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CHARACTERISTICS

OF SIGN CONDITIONS
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Abstract. Computing various topological invariants of semi-algebraic
sets in single exponential time is an active area of research. Several
algorithms are known for deciding emptiness, computing the number
of connected components of semi-algebraic sets in single exponential
time etc. However, an algorithm for computing all the Betti numbers
of a given semi-algebraic set in single exponential time is still lacking.
In this paper we describe a new, improved algorithm for computing
the Euler–Poincaré characteristic (which is the alternating sum of the
Betti numbers) of the realization of each realizable sign condition of a
family of polynomials restricted to a real variety. The complexity of the
algorithm is sk

′+1O(d)k + sk
′
((k′ log2(s) + k log2(d))d)O(k), where s is

the number of polynomials, k the number of variables, d a bound on
the degrees, and k′ the real dimension of the variety. A consequence of
our result is that the Euler–Poincaré characteristic of any locally closed
semi-algebraic set can be computed with the same complexity. The best
previously known single exponential time algorithm for computing the
Euler–Poincaré characteristic of semi-algebraic sets worked only for a
more restricted class of closed semi-algebraic sets and had a complexity
of (ksd)O(k).
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Subject classification. 14P10, 14P25.

1. Introduction

Let R be a real closed field. For Q ∈ R[X1, . . . , Xk] we denote the set of zeros
of Q in Rk by Z(Q,Rk) = {x ∈ Rk | Q(x) = 0}. Now let Q ∈ R[X1, . . . , Xk],
deg(Q) ≤ d, and k′ the dimension of Z = Z(Q,Rk). Given a family P =
{P1, . . . , Ps} ⊂ R[X1, . . . , Xk], with degrees also bounded by d, there are sev-
eral algorithms known for computing the number of realizable sign conditions of
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the family P restricted to the real variety Z, as well as computing the number
of connected components of the realization of each such sign condition (Basu
et al. 1997, 2000; Canny 1993; Gournay & Risler 1993; Grigor’ev & Vorobjov
1992; Heintz et al. 1994; Renegar 1992). The complexity of the best known
algorithm is sk

′+1dO(k) for the first problem (Basu et al. 1997), and sk
′+1dO(k2)

for the second (Basu et al. 2000). In this paper, we consider the problem of
computing the Euler–Poincaré characteristic of the realization of each realiz-
able sign condition of P restricted to the real variety Z. (Here and elsewhere
in the paper by the complexity of any algorithm we mean the number of arith-
metic operations and sign comparisons performed on the elements of the ring
generated by the coefficients of the input polynomials.)

Efficient algorithms for sign determination of univariate polynomials de-
scribed in Ben-Or et al. (1986) and Roy & Szpirglas (1990) are amongst the
most basic algorithms in algorithmic real algebraic geometry. Given P ⊂ R[X]
and Q ∈ R[X] with #P = s and deg(P ) ≤ d for P ∈ P∪{Q}, these algorithms
count, for each realizable sign condition of the family P , the cardinality of the
set of real zeros of Q lying in the realization of that sign condition. (Here and
everywhere else in the paper #(S) denotes the cardinality of a set S.) The
complexity of the algorithm in Roy & Szpirglas (1990) is sdO(1). The main
contribution of this paper may be viewed as a generalization of this algorithm
to the multidimensional situation.

In the multidimensional case, it is no longer meaningful to talk about the
cardinalities of the zero set of Q lying in the realizations of different sign condi-
tions of P . However, there exists another discrete valuation on semi-algebraic
sets that properly generalizes the notion of cardinality. This valuation is the
Euler–Poincaré characteristic.

The Euler–Poincaré characteristic, χ(S), of a closed and bounded semi-
algebraic set S ⊂ Rk is defined as

χ(S) =
∑

i

(−1)ibi(S),

where bi(S) is the rank of the i-th simplicial homology group of S. Note
that with this definition, χ(∅) = 0, and χ(S) = #(S) whenever #(S) < ∞.
Moreover, χ is additive.

There is a natural generalization of the Euler–Poincaré characteristic to
semi-algebraic sets which are locally closed (i.e. the intersection of a closed
semi-algebraic set with an open one) which retains the additivity property.
This generalization is based on the theory of Borel–Moore homology groups
(Borel & Moore 1960) of locally closed semi-algebraic sets and is described in
the next section.
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Given P ∈ R[X1, . . . , Xk], and S ⊂ Rk, a locally closed semi-algebraic set,
we define

R(P = 0, S) = {x ∈ S | P (x) = 0},
R(P > 0, S) = {x ∈ S | P (x) > 0},
R(P < 0, S) = {x ∈ S | P (x) < 0}.

Notice that these sets are all locally closed. We denote their Euler–Poincaré
characteristics by χ(P = 0, S), χ(P > 0, S) and χ(P < 0, S), respectively.

