COMPUTING THE EULER-POINCARÉ CHARACTERISTICS OF SIGN CONDITIONS

Saugata Basu, Richard Pollack, and Marie-Françoise Roy

Abstract

Computing various topological invariants of semi-algebraic sets in single exponential time is an active area of research. Several algorithms are known for deciding emptiness, computing the number of connected components of semi-algebraic sets in single exponential time etc. However, an algorithm for computing all the Betti numbers of a given semi-algebraic set in single exponential time is still lacking. In this paper we describe a new, improved algorithm for computing the Euler-Poincaré characteristic (which is the alternating sum of the Betti numbers) of the realization of each realizable sign condition of a family of polynomials restricted to a real variety. The complexity of the algorithm is $s^{k^{\prime}+1} O(d)^{k}+s^{k^{\prime}}\left(\left(k^{\prime} \log _{2}(s)+k \log _{2}(d)\right) d\right)^{O(k)}$, where s is the number of polynomials, k the number of variables, d a bound on the degrees, and k^{\prime} the real dimension of the variety. A consequence of our result is that the Euler-Poincaré characteristic of any locally closed semi-algebraic set can be computed with the same complexity. The best previously known single exponential time algorithm for computing the Euler-Poincaré characteristic of semi-algebraic sets worked only for a more restricted class of closed semi-algebraic sets and had a complexity of $(k s d)^{O(k)}$.

Keywords. Semi-algebraic sets, Euler-Poincaré characteristic.
Subject classification. 14P10, 14P25.

1. Introduction

Let R be a real closed field. For $Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote the set of zeros of Q in R^{k} by $\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)=\left\{x \in \mathrm{R}^{k} \mid Q(x)=0\right\}$. Now let $Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, $\operatorname{deg}(Q) \leq d$, and k^{\prime} the dimension of $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$. Given a family $\mathcal{P}=$ $\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with degrees also bounded by d, there are several algorithms known for computing the number of realizable sign conditions of
the family \mathcal{P} restricted to the real variety Z, as well as computing the number of connected components of the realization of each such sign condition (Basu et al. 1997, 2000; Canny 1993; Gournay \& Risler 1993; Grigor'ev \& Vorobjov 1992; Heintz et al. 1994; Renegar 1992). The complexity of the best known algorithm is $s^{k^{\prime}+1} d^{O(k)}$ for the first problem (Basu et al. 1997), and $s^{k^{\prime}+1} d^{O\left(k^{2}\right)}$ for the second (Basu et al. 2000). In this paper, we consider the problem of computing the Euler-Poincaré characteristic of the realization of each realizable sign condition of \mathcal{P} restricted to the real variety Z. (Here and elsewhere in the paper by the complexity of any algorithm we mean the number of arithmetic operations and sign comparisons performed on the elements of the ring generated by the coefficients of the input polynomials.)

Efficient algorithms for sign determination of univariate polynomials described in Ben-Or et al. (1986) and Roy \& Szpirglas (1990) are amongst the most basic algorithms in algorithmic real algebraic geometry. Given $\mathcal{P} \subset \mathrm{R}[X]$ and $Q \in \mathrm{R}[X]$ with $\# \mathcal{P}=s$ and $\operatorname{deg}(P) \leq d$ for $P \in \mathcal{P} \cup\{Q\}$, these algorithms count, for each realizable sign condition of the family \mathcal{P}, the cardinality of the set of real zeros of Q lying in the realization of that sign condition. (Here and everywhere else in the paper $\#(S)$ denotes the cardinality of a set S.) The complexity of the algorithm in Roy \& Szpirglas (1990) is $s d^{O(1)}$. The main contribution of this paper may be viewed as a generalization of this algorithm to the multidimensional situation.

In the multidimensional case, it is no longer meaningful to talk about the cardinalities of the zero set of Q lying in the realizations of different sign conditions of \mathcal{P}. However, there exists another discrete valuation on semi-algebraic sets that properly generalizes the notion of cardinality. This valuation is the Euler-Poincaré characteristic.

The Euler-Poincaré characteristic, $\chi(S)$, of a closed and bounded semialgebraic set $S \subset \mathrm{R}^{k}$ is defined as

$$
\chi(S)=\sum_{i}(-1)^{i} b_{i}(S)
$$

where $b_{i}(S)$ is the rank of the i-th simplicial homology group of S. Note that with this definition, $\chi(\emptyset)=0$, and $\chi(S)=\#(S)$ whenever $\#(S)<\infty$. Moreover, χ is additive.

There is a natural generalization of the Euler-Poincaré characteristic to semi-algebraic sets which are locally closed (i.e. the intersection of a closed semi-algebraic set with an open one) which retains the additivity property. This generalization is based on the theory of Borel-Moore homology groups (Borel \& Moore 1960) of locally closed semi-algebraic sets and is described in the next section.

Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, and $S \subset \mathrm{R}^{k}$, a locally closed semi-algebraic set, we define

$$
\begin{aligned}
& \mathcal{R}(P=0, S)=\{x \in S \mid P(x)=0\} \\
& \mathcal{R}(P>0, S)=\{x \in S \mid P(x)>0\} \\
& \mathcal{R}(P<0, S)=\{x \in S \mid P(x)<0\}
\end{aligned}
$$

Notice that these sets are all locally closed. We denote their Euler-Poincaré characteristics by $\chi(P=0, S), \chi(P>0, S)$ and $\chi(P<0, S)$, respectively.

More generally, given a family of polynomials $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ and a sign condition $\sigma \in\{0,-1,1\}^{\mathcal{P}}$, we define

$$
\mathcal{R}(\sigma, S)=\left\{x \in S \mid \bigwedge_{P \in \mathcal{P}} \operatorname{sign}(P(x))=\sigma(P)\right\}
$$

and

$$
\chi(\sigma, S)=\chi(\mathcal{R}(\sigma, S))
$$

(where $\operatorname{sign}(x)=0,1$ or -1 iff $x=0, x>0$, or $x<0$ respectively). The Euler-Poincaré query of P with respect to S is

$$
\mathrm{EQ}(P, S)=\chi(P>0, S)-\chi(P<0, S)
$$

As a particular case, given a finite subset $Z \subset \mathrm{R}^{k}$, and $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, the Sturm query of P with respect to Z is the number

