
Circuits, Systems, and Signal Processing (2024) 43:2853–2872
https://doi.org/10.1007/s00034-024-02617-1

Observer Design for Nonlinear Descriptor Systems: A
Survey on System Nonlinearities

Meenakshi Tripathi1 · Lazaros Moysis2,3 ·Mahendra Kumar Gupta4 ·
George F. Fragulis5 · Christos Volos2

Received: 22 August 2023 / Revised: 17 January 2024 / Accepted: 19 January 2024 /
Published online: 23 February 2024
© The Author(s) 2024

Abstract
In general, the construction of observers for nonlinear descriptor systems depends on
the solvability of a linear matrix inequality involving system matrices, and it is based
on the system’s nonlinearity. Therefore, the type of nonlinearity present in the system
heavily affects the observer design process. There are significant developments in the
literature for observer design for descriptor systems with various types of nonlinearity.
Motivated by this, the current work reviews the literature on observer design for non-
linear descriptor systemswith an extensive discussion on the type of nonlinearities that
are considered. Here, an analysis and the comparison on the most common nonlinear-
ities is presented, providing a roadmap to all researchers in the field. Furthermore, less
common nonlinearities have been identified, presenting under-explored areas within
the literature, and can open new domains for future research.

Keywords Descriptor system · Nonlinear system · Observer · Singular system ·
Differential algebraic equations · Lipschitz · Quadratic constraints · Chaos
synchronization · Signal estimation

1 Introduction

The problem of observer design is well known in control systems engineering and
system analysis. It refers to designing amathematicalmodel of a secondary system (the
observer) that outputs an estimate of the internal states of the original (master) system,
using only its input and output measurements. The convergence of the estimated states
to the real values depends upon the solvability of a linear matrix inequality (LMI). This
LMI is generally formed throughLyapunov stability theory, by considering a candidate
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Lyapunov quadratic function of the error dynamics between the states ofmaster system
and the observer.A simplified outline of the observer design problem is shown in Fig. 1.
The output of the master system is a linear and sometimes a nonlinear combination of
its states and input, and it is fed into the observer. The system’s estimated output ŷ(t)
from the observer may also be fed back into the observer system, as it can be used to
design an appropriate feedback law for the estimation to converge.

Descriptor systems are also named as generalized state space systems, singular
systems, or differential-algebraic equations (DAEs), which are described by implicit
combinations of differential and algebraic equations. These systems arise in various
engineering disciplines, including electrical circuits, mechanical systems, and chemi-
cal processes, where the presence of algebraic constraints or singularities is common
[9, 17, 27]. Through observer design for descriptor systems, along with state estima-
tion, problems like unknown input estimation, secure communications, fault diagnosis,
sensor fusion, state feedback control, model-based control, and system identification
are also addressed. It allows the estimation of unmeasured states, compensating for
sensor limitations, and improving system performance and robustness [4, 23, 33]. For
chaotic systems, the concept of observer design is the problem of having a secondary
system following the trajectories of a master system is commonly termed synchro-
nization [48], which is also a kind of observer design problem [4, 46].

When it comes to observer design for nonlinear systems, LMIs can be used to for-
mulate observer design problems as convex optimization problems that can be solved
efficiently. The formation of the resulting LMI depends on the system’s nonlinearity.
Thus, while studying the observer’s convergence, it is important to specify the mas-
ter system’s nonlinearity and find an appropriate bound (upper or lower) for it. So
far, many types of nonlinearities are being considered, each described by a different
property.

The goal of this article is to compile most of the existing studies for nonlinear
descriptor systems, categorized by the nonlinearity present in the system. The moti-
vation for this is to serve as guidance for all researchers working on observer design
problems for descriptor systems to navigate the existing nonlinearities already con-
sidered. Another goal is to identify nonlinearities that have not yet been addressed
for descriptor systems, particularly. Our review identifies some less studied classes of
nonlinearities, which can be fruitful grounds for future studies.

In the following, Rm×n represents the m × n real matrix set. A > 0 (A ≥ 0) is a
positive definite (semi-definite) matrix. Transpose of a matrix X is denoted by XT .
I and 0 denote the identity and zero matrix of appropriate dimensions, respectively.
||x || denotes Euclidean norm of a vector x .

