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ABSTRACT

Transformer architectures have widespread applications, particularly in Natural Language Processing
and Computer Vision. Recently, Transformers have been employed in various aspects of time-series
analysis. This tutorial provides an overview of the Transformer architecture, its applications, and a
collection of examples from recent research in time-series analysis. We delve into an explanation of
the core components of the Transformer, including the self-attention mechanism, positional encoding,
multi-head, and encoder/decoder. Several enhancements to the initial Transformer architecture are
highlighted to tackle time-series tasks. The tutorial also provides best practices and techniques to
overcome the challenge of effectively training Transformers for time-series analysis.

Keywords Transfomer, time-series, self-attention, positional encoding

1 Introduction

Transformers belong to a class of machine learning models that use self-attention or the scaled dot-product operation
as their primary learning mechanism. Transformers were initially proposed for neural machine translation - one of
the most challenging natural language processing (NLP) tasks [1]. Recently, Transformers have been successfully
employed to tackle various problems in machine learning and achieve state-of-the-art performance [2]. Apart from
classical NLP tasks, examples from other areas include image classification [3], object detection and segmentation
[4], image and language generation [5], sequential decision-making in reinforcement learning [6], multi-modal (text,
speech, and image) data processing [7], and analysis of tabular and time-series data [8]. This tutorial paper focuses on
time-series analysis using Transformers.

Time-series data consist of ordered samples, observations, or features recorded sequentially over time. Time-series
datasets often arise naturally in many real-world applications where data is recorded over a fixed sampling interval.
Examples include stock prices, digitized speech signals, traffic measurements, sensor data for weather patterns,
biomedical measurements, and various kinds of population data recorded over time. Time-series analysis may
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include processing the numeric data for multiple tasks, including forecasting, prediction, and classification. Statistical
approaches involve using various types of models, such as autoregressive (AR), moving average (MA), auto-regressive
moving average (ARMA), AR Integrated MA (ARIMA), and spectral analysis techniques.

Machine learning models with specialized components and architectures for handling the sequential nature of data have
been extensively proposed in the literature and used by the community. The most notable of these machine learning
models are Recurrent Neural Networks (RNNs) and their popular variants, including Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU) [9], [10], [11], [12]. These models process batches of data sequentially, one sample
at a time, and optimize unknown model parameters using the well-known gradient descent algorithm. The gradient
information for updating model parameters is calculated using back-propagation through time (BPTT) [13]. LSTMs
and GRUs have been successfully used in many applications [14], [15], [16], [17], [18]. However, they suffer from
several limitations due to the sequential processing of input data and the challenges associated with BPTT, especially
while processing datasets with long dependencies. The training process of LSTM and GRU models also suffers from
vanishing and exploding gradient problems [19], [20]. While processing long sequences, the gradient descent algorithm
(using BPTT) may not update the model parameters as the gradient information is lost (either approaches zero or
infinity). Additionally, these models generally do not benefit from the parallel computations offered by graphical
processing units (GPUs), tensor processing units (TPUs), and other hardware accelerators [21]. Certain architectural
modifications and training tricks may help LSTMs and GRUs mitigate gradient-related problems to a certain extent.
However, challenges in learning from long data sequences with the limited use of parallelization offered by modern
hardware impact the effectiveness and efficiency of RNN-based models [22].

The Transformer architecture allows for parallel computation of sequential data [23] without a substantial increase in
the complexity of the network [24]. Transformers, owing to their architecture, can use parallel processing capabilities
of Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) [25]. Given the attention-based operations,
Transformers can correlate information from all elements in the sequence to each other in parallel without suffering
from vanishing gradients as is the case with RNNs and their variants [26],[27], [28].

Transformers have substantially improved long-term and multi-variate time-series forecasting [29], [30]. However,
the self-attention mechanism has high computational complexity and memory requirements hampering long sequence
modeling. Various modifications have been proposed in the literature to optimize Transformer performance for time-
series tasks [31], [32], [33]. Training large Transformer models is challenging, especially for massive datasets. Many
techniques have been proposed in the literature to efficiently train large Transformer models. These techniques include
layer-wise adaptive large batch optimization [34], distributed training [35], knowledge inheritance [36], progressive
training [37], and mapping parameters of smaller models to initialize larger models [38].

The contribution of this tutorial includes,

1. Illustrative explanation of the intuition behind the Transformer operations. These intuitions help us understand
how Transformers revolutionized NLP tasks.

2. Discuss various aspects and techniques introduced in the Transformer architecture and internal operations for
efficient time-series analyses.

3. Compilation of some use cases of Transformers for time-series analysis, including comparative performance.

4. Guidelines on techniques and tricks for efficiently training Transformers.

Transformers-based models have revolutionized applications in NLP, computer vision, time-series analysis, and many
other areas. However, we have limited our study to time-series applications. Another limitation of the study is related to
the variations in the architectures of Transformer models. In recent years, hundreds of variations have been proposed
for performance improvement of Transformers. However, we focused on the basic architecture proposed by Vaswani et
al. [1].

We start by providing an overview of the Transformer architecture based upon self-attention, scaled dot-product,
multi-head, and positional encoding in Section 2. Section 3 describes the advancements of Transformers for time-series
applications. We then discuss some of the most popular recent time-series Transformer architectures in Section 4.
Finally, we provide “best practices” for training Transformers in Section 5 before concluding the paper.

2 Transformers: Nuts and Bolts

We begin by explaining the inner workings of the Transformer as proposed by Vaswani et al. in 2017 to solve the
challenging problem of neural machine translation [1]. We then proceed with a deep dive into the operations performed
inside each component of Transformers and the intuition behind those operations. Several variations of the Transformer
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architecture have been developed. However, the intuition behind the basic operations used remains the same and is
covered in this Section [39, 40, 41].

2.1 The Transformer Architecture

The original Transformer is a sequence-to-sequence model designed in an encoder-decoder type of configuration that
takes as input a sequence of words from the source language and then generates the translation in the target language [1].
Given that the length of the two sequences and the vocabulary size are not necessarily the same, the model has to learn
to encode the source sequence into a fixed-length representation that it can then decode to generate the target sequence
in an auto-regressive fashion [42]. This auto-regressive property comes with a constraint of requiring information to
propagate back to the beginning of the sequence during the generation of the translated sequences. The same constraint
holds for time-series analysis.

The machine learning models have been limited by how far back the impact of a specific data sample can be considered
during learning. In some cases, the auto-regressive nature of the training of machine learning models leads to
memorization of past observations rather than the generalization of the training examples to new data [43, 44].
Transformers address these challenges by using self-attention and positional encoding techniques to jointly attend to
and encode the ordered information as current data samples in the sequence are analyzed. These techniques keep the
sequential information intact for learning while eliminating the classical notion of recurrence [45]. These techniques
further allow Transformers to exploit parallelism offered by GPUs and TPUs. Recently, there have been some research
attempts to incorporate recurrent components in Transformers [46].

