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Abstract. We show that the MULTICUT, SPARSEST-CUT, and MIN-
2CNF = DELETION problems are NP-hard to approximate within every
constant factor, assuming the Unique Games Conjecture of Khot (2002).
A quantitatively stronger version of the conjecture implies an inapprox-
imability factor of Q(y/loglogn).
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1. Introduction

In the MULTICUT problem the input is an undirected graph G = (V, E) on
n = |V| vertices together with k pairs of vertices {s;,#;}¥_,, called demand
pairs, and the goal is to find a minimum-size subset of the edges M C E whose
removal disconnects all the demand pairs, i.e., in the subgraph (V,E \ M)
every s; is disconnected from its corresponding vertex ;. In the weighted
version of this problem, the input also specifies a positive cost ¢(e) for each
edge e € F and the goal is to find a subset of the edges M C E whose total
cost ¢(M) = Y .y c(e) is minimal. This problem is known to be APX-hard
(Dahlhaus et al. 1994).

We prove that if the Unique Games Conjecture of Khot (2002) is true,
then for every constant L > 0 it is NP-hard to approximate MULTICUT within
factor L. If a quantitatively stronger version of the conjecture is true, then
MurTicuT is NP-hard to approximate within a factor of Q(y/loglogn).

Our methods also yield similar bounds for the SPARSEST-CUT problem
and the MIN-2CNF = DELETION problem. The SPARSEST-CUT problem
has the same input as MULTICUT, but the goal is to find a subset of the
edges M C FE that minimizes the ratio of |M| (in the weighted version, the
total cost of M) to the number of demand pairs that are disconnected in
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(V,E\ M).! Since SPARSEST-CUT is not known to be APX-hard, our re-
sult gives the first indication that this problem might be hard to approximate.
In the MIN-2CNF = DELETION problem the input is a weighted set of clauses
on n variables, each clause of the form (x = y), where z and y are literals,
and the goal is to find a Boolean assignment to the variables minimizing the
total weight of unsatisfied clauses.? Our results immediately extend also to
the CORRELATION CLUSTERING problem (Bansal et al. 2004; Charikar et al.
2003; Demaine & Immorlica 2003; Emanuel & Fiat 2003) of minimizing dis-
agreements in a weighted graph, since the approximability of this problem is
known to be equivalent to within constant factors to that of MULTICUT in
weighted graphs (Charikar et al. 2003; Emanuel & Fiat 2003).

1.1. Known results on MuLTICUT, SPARSEST-CUT, and MIN-2CNF =
DELETION. MULTICUT and SPARSEST-CUT are fundamental combinatorial
optimization problems, with connections to multicommodity flow, edge expan-
sion, and metric embeddings. Both problems can be approximated to within
O(log k) factors through linear programming (LP) relaxations (Aumann & Ra-
bani 1998; Garg et al. 1996; Leighton & Rao 1988; Linial et al. 1995). These
bounds match, up to constant factors, the lower bounds on the integrality gaps
of the corresponding relaxations (Garg et al. 1996; Leighton & Rao 1988). MIN-
2CNF = DELETION can also be approximated to within an O(logn) factor,
as implied by the results of Klein et al. (Klein et al. 1990) (see also Vazirani
2001, Section 20.4), who give an approximation-preserving reduction from this
problem to MULTICUT. Recently, improved approximation algorithms for the
SPARSEST-CUT problem have been developed using a semidefinite program-
ming (SDP) relaxation (Arora et al. 2005, 2004; Chawla et al. 2005a). This
started with the ground-breaking O(y/logn)-approximation of Arora, Rao &
Vazirani (2004) for the uniform demands case, and the best approximation
factor currently known for general demands is O(v/log kloglog k) (Arora et al.
2005). Agarwal et al. (2005) extended these techniques to obtain an O(y/logn)
approximation for the MIN-2CNF = DELETION problem. The obvious modifi-
cation of the semidefinite program used for SPARSEST-CUT to solve MULTICUT
was recently shown to have an integrality ratio of Q(log k) (Agarwal et al. 2005,
Section 6), which matches, up to constant factors, the approximation factor and

'In general, the demand pairs may have positive weights (demands), but for our purpose of
inapproximability results, it clearly suffices to consider the more restricted definition above.
Our hardness results for SPARSEST-CUT do not apply to the special case of uniform-demand,
in which every pair of vertices forms a demand pair.

2Note that the constraints in MIN-2CNF = DELETION are restricted to equality (and
effectively non-equality) constraints.
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integrality gap of previously analyzed linear programming relaxations for this
problem.