The rest of the work is structured as follows. Section2 describes the underlying
system structure and formulate general problems on it. Discussion on various types of
nonlinearities and their comparison is done in Sect. 3. In Sect. 4, analysis of some less
studied nonlinearities is carried out. Section5 concludes the article along with some
remarks on possible future works.
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Fig. 1 A simplified outline of the observer design problem. The Lorenz chaotic system [37] is used as an
example, and the observer feedback from the master system is activated at t = 70 seconds

2 Preliminaries

This section is devoted to the mathematical representation of the fundamental system
and the current problem.

2.1 System Formulation

The general nonlinear descriptor system is described by

Eẋ(t) = Ax(t) + Bu(t) + G f (H1x(t), t)
y(t) = Cx(t) + Du(t) + Mg(H2x(t), t)

(1)

where x(t) ∈ R
n is the state of the system, u(t) ∈ R

q the input, and y(t) ∈ R
p the

output. E, A ∈ R
m×n , B ∈ R

m×q , G ∈ R
m×n f , H1 ∈ R

h1×n , C ∈ R
p×n , D ∈

R
p×q , M ∈ R

p×ng , H2 ∈ R
h2×n are the system matrices of appropriate dimensions.

f (H1x(t), t) ∈ R
n f is the dynamic nonlinearity and g(H2x(t), t) ∈ R

ng is the output
nonlinearity of the system. If E is an invertible matrix, then (1) is well known as a
state space system. In the rest of the paper, the explicit dependency of the state, input,
and output vectors on time t is omitted for better readability.

In most works, the output is considered to be linear, but the general case of non-
linearity is assumed here. Note that various literature works consider nonlinearities
under slightly different formulations, for example, either as exclusively state depen-
dent f (x), or as state and input dependent f (x, u), state, input and output dependent
f (x, u, y) or as state, input, and time dependent f (x, u, t). Here, to represent all of the
above forms, we take f (H1x, t) as it includes all the aforementioned cases. Note that
the dependence on time encompasses the dependence on the input u(t)which is a func-
tion of time. The same holds for time dependent output y(t). Moreover, the general
rectangular case is assumed, where the system may be over- or under-determined.
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2.2 Problem Formulation: States and Unknown Input Estimation

The observer design problem involves the estimation of the state x(t) asymptotically
especially when initial condition of the system (1) is not known in advance, i.e.,

||x(t) − x̂(t)|| → 0, as t → ∞, ∀ x(0), x̂(0), (2)

where x̂(t) is the estimation of states.
Rectangular descriptor systems are especially useful for the problem of external

input estimation and secure communications. In this problem, a descriptor system, or
sometimes even simpler, a state space system is affected by an unknown input

ẋ = Ax + Bu + Qs + G f (H1x, t)
y = Cx + Du + Rs + Mg(H2x, t)

(3)

where s(t) ∈ R
ms is an unknown input (UI), with Q ∈ R

n×ms , R ∈ R
p×ms . In secure

communications, s is considered as a signal to be transmitted. The observer’s goal
is to estimate the UI along with the state x . This can be achieved by considering the
external input s as an internal state of the system, leading to an augmented state vector

x = (
xT sT

)T
. The system (3) is now written in the descriptor form as

Eẋ = Ax + Bu + G f (H1x, t)
y = Cx + Du + Mg(H2x, t)

(4)

where

E = (
I 0

)
,A = (

A Q
)
,C = (

C R
)
,H1 = (

H1 0
)
,H2 = (

H2 0
)

Sometimes s is also inserted in the nonlinear function. So, by designing an observer
for (4), the state and UI can be estimated simultaneously. The above design is often
used for applications in secure communications. In such cases, the signal s is not
an undesired disturbance, but an information signal that is masked through a chaotic
system (3), transmitted through the output, and then reconstructed at the observer end.
The approach of converting system (3) into (4) is appropriate only when estimation of
states and unknown inputs has to be done simultaneously. Gupta et al. [22, 23] show the
disadvantage of the augmentation technique on algebraic constraints. In cases where
only states are to be estimated, annihilation of unknown inputs should be done for
milder algebraic constraints.