A Simple Translation Example. Consider an example of translating “I like this cell phone” to German “Ich mag
dieses Handy” using a classical machine translation model (an LSTM or GRU) and a Transformer as illustrated in
Figure 1. The input words must be first processed using an embedding layer to convert raw words into vectors of size
d. The concept of embedding a discrete word into a continuous space of real numbers is a common practice in NLP
[47, 48, 49, 50]. In classical language translation models, each embedded word in a sentence corresponds to a specific
RNN/LSTM/GRU cell. The operations in the subsequent cells depend on the output from the previous cell. Therefore,
each embedded word in the input is processed sequentially (after processing the preceding word). In a model based on
the Transformer architecture, the entire input sequence “I like this cell phone” is fed into the model simultaneously,
eliminating the need for sequential data processing. The sequence order is tracked using positional encoding.

2.2 Self-Attention Operation

The Transformer architecture is based on finding associations or relationships between various input segments (after
adding the position information in these segments) using the dot product [51]. Let {xi}ni=1,x ∈ Rd be a set of n words
(or data points) in a single sequence. The subscript i represents the position of the vector xi, equivalently the position
of the word in the original sentence or the word sequence. The self-attention operation is the weighted dot product of
these input vectors xi with each other.

2.2.1 The Intuition Behind Self-Attention

We can think about the self-attention operation as a two-step process. The first step calculates a normalized dot product
between all pairs of input vectors in a given input sequence. The normalization is performed using the softmax operator,
which scales a given set of numbers such that the output numbers sum to unity. The normalized correlations are
calculated between an input segment xi and all others j = 1, . . . , n:

wij = softmax
(
xT
i xj

)
=

ex
T
i xj∑

k e
xT
i xk

, (1)

where
∑n

j=1 wij = 1 and 1 ≤ i, j ≤ n. In the second step, for a given input segment xi, we find a new representation
zi, which is a weighted sum of all input segments {xi}nj=1:

zi =

n∑
j=1

wijxj , ∀ 1 ≤ i ≤ n. (2)

We note that in Equation 2, for any input segment xi, the weights wij add up to 1. Thus, the resulting representation
vector zi will be similar to the input vector xj having the largest attention weight wij . The largest attention weight
has, in turn, resulted from the greatest correlation value, as measured by the normalized dot product between xi and
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Figure 1: An example of a simple language translation task performed using (a) a classical model, such as an RNN,
LSTM, or GRU, and (b) a Transformer.

xj . Note that zi in Equation 2 retains the same position in the sequence as xi. Proceeding further with the next output
vector zi+1, the new set of weights corresponding to xi+1 are calculated and used.

Consider the sentence, “Extreme brightness of the sun hurts the eyes”. Figure 2 shows the sequence of vector mappings
through the self-attention process and provides insight into the role of the self-attention operation. The vector zsun
would be weighted more by the first occurrence of ‘the’ as compared to the second occurrence of ‘the’. Similarly, zeyes
would be more heavily weighted by xhurts and xthe (second occurrence of ‘the’) than xof and the first occurrence of
‘the’.

2.2.2 Linearly Weighting Input Using Query, Key, and Value

The self-attention operation in Transformers starts with building three different linearly-weighted vectors from the input
{xi}ni=1, referred to as query q ∈ Rs1 , key k ∈ Rs1 and value v ∈ Rs. Intuitively, a query is a question that can
be one word or a set of words. An example is when one searches for the word ‘network’ on the internet to find more
information about it. The search engine maps the query into a set of keys, e.g., neural, social, circuit, deep learning,
communication, computer, and protocol. The values are the candidate websites that have information about the word
‘network’.

For an input xi, the query qi, key ki and value vi vectors can be found using:
qi = Wqxi, ki = Wkxi, and vi = Wvxi, (3)

where Wq and Wk ∈ Rs1×d, Wv ∈ Rs×d, represent learnable weight matrices. The output vectors {zi}ni=1 are given
by,

zi =
∑
j

softmax
(
qT
i kj

)
vj . (4)
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Figure 2: The role of self-attention for the example sentence “Extreme brightness of the sun hurts the eyes”. The
self-attention operation determines the relative correlation of each word with all the words in the sequence. In this
example, the first occurrence of the word the is most correlated to the word sun, whereas the second occurrence of the
word the has the highest correlation with the word eyes. The relative attention weights shown are generated using the
Transformer attention visualization tool [52].

Figure 3: A set of weighted linear transformations applied to the input vector of length d = 6 are presented. The
resulting vectors are referred to as query, key, and value, each of size s1 = s = d. There are a total of n such inputs in
each sequence processed by the Transformer, which result in n query, n key, and n value vectors.

We note that the weighting of the value vector vi depends on the mapped correlation between the query vector qi at
position i and the key vector kj at position j. The value of the dot product tends to grow with the increasing size of
the query and key vectors. As the softmax function is sensitive to large values, the attention weights are scaled by the
square root of the size of the query and key vectors dq as given by

zi =
∑
j

softmax

(
qT
i kj√
dq

)
vj . (5)

In matrix form, we have:

Z = softmax
(
QKT

√
dk

)
V, (6)

where Q and K ∈ Rs1×n, and V ∈ Rs×n, Z ∈ Rs×n and T represents the transpose operation.
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2.3 Multi-Head Self-Attention

The input data X may contain several levels of correlation information, and the learning process may benefit from
processing the input data in different ways. Multiple self-attention heads are introduced that operate on the same input
in parallel and use distinct weight matrices Wq,Wk, and Wv to extract various levels of correlation between the input
data. For example, consider the sentence “Do we have to turn left from here or have we left the street behind?”. There
are two occurrences of the word “left” in the sentence. Each occurrence has a different meaning and, consequently, a
different relationship with the rest of the words in the sentence. As shown in Figure 4, Transformers can capture such
information using multiple heads. Each head is built using a separate set of query, key, and value weight matrices and
computes self-attention over the input sequence in parallel with other heads. Using multiple heads in a Transformer is
analogous to using multiple kernels at each layer in a convolutional neural network, where each kernel is responsible
for learning distinct features or representations [53].

Figure 4: Multi-head self-attention example. Two heads can learn different attention weights for two different uses of
the words “left” based on their meaning in the sentence. The relative attention weights shown are generated using the
Transformer attention visualization tool [52].

The following three steps can describe the operations involved in multi-head self-attention.