$$
\mathrm{SQ}(P, Z)=\#(\{x \in Z \mid P(x)>0\})-\#(\{x \in Z \mid P(x)<0\})
$$

Given $\mathcal{P} \subset \mathrm{R}[X], Q \in \mathrm{R}[X]$ with $\# \mathcal{P}=s$ and $\operatorname{deg}(P) \leq d$ for $P \in \mathcal{P} \cup$ $\{Q\}$, the sign determination algorithm in Ben-Or et al. (1986) (see also Roy \& Szpirglas 1990) uses as a basic building block Sturm query computations $\mathrm{SQ}(P, Z)$ for various polynomials P, where each such P is a product of certain polynomials in \mathcal{P} or their squares, and $Z=\mathrm{Z}(Q, \mathrm{R})$. The main idea underlying these algorithms is to construct a matrix, M, with entries in $\{0,1,-1\}$, such that the equation $M \cdot C=S Q$ holds. Here, C is the vector of cardinalities of sets of zeros of Q lying in the realizations of different sign conditions of \mathcal{P}, and $S Q$ is a vector of Sturm queries. Clearly, provided M is invertible, we can compute the vector C from M and $S Q$. The matrix M is built inductively by taking Kronecker products. If done naively this would lead to tripling its size at each step, leading to a matrix of size 3^{s} at the end. An obvious but crucial fact used to control the complexity of the algorithms in Ben-Or et al. (1986)
and Roy \& Szpirglas (1990) is that the number of realizable sign conditions of the family \mathcal{P} on $\mathrm{Z}(Q, \mathrm{R})$ is bounded by d. This fact is used to prune the matrix M at each step of the algorithm so that its size never exceeds d. The main algorithm presented in this paper (Algorithm 4.8 in Section 4) is based on similar ideas. Instead of Sturm queries, it uses the Euler-Poincaré queries defined above. The role of the matrix equation $M \cdot C=S Q$ is played by Equation (4.2) in Proposition 4.1 below, and it uses a tight bound on the number of realizable sign conditions on a variety (see Proposition 2.12 below) to ensure that the size of the matrix does not grow exponentially in s.

Let $Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ and $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$. We denote by $\operatorname{Sign}(\mathcal{P}, Z)$ the list of $\sigma \in\{0,1,-1\}^{\mathcal{P}}$ such that $\mathcal{R}(\sigma, Z)$ is non-empty. We denote by $\chi(\mathcal{P}, Z)$ the list of Euler-Poincaré characteristics $\chi(\sigma, Z)=\chi(\mathcal{R}(\sigma, Z))$ indexed by elements, σ, of $\operatorname{Sign}(\mathcal{P}, Z)$.

The problem of determining the Euler-Poincaré characteristic of closed semi-algebraic sets was considered in Basu (1999) where an algorithm was presented for computing the Euler-Poincaré characteristic of a given closed semi-algebraic set defined by a quantifier-free Boolean formula without negation, with atoms of the form $P_{i} \geq 0, P_{i} \leq 0$, for $1 \leq i \leq s, \operatorname{deg}\left(P_{i}\right) \leq d$. The complexity of the algorithm is $(k s d)^{O(k)}$. Moreover, in the special case when the coefficients of the polynomials in \mathcal{P} are integers of bit lengths bounded by τ, the algorithm performs at most $(k s d)^{O(k)} \tau^{O(1)}$ bit operations.

The rest of this paper is devoted to the proof of the following.
Main Result: We present an algorithm (Algorithm 4.8 in Section 4) which, given an algebraic set $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right) \subset \mathrm{R}^{k}$ and a finite set of polynomials $\mathcal{P}=$ $\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, computes the list $\chi(\mathcal{P}, Z)$ indexed by elements, σ, of $\operatorname{Sign}(\mathcal{P}, Z)$. If the degrees of the polynomials in $\mathcal{P} \cup\{Q\}$ are bounded by d, and the real dimension of $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$ is k^{\prime}, then the complexity of the algorithm is

$$
s^{k^{\prime}+1} O(d)^{k}+s^{k^{\prime}}\left(\left(k^{\prime} \log _{2}(s)+k \log _{2}(d)\right) d\right)^{O(k)} .
$$

If the coefficients of the polynomials in $\mathcal{P} \cup\{Q\}$ are integers of bitsizes bounded by τ, then the bitsizes of the integers appearing in the intermediate computations and the output are bounded by $\tau\left(\left(k^{\prime} \log _{2}(s)+k \log _{2}(d)\right) d\right)^{O(k)}$.

In many applications, the combinatorial complexity of algorithms (the part depending on s) is considered more important than the algebraic complexity (the part depending on d). This is especially relevant in computational geometry, where it is customary to treat the degrees of polynomials as well as the dimension as fixed, with the number of polynomials allowed to be large (see

Halperin 1997). As a result, there has been a lot of research aimed towards designing algorithms for computing various properties of semi-algebraic sets with tight combinatorial complexities. For instance, algorithms with tight combinatorial complexity has been designed for computing the set of all realizable sign conditions of a family of polynomials (Basu et al. 1997), testing connectivity of semi-algebraic sets (Basu et al. 2000; Canny 1993) etc. From this point of view, the complexity of the algorithm presented in this paper is significantly better than that of the algorithm in Basu (1999) mentioned above, and nearly matches the complexity of the best known algorithm for computing the set of all realizable sign conditions on a variety (Basu et al. 1997). Moreover, by the additivity of the Euler-Poincaré characteristic, it is clear that once we have computed the Euler-Poincaré characteristic of every realizable sign condition, it is possible to compute the same for any locally closed semi-algebraic set defined by a quantifier-free formula involving the input polynomials without any additional computational overhead. The algorithm in Basu (1999) deals only with closed semi-algebraic sets defined by formulas of a special type. Another interesting aspect of Algorithm 4.8 is that it is really a multidimensional generalization of the sign determination algorithms in Ben-Or et al. (1986) and Roy \& Szpirglas (1990) for the univariate case and their multivariate generalization (Pedersen et al. 1993) for zero-dimensional systems.

The rest of the paper is organized as follows. In Section 2 we state some of the topological results we will use. If the results have appeared before or are classical we omit the proofs and provide pointers to the appropriate papers. In Section 3 we use an algorithm for computing the Euler-Poincaré characteristic of algebraic sets described in Basu (1999) to design the building block for the main algorithm. Finally, in Section 4 we describe the algorithm for computing the Euler-Poincaré characteristics for all sign conditions.

2. Basic results from topology

2.1. Definition of the Euler-Poincaré characteristic. In order to define the Euler-Poincaré characteristic of semi-algebraic sets we first recall the definitions of the simplicial homology groups of a closed and bounded semi-algebraic set $S \subset \mathrm{R}^{k}$, with R a real closed field.

A closed, bounded semi-algebraic set S can be triangulated by a simplicial complex K (Basu et al. 2003; Bochnak et al. 1987). Choose a semi-algebraic triangulation $f:|K| \rightarrow S$. The homology group $H_{p}(S)$ (with coefficients in \mathbb{Q}) is defined to be the simplicial homology group (with coefficients in \mathbb{Q}), $H_{p}(K)$, of the simplicial complex K, for $p=0,1, \ldots$.