3 SystemNonlinearities

In this section, we discuss some of the different nonlinearities that have been explored
for observer designs for descriptor systems.
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3.1 Lipschitz Nonlinearities

The most common case, the Lipschitz nonlinearity for a function f (x, t) is described
by

|| f (x1, t) − f (x2, t)|| ≤ λ f ||(x1 − x2)|| ∀ x1, x2 (5)

whereλ f > 0 is a positive scalar called theLipschitz constant.Notice that theLipschitz
property is generally assumed to hold with respect to the first argument of f , which is
the state x . The Lipschitz constant λ f can be computed either by direct computation
of the error bound when possible, or numerically. The constant can be numerically
computed as the supremum of the norm of the Jacobian of the function over the region
of interest D [42, 49]

λ f = lim sup

∣∣∣∣

∣∣∣∣
d f

dx

∣∣∣∣

∣∣∣∣ ∀ x ∈ D (6)

where d f
dx is the Jacobian of f and || · || is the 2-norm.

When considering the convergence of the error dynamics e = x − x̂ , the resulting
dynamics of the candidateLyapunov function are usually formed in a quadratic formula
involving e and � f = f (x, t) − f (x̂, t), with the following general form

(
eT � f T

)M
(

e
� f

)
. (7)

To ensure the negative definiteness of (7), M < 0 must be satisfied to guarantee
convergence. Here M is a block matrix that generally involves the system matrices
along with some other unknown matrices in its blocks. As a result,M < 0 is resulted
in the form of an LMI. M also takes contribution from the nonlinearity f using (5)
as follows

|| f (x, t) − f (x̂, t)|| ≤ λ f ||(x − x̂)||
⇒ � f T� f ≤ λ2f e

T e

⇒ 0 ≤ (
eT � f T

)(λ2f I 0
0 −I

)(
e

� f

)
. (8)

So, the contributing term inM is the matrix

(
λ2f I 0
0 −I

)
(9)

In some works, this matrix is scaled by an additional parameter ε > 0 to improve the
solvability of the LMI as

(
ελ2f I 0
0 −ε I

)
, (10)
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becomes the contributing term. Moreover, in some works, the nonlinearity is consid-
ered to be acting on a linear combination of the states and is written as f (Hx, t), as
in (1). This way, considering (5), the resulting matrix is

(
ελ2f H

T H 0
0 −ε I

)
. (11)

In some earlier works [4, 14, 66, 67], the problem of secure communications was
considered on state space systems. Input information signalwas considered as a system
state that augmented the system state as described in Sect. 2.2. This converts the system
into a rectangular descriptor form, and then an observer is designed. The nonlinearity
f (x, s) is assumed to satisfy Lipschitz constraint with respect to x(t) and s(t), where
s(t) is the information signal. The feasibility of the observer is formulated under
the solvability of an LMI and a set of algebraic constraints on the system matrices.
Boutayeb et al. [4] use an important assumption, also present in other works, that the
information signal is also transmitted through the output, that is R 	= 0 in system
(3). The results are illustrated using the Lorenz system [37] to transmit a sinusoidal
signal. For this, two cases are considered. In the first, the information is linearly
injected in the system. In the second case, the information is also injected through the
nonlinearity f (x, s, y), which depends on the state, information signal, and output,
and is assumed to be Lipschitz with respect to its first two arguments. In [14], the
design is more complex, as the transmission system consists of two chaotic systems,
one is used for signal encryption, and another for the synchronization process. The
observer is adaptive, where the adaptive term is used to compensate for the unknown
Lipschitz constant of the nonlinear term. In the numerical examples, the Rössler [58]
and Lorenz systems are first considered to encrypt and transmit two sinusoidal signals
simultaneously. In a second example, a modified Chua circuit [75] is taken to encrypt
and transmit a binary image. In [66], the augmentation is done by adding a duplicate
of the system of differential equations to make the resulting system square.

Researchers [13, 24] use the augmentation technique for unknown inputs estimation
on state space systems by converting them into a rectangular descriptor system. Ha
and Trinh [24] decomposed the system nonlinearity f ((x, u), y) into two parts, with
the first being Lipschitz, and the second being unknown. The observer is designed in
order to nullify the effect of the unknown nonlinearity and estimate the state and UI.
In the numerical example, a 4D system is considered, with an unknown sinusoidal
input acting on it. The unknown nonlinearity is a product of the two states injected in
the second differential equation. Rössler system was used, and two unknown inputs
were estimated successfully [13].