2.3.1 Step 1 - Generation of Multiple Sets of Distinct Query, Key, and Value Vectors

Assuming we have a total of r heads, a total of r sets of weight matrices {W (l)
q ,W

(l)
k ,W

(l)
v }rl=1 will generate r sets of

distinct query, key and value matrices for the input X . The process is illustrated in Figure 5 for the case of an input
with three vectors (n = 3) of dimension six each (d = 6) and s1 = s = 4. This leads to the input matrix X ∈ R6×3,
W

(l)
q ,W

(l)
k ,W

(l)
v ∈ R4×6 and Q(l),K(l), and V (l) ∈ R4×3.

2.3.2 Step-2 - Scaled Dot Product Operations in Parallel

This step consists of implementing the following relationship as shown in Figure 5:

Z = softmax
(
QKT

√
dk

)
V. (7)

2.3.3 Step-3 - Concatenating and Linearly Combining Outputs

Finally, we concatenate outputs Z(l) from all r heads and linearly combine using a learnable weight matrix Wo ∈ Rd×rs.
The output is a matrix Z ∈ Rd×n. It is important to note that the input and output of the multi-head self-attention are of
the same dimension, that is, dimension (X) = dimension (Z).

2.4 Building Transformers Using Encoders and Decoders

The Transformer architecture is generally composed of multiple instances of two types of components referred to as
encoders and decoders.

2.4.1 The Encoder Block

As shown in Figure 6, an encoder block consists of a multi-head self-attention layer and a feed-forward layer connected
back-to-back with residual connections and normalization layers. Residual connections are a commonly used technique
for training deep neural networks and help in training stabilization and learning [54]. The layer normalization operation
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Figure 5: Multi-head attention steps. The example consists of two heads, and the input sequence comprises of three
words. The input {xi}ni=1 is mapped to word embedding, and positional encoding vectors are added, resulting in
the input matrix X ∈ R6×3. Two sets of query, key, and value matrices, Q(l),K(l), and V (l) ∈ R4×3 (l = 2), are
constructed corresponding to each attention head. The self-attention operation applied on both sets of query, key, and
value matrices produces output matrices Z(1) and Z(2) ∈ R4×3. A linear operation, involving a learnable parameter
Wo ∈ Rd×rs, follows the concatenation of Z(1) and Z(2) to map it to the same dimension as input matrix X . Output
matrix Z ∈ R6×3 accumulates information from all the attention heads.

is also commonly used in neural networks for processing sequential data. It helps with the faster convergence of the
model training [55]. The feed-forward layer comprises two linear layers with a ReLU activation function [56]. The
output of an encoder block is used as an input to the next encoder block. The input to the first encoder block consists of
the sum of word embeddings and positional encoding (PE) vectors.

2.4.2 The Decoder Block

Each decoder block consists of similar layers and operations as the encoder block. However, a decoder receives two
inputs, one from the previous decoder and the second from the last encoder. Inside a decoder, three layers include
(1) multi-head self-attention, (2) an encoder-decoder attention layer, and (3) a feed-forward layer. There are residual
connections and layer normalization operations, as shown in Figure 6. Inside the encoder-decoder attention layer, a set
of key and value vectors are generated from the output of the last encoder. The query vectors are produced from the
output of the multi-head self-attention layer preceding the encoder-decoder layer.

2.4.3 Masking in Self-Attention

Inside the decoder block, the multi-head self-attention layer masks parts of the target input during the training phase.
This operation ensures that the self-attention operations do not involve future data points, i.e., the values the decoder is
expected to predict. During the training phase, the model’s predicted output is not fed back into the decoder. Instead,
the ground truth target (word embedding) is used to aid the learning. During the testing phase, the predicted words in
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Figure 6: An encoder and decoder block is presented. Each encoder block is built using multi-head self-attention and
feed-forward layers with residual connections around each layer followed by the layer normalization operation. The
decoder block is similar to the encoder block with an additional encoder-decoder attention layer. This encoder-decoder
attention layer receives the output of the topmost encoder block and uses it to generate the key and value vectors. The
query vectors are produced from the output of the multi-head self-attention layer preceding the encoder-decoder layer.

the sequence are fed back to the decoder after passing them through a word embedding layer and the addition of PE, as
shown in Figure 7.

2.4.4 Stacking Encoders and Decoders

A Transformer model may contain stacks of multiple encoder and decoder blocks depending on the problem being
solved, as shown in Figure 7 [57]. The stacked encoder/decoder blocks resemble multiple hidden layers used in
traditional neural networks. However, it is important to note that, generally, there is no reduction in the representation
dimensions after processing by the encoder or the decoder. The input to the first encoder block is the word sequence
mapped into word embeddings with PEs added.

2.4.5 The Output

The output from the last encoder is fed into each decoder along with the input from the previous decoder. Optionally,
the output of the last decoder block is passed through a linear layer to match the output dimension to the desired size,
e.g., target language vocabulary size. The mapped output vectors are then passed through a softmax layer to find the
probability of the next word in the output sequence. Depending on the desired task, the operations on the output from
the last decoder block can be selected for classification or regression.

2.5 Positional Encoding (PE)

The most important aspect of processing sequential data is incorporating the order of the sequence. The self-attention
operations do not include any information about the order of the input data in a sequence. Transformers (1) use the
concept of positional encoding to add the positional information to the input and (2) process the modified input in
parallel, thereby avoiding the challenges of processing data sequentially. The technique consists of calculating n PE
vectors (denoted as p ∈ Rd) and adding these to the input {xi}ni=1.

2.5.1 Sinusoidal PE

In the original work, the authors proposed sinusoidal functions for pre-calculating PE vectors for the input dataset [1].
The PE vectors do not include any learnable parameters and are added directly to the word embedding input vectors.
Figure 8 shows the formulation of PE vectors with Equations 8 and 9,
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Figure 7: Stacked encoder and decoder blocks used in Transformers are presented for the machine translation task.
The number of stacked blocks may vary depending on the task, analogous to multiple layers used in traditional neural
networks. Input to the stack of encoders is word embeddings enriched with positional information. The output of
the topmost encoder is fed into each decoder, which helps develop the relationship between the source and target
language. The output of the final decoder, mapped to the desired target language vocabulary, predicts the next word
in the sequence. During training, unlike the testing phase, the correct sequence is fed back into the decoder stack
irrespective of the predicted word.

PE(pos,2i) = pi = sin

(
pos

10000
2i
d

)
, (8)

PE(pos,2i+1) = pi+1 = cos

(
pos

10000
2i
d

)
, (9)

where pos is the position (time-step) in the sequence of input words, i is the position along the embedding vector
dimension ranging from 0 to d

2 − 1, and d represents the dimension of the embedding vectors. The number 10,000 used
in Equations 8 and 9 can differ depending on the input sequence’s length.

