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Abstract
This paper presents a deep learning-based analysis and classification of cold speech
observed when a person is diagnosed with the common cold. The common cold is a
viral infectious disease that affects the throat and the nose. Since speech is produced
by the vocal tract after linear filtering of excitation source information, during a com-
mon cold, its attributes are impacted by the throat and the nose. The proposed study
attempts to develop a deep learning-based classification model that can accurately
predict whether a person has a cold or not based on their speech. The common cold-
related information is captured usingMel-frequency cepstral coefficients (MFCC) and
linear predictive coding (LPC) from the speech signal. The data imbalance is handled
using the sampling strategy, SMOTE–Tomek links. Then, utilizing MFCC and LPC
features, a deep learning-based model is trained and then used to categorize cold
speech. The performance of a deep learning-based method is compared to logistic
regression, random forest, and gradient boosted tree classifiers. The proposed model
is less complex and uses a smaller feature set while giving comparable results to other
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state-of-the-art methods. The proposed method gives an UAR of 67.71%, higher than
the benchmark OpenSMILE SVM result of 64%. The study’s success will yield a
noninvasive method for cold detection, which can further be extended to detect other
speech-affecting pathologies.

Keywords Cold speech · MFCC · LPC · Gradient boosted trees · Random forest ·
Deep neural network

1 Introduction

Research on speech-based health assessment is gaining interest due to its noninvasive
nature and ease of transmission. The speech-based health assessment system may
be embedded into smart devices with microphones and wearable technologies, which
will be highly helpful for remote and early diagnosis of various medical disorders. The
key benefit of a speech-based health assessment system is that it may only diagnose
and monitor patient health from speech signals, enabling patients to avoid repeated
hospital visits for medical examinations.

The common cold is a viral infectious disease of the upper respiratory tract. A
person suffering from a common cold may show various symptoms such as coughing,
sore throat, runny nose, sneezing, and hoarseness [39]. Human speech is produced
when the air from the lungs passes through the vocal cords, which may vibrate or let
it pass, and then is shaped by the mouth and the nose. Since common cold symptoms
affect the nose, throat, and hence the vocal tract, the characteristics of the speech of
a person suffering from the common cold are different compared to normal speech.
Cold speech, or speech of a person suffering from the common cold, is observed to
have a lower pitch, increase in noise due to hoarseness or coughing, and change in the
timbre of the voice [41].

Upper Respiratory Tract Infections, such as the common cold and influenza (flu),
are a major public health concern, causing 3 to 5 million cases of serious infection
per year [13]. Detecting common cold and related illnesses through speech may be
useful in preventing the spread of these viral infections. It may be beneficial to monitor
a patient’s health remotely. Recognizing whether a person has a common cold from
their speech can be beneficial for speech signal processing tasks. Speech recognition
[27], speaker verification [38], and emotion detection systems [14, 24] are trained on
normal speech, so their performance is negatively affected when tested on cold speech.
Analysis of cold speech can make these systems more robust.