On the hardness side, it is known that MuLTICUT is APX-hard (Dahlhaus
et al. 1994), i.e., there exists a constant ¢ > 1 such that it is NP-hard to
approximate MULTICUT to within a factor smaller than c. It should be noted
that this hardness of approximation holds even for k = 3, and that the value
of ¢ is not specified therein, but it is certainly smaller than 2. The MIN-
2CNF = DELETION problem is also known to be APX-hard, as follows, e.g.,
from the hardness of approximating linear equations modulo 2 (Hastad 2001).

Assuming the Unique Games Conjecture, Khot (2002, Theorem 3) essen-
tially obtained an arbitrarily large constant-factor hardness of approximation
for MIN-2CNF = DELETION, and this implies, using the aforementioned re-
duction of Klein et al. (1990), a similar hardness factor for MuLTICUT. These
results are not explicitly noted in Khot (2002), and are weaker than our results
in several respects. First, our quantitative bounds are better; thus if a stronger,
yet almost as plausible, version of this conjecture is true, then our lower bound
on the approximation factor improves to L = Q(y/loglogn), compared with
the roughly Q((loglogn)'/*) hardness that can be inferred from Khot (2002);
this can be viewed as progress towards proving tight inapproximability results
for MuLTICUT. Second, by qualitatively strengthening our MULTICUT result
to a bicriteria version of the problem, we extend our hardness results to the
SPARSEST-CUT problem. It is unclear whether Khot’s reduction similarly leads
to a hardness result for SPARSEST-CUT. Finally, our proof is simpler (both the
reduction and its analysis), and makes direct connections to cuts (in a hyper-
cube), and thus may prove useful in further investigation of such questions.

For SPARSEST-CUT, no hardness of approximation result was previously
known. Independently of our work, Khot & Vishnoi (2005) have recently used
a different construction to show an arbitrarily large constant factor hardness
for SPARSEST-CUT assuming the Unique Games Conjecture. Their hardness
factor could, in principle, be pushed to (loglogn)/4=°M)  assuming a stronger
quantitative version of the conjecture. Additionally, they prove a lower bound
of (loglogn)'/4=°(") on the integrality ratio of the semidefinite programming
relaxations used in the recent approximation algorithms for SPARSEST-CUT.
This last lower bound was further improved to (loglogn) in Krauthgamer &
Rabani (2006), using in part ideas from the current paper.

1.2. The Unique Games Conjecture. A unique 2-prover game is the fol-
lowing problem. The input is a bipartite graph G = (Q, Eg), where each
side p = 1,2 contains n = |Q|/2 vertices denoted ¢7, ..., ¢, and represents n
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possible questions to prover p. In addition, the input contains for each edge
(¢,4;) € Eq a non-negative weight w(gj,¢7), abbreviated w;;. These edges
will be called question edges, to distinguish them from edges in the MuLTICUT
instance. Each question to a prover is associated with a set of d distinct an-
swers, denoted by [d] = {1,...,d}. The input also contains, for every question
edge (qf,q}) € Eq, a bijection b;; : [d] — [d], which maps every answer for
question ¢ to a distinct answer for question qJQ-.

A solution A to the 2-prover game consists of an answer A? € [d] for each
question ¢¥ (i.e., a sequence {A”} over all p € [2] and ¢ € [n]). The solution
is said to satisfy a question edge (q;,¢;) € Eq if the answers A} and A3 agree
under their bijection, i.e., A3 = b;;(A}). We assume that the total weight of all
the edges in Eg is 1 (by normalization). The value of a solution is the total
weight of all the edges satisfied by the solution. The value of the game is the
maximum value achievable by any solution to the game.

CONJECTURE 1.1 (Unique Games Conjecture, Khot 2002). For every fixed
1,0 > 0 there exists d = d(n,d) such that it is NP-hard to determine whether
a unique 2-prover game with answer set size d has value at least 1 — n or at
most 9.

We will also consider stronger versions of the Unique Games Conjecture in
which 7, §, and d are functions of n. Specifically, we will consider versions with
n < O(1/y/loglogn), 6 < 1/(logn)®™ and d = d(n, ) < O(logn). The reason

for the latter upper bound is that our construction size is exponential in d.