Figure 8: A set of positional encoding vectors are presented for an example input sequence. In this example, the
formulation of PE vectors uses a value of 1, 000 instead of 10, 000 (as in the original Transformer implementation).

9
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2.5.2 Relationship of the Sinusoidal PE with Binary Encoding

We can draw an analogy between the proposed sinusoidal functions for PE and alternating bits in a six-bit long binary
number, as shown in Figure 9 [1, 58]. In the binary format, the least significant bit (shown in the orange color) alternates
with the highest frequency. Moving to the left (indigo), the frequency of bit oscillation between 0 and 1 decreases.
Similarly, in the sinusoidal PE, as we move along the positional encoding vector, the frequency of the sinusoidal
function changes.

Figure 9: An analogy between binary format and sinusoidal function for positional encoding is presented. In the binary
format, the frequency of alternating bits decreases as we move from orange to purple bits. Sinusoidal PE shows a similar
behavior of changing frequency as we move along the positional encoding vector. We consider an input sequence of
length n = 8 and a word embedding vector of size d = 6.

2.5.3 Positional Encoding and Rotation Matrix

The PE vectors calculated using sinusoidal functions allow the model to learn about the relative position of words rather
than their absolute position. For example, in the sentence “I am enjoying this tutorial”, the absolute position of the word
‘this’ is 4. However, relative to the word ‘am’, the word ‘this’ is at position 3. Hence, for any fixed offset k, the PE

vector pi+k can be represented as a linear transformation of pi. Consider pi ∈ R2 and let T =

(
x1 y1
x2 y2

)
be a linear

transformation with a representing the absolute position of a word in an input sequence. We can write

T

[
sin (fia)
cos (fia)

]
=

[
sin (fi (a+ k))
cos (fi (a+ k))

]
, (10)[

x1 y1
x2 y2

] [
sin(fia)
cos(fia)

]
=

[
sin(fi(a+ k))
cos(fi(a+ k))

]
, (11)[

x1 sin(fia) + y1 cos(fia)
x2 sin(fia) + y2 cos(fia)

]
=

[
sin(fia) cos(fik) + sin(fik) cos(fia)
cos(fia) cos(fik)− sin(fia) sin(fik)

]
. (12)

Comparing both sides of Equation 12, we get x1 = cos(fik), y1 = sin(fik), x2 = − sin(fik), and y2 = cos(fik).
The transformation T can now be written as:

T =

[
cos(fik) sin(fik)
− sin(fik) cos(fik)

]
. (13)

We note that the transformation T is a rotation matrix and depends on the relative position of words, not the absolute
position. The sinusoidal PE function works for an input sequence of any length that need not be specified.

2.5.4 Combining Positional Encoding with Word Embeddings

The PE vectors are added to the word embeddings for each word in the input sequence. We may argue that the addition
operation may result in the loss of some information from both sources, i.e., PE and word embeddings. However, that
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may not be the case, given that both PE and word embeddings encode different types of information. The PE vectors
contain information about the location of a word in the input sequence, while the word embeddings encode semantic
and contextual information about the word. The two encoding schemes belong to different sub-spaces, which may be
orthogonal to each other. In this case, the addition of two such vectors may not result in the loss of information. We can
consider an analogy with the frequency modulation operation as done in digital communication — a signal of lower
frequency rides over a high-frequency signal without the two interfering with each other.

Now that we have discussed each operation individually as implemented in the Transformer architecture, Figure 10
depicts the end-to-end flow of the internal operations in the Transformer architecture with a single encoder and three
input words to predict the next three words.

11
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Figure 10: An example of a Transformer model with a single encoder is presented. The end-to-end sequence of
operations is shown for an input sequence of three words and an output prediction of the expected three following
words.

12
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3 Road Map of Transformers for Time-Series Analysis

Since the inception of Transformers in 2017 [1], there have been many advances in these networks for time-series
analysis. The original model mainly focuses on NLP tasks, but now the architecture has been expanded for classification
[59], time-series analysis [60], semantic segmentation [61], and more. Time-series data were not part of the initial
conception of Transformers. Many researchers have customized and improved the architecture’s performance for
time-series analysis. In order to illustrate how this research has unfolded, we will provide a road map of time-series
tasks and how the technology has advanced.

A commonality amongst the improvements is that the input layer is modified to accommodate time-series data. The
use of Transformers for time-series analysis, forecasting, and classification accomplishes two main tasks. Within each
task, we provide useful information and links to the datasets used in the state-of-the-art methods. The road map in this
section provides a comprehensive breakdown of the advancements made in the past few years and their relation to each
other. Towards the end of each subsection is a list of the models (and citations) which are included in that category.

3.1 Avenues of Improvement for Time-Series Transformers

Each part of this subsection outlines major contributions and research articles that have improved specific mechanisms
within the Transformer architecture. A schematic road map for studying Transformers in time-series analysis is shown
in Figure 11.

Figure 11: Overview of avenues of improvement for time-series Transformers. On the left is a recreation of the original
Transformer architecture [1]. The right side shows locations in the original architecture for each of the avenues of
improvement in subsection 3.1 with respect to the original Transformer model.

13
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3.1.1 Learning Type - Supervised, Self-supervised, or Unsupervised

Much of the mainstream Transformer applications rely on the training data, which is hand labeled. Labeling data can
take a considerable time, rendering the massive amount of unlabeled data unusable. Self-supervised and unsupervised
methods seek to improve Transformers by allowing them to learn, categorize, and forecast data that has not been labeled.
For example, there is a considerable amount of unlabeled satellite imaging data. In [62], a proposed model, SITS-BERT,
learns from unlabeled data to apply region classification from satellite imagery. Other self-supervised or unsupervised
learning models include anomaly Transformer [63] and self-supervised Transformer for Time-Series (STraTS) [64].

3.1.2 Data Preprocessing

Preprocessing is routinely performed to prepare the data to be fed into a machine learning model. Preprocessing
operations are known to impact the performance of machine learning models. Some researchers either add noise to
input data features [62], perform masking [65], or variable selection [66]. The operation of masking removes features
in the input thereby improving performance by making the model better at predicting missing features. A similar
concept applies when adding noise to the input for training, except that the features become relatively noisier but are
not replaced entirely. Both these operations can improve the robustness of the model so that it attains good accuracy
despite the noise in the training or test data.