More generally, given a family of polynomials P ⊂ R[X1, . . . , Xk] and a sign
condition σ ∈ {0,−1, 1}P , we define

R(σ, S) =
{
x ∈ S

∣∣∣
∧

P∈P
sign(P (x)) = σ(P )

}

and
χ(σ, S) = χ(R(σ, S))

(where sign(x) = 0, 1 or −1 iff x = 0, x > 0, or x < 0 respectively). The
Euler–Poincaré query of P with respect to S is

EQ(P, S) = χ(P > 0, S)− χ(P < 0, S).

As a particular case, given a finite subset Z ⊂ Rk, and P ∈ R[X1, . . . , Xk], the
Sturm query of P with respect to Z is the number

SQ(P,Z) = #({x ∈ Z | P (x) > 0})−#({x ∈ Z | P (x) < 0}).

Given P ⊂ R[X], Q ∈ R[X] with #P = s and deg(P ) ≤ d for P ∈ P ∪
{Q}, the sign determination algorithm in Ben-Or et al. (1986) (see also Roy
& Szpirglas 1990) uses as a basic building block Sturm query computations
SQ(P,Z) for various polynomials P , where each such P is a product of certain
polynomials in P or their squares, and Z = Z(Q,R). The main idea underlying
these algorithms is to construct a matrix, M , with entries in {0, 1,−1}, such
that the equation M · C = SQ holds. Here, C is the vector of cardinalities
of sets of zeros of Q lying in the realizations of different sign conditions of P ,
and SQ is a vector of Sturm queries. Clearly, provided M is invertible, we can
compute the vector C from M and SQ. The matrix M is built inductively by
taking Kronecker products. If done naively this would lead to tripling its size
at each step, leading to a matrix of size 3s at the end. An obvious but crucial
fact used to control the complexity of the algorithms in Ben-Or et al. (1986)
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and Roy & Szpirglas (1990) is that the number of realizable sign conditions
of the family P on Z(Q,R) is bounded by d. This fact is used to prune the
matrix M at each step of the algorithm so that its size never exceeds d. The
main algorithm presented in this paper (Algorithm 4.8 in Section 4) is based
on similar ideas. Instead of Sturm queries, it uses the Euler–Poincaré queries
defined above. The role of the matrix equation M · C = SQ is played by
Equation (4.2) in Proposition 4.1 below, and it uses a tight bound on the
number of realizable sign conditions on a variety (see Proposition 2.12 below)
to ensure that the size of the matrix does not grow exponentially in s.

Let Q ∈ R[X1, . . . , Xk] and Z = Z(Q,Rk). We denote by Sign(P , Z) the
list of σ ∈ {0, 1,−1}P such that R(σ, Z) is non-empty. We denote by χ(P , Z)
the list of Euler–Poincaré characteristics χ(σ, Z) = χ(R(σ, Z)) indexed by
elements, σ, of Sign(P , Z).

The problem of determining the Euler–Poincaré characteristic of closed
semi-algebraic sets was considered in Basu (1999) where an algorithm was
presented for computing the Euler–Poincaré characteristic of a given closed
semi-algebraic set defined by a quantifier-free Boolean formula without nega-
tion, with atoms of the form Pi ≥ 0, Pi ≤ 0, for 1 ≤ i ≤ s, deg(Pi) ≤ d. The
complexity of the algorithm is (ksd)O(k). Moreover, in the special case when
the coefficients of the polynomials in P are integers of bit lengths bounded
by τ , the algorithm performs at most (ksd)O(k)τO(1) bit operations.

The rest of this paper is devoted to the proof of the following.

Main Result: We present an algorithm (Algorithm 4.8 in Section 4) which,
given an algebraic set Z = Z(Q,Rk) ⊂ Rk and a finite set of polynomials P =
{P1, . . . , Ps} ⊂ R[X1, . . . , Xk], computes the list χ(P , Z) indexed by elements,
σ, of Sign(P , Z). If the degrees of the polynomials in P ∪ {Q} are bounded
by d, and the real dimension of Z = Z(Q,Rk) is k′, then the complexity of the
algorithm is

sk
′+1O(d)k + sk

′
((k′ log2(s) + k log2(d))d)O(k).

If the coefficients of the polynomials in P∪{Q} are integers of bitsizes bounded
by τ , then the bitsizes of the integers appearing in the intermediate computa-
tions and the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).