In [32], full-order observer was designed for descriptor systems under UIs. Two
approaches are considered, based on the available information on the UIs. A propor-
tional observer is designed for the case where the spectral domain of the unknown
input is unknown, and a proportional integral (PI) observer is designed when the spec-
tral domain of the UI is in the low-frequency range. In the second case, the addition of
the integral part is possible under the assumption that the UI is a piecewise constant.

Square descriptor systems were considered to design full and reduced order
observers [38]. In this article, full-order observers are given in the descriptor form.
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These observers were further converted to reduced order observers in the state space
form. In the numerical example, a one-dimensional observer is designed for a two-
dimensional system. Gupta et al. [21] designed an observer for square descriptor
systems. The authors show that the detectability of the linear part is necessary for
the solvability of the LMI that is required for observer convergence. Using systems
with sinusoidal and cosinusoidal nonlinearities, two numerical examples are then pre-
sented. The authors extended these results for rectangular descriptor systems with UIs
in [22]. The UIs were removed from the output first and then a reduced observer is
appropriately designed to nullify their effect from the dynamic equation. An appli-
cation to secure communications was described on Lorenz system, with a sinusoidal
information signal that is estimated, and an unknown input sinusoidal signal acting
on the system. Lorenz system is used for secure communications and the nonlinear-
ity is multiplied by a full column rank matrix converting it to R f (x), which helps
simplifying the error dynamics [7]. The reference [22] also discusses the benefits and
drawbacks of augmentation technique presented in Sect. 2.2 while considering UIs.

Darouach et al. [10, 11] minimize algebraic constraints and provide maximally
reduced order observers for rectangular descriptor systems with unknown inputs and
external disturbances. In [2], descriptor observers were designed through the behav-
ioral approach. A recent work [44] considers output nonlinearities in rectangular
descriptor systems. Full and reduced order observers were developed, under the con-
dition that the derivative of the output nonlinearity also satisfies a Lipschitz constraint.
The application to secure communications was considered, using a 4D system for the
transmission of a QR code image. Anti-synchronization was considered along with
parameter estimation, for systems with coexisting attractors [45].

3.2 One-Sided Lipschitz and Quadratically Inner-Bounded Nonlinearities

In contrast to classical Lipschitz systems, the one-sidedLipschitz (OSL) nonlinear sys-
tems are more general [64, 79]. Lipschitz functions lead to an inequality in a simple
quadratic form, while the one-sided Lipschitz functions lead to a weighted bilin-
ear form which creates important challenges in constructing the Lyapunov derivative
negative-definite function [59]. One-sided Lipschitz nonlinearity was first considered
in 80s and 90s [12, 61, 68]. For observer design-related problem, Hu [28] consid-
ered OSL condition for the first time with the fact that when the Lipschitz constant
becomes large, more results fail to provide a solution. Thus, in order to overcome this
drawback, the Lipschitz continuity has been generalized to one-sided Lipschitz conti-
nuity. The region of one-sided Lipschitz constant is much larger than that of Lipschitz
constant, because the one-sided Lipschitz constant can be zero or even negative, while
the Lipschitz constant must be positive. This clarifies the advantages of the one-sided
Lipschitz over the classical Lipschitz condition.

The one-sided Lipschitz nonlinearity is described by

(x1 − x2)
T ( f (x1, t) − f (x2, t)) ≤ ρ||x1 − x2||2 ∀ x1, x2 (12)
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where ρ ∈ R is called the one-sided Lipschitz constant. Note that in contrast to the
Lipschitz constant, ρ is not required to be positive. The constant ρ can be specified as
[1]

ρ = lim sup

[
μ

(
∂ f

∂x

) ]
∀ x ∈ D, (13)

where the functionμ(F) is logarithmicmatrix norm (matrix measure) which is defined
as

μ(A) = lim
ε→0

||I + εF|| − 1

ε
. (14)

Any Lipschitz nonlinearity is a one-sided Lipschitz nonlinearity but the converse is
not true, see [64, 79] for examples. The one-sided Lipschitz constant ρ is usually
smaller than λ f .