3.1.3 Positional Encoding (PEs)

Some recent work has focused on improving upon the original PEs proposed in[1]. Transformers use PEs to embed
sequence/time information in the model input so that Transformers can process sequential data all at once, rather than
one at a time like an RNN, LSTM, or GRU. Embedding time (seconds, minutes, hours, weeks, years, etc.) into the input
allows the model to better analyze time-series data and leverage computational benefits offered by modern hardware,
including GPUs, TPUs, and others. Recently, timestamp embedding [65], temporal encoding [67], and other methods
have been proposed for creating Transformers which can be trained more efficiently [66].

3.1.4 Gating Operation

A gating operation merges the output of two encoder towers of a standard Transformer model for a single set of output
predictions [68]. This operation combines and selects multiple outputs from an encoder or decoder block. Gating also
benefits from applying non-linear data processing when appropriate. Application of gating in various ways is a likely
avenue for future innovations in Transformers, not only for time-series data but also for any other type of data. Several
architectures use gating, including Gated Transformer Networks (GTN) [68] and Temporal Fusion Transformers (TFT)
[66]. The proposed architecture of GTN uses gating techniques to incorporate information from two Transformer towers
into the output. It does this by concatenating the output of each tower. The TFT proposes Gated Linear Units (GLUs)
[69] to allow different parts of the network to be emphasized or suppressed based on the dataset.

3.1.5 Attention

The models discussed in this section improve upon Transformers for time-series data by modifying and improving the
attention mechanisms of the model.

The Tightly-Coupled Convolutional Transformer (TCCT) [70] proposes three architectures that improve upon attention.
The first is called Cross Stage Partial Attention (CSPAttention). This approach combines Cross Stage Partial Network
(CSPNet) [71] with a self-attention mechanism to reduce required resources. CSPNet reduces computations by
incorporating the feature map at the input into the output stage. CSPAttention applies this concept to just the attention
layers, considerably reducing the time complexity and memory required. The second approach changes the self-attention
distilling operation and how the self-attention blocks connect. Instead of canonical convolution, they use dilated causal
convolution. Dilated causal convolution enhances the locality and allows the Transformer to attain exponentially
receptive field growth. The third architecture is a pass-through mechanism that allows multiple self-attention blocks
to be stacked. This stacking is done by concatenating feature maps from multiple scales within the self-attention
mechanisms. This mechanism improves the ability of the Transformer to pick up on fine-scale features.

More approaches to improving attention include Non-Autoregressive Spatial-Temporal Transformer (NAST) [72]
and Informer [73]. The architecture proposed in NAST is referred to as the Spatial-Temporal Attention Block. This
approach combines a spatial attention block (which makes predictions across space) with a temporal attention block
(which makes predictions across time). The result improves learning in both the spatial and temporal domains. The
Informer architecture replaces the canonical self-attention with the ProbSparse self-attention mechanism, which is
more efficient in time complexity and memory usage. This Transformer also uses a self-attention distilling function to
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decrease space complexity. These two mechanisms make the Informer highly efficient at processing exceedingly large
input data sequences.

Lastly, we will discuss three architectures that improve upon attention, LogSparse Transformers [74], TFT [66], and
YFormer [75]. LogSparse Transformers introduce convolutional self-attention blocks, consisting of a convolutional
layer prior to the attention mechanism for creating the queries and keys. A temporal self-attention decoder is used
in TFT for learning the long-term dependencies in the data. The YFormer architecture proposes a sparse attention
mechanism combined with a downsampling decoder. This architecture allows the model to better detect long-range
effects in the data.

3.1.6 Convolution

The original Transformer architecture does not make use of convolutional layers. However, this does not mean that
Transformers would not benefit from the addition of convolutional layers. In fact, many Transformers designed for
time-series data have benefited from adding convolutional layers or incorporating convolution into existing mechanisms.
Most approaches incorporate convolutions either prior to or alongside the attention mechanism within the Transformer.

Approaches that improve upon Transformers via convolution include TCCT [70], LogSparse Transformers [74],
TabAConvBERT [65], and Traffic Transformers [67]. The TCCT uses a mechanism called dilated causal convolution
from the Informer [73] architecture, replacing the canonical convolutional layers. LogSparse Transformers also use
causal convolutional layers. As mentioned in the previous section, this layer generates queries and keys for the
self-attention layers, called convolutional self-attention. TabAConvBERT employs one-dimensional convolutions
considering that it is naturally effective for time-series data. Traffic Transformers [67] incorporate concepts from graph
neural networks into the convolutional layers to produce Graph Convolutional Filters.

3.1.7 Interpretability/Explainability

Transformers are a relatively new class of machine learning models compared to CNNs or LSTMs. For their reliable and
trustworthy use, we must understand the black-box nature of these models and explain their decisions. The black-box
phenomenon is a prevalent problem in artificial intelligence. This refers to the situation where only the inputs and
outputs of a learning model can be observed. It is not precisely known how the parameters of the model interact to
arrive at the final output.

Many approaches to interpreting and explaining model predictions are post hoc, that is, the explanation is made after
the fact. Post hoc approaches apply to almost any model. Many of these approaches provide visually appealing results,
but might not accurately explain what is occurring inside the model [76]. One possible approach is to incorporate
explanations and interpretability into the model itself, rather than being approximated after the fact. There now exist
multiple time-series Transformers that are inherently interpretable [64, 68, 66]. These models can produce explanations
that allow for better interpretations of results and greater user trust.

3.1.8 Dense Interpolation

The Transformer model generally consists of encoder and decoder blocks followed by linear and softmax layers for
decision-making. One approach referred to as Simply Attend and Diagnose (SAnD) replaces the decoder block with a
dense interpolation layer to incorporate temporal order into the model’s processing [60]. This approach does not utilize
output embedding, thereby cutting down the number of total layers in the model. Without the decoder, the model needs
a way to process the outputs of the encoder block to be input into the linear layers. Simple concatenation leads to poor
prediction accuracy. Therefore, the work in [60] developed a dense interpolation algorithm with hyperparameters that
can be tuned to improve performance.

3.2 Architectural Modifications

3.2.1 BERT-Inspired

A famous architecture that builds on the original Transformer paper is Bidirectional Encoder Representations from
Transformers (BERT) [77]. The model is built by stacking the Transformer encoder blocks and introducing a new
training scheme. The encoder block is pre-trained independently of the task. The decoder block can be added later and
fine-tuned for the task at hand. This scheme allows training BERT models on large amounts of unlabeled data.

The BERT architecture has inspired many new Transformer models for time-series data [62, 65, 78, 63]. Creating a
BERT-style model for time-series data has some challenges compared to NLP tasks. Language data is a standardized
type of data that can be used for various tasks, including translation, text summarization, question answering, sentiment
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analysis, etc. All of these tasks can use the same data for pre-training. However, this is not the case for the time-series
tasks. Examples of time-series data include electricity usage [79], ambient temperature [73], traffic volume [79],
satellite imagery [62], various forms of healthcare data [80], and more. With this variety of data types, the pre-training
process will have to be different for each task. This task-dependent pre-training contrasts with the NLP tasks which can
start with the same pre-trained models assuming all tasks are based on the same language semantics and structure.