This study uses the Upper Respiratory Tract Infection Corpus (URTIC) dataset.
The URTIC dataset consists of recordings of 630 male and female subjects with a
mean age of 29.5 years, sampled at 16KHz [33]. These 630 recordings are split into
28,652 segments of 3–10s duration. Out of the total 28,652 segments, 2876 belong
to the positive ‘Cold’ class, while the rest are from the negative ‘No cold’ class.
Our URTIC corpus provides important complementary data within the challenge of
capturing Covid-19 from speech.Without the common cold as a reference, false alarm
errorsmight occur, misclassifying the common cold as Covid-19. Analysis of common
cold can further enable differential diagnosis of Covid-19 [11, 16].
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There have been several attempts at detecting cold from speech using the Upper
Respiratory Tract Infection Corpus (URTIC) dataset [33]. The URTIC dataset has
been utilized in the INTERSPEECH 2017 Computational Paralinguistics Cold Sub-
challenge ComParE 2017 [33]. The baseline of the ComParE-2017 challenge uses
an end-to-end learning technique with a convolutional neural network (CNN) and
long short-termmemory (LSTM), ComParE-2013 feature set, and bag-of-audio-words
(BoAW) features. ComParE-2013 has 6373 static features computed from various
functionals over low-level descriptors (LLD). For BoAW, from the ComParE feature
set, one codebook for 65LLDand 65 deltas of these LLDwas revealed.Gosztolya et al.
[18] applied two classification approaches using SVM classifier, one trained on frame-
level features and the other one on utterance-level features. The training instanceswere
randomly down-sampled, and the average of a 100 posterior score was used during
classification. Kaya et al. [26] utilized a weighted partial least square regression classi-
fier and combination of RASTA-PLP andMFCC features encoded by Fisher vector for
classification. The class imbalance problem in the dataset was handled by a weighting
scheme in the kernel classifier. Tavarez et al. [36] proposed a fusion of the Gaussian
mixture model (GMM) and cosine distance classifiers using features such as mag-
nitude spectrum, relative phase shift, and suprasegmental features (MFCC, LPCC).
The fusion of classifier decisions improved the performance of standalone detectors.
Wagner et al. [41] investigated the effects of cold on the phonetic level of speech.
They derived an automatic speech recognizer (ASR)-based phonetic transcription, and
based on phonetic transcription, and separate classifiers were trained using features
like MFCC, invariant-integration features (IIF), and constrained maximum likelihood
linear regression (CMLLR). However, they concluded that phoneme-level classifica-
tion was not worth the effort. Huckvale and Beke [21] examined the best features for
the detection of cold, including voice quality features (energy, entropy), voice spec-
tral features (MFCC), modulation spectrogram, and spectral envelope features. They
concluded that the DCT-coded modulation spectrogram gave the best results. Cai et
al. [7] utilized perception aware MFCC and constant Q cepstral coefficients (CQCC)
features for the detection of common cold. Suresh et al. [35] analyzed the effect of the
common cold on sound quality using phoneme state posteriorgram (PSP) character-
istics. The Gaussian mixture model (GMM) was used to construct 120-dimensional
PSP features for each frame from 120 states of 40 three-state phonetic hidden Markov
models (HMM). In our previous work [15], we used variational mode decomposition
to extract various statistical amplitude, entropy, and energy features from the speech
signal. A mutual information-based weight assignment strategy and the SVM clas-
sifier were used for classification. Kao et al. [25] proposed a method for automatic
detection of cold speech using discriminative autoencoders and strengthmodelingwith
multiple sub-directory generations. Teixeira et al. [37] proposed fully homomorphic
encryption (FHE)-based encrypted neural network (ENN) using an extended Geneva
minimalistic acoustic parameter set (eGeMAPS) for cold speech classification with-
out any performance degradation compared to the unencrypted neural network (NN).
Albes et al. [1] used a combination of pruning and quantization to reduce network size
by up to 95% while maintaining accuracy for common cold detection on the URTIC
database. This will be helpful for deploying the speech-based artificial intelligent sys-
tem on device which has memory constraints. Vicente et al. [17] derived Fisher vector
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Fig. 1 Block diagram of proposed method

using MFCC features and generative Gaussian mixture model for identification of
cold speech. Power normalization and principal component analysis on Fisher vec-
tors further improved the classifier performance. Warule et al. [43] classified cold
speech using only vowel-like region segments of speech. They concluded that MFCC
features extracted from only vowel-like region segments of speech reduces time and
computational complexity without overly affecting the recognition performance.

In biomedical diagnosis problems, the datasets are often highly imbalanced, with
only a small percentage of samples belonging to the positive, i.e., anomalous class.
In the URTIC dataset, only 2876 samples belong to the positive ‘Cold’ class, whereas
the ‘No cold’ category contains 25776 samples. The classifiers are biased toward the
majority class as they are trained tominimize classification error. This can lead tomost
of the samples being labeled as the negative class and failure of the classifier to detect
the disease. This paper proposes the use of a combination of sampling strategies, a
weighting scheme, and a modified binary cross-entropy loss function for training the
classifiers to overcome the dataset imbalance. Thus, the classifiers favor the minority
class, leading to an improved average recall.

The paper is organized as follows. Section2 is an in-depth explanation of the pre-
processing, feature extraction and sampling method. Section3 explores the classifiers.
The results are shown in Sect. 4 and results are discussed in Sect. 5. Finally, the con-
clusion is drawn in Sect. 6.

2 Method

The proposed method for the detection of common cold from speech signals is illus-
trated in Fig. 1. The method involves pre-processing of speech data, feature extraction,
sampling strategies and classification using logistic regression, random forest, gradient
boosted trees, and deep neural network classifiers.