The homology groups of S are all finite-dimensional vector spaces over \mathbb{Q}. The dimension of $H_{p}(S)$ as a vector space over \mathbb{Q} is called the p-th Betti number of S and denoted $b_{p}(S)$. The Euler-Poincaré characteristic of S is

$$
\chi(S)=\sum_{i}(-1)^{i} b_{i}(S)
$$

We are now in a position to define the Euler-Poincaré characteristic for locally closed semi-algebraic sets. This definition agrees with the previously defined Euler-Poincaré characteristic for closed and bounded semi-algebraic sets and turns out to be additive as before. Since the Euler-Poincaré characteristic is a discrete topological invariant of semi-algebraic sets which generalizes the cardinality of a finite set, its additivity is a very natural property to require.

We first recall the definition of simplicial homology groups of pairs of closed and bounded semi-algebraic sets. Let K be a simplicial complex and A a subcomplex of K. Then there is a natural inclusion homomorphism

$$
\iota: C_{p}(A) \rightarrow C_{p}(K)
$$

between the corresponding chain groups (with coefficients in \mathbb{Q}). Defining the group $C_{p}(K, A)=C_{p}(K) / \iota\left(C_{p}(A)\right)$, it is easy to see that the boundary maps $\partial_{p}: C_{p}(K) \rightarrow C_{p-1}(K)$ descend to maps $\partial_{p}: C_{p}(K, A) \rightarrow C_{p-1}(K, A)$, so that we have a short exact sequence of complexes

$$
0 \rightarrow C_{*}(A) \rightarrow C_{*}(K) \rightarrow C_{*}(K, A) \rightarrow 0
$$

Given a pair (K, A), where A is a subcomplex of K, the group

$$
H_{p}(K, A)=H_{p}(C(K, A))
$$

is the p-th simplicial homology group of the pair (K, A).
It is clear from the definition that $H_{p}(K, A)$ is a finite-dimensional \mathbb{Q}-vector space. The dimension of $H_{p}(K, A)$ as a \mathbb{Q}-vector space is called the p-th Betti number of the pair (K, A) and denoted $b_{p}(K, A)$. The Euler-Poincaré characteristic of the pair (K, A) is

$$
\chi(K, A)=\sum_{i}(-1)^{i} b_{i}(K, A)
$$

The simplicial homology groups of a pair of closed and bounded semialgebraic sets $T \subset S \subset \mathrm{R}^{k}$ are defined as follows. Such a pair can be triangulated (Basu et al. 2003) using a pair of simplicial complexes (K, A), where
A is a subcomplex of K. The p-th simplicial homology group of the pair (S, T), $H_{p}(S, T)$, is $H_{p}(K, A)$. The dimension of $H_{p}(S, T)$ as a \mathbb{Q}-vector space is called the p-th Betti number of the pair (S, T) and denoted $b_{p}(S, T)$. The EulerPoincaré characteristic of the pair (S, T) is

$$
\chi(S, T)=\sum_{i}(-1)^{i} b_{i}(S, T) .
$$

The p-th Borel-Moore homology group of $S \subset \mathrm{R}^{k}$, denoted $H_{p}^{B M}(S)$, is defined in terms of the homology groups of a pair of closed and bounded semialgebraic sets as follows. For $r>0$, let $B_{k}(0, r)$ denote the open ball of radius r centered at the origin, and let $S_{r}=S \cap B_{k}(0, r)$ and $\overline{S_{r}}$ the closure of S_{r}. Note that, for a locally closed semi-algebraic set S, both $\overline{S_{r}}$ and $\overline{S_{r}} \backslash S_{r}$ are closed and bounded and hence $H_{p}\left(\overline{S_{r}}, \overline{S_{r}} \backslash S_{r}\right)$ is well defined. Moreover, it is a consequence of Hardt's triviality theorem (Hardt 1980) that the homology group $H_{p}\left(\overline{S_{r}}, \overline{S_{r}} \backslash S_{r}\right)$ is invariant for all sufficiently large $r>0$. We define $H_{p}^{B M}(S)=H_{p}\left(\overline{S_{r}}, \overline{S_{r}} \backslash S_{r}\right)$ for $r>0$ sufficiently large, and it follows from the remark above that it is well defined. The Borel-Moore homology groups are invariant under semi-algebraic homeomorphisms (Bochnak et al. 1987). It also follows clearly from the definition that for a closed and bounded semi-algebraic set, the Borel-Moore homology groups coincide with the simplicial homology groups.
2.2. Additivity of the Euler-Poincaré characteristic. The following proposition is well known (see for example Basu et al. 2003).

Proposition 2.1. Let $S \subset \mathrm{R}^{k}$ be a closed and bounded semi-algebraic set, K be a simplicial complex in R^{k} and $h:|K| \rightarrow S$ be a semi-algebraic homeomorphism. Let $n_{i}(K)$ be the number of simplices of dimension i of K. Then

$$
\chi(S)=\sum_{i}(-1)^{i} n_{i}(K)
$$

The following proposition is an immediate consequence of Proposition 2.1.

Proposition 2.2. Let X_{1}, X_{2} be two closed and bounded semi-algebraic sets. Then

$$
\begin{equation*}
\chi\left(X_{1} \cup X_{2}\right)=\chi\left(X_{1}\right)+\chi\left(X_{2}\right)-\chi\left(X_{1} \cap X_{2}\right) . \tag{2.3}
\end{equation*}
$$

The Euler-Poincaré characteristic of a locally closed semi-algebraic set S is related to the Euler-Poincaré characteristic of the closed and bounded semialgebraic sets $\overline{S_{r}}$ and $\overline{S_{r}} \backslash S_{r}$ for all large enough $r>0$, by the following lemma.