In many applications, the combinatorial complexity of algorithms (the part
depending on s) is considered more important than the algebraic complexity
(the part depending on d). This is especially relevant in computational geom-
etry, where it is customary to treat the degrees of polynomials as well as the
dimension as fixed, with the number of polynomials allowed to be large (see
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Halperin 1997). As a result, there has been a lot of research aimed towards de-
signing algorithms for computing various properties of semi-algebraic sets with
tight combinatorial complexities. For instance, algorithms with tight combina-
torial complexity has been designed for computing the set of all realizable sign
conditions of a family of polynomials (Basu et al. 1997), testing connectivity
of semi-algebraic sets (Basu et al. 2000; Canny 1993) etc. From this point of
view, the complexity of the algorithm presented in this paper is significantly
better than that of the algorithm in Basu (1999) mentioned above, and nearly
matches the complexity of the best known algorithm for computing the set of
all realizable sign conditions on a variety (Basu et al. 1997). Moreover, by the
additivity of the Euler–Poincaré characteristic, it is clear that once we have
computed the Euler–Poincaré characteristic of every realizable sign condition,
it is possible to compute the same for any locally closed semi-algebraic set de-
fined by a quantifier-free formula involving the input polynomials without any
additional computational overhead. The algorithm in Basu (1999) deals only
with closed semi-algebraic sets defined by formulas of a special type. Another
interesting aspect of Algorithm 4.8 is that it is really a multidimensional gener-
alization of the sign determination algorithms in Ben-Or et al. (1986) and Roy
& Szpirglas (1990) for the univariate case and their multivariate generalization
(Pedersen et al. 1993) for zero-dimensional systems.

The rest of the paper is organized as follows. In Section 2 we state some of
the topological results we will use. If the results have appeared before or are
classical we omit the proofs and provide pointers to the appropriate papers. In
Section 3 we use an algorithm for computing the Euler–Poincaré characteristic
of algebraic sets described in Basu (1999) to design the building block for the
main algorithm. Finally, in Section 4 we describe the algorithm for computing
the Euler–Poincaré characteristics for all sign conditions.

2. Basic results from topology

2.1. Definition of the Euler–Poincaré characteristic. In order to define
the Euler–Poincaré characteristic of semi-algebraic sets we first recall the defini-
tions of the simplicial homology groups of a closed and bounded semi-algebraic
set S ⊂ Rk, with R a real closed field.

A closed, bounded semi-algebraic set S can be triangulated by a simplicial
complex K (Basu et al. 2003; Bochnak et al. 1987). Choose a semi-algebraic
triangulation f : |K| → S. The homology group Hp(S) (with coefficients in Q)
is defined to be the simplicial homology group (with coefficients in Q), Hp(K),
of the simplicial complex K, for p = 0, 1, . . . .
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The homology groups of S are all finite-dimensional vector spaces over Q.
The dimension of Hp(S) as a vector space over Q is called the p-th Betti number
of S and denoted bp(S). The Euler–Poincaré characteristic of S is

χ(S) =
∑

i

(−1)ibi(S).

We are now in a position to define the Euler–Poincaré characteristic for lo-
cally closed semi-algebraic sets. This definition agrees with the previously de-
fined Euler–Poincaré characteristic for closed and bounded semi-algebraic sets
and turns out to be additive as before. Since the Euler–Poincaré characteristic
is a discrete topological invariant of semi-algebraic sets which generalizes the
cardinality of a finite set, its additivity is a very natural property to require.

We first recall the definition of simplicial homology groups of pairs of closed
and bounded semi-algebraic sets. Let K be a simplicial complex and A a
subcomplex of K. Then there is a natural inclusion homomorphism

ι : Cp(A)→ Cp(K)

between the corresponding chain groups (with coefficients in Q). Defining the
group Cp(K,A) = Cp(K)/ι(Cp(A)), it is easy to see that the boundary maps
∂p : Cp(K) → Cp−1(K) descend to maps ∂p : Cp(K,A) → Cp−1(K,A), so that
we have a short exact sequence of complexes

0→ C∗(A)→ C∗(K)→ C∗(K,A)→ 0.

Given a pair (K,A), where A is a subcomplex of K, the group

Hp(K,A) = Hp(C(K,A))

is the p-th simplicial homology group of the pair (K,A).
It is clear from the definition that Hp(K,A) is a finite-dimensional Q-vector

space. The dimension of Hp(K,A) as a Q-vector space is called the p-th Betti
number of the pair (K,A) and denoted bp(K,A). The Euler–Poincaré charac-
teristic of the pair (K,A) is

χ(K,A) =
∑

i

(−1)ibi(K,A).

The simplicial homology groups of a pair of closed and bounded semi-
algebraic sets T ⊂ S ⊂ Rk are defined as follows. Such a pair can be tri-
angulated (Basu et al. 2003) using a pair of simplicial complexes (K,A), where
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A is a subcomplex of K. The p-th simplicial homology group of the pair (S, T ),
Hp(S, T ), is Hp(K,A). The dimension of Hp(S, T ) as a Q-vector space is called
the p-th Betti number of the pair (S, T ) and denoted bp(S, T ). The Euler–
Poincaré characteristic of the pair (S, T ) is

χ(S, T ) =
∑

i

(−1)ibi(S, T ).