2.1 Pre-Processing

The pre-processing steps include normalization and removal of silence regions from
the speech samples. The speech samples are normalized such that they have zero mean
and unit variance. Then, the regions of silence are removed from the speech sample
based on short-term energy and spectral centroid thresholds. After this, we extract the
desired features from the speech samples.
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2.2 Feature Extraction

Feature extraction is the process of extracting the relevant information from the speech
signal. For the proposed work, we have used Mel-frequency cepstral coefficients
(MFCCs) and linear prediction coefficients (LPCs).

2.2.1 Mel-Frequency Cepstral Coefficients

Human speech is filtered by the shape of the vocal tract, which manifests itself in
the envelope of the short time power spectrum. Mel-frequency cepstral coefficients
capture this envelope. In this work, we extract 13 Mel-frequency cepstral coefficients
(MFCCs), followed by the delta and delta-delta coefficients from the speech samples,
giving a 39 sized feature vector. Mel scale is used to divide the frequency into sub-
bands, and then, DCT is used to extract the MFCCs [22].

The speech samples are first divided into frames of 20ms with a shift of 10ms.
Hamming window is used in each of the frames. This makes the ends of the frames
continuous and prevents distortions while taking discrete Fourier transform (DFT). A
2048-point DFT is then applied on each frame, and the positive part of the spectrum
is taken. The power spectrum of the speech sample is computed as

P = |DFT(xi )|2/N (1)

where N is taken as 2048 and x i is the i th frame of individual speech sample. Next,
the Mel filter points are computed to obtain a Mel filter bank. The conversion from
Hertz scale to Mel scale is given by

M( f ) = 1125ln(1 + f /700) (2)

where f is frequency in Hertz. In the Mel scale, 40 equally spaced triangular band-
pass filters are constructed with a response of 1 at the center frequency and linearly
decreasing till 0 at the center frequencies of adjacent filters. The filter banks are
converted back into Hertz scale and normalized. The log of the power spectrum is
then filtered by the normalized Mel filter bank to obtain the filter bank coefficients.

The MFCCs are highly correlated, and so DCT-III is applied to decorrelate them.
The inverse DCT is computed as

Xk = 1√
2
x0 +

N−1∑

n=1

xn cos

[
π

N
n

(
k + 1

2

)]
(3)

where k = 0, 1, ..., N − 1, x n is the n th filter bank coefficient, and N is 2048. The first
13 coefficients are retained, and the rest are discarded.

In addition to these coefficients, the delta coefficients are also computed to represent
the dynamics of the coefficients. The delta coefficients are computed as

dt =
∑

n

n (Ct+n − Ct−n) / 2
∑

n

n2 (4)
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Fig. 2 Mean values of the MFCC feature for the Cold and No cold classes of speech

Fig. 3 Mean Values of the delta MFCC feature for the Cold and No cold classes of speech

where N is taken as 2 and t is the frame number. Delta-delta or acceleration coefficients
are computed from the delta coefficients. Thus, we obtain a total 39 features from each
speech frame, which are then used for the purpose of classification.

Figure2 shows the mean values of 13 MFCC features. The mean values are cal-
culated from first 1000 samples of training dataset. It is observed that variations of
MFCC features are different for ‘Cold’ class and ‘No cold’ class. Similar variations
are observed with delta MFCC features as shown in Fig. 3.

2.2.2 Linear Predictive Coding Coefficients

Linear predictive (LP) coding supplies us with an appropriate model for speech recog-
nition. It helps estimate the spectral envelope of the speech signal and is extensively
used for compressing the audio signal. It provides us a small number of speech param-
eters called the LP coefficients (LPCs) that relate to the characteristics of the vocal
tract and thus the sound being uttered. These coefficients can be used and stored as
templates for pattern recognition. LPC calculates the subsequent speech signal sample
based on the linear combination of the prior speech sample. The method to calculate
the LPC coefficients is shown in Fig. 4.
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Fig. 4 LPC feature extraction

Pre-EmphasisAfter sampling of the speech signal, pre-emphasis is required. Filtering
the speech signal gives us a smooth spectral shape of the same. Pre-emphasis filter
based on the relation of input/output on time domain which is shown by the equation

y(n) = x(n) − ax(n − 1) (5)

a is a constant of pre-emphasis filter, ordinary have 0.9 < a < 1.0.