3.2.2 GAN-Inspired

Generative adversarial networks (GANs) consist of two deep neural networks, the generator, and the discriminator.
Both networks learn adversarially from each other. GANs are commonly used in image processing for generating
realistic images. The generator’s task is to create images that will trick the discriminator. The discriminator is given the
actual and generated (fake) images and must predict whether the input image was real or fake. A well-trained GAN can
generate images that look very realistic to a human.

The same generator-discriminator learning principle has been applied to the time-series forecasting task [81]. The
authors use a Transformer as the generator and a discriminator and train the model for accurate forecasting predictions.
The generator’s task is to create a forecast that the discriminator will classify as real or fake. As the training continues,
the generator network will create more realistic data. At the end of the training, the model will be highly accurate at
making predictions.

3.3 Time-Series Tasks

The two main tasks performed on time-series data are forecasting and classification. Forecasting seeks to predict real-
valued numbers from given time-series data, referred to as regression. Many forecasting Transformers for time-series
data have been developed in the recent literature [70, 72, 73, 74, 82, 66, 67, 81, 78, 64, 75]. The classification task
involves categorizing the given time-series data into one or more target classes. There have been many recent advance-
ments for time-series Transformers for classification tasks [65, 63, 62, 60, 68]. All of the time-series Transformer-based
models discussed in this tutorial focus on one of these two tasks. Some of these models can accomplish both tasks after
small modifications in the last layer and the loss function.

4 Time-Series Analysis - Architectures and Use Cases

4.1 The Informer Architecture

Recently, Zhou et al. proposed Informer, which uses a ProbSparse self-attention mechanism to optimize the computa-
tional complexity and memory usage of the standard Transformer architecture [73]. The authors also introduced the
self-attention distilling operation, which considerably reduces the total space complexity of the model.

ProbSparse self-attention uses the dominant dot-product pairs by randomly selecting logL top query vectors and setting
the rest of the query vector values to zero. The computational complexity and memory usage reduce with L value
vectors to O(L logL). With a stack of J encoders, the total memory usage reduces to O(JL logL). Furthermore,
the self-attention distilling operation removes redundant combinations of value vectors. This operation is inspired by
dilated convolution as proposed in [83] and [84]. The output of the multi-head self-attention is fed into 1-D convolution
filters with kernel size equal to 3. Later, an exponential linear unit (ELU) activation function is applied, followed by a
max-pooling operation with a stride of 2. These operations reduce the size in half and thus, form a pyramid as shown in
Figure 12. Effectively, the total space complexity reduces considerably. Stacked replicas are also built, with an input
length of half of the previous stack. Figure 12 shows only one replica stack. The output of the main stack and the
replica stacks have the same dimension and are concatenated to form the final output of the encoder. These replica
stacks enhance the robustness of the distilling operation.

The decoder consists of two stacked multi-head attention layers. The input to the decoder is a start token concatenated
with a placeholder for the predicted target sequence (with initial values set to zero). It predicts all outputs by one
forward procedure (as shown in Figure 12) thereby considerably reducing inference time.

In the Informer architecture, the scalar input is mapped to d dimensional vectors ui, using 1-D convolution filters. The
local context is retained using the fixed positional encoding (PE) based on sinusoidal functions. A global timestamp,
called stamp embedding (SE), is also included to capture hierarchical time information such as the week, month, or
year as well as occasional events such as holidays. The input to the encoder is a sum of the scalar projection vectors
(ui), PEi, and SE.
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Figure 12: Informer architecture as proposed in [73] is presented. Informer consists of stacked encoders and decoders.
The encoder comprises multi-head ProbSparse self-attention and self-attention distilling operations. Stacked replicas
are built with an input length of half of the previous layer. The encoder output is a concatenation of the outputs from
the main and replica stacks. The decoder has two stacked multi-head attention layers and predicts the entire output
sequence simultaneously in one forward pass.

The Informer architecture was tested on various datasets, including electricity consumption load and the weather
dataset. The model performed better than state-of-the-art (SOTA), including Autoregressive Integrated Moving Average
(ARIMA) [85], Prophet [86], LSTMa [87], LSTnet [88], and DeepAR [89].

4.2 LogSparse Transformer Architecture

Li et al. proposed LogSparse Transformers to overcome memory challenges, thus making Transformers more feasible
for time-series data with long-term dependencies [74]. LogSparse Transformers allow each time step to attend to
previous time steps that are selected using an exponential step size. This reduces the memory utilization from O(L2) to
O(L log2 L) in each self-attention layer. Figure 13 shows the various ways in which LogSparse self-attention can be
used for time-series analysis. The canonical self-attention mechanism used for neighboring time steps in a specific
range allows for gathering more information. Beyond that range, the LogSparse self-attention mechanism is applied.
Another way is to restart the LogSparse step size after a particular range of time steps.

The patterns in time-series data may evolve significantly with time due to different events, like holidays or extreme
weather. Therefore, it may be beneficial to capture information from the surrounding time points to determine whether
the observed point is an anomaly, changing point, or a part of the pattern. Such behavior is captured using the causal
convolutional self-attention mechanism, as shown in Figure 14.

The causal convolutional self-attention mechanism ensures that the current position does not have access to future
information. The convolution operation with a kernel size of more than one captures the local context information in
the query and key vectors generated from the input. Value vectors are generated using a kernel size equal to one. With
this mechanism, more accurate forecasting is performed.

4.3 Simply Attend and Diagnose (SAnD)

Clinical data such as Intensive Care Unit (ICU) measurements comprise of multi-variate, time-series observations
coming from sensor measurements, test results, and subjective assessments. Song et al. introduced Transformers to
predict various variables of clinical interest from the MIMIC-III benchmark dataset [80], named Simply Attend and
Diagnose (SAnD) [60]. Preprocessed data is passed to an input embedding layer, which uses 1-D convolution for
mapping inputs into d dimensional vectors (d > number of variables in the multi-variate time-series data). After the
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Figure 13: Various ways to apply LogSparse self-attention as proposed by Li et al.[74].