The p-th Borel–Moore homology group of S ⊂ Rk, denoted HBM
p (S), is

defined in terms of the homology groups of a pair of closed and bounded semi-
algebraic sets as follows. For r > 0, let Bk(0, r) denote the open ball of radius
r centered at the origin, and let Sr = S ∩ Bk(0, r) and Sr the closure of Sr.
Note that, for a locally closed semi-algebraic set S, both Sr and Sr \ Sr are
closed and bounded and hence Hp(Sr, Sr \ Sr) is well defined. Moreover, it is
a consequence of Hardt’s triviality theorem (Hardt 1980) that the homology
group Hp(Sr, Sr \ Sr) is invariant for all sufficiently large r > 0. We define
HBM
p (S) = Hp(Sr, Sr \ Sr) for r > 0 sufficiently large, and it follows from the

remark above that it is well defined. The Borel–Moore homology groups are
invariant under semi-algebraic homeomorphisms (Bochnak et al. 1987). It also
follows clearly from the definition that for a closed and bounded semi-algebraic
set, the Borel–Moore homology groups coincide with the simplicial homology
groups.

2.2. Additivity of the Euler–Poincaré characteristic. The following
proposition is well known (see for example Basu et al. 2003).

Proposition 2.1. Let S ⊂ Rk be a closed and bounded semi-algebraic set,
K be a simplicial complex in Rk and h : |K| → S be a semi-algebraic homeo-
morphism. Let ni(K) be the number of simplices of dimension i of K. Then

χ(S) =
∑

i

(−1)ini(K).

The following proposition is an immediate consequence of Proposition 2.1.

Proposition 2.2. Let X1, X2 be two closed and bounded semi-algebraic sets.
Then

(2.3) χ(X1 ∪X2) = χ(X1) + χ(X2)− χ(X1 ∩X2).

The Euler–Poincaré characteristic of a locally closed semi-algebraic set S is
related to the Euler–Poincaré characteristic of the closed and bounded semi-
algebraic sets Sr and Sr \Sr for all large enough r > 0, by the following lemma.
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Lemma 2.4.
χ(S) = χ(Sr)− χ(Sr \ Sr),

where Sr = S ∩Bk(0, r) and r > 0 is sufficiently large.

Proof. Choose a pair of simplicial complexes (K,A) corresponding to a
triangulation of the pair (Sr, Sr \ Sr). From the short exact sequence of chain
complexes

0→ C∗(A)→ C∗(K)→ C∗(K,A)→ 0,

we obtain the following long exact sequence of homology groups:

· · · → Hp(A)→ Hp(K)→ Hp(K,A)→ Hp−1(A)→ Hp−1(K)→ · · · .

It follows that

χ(S) = χ(K,A) = χ(K)− χ(A) = χ(Sr)− χ(Sr \ Sr). �

Proposition 2.5. Let T ⊂ S ⊂ Rk be a pair of closed and bounded semi-
algebraic sets, (K,A) be a pair of simplicial complexes in Rk with A being a
subcomplex of K, and let h : |K| → S be a semi-algebraic homeomorphism
such that the image of |K| is T . Let ni(K) be the number of simplices of
dimension i of K, and let mi(A) be the number of simplices of dimension i
of A. Then

χ(S, T ) = χ(K,A) =
∑

i

(−1)ini(K)−
∑

i

(−1)imi(A).

Proof. First note that χ(K,A) = χ(K) − χ(A) (see proof of Lemma 2.4).
The proposition is now an immediate consequence of Proposition 2.1. �

Proposition 2.6 (Additivity of Euler–Poincaré characteristic). Let X,X1

and X2 be locally closed semi-algebraic sets such that

X1 ∪X2 = X, X1 ∩X2 = ∅.

Then
χ(X) = χ(X1) + χ(X2).

Proof. This is an easy consequence of Proposition 2.5 and the invariance of
the Borel–Moore homology groups under semi-algebraic homeomorphisms. �

Let S ⊂ Rk be a closed semi-algebraic set. Using the notation of the
introduction, we have:
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Proposition 2.7. The following equality holds:

(2.8)




1 1 1
0 1 −1
0 1 1


 ·



χ(P = 0, S)
χ(P > 0, S)
χ(P < 0, S)


 =




EQ(1, S)
EQ(P, S)

EQ(P 2, Z)




Proof. We need to prove

χ(P = 0, S) + χ(P > 0, S) + χ(P < 0, S) = EQ(1, S),(2.9)

χ(P > 0, S)− χ(P < 0, S) = EQ(P, S),(2.10)

χ(P > 0, S) + χ(P < 0, S) = EQ(P 2, S).(2.11)

These are immediate consequences of Proposition 2.6. �

2.3. Number of connected components of realizable sign conditions.
We will need a bound on the number of connected components of the real-
izations of all realizable sign conditions of a family of polynomials on a real
variety, which we state below. Let P ⊂ R[X1, . . . , Xk], Q ∈ R[X1, . . . , Xk] and
Z = Z(Q,Rk).