Lemma 2.4.

$$
\chi(S)=\chi\left(\overline{S_{r}}\right)-\chi\left(\overline{S_{r}} \backslash S_{r}\right),
$$

where $S_{r}=S \cap B_{k}(0, r)$ and $r>0$ is sufficiently large.
Proof. Choose a pair of simplicial complexes (K, A) corresponding to a triangulation of the pair ($\overline{S_{r}}, \overline{S_{r}} \backslash S_{r}$). From the short exact sequence of chain complexes

$$
0 \rightarrow C_{*}(A) \rightarrow C_{*}(K) \rightarrow C_{*}(K, A) \rightarrow 0
$$

we obtain the following long exact sequence of homology groups:

$$
\cdots \rightarrow H_{p}(A) \rightarrow H_{p}(K) \rightarrow H_{p}(K, A) \rightarrow H_{p-1}(A) \rightarrow H_{p-1}(K) \rightarrow \cdots
$$

It follows that

$$
\chi(S)=\chi(K, A)=\chi(K)-\chi(A)=\chi\left(\overline{S_{r}}\right)-\chi\left(\overline{S_{r}} \backslash S_{r}\right) .
$$

Proposition 2.5. Let $T \subset S \subset \mathrm{R}^{k}$ be a pair of closed and bounded semialgebraic sets, (K, A) be a pair of simplicial complexes in R^{k} with A being a subcomplex of K, and let $h:|K| \rightarrow S$ be a semi-algebraic homeomorphism such that the image of $|K|$ is T. Let $n_{i}(K)$ be the number of simplices of dimension i of K, and let $m_{i}(A)$ be the number of simplices of dimension i of A. Then

$$
\chi(S, T)=\chi(K, A)=\sum_{i}(-1)^{i} n_{i}(K)-\sum_{i}(-1)^{i} m_{i}(A) .
$$

Proof. First note that $\chi(K, A)=\chi(K)-\chi(A)$ (see proof of Lemma 2.4). The proposition is now an immediate consequence of Proposition 2.1.

Proposition 2.6 (Additivity of Euler-Poincaré characteristic). Let X, X_{1} and X_{2} be locally closed semi-algebraic sets such that

$$
X_{1} \cup X_{2}=X, \quad X_{1} \cap X_{2}=\emptyset .
$$

Then

$$
\chi(X)=\chi\left(X_{1}\right)+\chi\left(X_{2}\right) .
$$

Proof. This is an easy consequence of Proposition 2.5 and the invariance of the Borel-Moore homology groups under semi-algebraic homeomorphisms.

Let $S \subset \mathrm{R}^{k}$ be a closed semi-algebraic set. Using the notation of the introduction, we have:

Proposition 2.7. The following equality holds:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{2.8}\\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\chi(P=0, S) \\
\chi(P>0, S) \\
\chi(P<0, S)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{EQ}(1, S) \\
\operatorname{EQ}(P, S) \\
\operatorname{EQ}\left(P^{2}, Z\right)
\end{array}\right]
$$

Proof. We need to prove

$$
\begin{gather*}
\chi(P=0, S)+\chi(P>0, S)+\chi(P<0, S)=\mathrm{EQ}(1, S) \tag{2.9}\\
\chi(P>0, S)-\chi(P<0, S)=\mathrm{EQ}(P, S) \tag{2.10}\\
\chi(P>0, S)+\chi(P<0, S)=\mathrm{EQ}\left(P^{2}, S\right) \tag{2.11}
\end{gather*}
$$

These are immediate consequences of Proposition 2.6.
2.3. Number of connected components of realizable sign conditions. We will need a bound on the number of connected components of the realizations of all realizable sign conditions of a family of polynomials on a real variety, which we state below. Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right], Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ and $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$.

For $\sigma \in \operatorname{Sign}(\mathcal{P}, Z)$, let $b_{i}(\sigma)$ denote the i-th Betti number of

$$
\mathcal{R}(\sigma, Z)=\left\{x \in \mathrm{R}^{k} \mid Q(x)=0, \bigwedge_{P \in \mathcal{P}} \operatorname{sign}(P(x))=\sigma(P)\right\} .
$$

Let

$$
b_{i}(\mathcal{P}, Z)=\sum_{\sigma} b_{i}(\sigma)
$$

Note that $b_{0}(\mathcal{P}, Z)$ is the number of semi-algebraically connected components of basic semi-algebraic sets defined by \mathcal{P} over $\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$.

We write $b_{i}\left(d, k, k^{\prime}, s\right)$ for the maximum of $b_{i}(\mathcal{P}, Z)$ over all \mathcal{P} and Q with $\operatorname{deg}(P) \leq d$ for all $P \in \mathcal{P} \cup\{Q\}, \#(\mathcal{P})=s$ and such that the algebraic set $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$ has dimension k^{\prime}.

The following proposition is proved in Basu et al. (2005).
Proposition 2.12.

$$
b_{0}\left(d, k, k^{\prime}, s\right) \leq \sum_{1 \leq j \leq k^{\prime}}\binom{s}{j} 4^{j} d(2 d-1)^{k-1} .
$$

3. Computing the Euler-Poincaré query

An algorithm for computing the Euler-Poincaré characteristic of an algebraic set is described in Basu (1999). We recall below the input, output and the complexity of this algorithm.

Algorithm 3.1 (Euler-Poincaré characteristic of an algebraic set).
Input: a polynomial $Q \in \mathrm{D}\left[X_{1}, \ldots, X_{k}\right]$, where D is an ordered domain.
Output: the Euler-Poincaré characteristic $\chi\left(\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)\right)$.
Complexity. The complexity of the algorithm is $d^{O(k)}$. When $\mathrm{D}=\mathbb{Z}$ and the bitsizes of the coefficients of Q are bounded by τ, the bitsizes of the intermediate computations and the output are bounded by $\tau d^{O(k)}$ (Basu 1999).

We now outline an algorithm for computing Euler-Poincaré queries which uses Algorithm 3.1 described above for computing the Euler-Poincaré characteristic of certain algebraic sets.

Algorithm 3.2 (Euler-Poincaré query).
Input: a polynomial $Q \in \mathrm{D}\left[X_{1}, \ldots, X_{k}\right]$, with $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$, a polynomial $P \in \mathrm{D}\left[X_{1}, \ldots, X_{k}\right]$.
Output: the Euler-Poincaré query

$$
\operatorname{EQ}(P, Z)=\chi(P>0, Z)-\chi(P<0, Z)
$$

1. Introduce a new variable X_{k+1}, and let

$$
\begin{aligned}
& Q_{+}=Q^{2}+\left(P-X_{k+1}^{2}\right)^{2} \\
& Q_{-}=Q^{2}+\left(P+X_{k+1}^{2}\right)^{2}
\end{aligned}
$$

Using Algorithm 3.1, compute $\chi\left(\mathrm{Z}\left(Q_{+}, \mathrm{R}^{k+1}\right)\right)$ and $\chi\left(\mathrm{Z}\left(Q_{-}, \mathrm{R}^{k+1}\right)\right)$.
2. Output

$$
\frac{1}{2}\left(\chi\left(\mathrm{Z}\left(Q_{+}, \mathrm{R}^{k+1}\right)\right)-\chi\left(\mathrm{Z}\left(Q_{-}, \mathrm{R}^{k+1}\right)\right)\right)
$$

Proof of correctness: The algebraic set $\mathrm{Z}\left(Q_{+}, \mathrm{R}^{k+1}\right)$ is semi-algebraically homeomorphic to the disjoint union of two copies of the semi-algebraic set defined by $(P>0) \wedge(Q=0)$, and the algebraic set defined by $(P=0) \wedge(Q=0)$. Hence, using Proposition 2.6, we have

$$
2 \chi(P>0, Z)=\chi\left(\mathrm{Z}\left(Q_{+}, \mathrm{R}^{k+1}\right)\right)-\chi\left(\mathrm{Z}\left(Q^{2}+P^{2}, \mathrm{R}^{k}\right)\right)
$$

Similarly,

$$
2 \chi(P<0, Z)=\chi\left(\mathrm{Z}\left(Q_{-}, \mathrm{R}^{k+1}\right)\right)-\chi\left(\mathrm{Z}\left(Q^{2}+P^{2}, \mathrm{R}^{k}\right)\right) .
$$

Complexity Analysis: The complexity of the algorithm is $d^{O(k)}$ using the complexity analysis of Algorithm 3.1.