The contribution of the nonlinearity to (7) is the term

(
ρ I − 1

2 I− 1
2 I 0

)
. (15)

In order to achieve viable outcomes, along with the one-sided Lipschitz condition,
it is often necessary to include the quadratic inner-boundedness condition within a
design paradigm [56]. The nonlinear matrix function f (x, u) is called quadratic inner-
boundedness in the region D̃ if ∀ x1, x2 ∈ D̃, ∃ β, γ ∈ R such that

|| f (x1, t) − f (x2, t)||2 ≤ β||x1 − x2||2 + γ (x1 − x2)
T ( f (x1, t) − f (x2, t)).(16)

TheLipschitz function is also quadratically inner-boundedwithγ = 0 andβ > 0. That
means if f (x, t) satisfies the Lipschitz condition, then it is also one-sided Lipschitz
and inner-bounded. However, the converse is not true [59]. The contribution of the
above formula to the quadratic formula (7) is

(
β I 1

2γ I
1
2γ I −I

)
. (17)

Zulfiqar et al. [79] consider regular descriptor systems with state and output distur-
bances. Additionally, output nonlinearities are considered, which are also one-sided
Lipschitz. The observer is constructed in descriptor form. The feasibility is achieved
under a bilinearmatrix inequality, which can be transformed into LMIs. Two numerical
examples are considered. In the first, the dynamics of a moving particle is considered
with sinusoidal disturbance, and also output nonlinearity that models the sensor char-
acteristics. The second example studies two coupled synchronous FitzHugh–Nagumo
neurons system with both the unidirectional and the bidirectional gap junctions in the
medium between them.

In [64], full and reduced order unknown input observers (UIO) are designed for
nonlinear descriptor systems satisfying OSL and quadratic inner-boundedness using
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generalized inverses and LMI approach. Tian and Ma [62, 63] design H∞ observers
for nonlinear continuous-time singular Markov jump systems satisfying OSL and
quadratic inner-boundedness conditions. Hao and Dong [26] create an observer for
descriptor time delay systems leveraging OSL and quadratic internal boundary con-
ditions. The authors formulate a condition based on LMI that effectively enhances
the system’s resilience against disturbances bounded by the L2 norm. The observer
methodology in [16] addresses systems with time-varying delays, uncertain parame-
ters, and disturbances.

3.3 (Generalized) Monotone Nonlinearities

Generalized monotone nonlinearities are described by

∂ f

∂x
+

(
∂ f

∂x

)T

≥ μI , (18)

where μ ∈ R [34]. If μ = 0, then it is called monotone nonlinearity [18]. The
mathematical representation of generalized monotone nonlinearities reveals that these
functions have a minimum slope, indicating a lower bound. In contrast, the Lipschitz
property (5) ensures that the absolute value of the slope is bounded above. If (18)
holds, then the nonlinearity satisfies

(x1 − x2)
T ( f (x1, t) − f (x2, t)) ≥ 1

2
μ||x1 − x2||2. (19)

The above nonlinearity contributes to (7) the term

(−μI I
I 0

)
. (20)

Gupta et al. [23] designed reduced order observers for rectangular descriptor sys-
tems with unknown inputs. Output nonlinearities satisfying (18) are also considered
here, as a decoupled case, where the system has a linear, and a purely nonlinear output.
Examples of a nonlinear LCR circuit from [73] and a rectangular system with expo-
nential nonlinearity are demonstrated. Recent work [3] somewhat unifies the design
of descriptor observers for Lipschitz and monotone using the behavioral framework.
The authors have supplied ample conditions that ensure the presence of asymptotic
observers and state estimators. By restricting the solution of a linear matrix inequal-
ity to a subspace determined by the Wong sequences, the design parameters of the
observer are derived.