Framing and windowing Here, the speech signal become some frame which overlaps
to avoid any signal loss. Windowing functions are applied to minimize discontinue
signal at the frame edge. Generally, we use hamming window with the form:

w(n) = 0.54 − 0.46 cos(2πn/(N − 1)) (6)

where 0 ≤ n ≤ N − 1.

Autocorrelation analysis The next step is autocorrelation analysis toward each frame
result by windowing. This process calculates the similarity between a piece of current
and a prior speech frame.

LPC Analysis and coefficient In this work, we have used the Burg algorithm for LPC
feature extraction. The Burg algorithm [28] is a constrained least-squares estimation
procedure. It uses the summation of the backward and forward linear prediction error
energies. Assuming an all-pole stationary stochastic process, the forward linear pre-
diction error fM,k is given by

fM,k = xk+M +
M∑

i=1

aM,i xk+M−i =
M∑

i=0

aM,i xk+M−i (7)

for 1 ≤ k ≤ N - M.
The backward linear prediction error bM,k is given by

bM,k =
M∑

i=0

a∗
M,i xk+i (8)

also for 1≤ k≤N -M. The sum of the forward and backward prediction error energies
are minimized to obtain the estimates and subject to the constraint that Levinson
recursion is satisfied, for all orders from 1 to M. We have also experimented with
covariance and the Yule–Walker algorithm for the LPC feature extraction. The best
performance is obtained utilizing the Burg algorithm. Therefore, we have reported all
results based on the LPC feature extracted using the Burg algorithm.
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2.3 Handling Data Imbalance

The URTIC dataset is highly imbalanced, with only 2876 samples having ‘Cold.’ On
the other hand, ‘No cold’ class contains 25776 samples. This can cause the classifier to
overfit on the ‘Cold’ samples and negatively affect its performance. To overcome this,
re-sampling techniques are employed on the training data to obtain a more balanced
dataset. First, the MFCC features are up-sampling using the synthetic minority over-
sampling technique (SMOTE) [8], which randomly generates synthetic samples from
the minority class samples. It is preferred to random over-sampling as we obtain new
samples, instead of replicating the ‘Cold’ samples. This is followed by under-sampling
using Tomek links.

Tomek links are closely related pairs of instances belonging to opposite classes.
Applying SMOTE may lead to the creation of many such pairs, making it difficult for
the classifier to separate into opposite classes [20]. We can remove either the majority
instance from the Tomek links or all such instances. We examine the effect of different
sampling ratios and the removal of majority class instances or all such instances on
classifier performance.

3 Classifier

For the classification of speech as ‘Cold’ and ‘No cold,’ different models have been
examined, namely logistic regression, random forest, gradient boosted trees, and deep
neural network. This section explains the architectures of these classifiers. The hyper-
parameters for the logistic regression, random forest gradient boosted trees classifiers
were set using Bayesian optimization, which uses the Bayes theorem to search for the
optimum hyperparameters which give the best UAR score. The HyperOpt toolkit [5]
has been used to implement the hyperparameter tuning of all classifiers.

3.1 Logistic Regression Classifier

Logistic regression (LR)-based classifier attempts to describe the relationship between
a discrete response variable and one or more independent variables [6]. The logistic
distribution function proposed by Cox [12] is given as follows:

π(x) = ex

1 + ex
(9)

The range of the logistic function is between 0 and 1, which can be interpreted
as probabilities of a sample belonging to a particular class. In this work, feature
vector is initially sampled using randomunder-sampling, SMOTE, or a combination of
SMOTEandTomek links, and is then classifiedwith a cost-sensitive logistic regression
classifier. Additionally, L2 regularization has been used to avoid overfitting. During
training, value of C was 0.5 used for linear regression.



Circuits, Systems, and Signal Processing (2023) 42:1707–1722 1715

3.2 Random Forest Classifier

Random forest (RF) classifier is an ensemble of a set of decision trees built in randomly
selected subspaces of the feature space [19]. Since decision trees are vulnerable to
overfitting on the training data, random forest classifier is preferred. For classification
problems, the class selected by majority of the trees in the forest is taken as the output
class. To overcome the imbalanced data problem in our work, the feature vector is first
re-sampled and then classified using a cost-sensitive random forest classifier.