For σ ∈ Sign(P , Z), let bi(σ) denote the i-th Betti number of

R(σ, Z) =
{
x ∈ Rk

∣∣∣ Q(x) = 0,
∧

P∈P
sign(P (x)) = σ(P )

}
.

Let

bi(P , Z) =
∑

σ

bi(σ).

Note that b0(P , Z) is the number of semi-algebraically connected components
of basic semi-algebraic sets defined by P over Z(Q,Rk).

We write bi(d, k, k
′, s) for the maximum of bi(P , Z) over all P and Q with

deg(P ) ≤ d for all P ∈ P ∪ {Q}, #(P) = s and such that the algebraic set
Z = Z(Q,Rk) has dimension k′.

The following proposition is proved in Basu et al. (2005).

Proposition 2.12.

b0(d, k, k′, s) ≤
∑

1≤j≤k′

(
s

j

)
4jd(2d− 1)k−1.
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3. Computing the Euler–Poincaré query

An algorithm for computing the Euler–Poincaré characteristic of an algebraic
set is described in Basu (1999). We recall below the input, output and the
complexity of this algorithm.

Algorithm 3.1 (Euler–Poincaré characteristic of an algebraic set).

Input: a polynomial Q ∈ D[X1, . . . , Xk], where D is an ordered domain.
Output: the Euler–Poincaré characteristic χ(Z(Q,Rk)).

Complexity. The complexity of the algorithm is dO(k). When D = Z and the
bitsizes of the coefficients ofQ are bounded by τ , the bitsizes of the intermediate
computations and the output are bounded by τdO(k) (Basu 1999).

We now outline an algorithm for computing Euler–Poincaré queries which
uses Algorithm 3.1 described above for computing the Euler–Poincaré charac-
teristic of certain algebraic sets.

Algorithm 3.2 (Euler–Poincaré query).

Input: a polynomial Q ∈ D[X1, . . . , Xk], with Z = Z(Q,Rk), a polynomial
P ∈ D[X1, . . . , Xk].

Output: the Euler–Poincaré query

EQ(P,Z) = χ(P > 0, Z)− χ(P < 0, Z).

1. Introduce a new variable Xk+1, and let

Q+ = Q2 + (P −X2
k+1)2,

Q− = Q2 + (P +X2
k+1)2.

Using Algorithm 3.1, compute χ(Z(Q+,R
k+1)) and χ(Z(Q−,R

k+1)).
2. Output

1

2
(χ(Z(Q+,R

k+1))− χ(Z(Q−,R
k+1))).

Proof of correctness: The algebraic set Z(Q+,R
k+1) is semi-algebraically

homeomorphic to the disjoint union of two copies of the semi-algebraic set
defined by (P > 0)∧(Q = 0), and the algebraic set defined by (P = 0)∧(Q = 0).
Hence, using Proposition 2.6, we have

2χ(P > 0, Z) = χ(Z(Q+,R
k+1))− χ(Z(Q2 + P 2,Rk)).
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Similarly,

2χ(P < 0, Z) = χ(Z(Q−,R
k+1))− χ(Z(Q2 + P 2,Rk)).

Complexity Analysis: The complexity of the algorithm is dO(k) using the
complexity analysis of Algorithm 3.1.

When D = Z and the bitsizes of the coefficients of P are bounded by τ ,
the bitsizes of the intermediate computations and the output are bounded by
τdO(k).

4. Computing the Euler–Poincaré characteristic
of sign conditions

Our next aim is to give a method for determining the Euler–Poincaré charac-
teristic of the realization of sign conditions by a finite set P ⊂ R[X1, . . . , Xk]
on an algebraic set Z = Z(Q,Rk), with Q ∈ R[X1, . . . , Xk].

We compute the Euler–Poincaré characteristic of the non-empty realizations
of sign conditions on P on the real variety Z using Euler–Poincaré queries
(defined in Section 1) as the basic building block. This should be compared
with the sign determination algorithms in Ben-Or et al. (1986) and Roy &
Szpirglas (1990), which compute the cardinalities of the non-empty realizations
of sign conditions on a finite set and use Sturm queries as the basic building
block.

Let S ⊂ Rk be a locally closed semi-algebraic set.
We order lexicographically {0, 1,−1}P and {0, 1, 2}P with 0 ≺ 1 ≺ −1 in

the first case and 0 ≺ 1 ≺ 2 in the second.
For A = (α1, . . . , αm), a list of elements from {0, 1, 2}P with

α1 <lex · · · <lex αm,

we write PA for the list (Pα1 , . . . ,Pαm), and EQ(PA, S) for the vector

(EQ(Pα1 , S), . . . ,EQ(Pαm , S))t.

(Here, for α ∈ {0, 1, 2}P , Pα denotes the polynomial
∏

P∈P P
α(P ) and t denotes

the transpose.)
For Σ = (σ1, . . . , σn), a list of elements from {0, 1,−1}P with

σ1 <lex · · · <lex σn,

we write R(Σ, S) for the list

(R(σ1, S), . . . ,R(σn, S))
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and χ(Σ, S) for the vector

(χ(σ1, S), . . . , χ(σn, S))t.