Plausibility of the conjecture and stronger versions of it. The Unique
Games Conjecture has been used to show optimal inapproximability results
for VERTEX COVER (Khot & Regev 2003) and MaAX-CuT (Khot et al. 2004;
Mossel et al. 2005). Proving the conjecture using current techniques appears
to be quite hard. In particular, the asserted NP-hardness is much stronger
than what we can obtain via standard constructions using the PCP theorem
(Arora et al. 1998; Arora & Safra 1998) and the parallel repetition theorem
(Raz 1998), two deep results in computational complexity.

Although the conjecture seems difficult to prove in general, some special
cases are well-understood. In particular, if at all the Unique Games Conjecture
is true (and assuming P # NP), then necessarily d > max{1/5'/1° 1/6}. This
follows from a rounding procedure for a semidefinite programming relaxation
presented in Khot (2002). On the other hand, Feige & Reichman (2004) showed
that for every constant L > 0 there exists a constant ¢ > 0 such that it is NP-
hard to distinguish whether a unique 2-prover game (with d = d(L,0)) has



98 Chawla et al. cc 15 (2006)

value at least Lo or at most ¢; this result falls short of the Unique Games
Conjecture in that Ld is bounded away from 1.

Stronger versions of the conjecture in which d, n, and ¢ are functions of
n have also been considered. Trevisan (2005) and Gupta & Talwar (2006)
recently developed approximation algorithms for solving instances of Unique
Games where 7(n) is a sufficiently small function of n (based on an SDP and
an LP relaxation respectively, different from the one used in Khot 2002). These
algorithms imply that a stronger version of the Unique Games Conjecture can
only be true if n(n) = Q(1/logn) (assuming P # NP).

Very recently, Charikar et al. (2006) improved upon the rounding algorithm
of Khot (2002) to obtain better approximation algorithms for Unique Games.
Their results imply that for Unique Games Conjecture to be true, we must have
n > Q(1/logd) and & > d~". There are two pieces of evidence suggesting
that, if the Unique Games Conjecture is true at all, then these bounds might be
tight, i.e. Unique Games might in fact be hard for suitable d = O(logn), and
every 6 > d~%" and 1/logd < dn < 1/2. First, these bounds nearly match
the integrality gap of Khot & Vishnoi (2005) for the natural SDP relaxation
of Unique Games. Second, a recent version of Khot et al. (2004) shows (see
Corollaries 13 and 15 of its ECCC version) that the standard Unique Games
Conjecture implies hardness of Unique Games instances with the above tradeoff
between parameters (namely, § = d~"2="), for every n > 0 that is fixed
(independent of n) and d larger than some dy(n) that is unspecified.

Our Q(+/loglogn) hardness result (see Corollary 1.4 below) requires n <
O(1/+/loglogn), 6 < 1/(logn)®™, and d = d(n,d) < O(logn), which is still
plausible by these results. Note that this setting of parameters is similar to,
but stronger than, those in the aforementioned result of Khot et al. (2004),
because the parameters do depend on n.

1.3. Our results. We prove the following hardness of approximation for
MurricuT, SPARSEST-CUT, and MIN-2CNF = DELETION based on Khot’s
Unique Games Conjecture.

THEOREM 1.2. There exist constants ci,co > 0 such that the following holds.
Suppose that for n = n(n), 6 = 6(n), and d = d(n,0) < O(logn), it is NP-
hard to determine whether a unique 2-prover game with |Q| = 2n vertices and
answer set size d has value at least 1 —n(n) or at most §(n). Then it is NP-hard
to approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF = DELETION to

within factor
. 1 1
Ln)=c mm{ n(n”)’lOg 5(n) }
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This theorem immediately implies the following two specific hardness results.

COROLLARY 1.3. The Unique Games Conjecture implies that, for every con-
stant L > 0, it is NP-hard to approximate MULTICUT, SPARSEST-CUT, and
MIN-2CNF = DELETION to within factor L.

COROLLARY 1.4. A stronger version of the Unique Games Conjecture in which
n < O(1/+/loglogn), § < 1/(logn)¥™  and d = d(n, ) < O(logn) implies that
for some fixed ¢ > 0, it is NP-hard to approximate M ULTICUT, SPARSEST-CUT,
and MIN-2CNF = DELETION to within factor cy/loglogn.

For SPARSEST-CUT, our hardness results hold only for the search version (in
which the algorithm needs to produce a cutset, i.e., a subset of edges, and not
only its value), since our proof employs a Cook reduction. As noted before, a
similar (but slightly weaker) bound is proved independently in Khot & Vishnoi
(2005).