3.3 Gradient Boosted Trees

Gradient boosted trees or XGBoost comprise of an ensemble of weaker decision
trees. It optimizes the performance of decision trees by training them in a gradual,
additivemanner. In this work, the open-sourceXGBoost package has been used, which
speeds up learning of gradient boosted trees using parallel and distributed computing.
In addition, classes have been weighted to combat the dataset imbalance. During
training, maximum tree depth was set to 5.0 and the L1 and L2 regularization rates
were considered as 102.0 and 0.09with the complexity control of 2.7 and 6.0minimum
child weight.

3.4 Deep Neural Network

Numerous studies have shown the usefulness of neural networks for medical diagnosis
[2–4, 30, 31, 40, 42]. Deep neural network (DNN) consists of multiple neural network
layers, i.e., hidden layers between the input and output layers. This work uses a deep
neural network with multiple dense hidden layers for the detection of cold. Feature
vector is scaled to zero mean and unit standard deviation. To handle the skew in
dataset distribution, the feature vector was re-sampled using random under-sampling,
SMOTE, and a combination of SMOTE and Tomek links. The hidden layers are
followed by dropout to curb overfitting and improve generalization. The output layer
has a sigmoid node to represent the final class probabilities.

Since the dataset is highly skewed toward the majority ‘No cold’ class, a custom
loss function is used to optimize the classifier, allowing weights to be trained such
that both classes are given equal importance. The backpropagation algorithm is used
to train DNN, computing the gradient of the loss function with respect to each weight
before iterating backward through the layers. The cross-entropy loss functionmeasures
the performance of a classification model whose output is between 0 and 1. The loss
function separately calculates the binary cross-entropy loss for both classes.

Mean positive error (MPE) is the binary cross-entropy loss for the positive ‘Cold’
class and mean negative error (MNE) is the binary cross-entropy loss for the negative
‘No cold’ class. Mean positive error is calculated as:

mpe = −1

N

N∑

i=1

yi log(p(yi )) + (1 − yi )(1 − p(yi )) (10)
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Fig. 5 The proposed architecture of DNN

and mean negative error is given by:

mne = −1

M

M∑

i=1

yi log(p(yi )) + (1 − yi )(1 − p(yi )) (11)

Here, N is the number of samples belonging to the positive ‘Cold’ class, M is the
number of samples belonging to the negative ‘No cold’ class, yi is the true class
probability, and p(yi ) is the predicted class probability. The total classification error is
the sumofmean positive and negative errors. To further optimize the classifier tomodel
the dataset better, we have used a custom loss function that separately calculates the
binary cross-entropy loss for both classes. This allows the weights to be trained such
that both majority and minority classes are given importance. In addition, threshold
moving has been used to change the decision threshold of the classifier to counteract
the dataset imbalance [10].

The architecture of the proposed DNN classifier used for classification is shown in
Fig. 5. Three hidden layers are used, with the number of units per dense layer being
100, 100, and 200, respectively. A dropout of 0.1 or 0.2 is used after each dense
layer to overcome overfitting. The network is trained up to 100 epochs, with early
stopping used to stop the training once the number of true positives for the validation
set stops increasing. The dense layers have been initialized using He Initialization
and L2 regularization has been used after each dense layer. In addition, the model is
trained using Adam optimizer and learning rate of 0.00001. As mentioned, a custom
loss function is used to ensure that both the classes are taken into equal consideration
while training. Figure6 shows the loss vs epoch curve during the training of DNN
using a combination of MFCC and LPC features.

4 Results

The Upper Respiratory Tract Infection Corpus (URTIC) dataset used to evaluate the
proposed method. The metric used for evaluation of the classifiers is unweighted
average recall (UAR), which is the average of the individual recalls of the positive and
negative classes. Additionally, the performance of the suggested method is evaluated
in relation to the impacts of various re-sampling techniques.

