constant factor for the entire utterance.
The proposed system can also be used for emotion conversion [5] by obtaining the
modification factors from the emotional speech data and using them for multiply-
ing the prosodic parameters.

Table 5: The MOS of prosody modified speech with 95% confidence interval

Model MOS
Parametric + WORLD 2.61 ± 0.12
Parametric + WaveNet 3.14 ± 0.07

Prosody-TTS 4.03 ± 0.06

4.2 Prosody incorporation

In the prosody incorporation task, the reference prosodic parameters (duration
and f0) are extracted from the target/reference speech using forced alignment and
WORLD vocoder, respectively. The text corresponding to the reference prosody
is provided as input to the model. During the synthesis, the reference durations
and f0 are incorporated into the synthesized speech signal. We have evaluated the
prosody incorporated speech using MOS, which are shown in the table 6. We can
observe the improvement in the MOS, as the reference prosody is incorporated
during the synthesis. The prosody incorporation task has several applications like
automatic dubbing (subtitle synthesis), speech-to-speech translation, voice con-
version, etc.

As future work, we are developing an automatic dubbing (subtitle synthesis)
system, where the subtitle text of a source video is synthesized in the target lan-
guage and mixed with the source video. In this case, the duration of the synthesized
signal should match with the source video. So, we should control the phoneme du-
rations to align the synthesized signal with the events in the source video and
to match the total duration. Subtitle synthesis has numerous applications in the
education and entertainment sector.
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Table 6: The MOS of reference prosody incorporated speech with 95% confidence
interval

Model MOS
Parametric + WORLD 2.94 ± 0.07
Parametric + WaveNet 3.32 ± 0.10

Prosody-TTS 4.09 ± 0.09

5 Conclusion and Future Work

In this paper, we proposed Prosody-TTS, an end-to-end speech synthesis system
based on supervised auxiliary learning, which can control the prosody of the syn-
thesized speech. The model combines the advantages of parametric and end-to-end
speech synthesis systems. It explicitly models the phoneme duration and f0 to have
control over them during the synthesis. The system achieves a MOS of 4.08 with
the naturalness close to the original speech signals and with a very low inference
time as the model is non-autoregressive. The system can be incorporated in sev-
eral applications like emotion conversion, automatic dubbing, and speech-to-speech
translation tasks, where we should have control over the prosodic parameters (du-
ration and f0). Since the energy of the signal also contributes to the prosody, as a
future work, we will find a way to incorporate the energy by conditioning on the
desired emotion. We are also developing a subtitle synthesis system based on the
Prosody-TTS, where the speech signal is synthesized in the target language from
the subtitles of the source video with the desired source prosody.
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