The matrix of signs of PA on Σ is the m × n matrix M(PA,Σ) whose i, j-th
entry is sign(Pαi , σj).

We prove the following generalization of the main ingredient of the sign
determination algorithms of Ben-Or et al. (1986) and Roy & Szpirglas (1990).

Proposition 4.1. If
⋃
σ∈ΣR(σ, S) = S (i.e. {σ | R(σ, S) 6= ∅} ⊂ Σ), then

(4.2) M(PA,Σ) · χ(Σ, S) = EQ(PA, S).

Proof. The proof is by induction on the number s of polynomials in P .
The statement for s = 1 follows from Proposition 2.7, since the Euler–Poincaré
characteristic of an empty sign condition is zero.

Suppose the statement holds for P ′ = {P1, . . . , Ps−1} and consider P =
{P1, . . . , Ps}. Define

Σ0 = {σ ∈ Σ | σ(Ps) = 0},
Σ1 = {σ ∈ Σ | σ(Ps) = 1},

Σ−1 = {σ ∈ Σ | σ(Ps) = −1},

and

S0 =
⋃

σ∈Σ0

R(σ, S), S1 =
⋃

σ∈Σ1

R(σ, S), S−1 =
⋃

σ∈Σ−1

R(σ, S).

Note that S0, S−1, and S1 are all locally closed whenever S is locally closed. Let
α ∈ {0, 1, 2}P and α′ ∈ {0, 1, 2}P ′ be defined by α′(Pj) = α(Pj), 1 ≤ j ≤ s− 1.
Using the additivity of Euler–Poincaré characteristic (Proposition 2.6), we have

χ(Pα = 0, S) = χ(Pα = 0, S0) + χ(Pα = 0, S1) + χ(Pα = 0, S−1),

χ(Pα > 0, S) = χ(Pα > 0, S0) + χ(Pα > 0, S1) + χ(Pα > 0, S−1),

χ(Pα < 0, S) = χ(Pα < 0, S0) + χ(Pα < 0, S1) + χ(Pα < 0, S−1).

If α(Ps) = 0, then

EQ(Pα, S) = EQ(P ′α′ , S0) + EQ(P ′α′ , S1) + EQ(P ′α′ , S−1).

If α(Ps) = 1, then

EQ(Pα, S) = EQ(P ′α′ , S1)− EQ(P ′α′ , S−1).
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If α(Ps) = 2, then

EQ(Pα, S) = EQ(P ′α′ , S1) + EQ(P ′α′ , S−1).

The claim follows from the induction hypothesis applied to S0, S1 and S−1, the
definition of M(PA,Σ) and Proposition 2.6, which implies, for every σ ∈ Σ,

χ(σ, S) = χ(σ, S0) + χ(σ, S1) + χ(σ, S−1). �

Let Q ∈ R[X1, . . . , Xk], Z = Z(Q,Rk). We consider a list A(Z) of elements
in {0, 1, 2}P adapted to sign determination for P on Z, i.e. such that the
matrix of signs of PA over Sign(P , Z) is invertible. If P = {P1, . . . , Ps}, let
Pi = {P1, . . . , Pi} for 0 ≤ i ≤ s.

We will now describe a method for determining inductively a list Ai(Z)
of elements in {0, 1, 2}Pi adapted to sign determination for Pi on Z from
Sign(Pi−1, Z).

Choose i, 1 ≤ i ≤ s, and consider Pi. Let Sign(Pi−1, Z)2 (respectively
Sign(Pi−1, Z)3) be the subset of Sign(Pi−1, Z) of sign conditions which are par-
titioned into at least two (respectively three) distinct subsets by sign conditions
on Pi. Let

(4.3) Z2 =
⋃

σ∈Sign(Pi−1,Z)2

R(σ, Z),

(4.4) Z3 =
⋃

σ∈Sign(Pi−1,Z)3

R(σ, Z).

Note that

Sign(Pi−1, Z2) = Sign(Pi−1, Z)2, Sign(Pi−1, Z3) = Sign(Pi−1, Z)3.

Let

ri−1 = #(Sign(Pi−1, Z)),

ri = #(Sign(Pi, Z)),

ri−1,1 = #(Sign(Pi−1, Z)2),

ri−1,2 = #(Sign(Pi−1, Z)3).

Then ri = ri−1 + ri−1,1 + ri−1,2.

Consider the matrix M(PAi−1(Z)
i−1 , Sign(Pi−1, Z2)) and extract from it the

first ri−1,1 linearly independent rows defining a list Ai−1(Z2) adapted to sign

determination on Z2. Note that the matrix M(PAi−1(Z)
i−1 , Sign(Pi−1, Z2)) consists
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of ri−1,1 columns of the matrix M(PAi−1(Z)
i−1 , Sign(Pi−1, Z)), which is of full rank

by the induction hypothesis. Thus, the rank of M(PAi−1(Z)
i−1 , Sign(Pi−1, Z2))

is ri−1,1.