The performance of the proposed deep learning-based technique using MFCC and
LPC features is evaluated. The performance comparison of the proposed deep learning-



Circuits, Systems, and Signal Processing (2023) 42:1707–1722 1717

Fig. 6 The loss vs epoch curve
during the training of DNN
using a combination of MFCC
and LPC features

Table 1 UAR(%) scores of different methods on the URTIC dataset

Feature LR RF XGBoost DNN

MFCC 62.90 65.32 65.21 65.64

LPC 62.03 62.87 60.20 59.78

MFCC + LPC 64.80 64.67 66.49 64.97

MFCC + LPC with Under-sampling 65.11 64.95 65.51 63.64

MFCC + LPC with SMOTE + Tomek links 64.67 65.69 66.71 67.71

based method with other classification techniques such as logistic regression, random
forest, and gradient boosted trees is also discussed in this section. Table 1 shows the
classification results obtained with proposed deep learning-based techniques along
with the other techniques using different re-sampling techniques on theURTICdataset.
The 39-dimensional MFCC features give the highest UAR of 65.64% using DNN.
The 32-dimensional LPC features give the highest UAR of 62.87% using a random
forest classifier. For the logistic regression classifier, a combination of MFCC and
LPC features and under-sampling with 0.5 sampling ratio gave the best UAR score
of 65.11%. The random forest classifier performs slightly better, giving a UAR of
65.69% for combined MFCC and LPC features with SMOTE ratio of 0.2 and removal
of all Tomek links. The open-source XGBoost implementation of gradient boosted
trees outperformed the other ML classifiers with a UAR of 66.49% for combined
MFCC and LPC features without any re-sampling, indicating that gradient boosted
trees can be preferred tomodel imbalanced data. Using custom loss function, threshold
shifting and combination of SMOTE and Tomek links for re-sampling, the deep neural
network gave the highest UAR score of 67.71%. The confusion matrix of DNN for
best UAR using a combination of MFCC and LPC features is shown in Fig. 7. We
have achieved 69.82% recall for the ‘Cold’ class (sensitivity) and 65.60% recalls for
the ‘No-cold’ class (specificity). This shows that the proposed DNN-based framework
with a combination of MFCC and LPC features is effective in classifying the ‘Cold’
and ‘No-cold’ classes. To validate our proposed framework for the classification of
‘Cold’ and ‘No-cold’ speech, we have performed the cross-validation into the training
and testing set, which gives the UAR of 64.72%.
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Fig. 7 The confusion matrix of
DNN for classification of the
URTIC dataset
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5 Discussion

This section discusses the performance comparison of the proposedmethod with other
state-of-the-art methods. Table 2 shows the performance of the proposed method com-
pared to the state-of-the-art methods using the URTIC dataset. The INTERSPEECH
2017 ComParE Challenge’s Cold Sub-Challenge used the URTIC dataset, and the
baseline results are reported in [33]. The UAR achieved using the proposed methods
is greater than the baseline results. Here, we want to underline that the bag-of-audio-
words (BoAW) features and the 6373-dimensional ComParE-2013 feature set were
used to obtain the baseline results. From the ComParE feature set, one codebook for
65 LLD and 65 deltas of these LLD was obtained for BoAW [32]. The table shows
that, with the exception of Huckvale and Beke’s work (MOD + SVM) [21], theMFCC
and LPC features with SMOTE–Tomek links and DNN classifier provide a greater
UAR than other techniques. Huckvale and Beke used 288-dimensional MOD feature
vector with an SVM classifier and they achieved UAR of 67.95%. In contrast, using
only 71-dimensional MFCC and LPC feature vector with DNN classifier, we obtained
a comparable UAR result. In our previous study, with 50-dimensional features based
on variational mode decomposition (VMD) and an SVM classifier, we were able to get
a UAR of 66.84% [15]. Kao et al. [25] utilized alternative neural network-based dis-
criminative autoencoders andMFCC features to report 65.81%. Using 88-dimensional
extended Geneva minimalistic acoustic parameter set (eGeMAPS), Teixeira et al.
[37] reported 66.9% and 66.7% UAR using unencrypted neural networks (NN) and
encrypted neural networks (ENN), respectively. Vicente et al. [17] used SVM with
the Fisher vector (FV) and principal component analysis (PCA) technique and MFCC
features to achieve 64.92%. Warule et al. [43] achieved 61.93% UAR using deep neu-
ral network and framewise MFCC features extracted from vowel-like regions of the
speech signal.