Figure 14: The canonical self-attention mechanism is similar to using convolution with kernel size equal to one, as
shown in (b) [74]. It is only able to capture point-wise similarity, as shown in (a). Local context is captured using
convolution with kernel size greater than one proposed by Li et al. and depicted in (d). Awareness of the local context
helps capture feature similarities more accurately based on shape matching, as shown in (c).

addition of hard-coded positional encoding to the embedded data, it is passed through the attention module. The multi-
head attention layer uses restricted self-attention to introduce causality, i.e., perform computations using information
earlier than the current time. The output of the stacked attention modules passes on to the ‘dense interpolation layer’.
This layer, together with positional encoding, is used to capture the temporal structure of clinical data. A linear layer
and softmax/sigmoid are used as the final layers for classification. The proposed Transformer model was evaluated on
all MIMIC-III benchmark tasks and was reported to perform better than RNNs.

4.4 Traffic Transformer

Traffic forecasting predicts future traffic, given a sequence of historical traffic observations like speed, density, and
volume detected by sensors on a road network. In this case, M previous time steps in a sequence are used to predict
H future time steps. It is important to encode the continuity and periodicity of time-series data and capture the
spatiotemporal dependencies in traffic forecasting. The Traffic Transformer [67] has been built based on two existing
networks, the first being a Graph Neural Network [90, 91] followed by the Transformer as shown in Figure 15. The
Transformer models the temporal dependencies, and the Graph Neural Network is used to model spatial dependencies.

The output of the Graph Neural Network forms the input for the Transformer after the incorporation of positional
encoding. There are two methods for adding the sequence information, (1) positional encoding vectors are added to
the input vectors, and (2) attention weights for positional encoding vectors are calculated using the dot product. The
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Figure 15: The Traffic Transformer introduced in [67] is presented. The encoder comprises of Graph Neural Network
for capturing the spatial dependencies in the traffic data, followed by a feed-forward layer. The output is fed into the
Transformer encoder to capture the temporal dependencies. The output of the encoder is fed into the Transformer
decoder, which has a similar composition to the encoder. Position information is included using either addition or
similarity-based combination.

positional attention weights are used to tweak the attention weights for the input vectors to the Transformer. Four
strategies listed below for encoding temporal information of traffic data are introduced. Different combinations of these
strategies can be used for various problems or dataset types.

a) Continuity of time-series data:

i. Relative position encoding: This strategy encodes the relative position of a time step in the window of
the source-target sequence regardless of the position of that time step in the entire time series. Hence,
the same time step might be assigned with a different position embedding depending on its position in a
sequence pair. Position encoding is done using sine and cosine functions.

ii. Global position encoding: The entire sequence is encoded using sine and cosine functions. In this way,
both local and global positions of time-series data are captured.

b) Periodicity of time-series data:

i. Periodic position encoding: A mechanism to encode the daily and weekly periodicity of data is introduced.
Daily periodicity is captured by encoding two hundred and eighty-eight ( 24×60

5 ) positions. Weekly
periodicity is captured by encoding seven positions (number of days in a week).

ii. Time-series segments: This is done by concatenating the daily and weekly data segments to the ‘M’
recent time steps.

The Traffic Transformer was tested with two real-world benchmark datasets, METR-LA [92] and the California
Transportation Agencies Performance Measurement System ([PeMS]).

4.5 Self-Attention for Raw Optical Satellite Time-Series Classification

Vegetation life cycle events can be used as distinct temporal signals to identify types of vegetation. These temporal
signals contain relevant features for differentiating various kinds of vegetation. The classification of vegetation type
[93] from raw optical satellite images is done using Transformers. The performance of the Transformer architecture for
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vegetation classification, compared to LSTM-RNN [10], MS-ResNet [94], DuPLO [95], TempCNN [96], and random
forest methods, is better for raw data. However, for pre-processed data, the performance of all methods is quite similar.

4.6 Deep Transformer Models for Time-Series Forecasting: The Influenza Prevalence Case

Transformers have also been used to predict cases of influenza [82] using the data of weekly count of flu cases in a
particular area. A single week’s prediction is made using ten previous weeks’ data as the input in the first experiment.
The Transformer architecture performed better in terms of ‘root mean square error’ (RMSE) compared to ARIMA,
LSTMs, and sequence-to-sequence models with attention. In the second experiment, the Transformer architecture was
tested with multivariate time-series data by introducing ‘week number’ as a time-indexed feature and including the first
and second-order differences of the time-series data as two explicit numerical features. However, this did not show
significant improvement in the results. In the third experiment, Time-delay embedding (TDE) is introduced and formed
by embedding each scalar input xt into a d-dimensional time-delay space as in Equation 14.

TDEd,τx(t) =
(
xt, xt−1, · · · , xt−(d−1)τ

)
(14)

Time-delay embedding of different dimensions d, from 2 till 32, are formed with τ = 1. Out of all the experiments, the
RMSE value reached a minimum with the dimension of 8, which conforms to similar results of an independent study
on clinical data [97].

5 Best Practices for Training Time-Series Transformers

The Transformer architecture is becoming increasingly popular and leading many researchers to seek ways to optimize
these networks for various applications. The approaches include adapting the architecture for use in a specific problem
domain, adapting training techniques, hyperparameter optimization, inference methods, hardware adaptation, and others.
In this section, we discuss best practices when training Transformers for time-series analysis.

5.1 Training Transformers

The Transformers may not be easy to train from scratch for a beginner. The original Transformer architecture [1] utilized
many different strategies to stabilize the gradients during training for deeper networks. The use of residual connections
allows for training a deeper network. Later, layer normalization operations were added alongside an adaptive optimizer
(Adam) to provide different learning rates for different parameters. Like most other deep learning models, Transformers
are also sensitive to the learning rate. Given an optimal learning rate, Transformers can converge faster than traditional
sequence models. During the first few epochs, it is common to observe a performance drop. However, after a few
epochs, the model will generally start to converge to better values. In the original implementation, the authors used a
warm-up learning rate strategy that increases linearly for the first N training steps and then decreases proportionally to
the inverse square root of the step number, 1√

N
.

5.2 Implementing Transformers in Popular Frameworks

Here, we provide an overview of popular frameworks for implementing and training Transformer models. These
frameworks offer a user-friendly interface and support for custom model architectures, enabling researchers and
developers to experiment with and adapt Transformers for time-series analysis and other tasks.

Hugging Face Transformers is an open-source library that provides pre-trained Transformer models and user-friendly
APIs for a wide range of natural language processing tasks. Compatible with both PyTorch and TensorFlow, the library
offers an extensive collection of pre-trained models and community-contributed models, making it an excellent starting
point for researchers and developers. More details about the library can be found at the Hugging Face Transformers
GitHub repository.

PyTorch Lightning is a lightweight wrapper for PyTorch designed to simplify deep learning research and development.
It offers a structured approach to training deep learning models, including Transformer models, with minimal boilerplate
code. PyTorch Lightning is compatible with the Hugging Face Transformers library, enabling users to leverage pre-
trained models and fine-tune them for specific tasks. More information is available at the PyTorch Lightning GitHub
repository. Other libraries in PyTorch for efficient large Transformer model training include Microsoft DeepSpeed and
MosaicML Composer.