When $\mathrm{D}=\mathbb{Z}$ and the bitsizes of the coefficients of P are bounded by τ, the bitsizes of the intermediate computations and the output are bounded by $\tau d^{O(k)}$.

4. Computing the Euler-Poincaré characteristic of sign conditions

Our next aim is to give a method for determining the Euler-Poincaré characteristic of the realization of sign conditions by a finite set $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ on an algebraic set $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$, with $Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$.

We compute the Euler-Poincaré characteristic of the non-empty realizations of sign conditions on \mathcal{P} on the real variety Z using Euler-Poincaré queries (defined in Section 1) as the basic building block. This should be compared with the sign determination algorithms in Ben-Or et al. (1986) and Roy \& Szpirglas (1990), which compute the cardinalities of the non-empty realizations of sign conditions on a finite set and use Sturm queries as the basic building block.

Let $S \subset \mathrm{R}^{k}$ be a locally closed semi-algebraic set.
We order lexicographically $\{0,1,-1\}^{\mathcal{P}}$ and $\{0,1,2\}^{\mathcal{P}}$ with $0 \prec 1 \prec-1$ in the first case and $0 \prec 1 \prec 2$ in the second.

For $A=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, a list of elements from $\{0,1,2\}^{\mathcal{P}}$ with

$$
\alpha_{1}<_{\operatorname{lex}} \cdots<_{\operatorname{lex}} \alpha_{m},
$$

we write \mathcal{P}^{A} for the list $\left(\mathcal{P}^{\alpha_{1}}, \ldots, \mathcal{P}^{\alpha_{m}}\right)$, and $\operatorname{EQ}\left(\mathcal{P}^{A}, S\right)$ for the vector

$$
\left(\mathrm{EQ}\left(\mathcal{P}^{\alpha_{1}}, S\right), \ldots, \mathrm{EQ}\left(\mathcal{P}^{\alpha_{m}}, S\right)\right)^{t}
$$

(Here, for $\alpha \in\{0,1,2\}^{\mathcal{P}}, \mathcal{P}^{\alpha}$ denotes the polynomial $\prod_{P \in \mathcal{P}} P^{\alpha(P)}$ and ${ }^{t}$ denotes the transpose.)

For $\Sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, a list of elements from $\{0,1,-1\}^{\mathcal{P}}$ with

$$
\sigma_{1}<_{\text {lex }} \cdots<_{\operatorname{lex}} \sigma_{n}
$$

we write $\mathcal{R}(\Sigma, S)$ for the list

$$
\left(\mathcal{R}\left(\sigma_{1}, S\right), \ldots, \mathcal{R}\left(\sigma_{n}, S\right)\right)
$$

and $\chi(\Sigma, S)$ for the vector

$$
\left(\chi\left(\sigma_{1}, S\right), \ldots, \chi\left(\sigma_{n}, S\right)\right)^{t}
$$

The matrix of signs of \mathcal{P}^{A} on Σ is the $m \times n$ matrix $M\left(\mathcal{P}^{A}, \Sigma\right)$ whose i, j-th entry is $\operatorname{sign}\left(\mathcal{P}^{\alpha_{i}}, \sigma_{j}\right)$.

We prove the following generalization of the main ingredient of the sign determination algorithms of Ben-Or et al. (1986) and Roy \& Szpirglas (1990).

Proposition 4.1. If $\bigcup_{\sigma \in \Sigma} \mathcal{R}(\sigma, S)=S$ (i.e. $\{\sigma \mid \mathcal{R}(\sigma, S) \neq \emptyset\} \subset \Sigma$), then

$$
\begin{equation*}
M\left(\mathcal{P}^{A}, \Sigma\right) \cdot \chi(\Sigma, S)=\mathrm{EQ}\left(\mathcal{P}^{A}, S\right) \tag{4.2}
\end{equation*}
$$

Proof. The proof is by induction on the number s of polynomials in \mathcal{P}. The statement for $s=1$ follows from Proposition 2.7, since the Euler-Poincaré characteristic of an empty sign condition is zero.

Suppose the statement holds for $\mathcal{P}^{\prime}=\left\{P_{1}, \ldots, P_{s-1}\right\}$ and consider $\mathcal{P}=$ $\left\{P_{1}, \ldots, P_{s}\right\}$. Define

$$
\begin{aligned}
\Sigma_{0} & =\left\{\sigma \in \Sigma \mid \sigma\left(P_{s}\right)=0\right\}, \\
\Sigma_{1} & =\left\{\sigma \in \Sigma \mid \sigma\left(P_{s}\right)=1\right\}, \\
\Sigma_{-1} & =\left\{\sigma \in \Sigma \mid \sigma\left(P_{s}\right)=-1\right\},
\end{aligned}
$$

and

$$
S_{0}=\bigcup_{\sigma \in \Sigma_{0}} \mathcal{R}(\sigma, S), \quad S_{1}=\bigcup_{\sigma \in \Sigma_{1}} \mathcal{R}(\sigma, S), \quad S_{-1}=\bigcup_{\sigma \in \Sigma_{-1}} \mathcal{R}(\sigma, S) .
$$

Note that S_{0}, S_{-1}, and S_{1} are all locally closed whenever S is locally closed. Let $\alpha \in\{0,1,2\}^{\mathcal{P}}$ and $\alpha^{\prime} \in\{0,1,2\}^{\mathcal{P}^{\prime}}$ be defined by $\alpha^{\prime}\left(P_{j}\right)=\alpha\left(P_{j}\right), 1 \leq j \leq s-1$. Using the additivity of Euler-Poincaré characteristic (Proposition 2.6), we have

$$
\begin{aligned}
& \chi\left(\mathcal{P}^{\alpha}=0, S\right)=\chi\left(\mathcal{P}^{\alpha}=0, S_{0}\right)+\chi\left(\mathcal{P}^{\alpha}=0, S_{1}\right)+\chi\left(\mathcal{P}^{\alpha}=0, S_{-1}\right), \\
& \chi\left(\mathcal{P}^{\alpha}>0, S\right)=\chi\left(\mathcal{P}^{\alpha}>0, S_{0}\right)+\chi\left(\mathcal{P}^{\alpha}>0, S_{1}\right)+\chi\left(\mathcal{P}^{\alpha}>0, S_{-1}\right), \\
& \chi\left(\mathcal{P}^{\alpha}<0, S\right)=\chi\left(\mathcal{P}^{\alpha}<0, S_{0}\right)+\chi\left(\mathcal{P}^{\alpha}<0, S_{1}\right)+\chi\left(\mathcal{P}^{\alpha}<0, S_{-1}\right) .
\end{aligned}
$$