Similarly, consider the matrix M(PAi−1(Z)
i−1 , Sign(Pi−1, Z3)) and extract from

it the first ri−1,2 linearly independent rows defining a list Ai−1(Z3) adapted to
sign determination on Z3.

Define

Ai(Z) = (Ai−1(Z)× 0, Ai−1(Z2)× 1, Ai−1(Z3)× 2).

One says that τ ∈ Sign(Pi, Z) extends σ ∈ Sign(Pi−1, Z) if σ(P ) = τ(P )
for P ∈ Pi.

Proposition 4.5. The list Ai(Z) is adapted to sign determination for Pi on Z.

Proof. The proof is by induction on i. The claim is obviously true for
i = 1. If P 6= ∅, we want to prove that M(PA(Pi,Z)

i , Sign(Pi, Z)) is invertible.
Denoting by Cτ its column indexed by τ , consider a zero linear combination of
its columns: ∑

τ∈Sign(Pi,Z)

λτCτ = 0.

We want to prove that all λτ are zero. If σ ∈ Sign(Pi−1, Z)3, we denote by
σ1 <lex σ2 <lex σ3 the sign conditions of Sign(Pi, Z) extending σ. Similarly, if
σ ∈ Sign(Pi−1, Z)2 \Sign(Pi−1, Z)3, we denote by σ1 <lex σ2 the sign conditions
of Sign(Pi, Z) extending σ. Finally, if σ ∈ Sign(Pi−1, Z) \ Sign(Pi−1, Z)2, we
denote by σ1 the sign condition of Sign(Pi, Z) extending σ.

Since M(PAi−1(Z), Sign(Pi−1, Z)) is invertible by the induction hypothesis,
we have λσ1 = 0 for every σ ∈ Sign(Pi−1, Z) \ Sign(Pi−1, Z)2, λσ1 + λσ2 = 0 for
every σ ∈ Sign(Pi−1, Z)2 \ Sign(Pi−1, Z)3, and λσ1 + λσ2 + λσ3 = 0 for every
σ ∈ Sign(Pi−1, Z)3.

Now from the fact that M(PA(Pi−1,Z2), Sign(Pi−1, Z2)) is invertible, it follows
that σ1(P )λσ1 − σ2(P )λσ2 = 0 for every σ ∈ Sign(Pi−1, Z)2 \ Sign(Pi−1, Z)3,
and λσ2 − λσ3 = 0 for every Sign(Pi−1, Z)3. Thus, λσ1 = λσ2 = 0 for every
σ ∈ Sign(P , Z)2 \ Sign(Pi−1, Z)3.

Finally, since M(PA(P,Z3), Sign(Pi−1, Z3)) is invertible, we deduce that
λσ2 + λσ3 = 0 for every σ ∈ Sign(Pi−1, Z)3. Thus λσ1 = λσ2 = λσ3 = 0 for
every σ ∈ Sign(Pi−1, Z)3. �
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Remark 4.6. The list Ai(Z) ⊂ {0, 1, 2}Pi adapted to sign determination con-
structed above depends only on the list of non-empty sign conditions Sign(P , Z),
since the list Ai(Z) ⊂ {0, 1, 2}Pi is constructed inductively from Ai−1(Z) and
Sign(Pi, Z).

We are ready to describe an algorithm for computing the Euler–Poincaré
characteristic of the realizations of sign conditions. We use the following algo-
rithm (see Basu et al. 1997, 2003) as a basic building block.

Algorithm 4.7 (Sampling on an algebraic set).

Input: a polynomial Q ∈ D[X1, . . . , Xk] of degree at most d, with Z(Q,Rk) of
real dimension k′,
a set of s polynomials, P = {P1, . . . , Ps} ⊂ D[X1, . . . , Xk], each of
degree at most d.

Output: the set Sign(P , Z) ⊂ {0, 1,−1}P of all realizable sign conditions for
P over Z = Z(Q,Rk).

Complexity. The complexity is sk
′+1dO(k). If D = Z, and the bitsizes of the

coefficients of the polynomials are bounded by τ , then the bitsizes of the inte-
gers appearing in the intermediate computations and the output are bounded
by τdO(k).

Algorithm 4.8 (Euler–Poincaré characteristic of sign conditions).

Input: an algebraic set Z = Z(Q,Rk) ⊂ Rk and a finite list P = {P1, . . . , Ps}
of polynomials in R[X1, . . . , Xk].

Output: the list χ(P , Z).