TensorFlow is an open-source machine learning library developed by Google that supports building and training
deep learning models, including Transformers. The library provides implementations of the original Transformer
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architecture and various pre-trained models that can be fine-tuned for specific tasks. TensorFlow also offers extensive
documentation and community support for implementing custom Transformer models. The TensorFlow website offers
more information.

5.3 Improvements in the Transformer Architecture for Better Training

Many advancements to the Transformer architecture have been proposed with the aim of resolving some of the problems
related to achieving stable training with deeper architectures. Mainly optimizations have been made to balance residual
dependencies by relocating layer normalization operations and finding better weight initialization techniques. These
improvements have led to more stable training and, in some cases, eliminated the need for using some of the strategies
proposed in the original architecture. Figure 16 provides an overview of some of the best practices for training
Transformers and their respective reasons.

Figure 16: An overview of best practices for training Transformers.

The original Transformer architecture can be referred to as post-layer normalization (post-LN), where the layer
normalization is located outside the residual block [98]. Post-LN converges much slower and requires a learning
rate warm-up strategy [98]. Xiong et al. proposed a pre-layer normalization (pre-LN) Transformer to address this
issue, showing that it could help gradients converge faster while requiring no warm-up. The Pre-LN Transformer can
achieve this by controlling the gradient magnitudes and balancing the residual dependencies [98]. Although the Pre-LN
Transformer architecture does not require learning rate warm-up, it has inferior empirical performance as compared to
the post-LN Transformer architecture.

Liu et al. proposed an adaptive model initialization (Admin) to benefit from the ease of training of the post-LN
Transformer while achieving the performance of the pre-LN Transformer [99]. Adaptive model initialization is a
technique used in other areas of machine learning to initialize the model such that the dependencies between the input
and output variables are better captured [99]. This initialization technique helps the model learn the relationships
between the variables more effectively and improves performance. Another option is to remove the layer normalization
altogether. The ReZero approach replaces the layer normalization operation with a trainable parameter, α, which is
initialized to 0 in each residual layer [100]. Consequently, the entire network is initialized to compute the identity
function, with a gradual and adaptive introduction of the contributions of the self-attention and MLP layers. The
residual dependencies seem to balance well with Admin or ReZero for training deeper Transformer models with better
generalization performance.

5.4 Practical Issues for Training Transformers

5.4.1 Large Model Size

After selecting the Transformer model architecture, the challenge becomes dealing with the large model size. It may
seem that smaller models would train faster than larger ones. However, this does not always hold true. For example, Li
et al. [101] demonstrated that in some instances, training large models and then compressing the results leads to better
performance. The lottery ticket hypothesis [102] reveals that pruning can be applied to reduce the model size. Also,
quantization to a lower precision allows for a smaller model. However, there are inevitable trade-offs when using a
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Figure 17: post-LN Transformer (A) vs. pre-LN Transformer (B)

larger model after pruning/quantization versus a smaller one. The most relevant is ensuring that the training dataset
is large to avoid overfitting. Using a small dataset can lead to poor generalization. In general, when trying to train a
Transformer model, we recommend using large models instead of the more conventional approach of starting with
smaller models and then adding layers.

5.4.2 Training with Small Datasets

We have seen several solutions that allow the training of deeper Transformer models with improved performance as
compared to the vanilla Transformer architecture. Training these deep Transformer models from scratch requires large
datasets, making training with a small dataset challenging. Small datasets require pre-trained models and small batch
sizes to perform well. However, these two requirements make training additional Transformer layers more difficult.
Using a small batch size causes the variance of the updates to be larger. Even with large batch size, the model may
typically generalize poorly. In some cases, better initialization techniques can optimize the model making it perform
well on the smaller datasets. The use of Xavier initialization is the most common scheme for Transformers [103].
Recently, T-Fixup has been shown to outperform Xavier [104]. The motivation for the T-Fixup scheme, introduced
by Huang et al., is as follows. It was found that when training a Transformer without learning rate warm-up, the
variance in the Adam optimizer was amplified by a large initial learning rate thereby leading to large updates at the
beginning of training [104]. Hence, the learning rate warm-up requirement comes from the Adam optimizer’s instability
combined with gradient vanishing through layer normalization. To resolve this, the T-Fixup method was proposed
in which a new weight initialization scheme provides theoretical guarantees that keep model updates bounded and
removes both warm-up and layer normalization [104]. Following the work of T-Fixup, a data-dependent initialization
technique (known as DT-Fixup) was developed [105]. DT-Fixup allows for training deeper Transformer models with
small datasets, given that the correct optimization procedures are followed.

5.4.3 Other Strategies to Consider

Batch Size. Popel et al. found that the optimal batch size depends on the complexity of the model [106]. They
considered two classes of models, one a “base” and one a “big.” For the base model, a larger batch size (up to 4,500)
performed well, whereas a different set of parameters yielded superior results for the big model.The big model needed
a minimum batch size (1,450 in their experiments) before it started to converge. While batch size is almost entirely
empirically selected, a large minimum should be used with Transformer models.

Learning Rate. Considerable research has been done in evaluating the effect of learning rate on model performance
[107, 108, 109] and how they relate to each other. A study conducted by Popel et al. demonstrated that small learning
rates tend to have slower convergence, whereas learning rates that are too high may lead to non-convergence [106].

Gradient Clipping. Many implementations of Transformers use gradient clipping during the training. This process
tends to avoid exploding gradients and potential divergence if the number of steps is too large. Other methods of
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gradient clipping, such as choosing a step size proportional to the batch size, are not recommended for Transformers as
these can lead to slower convergence [106].

6 Conclusion and Future Trends

In conclusion, the Transformer architecture has proven to be a powerful tool for tackling time-series tasks, offering
an efficient alternative to RNNs, LSTMs, and GRUs, while also overcoming their limitations. To effectively handle
time-series data, modifications to the original Transformer architecture have been proposed. Various best practices for
training Transformers have been developed and many open-source frameworks are available for efficiently training
large Transformer models. Robustness [110], failure detection [111], and multimodal learning [7] are some of the
future trends in deep learning. Moving forward, the development of robust, self-aware Transformer architectures using
uncertainty estimation in time-series prediction is an open challenge currently being pursued by the research community.
The availability of large datasets having multiple modalities such as images, videos, and text, combined with time-series
data can lead to the development of Transformer-based foundation models capable of learning indiscernible and subtle
features that may lead to unprecedented discoveries for the time-series tasks.
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