If $\alpha\left(P_{s}\right)=0$, then

$$
\mathrm{EQ}\left(\mathcal{P}^{\alpha}, S\right)=\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{0}\right)+\operatorname{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{1}\right)+\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{-1}\right)
$$

If $\alpha\left(P_{s}\right)=1$, then

$$
\mathrm{EQ}\left(\mathcal{P}^{\alpha}, S\right)=\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{1}\right)-\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{-1}\right)
$$

If $\alpha\left(P_{s}\right)=2$, then

$$
\mathrm{EQ}\left(\mathcal{P}^{\alpha}, S\right)=\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{1}\right)+\mathrm{EQ}\left(\mathcal{P}^{\prime \alpha^{\prime}}, S_{-1}\right)
$$

The claim follows from the induction hypothesis applied to S_{0}, S_{1} and S_{-1}, the definition of $M\left(\mathcal{P}^{A}, \Sigma\right)$ and Proposition 2.6, which implies, for every $\sigma \in \Sigma$,

$$
\chi(\sigma, S)=\chi\left(\sigma, S_{0}\right)+\chi\left(\sigma, S_{1}\right)+\chi\left(\sigma, S_{-1}\right)
$$

Let $Q \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right], Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$. We consider a list $A(Z)$ of elements in $\{0,1,2\}^{\mathcal{P}}$ adapted to sign determination for \mathcal{P} on Z, i.e. such that the matrix of signs of \mathcal{P}^{A} over $\operatorname{Sign}(\mathcal{P}, Z)$ is invertible. If $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$, let $\mathcal{P}_{i}=\left\{P_{1}, \ldots, P_{i}\right\}$ for $0 \leq i \leq s$.

We will now describe a method for determining inductively a list $A_{i}(Z)$ of elements in $\{0,1,2\}^{\mathcal{P}_{i}}$ adapted to sign determination for \mathcal{P}_{i} on Z from $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)$.

Choose $i, 1 \leq i \leq s$, and consider P_{i}. Let $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}\right)$ be the subset of $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)$ of sign conditions which are partitioned into at least two (respectively three) distinct subsets by sign conditions on P_{i}. Let

$$
\begin{align*}
& Z_{2}=\bigcup_{\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}} \mathcal{R}(\sigma, Z), \tag{4.3}\\
& Z_{3}=\bigcup_{\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}} \mathcal{R}(\sigma, Z) . \tag{4.4}
\end{align*}
$$

Note that

$$
\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{2}\right)=\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}, \quad \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{3}\right)=\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}
$$

Let

$$
\begin{aligned}
r_{i-1} & =\#\left(\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)\right), & & r_{i-1,1}=\#\left(\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right) \\
r_{i} & =\#\left(\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)\right), & & r_{i-1,2}=\#\left(\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}\right)
\end{aligned}
$$

Then $r_{i}=r_{i-1}+r_{i-1,1}+r_{i-1,2}$.
Consider the matrix $M\left(\mathcal{P}_{i-1}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{2}\right)\right)$ and extract from it the first $r_{i-1,1}$ linearly independent rows defining a list $A_{i-1}\left(Z_{2}\right)$ adapted to sign determination on Z_{2}. Note that the matrix $M\left(\mathcal{P}_{i-1}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{2}\right)\right)$ consists
of $r_{i-1,1}$ columns of the matrix $M\left(\mathcal{P}_{i-1}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)\right)$, which is of full rank by the induction hypothesis. Thus, the rank of $M\left(\mathcal{P}_{i-1}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{2}\right)\right)$ is $r_{i-1,1}$.

Similarly, consider the matrix $M\left(\mathcal{P}_{i-1}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{3}\right)\right)$ and extract from it the first $r_{i-1,2}$ linearly independent rows defining a list $A_{i-1}\left(Z_{3}\right)$ adapted to sign determination on Z_{3}.

Define

$$
A_{i}(Z)=\left(A_{i-1}(Z) \times 0, A_{i-1}\left(Z_{2}\right) \times 1, A_{i-1}\left(Z_{3}\right) \times 2\right) .
$$

One says that $\tau \in \operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$ extends $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)$ if $\sigma(P)=\tau(P)$ for $P \in \mathcal{P}_{i}$.

Proposition 4.5. The list $A_{i}(Z)$ is adapted to sign determination for \mathcal{P}_{i} on Z.

Proof. The proof is by induction on i. The claim is obviously true for $i=1$. If $\mathcal{P} \neq \emptyset$, we want to prove that $M\left(\mathcal{P}_{i}^{A\left(\mathcal{P}_{i}, Z\right)}, \operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)\right)$ is invertible. Denoting by C_{τ} its column indexed by τ, consider a zero linear combination of its columns:

$$
\sum_{\tau \in \operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)} \lambda_{\tau} C_{\tau}=0
$$

We want to prove that all λ_{τ} are zero. If $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$, we denote by $\sigma_{1}<$ lex $\sigma_{2}<_{\text {lex }} \sigma_{3}$ the sign conditions of $\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$ extending σ. Similarly, if $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2} \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$, we denote by $\sigma_{1}<_{\text {lex }} \sigma_{2}$ the sign conditions of $\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$ extending σ. Finally, if $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right) \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}$, we denote by σ_{1} the sign condition of $\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$ extending σ.

Since $M\left(\mathcal{P}^{A_{i-1}(Z)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)\right)$ is invertible by the induction hypothesis, we have $\lambda_{\sigma_{1}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right) \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}, \lambda_{\sigma_{1}}+\lambda_{\sigma_{2}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2} \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$, and $\lambda_{\sigma_{1}}+\lambda_{\sigma_{2}}+\lambda_{\sigma_{3}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$.

Now from the fact that $M\left(\mathcal{P}^{A\left(\mathcal{P}_{i-1}, Z_{2}\right)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{2}\right)\right)$ is invertible, it follows that $\sigma_{1}(P) \lambda_{\sigma_{1}}-\sigma_{2}(P) \lambda_{\sigma_{2}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2} \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$, and $\lambda_{\sigma_{2}}-\lambda_{\sigma_{3}}=0$ for every $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$. Thus, $\lambda_{\sigma_{1}}=\lambda_{\sigma_{2}}=0$ for every $\sigma \in \operatorname{Sign}(\mathcal{P}, Z)_{2} \backslash \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$.