1. Compute Sign(P , Z) using Algorithm 4.7.
2. Determine, for every 1 ≤ i ≤ s, a list Ai(Z) adapted to sign determination

for Pi on Z from Sign(Pi, Z) using Proposition 4.5.
3. Define A = As(Z), M = M(PA, Sign(P , Z)).
4. Compute EQ(PA, Z) using Algorithm 3.2 repeatedly.
5. Compute χ(P , Z) = M−1EQ(PA, Z) using the fact that M is invertible.

Proof of correctness: Immediate from Proposition 4.1.

In order to study the complexity of Algorithm 4.8 we need the following
proposition.
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Proposition 4.9. Let Z = Z(Q,Rk) ⊂ Rk and r = #(Sign(P , Z)). Consider
As(Z) ⊂ {0, 1, 2}P computed by Algorithm 4.8. For every α ∈ As(Z), the
number #({P ∈ P | α(P ) 6= 0}) is at most log2(r).

We need the following definition. Let α and β be elements of {0, 1, 2}P . We
say that β precedes α if for every P ∈ P , β(P ) 6= 0 implies β(P ) = α(P ). Note
that if β precedes α, then β <lex α.

Proof of Proposition 4.9. Let α be such that #({P ∈ P | α(P ) 6= 0})=k.
Since the number of elements β of {0, 1, 2}P preceding α is 2k, and the total
number of polynomials in As is at most r, we have 2k ≤ r and k ≤ log2(r). So,
the proposition follows immediately from the next lemma. �

Lemma 4.10. If β precedes α and α ∈ As(Z) then β ∈ As(Z).

Proof. We prove by induction on i that if β /∈ Ai(Z) then α /∈ Ai(Z). The
claim is obvious for i = 1. If α ∈ {0, 1, 2}Pi we denote by α′ the element of
{0, 1, 2}Pi−1 such that α′(Pj) = α(Pj), j < i. Note that, by definition of Ai(Z),
if α′ /∈ Ai−1(Z), then α /∈ Ai(Z).

Suppose that β precedes α and that β /∈ Ai(Z). There are several cases to
consider.

If α(Pi) = 0, then β(Pi) = 0 and β ′ /∈ Ai−1(Z) by definition of Ai. By the
induction hypothesis, α′ /∈ Ai−1(Z) and α = α′ × 0 /∈ Ai(Z) by the definition
of Ai(Z).

If α(Pi) = 1 (respectively 2), and β(Pi) = 0, then α′ /∈ Ai−1(Z) by induction
hypothesis, and α /∈ Ai(Z).

If α(Pi) = 1 (respectively 2), and β(Pi) = α(Pi), then β ′ /∈ Ai−1(Z ′) (re-

spectively Ai−1(Z ′′)). Thus, the row of signs of Pβ′i−1 on Sign(Pi−1, Z)1 (respec-
tively Sign(Pi−1, Z)2) is a linear combination of the rows of signs of Pλi−1 on
Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2), with λ <lex β

′ in the lexicograph-

ical order. Denote by γ the element in {0, 1, 2}Pi−1 such that Pβ′i−1Pγi−1 = Pα′i−1.
Then the row of signs of Pα′i−1 on Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2)
is a linear combination of the rows of signs of Pλi−1Pγi−1 on Sign(Pi−1, Z)1

(respectively Sign(Pi−1, Z)2). Define λ′ by λ′(Pj) = λ(Pj) + γ(Pj) mod-
ulo 2. Then the row of signs of Pλi−1Pγi−1 on Sign(Pi−1, Z)1 (respectively
Sign(Pi−1, Z)2) coincides with the row of signs of Pλ′i−1 on Sign(Pi−1, Z)1 (re-
spectively Sign(Pi−1, Z)2). Since it is clear that λ′ <lex α

′ in the lexicographical
order, it follows that α′ /∈ Ai−1(Z ′) (respectively Ai−1(Z ′′)). Thus α /∈ Ai(Z).�
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Complexity analysis: Let k′ be the dimension of Z, d a bound on the degree
of Q and the elements of P , and s = #(P). By Proposition 2.12,

#(Sign(P , Z)) ≤
∑

0≤j≤k′

(
s

j

)
4jd(2d− 1)k−1 = sk

′
O(d)k.

The number of calls to Algorithm 3.2 is equal to #(Sign(P , Z)). These calls
are done for polynomials which are products of at most

log2(#(Sign(P , Z))) = k′ log2(s) +O(k) log2(d)

polynomials of the form P or P 2, P ∈ P , by Proposition 4.9, hence of degree
(k′ log2(s)+k(log2(d)+O(1))d. By the complexity analysis of Algorithm 4.7 and
the complexity analysis of Algorithm 3.2, the number of arithmetic operations is

sk
′+1O(d)k + sk

′
((k′ log2(s) + k log2(d))d)O(k).

The algorithm also involves the inversion of matrices size sk
′
O(d)k whose entries

are 0, 1 or −1.
If D = Z, and the bitsizes of the coefficients of the polynomials are bounded

by τ , then the bitsizes of the integers appearing in the intermediate computa-
tions and the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).
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