The task of detection of cold from speech signals proved to possess unique dif-
ficulties. The available URTIC dataset was highly skewed in favor of the ‘No cold’
class. Initially, we obtained a verymisleading value of prediction accuracy,which upon
inspection, showed that ourmodelwas simply classifying all the samples as having ‘No
cold,’ defeating the whole purpose of the study. Hence, the main challenge in the study
is to overcome this imbalance in the dataset. In this study, we have considered various
data re-sampling techniques for dealing with imbalanced data. We have employed an
approach that combined the SMOTE with the Tomek links technique. This approach
outperforms the other data balancing techniques. The SMOTE balancing is an over-
sampling method in which the minority class is over-sampled by producing synthetic



Circuits, Systems, and Signal Processing (2023) 42:1707–1722 1719

Table 2 UAR(%) Performance comparison of the proposed method with the state-of-the-art methods on
the URTIC dataset

Model UAR(%)

ComParE functionals + SVM (Schuller et al.) [33] 64.00

ComParE BoAW + SVM (Schuller et al.) [33] 64.20

VOI + SVM (Huckvale and Beke) [21] 66.34

VOW + SVM (Huckvale and Beke) [21] 66.47

MOD + SVM (Huckvale and Beke) [21] 67.95

GPPS + SVM (Huckvale and Beke) [21] 66.07

MFCC + GMM (Cai et al.) [7] 64.80

CQCC + GMM (Cai et al.) [7] 65.40

PSP + SVM (Suresh et al.) [35] 64.00

VMD + SVM (Deb et al.) [15] 66.84

MFCC + Autoencoder (Kao et al.) [25] 65.81

eGeMAPS + NN (Teixeira et al.) [37] 66.90

MFCC + FV + PCA + SVM (Vicente et al.) [17] 64.92

Vowel-like regions MFCC + DNN [43] 61.93

Proposed (MFCC + LPC + SMOTE–Tomek links + DNN) 67.71

samples [8]. These observations are produced by placing synthetic points on the line
linking any two observations. The close pair of instances of observation from opposite
classes are known as Tomek links. The Tomek links are an under-sampling method
in which the observation from the majority class is removed for each Tomek link to
increase the boundary between the two classes. In SOMTE-Tomek links, SMOTE is
used initially to extend the separation border and balance the majority and minority
classes, followed by eliminating majority class observations from each Tomek link.
The Tomek links were successfully used as a data cleaning strategy to eliminate sam-
ples produced around the categorization boundary by the SMOTEmethod. Hence, the
highest UAR is obtained using the SMOTE–Tomek links for ‘Cold’ and ‘No cold’
classification compared to other data re-sampling methods.

Though the proposed framework provides higher UAR than the baseline results
of ComParE 2017, Cold Sub-challenge, the level of recognition is quite low. The
recognition performance of the proposed framework can be improved by collecting
more speech samples for the ‘Cold’ class as only 10% recordings belong to ‘Cold’
class. The URTIC dataset does not contain any information except the class labels.
Hence, it is challenging to achieve higher performance bygivingmore attributes related
to the speaker. More features that describe the properties of the vocal tract as common
cold significantly affect the properties of the vocal tract can be utilized to increase
the performance of the proposed framework. The proposed framework provides good
resultswith the simple deep neural network and combination of 71-dimensionalMFCC
and LPC features. Hence, this system can be embedded in smart devices to detect and
monitor common cold and related illnesses, which may be helpful in monitoring the
patient’s health remotely and avoiding spreading these diseases.
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6 Conclusion

In this study, we have developed a deep learning-based classification model that can
actually predict from speech whether a person has a cold or not. The Mel-frequency
cepstral coefficients (MFCC) and linear predictive coding (LPC) are used to extract
information about the common cold from the speech signal. It is difficult to meet the
baseline performance standards because the URTIC dataset only contains class labels
and dataset is highly imbalanced. Re-sampling of the dataset has been employed to bal-
ance the distribution of the dataset. A combination of SMOTE and Tomek links based
down-sampling gave the best results, compared to their individual performance. The
performances were evaluated using different classifiers. Deep neural network-based
classifier gave a reasonableUAR score. The customized loss function further improved
the performance. In this work, we have achieved a UAR of 67.71% which is higher
than baseline results using the proposed simple DNN architecture and a combination
of 39-dimensional MFCC and 32-dimensional LPC features. The proposed model is
less complex and uses a smaller feature set while giving comparable results to other
state-of-the-art methods. The proposed methodology can be used to automatically and
remotely detect the common cold and related illnesses.
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