Finally, since $M\left(\mathcal{P}^{A\left(\mathcal{P}, Z_{3}\right)}, \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z_{3}\right)\right)$ is invertible, we deduce that $\lambda_{\sigma_{2}}+\lambda_{\sigma_{3}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$. Thus $\lambda_{\sigma_{1}}=\lambda_{\sigma_{2}}=\lambda_{\sigma_{3}}=0$ for every $\sigma \in \operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{3}$.

REmARK 4.6. The list $A_{i}(Z) \subset\{0,1,2\}^{\mathcal{P}_{i}}$ adapted to sign determination constructed above depends only on the list of non-empty sign conditions $\operatorname{Sign}(\mathcal{P}, Z)$, since the list $A_{i}(Z) \subset\{0,1,2\}^{\mathcal{P}_{i}}$ is constructed inductively from $A_{i-1}(Z)$ and $\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$.

We are ready to describe an algorithm for computing the Euler-Poincaré characteristic of the realizations of sign conditions. We use the following algorithm (see Basu et al. 1997, 2003) as a basic building block.

Algorithm 4.7 (Sampling on an algebraic set).
Input: a polynomial $Q \in \mathrm{D}\left[X_{1}, \ldots, X_{k}\right]$ of degree at most d, with $\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$ of real dimension k^{\prime},
a set of s polynomials, $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{D}\left[X_{1}, \ldots, X_{k}\right]$, each of degree at most d.
Output: the set $\operatorname{Sign}(\mathcal{P}, Z) \subset\{0,1,-1\}^{\mathcal{P}}$ of all realizable sign conditions for \mathcal{P} over $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right)$.

Complexity. The complexity is $s^{k^{\prime}+1} d^{O(k)}$. If $\mathrm{D}=\mathbb{Z}$, and the bitsizes of the coefficients of the polynomials are bounded by τ, then the bitsizes of the integers appearing in the intermediate computations and the output are bounded by $\tau d^{O(k)}$.

Algorithm 4.8 (Euler-Poincaré characteristic of sign conditions).
Input: an algebraic set $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right) \subset \mathrm{R}^{k}$ and a finite list $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$ of polynomials in $\mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$.
Output: the list $\chi(\mathcal{P}, Z)$.

1. Compute $\operatorname{Sign}(\mathcal{P}, Z)$ using Algorithm 4.7.
2. Determine, for every $1 \leq i \leq s$, a list $A_{i}(Z)$ adapted to sign determination for \mathcal{P}_{i} on Z from $\operatorname{Sign}\left(\mathcal{P}_{i}, Z\right)$ using Proposition 4.5.
3. Define $A=A_{s}(Z), M=M\left(\mathcal{P}^{A}, \operatorname{Sign}(\mathcal{P}, Z)\right)$.
4. Compute $\mathrm{EQ}\left(\mathcal{P}^{A}, Z\right)$ using Algorithm 3.2 repeatedly.
5. Compute $\chi(\mathcal{P}, Z)=M^{-1} \mathrm{EQ}\left(\mathcal{P}^{A}, Z\right)$ using the fact that M is invertible.

Proof of correctness: Immediate from Proposition 4.1.
In order to study the complexity of Algorithm 4.8 we need the following proposition.

Proposition 4.9. Let $Z=\mathrm{Z}\left(Q, \mathrm{R}^{k}\right) \subset \mathrm{R}^{k}$ and $r=\#(\operatorname{Sign}(\mathcal{P}, Z))$. Consider $A_{s}(Z) \subset\{0,1,2\}^{\mathcal{P}}$ computed by Algorithm 4.8. For every $\alpha \in A_{s}(Z)$, the number $\#(\{P \in \mathcal{P} \mid \alpha(P) \neq 0\})$ is at most $\log _{2}(r)$.

We need the following definition. Let α and β be elements of $\{0,1,2\}^{\mathcal{P}}$. We say that β precedes α if for every $P \in \mathcal{P}, \beta(P) \neq 0$ implies $\beta(P)=\alpha(P)$. Note that if β precedes α, then $\beta<_{\text {lex }} \alpha$.

Proof of Proposition 4.9. Let α be such that $\#(\{P \in \mathcal{P} \mid \alpha(P) \neq 0\})=k$. Since the number of elements β of $\{0,1,2\}^{\mathcal{P}}$ preceding α is 2^{k}, and the total number of polynomials in A_{s} is at most r, we have $2^{k} \leq r$ and $k \leq \log _{2}(r)$. So, the proposition follows immediately from the next lemma.

Lemma 4.10. If β precedes α and $\alpha \in A_{s}(Z)$ then $\beta \in A_{s}(Z)$.

Proof. We prove by induction on i that if $\beta \notin A_{i}(Z)$ then $\alpha \notin A_{i}(Z)$. The claim is obvious for $i=1$. If $\alpha \in\{0,1,2\}^{\mathcal{P}_{i}}$ we denote by α^{\prime} the element of $\{0,1,2\}^{\mathcal{P}_{i-1}}$ such that $\alpha^{\prime}\left(P_{j}\right)=\alpha\left(P_{j}\right), j<i$. Note that, by definition of $A_{i}(Z)$, if $\alpha^{\prime} \notin A_{i-1}(Z)$, then $\alpha \notin A_{i}(Z)$.

Suppose that β precedes α and that $\beta \notin A_{i}(Z)$. There are several cases to consider.

If $\alpha\left(P_{i}\right)=0$, then $\beta\left(P_{i}\right)=0$ and $\beta^{\prime} \notin A_{i-1}(Z)$ by definition of A_{i}. By the induction hypothesis, $\alpha^{\prime} \notin A_{i-1}(Z)$ and $\alpha=\alpha^{\prime} \times 0 \notin A_{i}(Z)$ by the definition of $A_{i}(Z)$.

If $\alpha\left(P_{i}\right)=1$ (respectively 2), and $\beta\left(P_{i}\right)=0$, then $\alpha^{\prime} \notin A_{i-1}(Z)$ by induction hypothesis, and $\alpha \notin A_{i}(Z)$.