3.4 Quadratic Constraints

Quadratic nonlinearities assume the general form

( f (x1, t) − f (x2, t))
T 	(x1 − x2) ≥ 0, ∀ x1, x2, (21)
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where 	 is a matrix of appropriate dimensions. Full and reduced order descriptor
observers are designed for square systems [71, 73]with an additional condition	 > 0.
The nonlinearities (21) are assumed to have a decoupled form, so matrix 	 is taken as
block-diagonal. The error dynamics are formulated as a Lur’e descriptor system. The
nonlinearity is also assumed to be locally Lipschitz. Two examples are considered,
a non-physical and a circuit. The quadratic inequality given by (21) may not satisfy
the globally Lipschitz condition; one such example is given in [73]. The quadratic
inequality is more general than the monotone one. Nonlinearity (21) can easily be
generalized to the following generalized quadratic nonlinearity

( f (x1, t) − f (x2, t))
T 	(x1 − x2) ≥ μI , (22)

where	may not have any additional restrictions. To the authors’ knowledge, no prior
work has specifically tackled the observer design for descriptor systems with nonlin-
earity (22). Moreover, research on rectangular descriptor systems with nonlinearities
(21) and (22) is not available.

3.5 Incremental Quadratic Constraints

This subsection not only explores a broader range of nonlinearities than previous ones,
but also consolidates and unifies earlier related findings. To be specific, the nonlin-
ear function f (x, t) adheres to satisfy the following incremental quadratic constraint
(δQC)

(
(x1 − x2)

T( f (x1, t) − f (x2, t))
T
)Q

(
x1 − x2

f (x1, t) − f (x2, t)

)
≥ 0, (23)

where Q is a symmetric matrix called incremental multiplier matrix (IMM). The
above nonlinearities cover many others as special cases, for example Lipschitz, one-
sided Lipschitz, monotone, generalized monotone, and quadratic [43]. Given that
� f = f (x1, t) − f (x2, t) and �x = x1 − x2, Table 1 establishes the fact that these
nonlinearities fall under the general nonlinearity δQC. A method for computing Q is
described in [77].

Moysis et al. [43] designed observers for rectangular systems under the presence of
UIs. The special case of output nonlinearities was considered. Application to secure
communications was illustrated on a hyperchaotic Lorenz master system [31]. First,
a sinusoidal signal was transmitted, and secondly, a grayscale image was first trans-
formed into a binary signal and encrypted using a chaos-based pseudo-random bit
generator.

Reference [5] applies the augmentation method to design sliding mode observers
for state space nonlinear systems via the descriptor approach. A single joint flexible
robot was explained under a square and sawtooth exogenous input signals. A second
example of a system with random matrices is also considered.

Systems with disturbances that originate from an external and unknown exogenous
systemhave been studied in [35]. It introduces state and adaptive disturbance observers
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for three distinct scenarios, i.e., linearities, decoupled nonlinearities, and coupled non-
linearities within the output equation. Simulations are presented to demonstrate and
confirm the effectiveness of the suggested observers by taking a model of a single-link
robotic manipulator and the Lorenz system.

Wen et al. [69] investigated H∞ synchronization problem considering both exter-
nal and stochastic disturbances for descriptor systems characterized by nonlinearities
that conform to incremental quadratic constraints. Diverging from the observer-based
design methodology, an intermittently periodic controller is formulated. This involves
tuning the control period andwidth, leading to apotential reduction in control expenses.
Subsequently, a set of adequate conditions is derived, and the controller gain is deter-
mined through the solution of linear matrix inequalities. Finally, examples were given
to validate the result.

4 Under-Explored Nonlinearities

In this section, we outline some nonlinearities that are mostly worked upon state space
systems and can be explored on descriptor systems in future.

4.1 Quasi-One-Sided Lipschitz Nonlinearities

Quasi-one-sided Lipschitz nonlinearity is an extension of one-sided Lipschitz nonlin-
earity and extended by Hu [29] which is used frequently and plays an immense role in
the stability of dynamical systems. Quasi-one-sided Lipschitz condition is given as,

(x1 − x2)
T P( f (x1, t) − f (x2, t)) ≤ (

x1 − x2
)T

R
(
x1 − x2

) ∀ x1, x2, (24)

where P is a positive definite matrix. R is a real symmetric matrix, typically depends
on the choice of P , and is called as quasi-one-sided Lipschitz constant matrix. Note
that when R = ρ In with ρ being a constant, the condition (24) becomes the one-
sided Lipschitz condition (12). Hence, quasi-one-sided Lipschitz nonlinearity is less
conservative than one-sided Lipschitz nonlinearity and more effective in terms of sta-
bilizing a Lyapunov equation while designing an observer. Furthermore, [30] designs
an observer for a system that satisfies quasi-one-sided Lipschitz condition but observer
design constraints are not feasible using one-sided Lipschitz condition. This shows
the importance of nonlinearity (24).

Recent studies [15, 30] investigate quasi-one-sided Lipschitz condition in the fol-
lowing form

(x − x̂)T P( f (x, y) − f (x̂, ŷ)) ≤
(
x − x̂
y − ŷ

)T (
R 0
0 S

)(
x − x̂
y − ŷ

)
∀ x, x̂, y, ŷ

(25)

where P is a positive definite matrix. R and S are quasi-one-sided Lipschitz constant
matrices for nonlinearity f (x, y).
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Remark 1 Matrix R in Eq. (25) need not to be positive- or negative-definite; rather,
it can be any symmetric matrix. Again, when x = x̂ , the inequality (25) is reduced
to (y − ŷ)T S(y − ŷ) ≤ 0 ∀ y, ŷ. Therefore, the matrix S is required to be positive
semi-definite.

Now, (25) can be rewritten as:

�xT P� f ≤ �xT R�x + �yT S�y

⇔ �xT R�x + �yT S�y − �xT P� f ≥ 0

⇔
⎛

⎝
�x
�y
� f

⎞

⎠

T ⎛

⎝
R 0 −P/2
0 S 0

−P/2 0 0

⎞

⎠

⎛

⎝
�x
�y
� f

⎞

⎠ ≥ 0

Hence, we can say that

⎛

⎝
R 0 −P/2
0 S 0

−P/2 0 0

⎞

⎠ , (26)

contributes to an LMI formulation in Eq. (7) to stabilize the error dynamics term.
Furthermore, if a nonlinearity f (x, y) satisfies

xT P f (x, y) ≤
(
x
y

)T (
R 0
0 S

)(
x
y

)
, (27)

then it is defined as weak quasi-one-sided Lipschitz condition [15]. Just as in (26),
one can formulate the matrix which contributes in LMI formulation. While numerous
observers have been developed for state space systems considering the condition of
quasi-one-sided Lipschitz nonlinearity [15, 19, 30, 54, 60], there is limited research
on observers designed for descriptor systems. Observer design for descriptor systems,
especially rectangular ones, incorporating quasi-one-sided Lipschitz nonlinearity is a
relatively new and less explored area of research.

4.2 Slope Restricted Nonlinearities

The slope restriction is given by

0 ≤ f (x1, t) − f (x2, t)

x1 − x2
≤ λ, (28)

where λ > 0. If a function satisfies the slope restricted nonlinearity, it also satisfies
the Lipschitz condition. Yet, as can be observed from the above literature review, the
Lipschitz assumption is more commonly considered. Zhou et al. [78] designed full
and reduced order observers for square systems with slope restricted nonlinearities.
In the numerical examples, sinusoidal nonlinearities are considered, so the factor
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λ is easy to specify. Yang et al. [72] tackled a specific class of descriptor systems
with nonlinearities having slope restrictions in both the system dynamics and output
equations. The paper introduces a method for designing H∞ observers based on LMIs.

Reference [40] studies the slope restricted nonlinearities on discrete-time descriptor
systems in the following form

(
� f

x1 − x2

)T (
2I −�

−� 0

) (
� f

x1 − x2

)
≤ 0, (29)

where � f = f (x1, t) − f (x2, t) ∀ x1, x2 ∈ R
n . Moreover,

(
2I −�

−� 0

)
aids in

formulating an LMI within Eq. (7) to ensure the stability of the error dynamics term.
The nonlinearity (29) is yet to be explored for continuous-time descriptor systems.

4.3 Ellipsoidally (Locally) Lipschitz

Ellipsoidally Lipschitz constraints are also termed as locally Lipschitz [25, 55] or less
conservative Lipschitz [51, 52]. A function is said to be ellipsoidally Lipschitz if it
satisfies

|| f (x1, t) − f (x2, t)|| ≤ ||�(x1 − x2)|| (30)

for an ellipsoidal region

x1, x2 ∈ xT R−1x ≤ 1 ∀ x ∈ R
n, (31)

where R is symmetric positive definite and � is a constant matrix. The Lipschitz
condition (5) can be considered a special case of the above, if � is taken as a scalar
instead of a matrix, and it is assumed that R = limr→∞ r I . The contribution of (30)
to the error dynamics LMI is