If $\alpha\left(P_{i}\right)=1$ (respectively 2), and $\beta\left(P_{i}\right)=\alpha\left(P_{i}\right)$, then $\beta^{\prime} \notin A_{i-1}\left(Z^{\prime}\right)$ (respectively $\left.A_{i-1}\left(Z^{\prime \prime}\right)\right)$. Thus, the row of signs of $\mathcal{P}_{i-1}^{\beta^{\prime}}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$ is a linear combination of the rows of signs of $\mathcal{P}_{i-1}^{\lambda}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}\left(\right.$ respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$, with $\lambda<_{\text {lex }} \beta^{\prime}$ in the lexicographical order. Denote by γ the element in $\{0,1,2\}^{\mathcal{P}_{i-1}}$ such that $\mathcal{P}_{i-1}^{\beta^{\prime}} \mathcal{P}_{i-1}^{\gamma}=\mathcal{P}_{i-1}^{\alpha^{\prime}}$. Then the row of signs of $\mathcal{P}_{i-1}^{\alpha^{\prime}}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$ is a linear combination of the rows of signs of $\mathcal{P}_{i-1}^{\lambda} \mathcal{P}_{i-1}^{\gamma}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$. Define λ^{\prime} by $\lambda^{\prime}\left(P_{j}\right)=\lambda\left(P_{j}\right)+\gamma\left(P_{j}\right)$ modulo 2. Then the row of signs of $\mathcal{P}_{i-1}^{\lambda} \mathcal{P}_{i-1}^{\gamma}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$ coincides with the row of signs of $\mathcal{P}_{i-1}^{\lambda^{\prime}}$ on $\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{1}$ (respectively $\left.\operatorname{Sign}\left(\mathcal{P}_{i-1}, Z\right)_{2}\right)$. Since it is clear that $\lambda^{\prime}<_{\text {lex }} \alpha^{\prime}$ in the lexicographical order, it follows that $\alpha^{\prime} \notin A_{i-1}\left(Z^{\prime}\right)$ (respectively $A_{i-1}\left(Z^{\prime \prime}\right)$). Thus $\alpha \notin A_{i}(Z)$.

Complexity analysis: Let k^{\prime} be the dimension of Z, d a bound on the degree of Q and the elements of \mathcal{P}, and $s=\#(\mathcal{P})$. By Proposition 2.12,

$$
\#(\operatorname{Sign}(\mathcal{P}, Z)) \leq \sum_{0 \leq j \leq k^{\prime}}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}=s^{k^{\prime}} O(d)^{k}
$$

The number of calls to Algorithm 3.2 is equal to $\#(\operatorname{Sign}(\mathcal{P}, Z))$. These calls are done for polynomials which are products of at most

$$
\log _{2}(\#(\operatorname{Sign}(\mathcal{P}, Z)))=k^{\prime} \log _{2}(s)+O(k) \log _{2}(d)
$$

polynomials of the form P or $P^{2}, P \in \mathcal{P}$, by Proposition 4.9, hence of degree $\left(k^{\prime} \log _{2}(s)+k\left(\log _{2}(d)+O(1)\right) d\right.$. By the complexity analysis of Algorithm 4.7 and the complexity analysis of Algorithm 3.2, the number of arithmetic operations is

$$
s^{k^{\prime}+1} O(d)^{k}+s^{k^{\prime}}\left(\left(k^{\prime} \log _{2}(s)+k \log _{2}(d)\right) d\right)^{O(k)}
$$

The algorithm also involves the inversion of matrices size $s^{k^{\prime}} O(d)^{k}$ whose entries are 0,1 or -1 .

If $D=\mathbb{Z}$, and the bitsizes of the coefficients of the polynomials are bounded by τ, then the bitsizes of the integers appearing in the intermediate computations and the output are bounded by $\tau\left(\left(k^{\prime} \log _{2}(s)+k \log _{2}(d)\right) d\right)^{O(k)}$.

Acknowledgements

Saugata Basu was supported in part by an NSF Career Award 0133597 and a Sloan Foundation Fellowship. Richard Pollack was supported in part by NSF grant CCR-0098246.

References

S. BASU (1999). On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets. Discrete Comput. Geom. 22, 1-18.
S. Basu, R. Pollack \& M.-F. Roy (1997). On computing a set of points meeting every cell defined by a family of polynomials on a variety. J. Complexity 13, 28-37.
S. Basu, R. Pollack \& M.-F. Roy (2000). Computing roadmaps of semi-algebraic sets on a variety. J. Amer. Math. Soc. 3, 55-82.
S. Basu, R. Pollack \& M.-F. Roy (2003). Algorithms in Real Algebraic Geometry, Springer.
S. Basu, R. Pollack \& M.-F. Roy (2005). On the Betti numbers of sign conditions. Proc. Amer. Math. Soc. (to appear).
M. Ben-Or, D. Kozen \& J. Reif (1986). The complexity of elementary algebra and geometry. J. Comput. System Sci. 32, 251-264.
J. Bochnak, M. Coste \& M.-F. Roy (1987). Géométrie algébrique réelle. Springer; English transl.: Real Algebraic Geometry Springer, 1998.
A. Borel \& J. C. Moore (1960). Homology theory for locally compact spaces. Michigan Math. J. 7, 137-159.
J. Canny (1993). Computing roadmaps of general semi-algebraic sets. Comput. J. 36, 504-514.
L. Gournay \& J. J. Risler (1993). Construction of roadmaps of semi-algebraic sets. Appl. Algebra Engrg. Comm. Comput. 4, 239-252.
D. Grigor'ev \& N. Vorobjov (1992). Counting connected components of a semialgebraic set in subexponential time. Comput. Complexity 2, 133-186.
D. Halperin (1997). Arrangements. In Handbook of Discrete and Computational Geometry, J. O’Rourke and J. E. Goodman (eds.), CRC Press, 389-412.
R. M. Hardt (1980). Semi-algebraic local triviality in semi-algebraic mappings. Amer. J. Math. 102, 291-302.
J. Heintz, M.-F. Roy \& P. Solernó (1994). Description of the connected components of a semialgebraic set in single exponential time. Discrete Comput. Geom. 11, 121-140.
P. Pedersen, M.-F. Roy \& A. Szpirglas (1993). Counting real zeros in the multivariate case. In Computational Algebraic Geometry, F. Eyssette and A. Galligo (eds.), Progr. Math. 109, Birkhäuser, 203-224.
J. Renegar (1992). On the computational complexity and geometry of the firstorder theory of the reals. J. Symbolic Comput. 13, 255-352.
M.-F. Roy \& A. Szpirglas (1990). Complexity of computation on real algebraic numbers. J. Symbolic Comput. 10, 39-51.

Manuscript received 5 April 2004

Saugata Basu
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
saugata@math.gatech.edu

Richard Pollack
Courant Institute
of Mathematical Sciences
New York University
New York, NY 10012, U.S.A.
pollack@cims.nyu.edu

Marie-Françoise Roy
Université de Rennes
Campus de Beaulieu
F-35042 Rennes Cedex, France
marie-francoise.roy@math.univ-rennes1.fr

To access this journal online:
(4) http://www.birkhauser.ch