(
ε�T� 0

0 −ε I

)
. (32)

4.4 Integral Quadratic Constraints

This is one of the most general cases, when there exists constant d ≥ 0 such that the
nonlinear function f (x, t) satisfies

∫ t

0
|| f ||2dt ≤

∫ t

0
||x ||2dt + d (33)

This has been considered in recent works [8, 74] for state space systems. This property
could be effective in PI observers, in which the integral of the error is of use. Descriptor
systems under these conditions remain unexplored.
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4.5 Bounded Jacobian

Many nonlinear systems exist which require larger value of Lipschitz constant. In
such cases a smaller Lipschitz constant won’t work out. This essentially boils down
to a bounded Jacobian nonlinearity. The observer method that incorporates a bounded
Jacobian employs the scalar mean value theorem and the differential mean value the-
orem to articulate the nonlinear estimation error dynamics as a convex combination
of matrices. Hence, it can be said that the concept of the bounded Jacobian approach
emerged through observation and consideration of both mean value theorems [50, 52,
53]. Observer design for descriptor systems, incorporating bounded Jacobian nonlin-
earity, has yet to be investigated.

4.6 Other Types of Synchronization

Traditionally, the goal of the observer is to estimate the internal states of the mas-
ter system and achieve synchronization. This is the standard problem considered, as
knowledge of the system’s state is usually what is sought after. Nonetheless, this prob-
lem can be generalized to a wider category, where the observer estimates to some
function of the master system’s state. This generalization is certainly interesting from
a mathematical standpoint, as the problem may be more complex, but could also be
of practical use. For example, in secure communication applications, the information
could be masked in such a way so that classic synchronization may fail to decrypt the
signal. Examples include anti-synchronization [45, 57], where the observer synchro-
nizes with the opposite of the state of the master system

||x(t) + x̂(t)|| → 0, (34)

lag synchronization [70], which synchronizes with a delayed state

||x(t − τ) + x̂(t)|| → 0, (35)

projective synchronization [20], which synchronizes with a scaled state

||ax(t) + x̂(t)|| → 0, (36)

and function projective synchronization [36], which synchronizes with a scaled func-
tion state

||a(t)x(t) + x̂(t)|| → 0. (37)

5 Conclusions and FutureWorks

In this article, a review on advances in observer design for nonlinear descriptor systems
is presented. On the one hand, considering wide classes that can encompass many
others, like the δQC case, is of importance, as the results are applicable to many cases,
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and can also unify previous results from many works. On the other hand, studying
narrower and specialized types of nonlinearities can help in deriving softer observer
design conditions, albeit they will be applicable for fewer cases. Hence, both research
directions bring merit to the observer design study.

This review aims to serve as guidance to researchers on identifying research gaps on
the types of nonlinearities that have so far been considered. Slope restricted, integral
type, and ellipsoidallyLipschitz constraints seempromising grounds for future studies.
Nonlinearities in the output equations have been considered rarely, but the problem is
gaining attention in the last years.

Of course, with somany developedworks, a question that naturally arises is whether
it is possible to make any comparison as to which of the available observers is better
than the rest. For this, there are several different evaluation criteria that can be con-
sidered. Examples include the ease of feasibility of the LMI linked to the observer’s
convergence, the algebraic conditions required to derive the LMI, and the observer’s
convergence rate. The problem with such comparison though is that in many cases
these criteria may be conflicting. For example, an observer with a faster convergence
rate, may require the feasibility of a stricter LMI, compared to another one that is
slower, but with a softer feasibility condition. Thus, it is not possible to consider an
observer that is universally superior to the rest in the literature. Comparison can only
be made with respect to specific design aspects each time.

An important observation from the works studied is that there are very few com-
ments on identifying the type of nonlinearity a system belongs to, or how to compute
the corresponding bounds in each case. Thus, future works should accompany their
results with a discussion on this; otherwise, it may be hard to identify the applicability
of the derived results.

Finally, the works reviewed here follow a Luenberger structure for observer design.
To deal with more complex problems, like uncertainty in the system parameters or
disturbance, different observers canbe considered, like H∞ observers [41], generalized
dynamic observers [47], functional observers [65], robust variations [6], and fractional
order systems [39, 76] of the above.
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