Remark. The conference version of our paper (Chawla et al. 2005b) pre-
sented a different bound than the one of Theorem 1.2, and argued that an
(loglog n) hardness result follows from a certain strong version of the Unique
Games Conjecture, that has since been proven false by Charikar et al. (2006).
Consequently, the current version of the paper is different in two respects.
First, we use a different strong version of the Unique Games Conjecture that
is still plausibly true by known evidence (and is in fact weaker than the one
used in Chawla et al. 2005b). Second, the bound presented here in Theorem
1.2 is better, since in Chawla et al. (2005b) the dependence of L(n) on n was
c1(log(1/n(n®))). Interestingly, the two versions employ exactly the same re-
duction, but the current analysis is different (and perhaps simpler), as it uses
Friedgut’s Junta Theorem (Friedgut 1998) rather than a theorem of Kahn et al.
(1988). This improvement was also motivated, in part, by the integrality ra-
tio of Khot & Vishnoi (2005) for Unique Games, which suggests a significant
asymmetry between 7(n) and 6(n).

1.4. Preliminaries

Regular unique games. A unique 2-prover game is called regular if the total
weight of question edges incident at any single vertex is the same, i.e., 1/n, for
every vertex in (). We now show that we can assume without loss of generality
that the graph in the Unique Games Conjecture is regular. For simplicity, we
state this only for fixed 7 and §. A similar result holds when they depend on n,
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because we increase the input size by no more than a polynomial factor, and
increase 1 and 0 by no more than a constant factor.

LEMMA 1.5. The Unique Games Conjecture implies that for every fixed n,d
> 0, there exists d = d(n,0) such that it is NP-hard to decide if a regular
unique 2-prover game with n vertices and d answers for each vertex has value
at least 1 —n or at most ¢.

Proor. Given a unique 2-prover game (), we describe how to convert it to a
regular game while (nearly) preserving its completeness and soundness. Let the
maximum weight of any edge in @ be wya.x = maxe w,. Let 7 = max{1/n, 1}.
First we remove all edges of weight less than (1/2n*r)wpay from the graph,
and renormalize the weights of the remaining edges so that they still sum to 1.
Note that the optimal solution to the game has value at least wyay, and this
edge-removal step reduces the value of any solution by at most (1/2r)wpax.
So any solution of value 1 — n in the original game now has value at least
1—n—1/2r > 1—3n/2, and any solution of value at most ¢ in the original
game now has value at most §(1 + 1/2r) < 36/2.

Next, let wpi, be the minimum weight of any edge. We round down weights
of all edges to the nearest multiple of ¢ = (1/2r)wpyin, and renormalize the
weights so that they sum to 1. As before, we only remove a 1/2r fraction of the
total weight and renormalize by a factor of at most 14 1/2r. Therefore, this
changes the soundness and completeness parameters by at most an additive
1/2r, as before. Overall, the parameters change by a factor of at most 2.

Now we convert the pre-processed game () to a regular graph Q' as fol-
lows. For each prover p € {1,2} and question ¢/, form W(p,4)/t vertices
@ (1),...,¢"(W(p,i)/t), where W (p,i) is the total weight of all the edges inci-
dent on ¢?. For every pair of vertices (g}, qu), connected by an edge e in @), we
form an edge between ¢ (x) and ¢7(y), for all possible values of  and y, with
weight we (t/W(1,4))(t/W(2,7)). The bijection on the edge (¢ (), q;(y)) is set
to be the same as the original bijection by; on the edge (q;,q7).

Note that the total weight of all the edges remains the same as before. Each
new vertex ¢ (z) has total weight

Et W)
ze:weW(l,z’)W(Q,j) ;b

where the sum is over all edges e incident on ¢}. The same holds for any new
vertex q]?(y) Therefore, the graph is regular. Furthermore, the number of
vertices increases by a factor of at most 4n?r?.
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It only remains to show that the soundness and completeness parameters
are preserved. To see this, note that any solution on the original graph ) can
be transformed to a solution of the same value on (', by picking the same
answer for every vertex ¢f(x) in Q' as the answer picked for ¢¥ in Q. Likewise,
consider a solution in @'. Note that for fixed p and ¢, all questions ¢! (z) are
connected to identical sets of vertices with identical bijections. Thus, we can
replace answers to all these questions by the answer to the question ¢¥(x) that
has the most satisfied edges incident on it, thereby increasing the value of the
solution. Now, the solution in @ that picks the same answer for ¢! as the
answer for ¢/ (z) in @' has the same weight as the new solution in Q" which is
at least as much as the value of the original solution in Q’'.

Thus for every solution in @) (after pre-processing), there is a solution of
the same or larger weight in ()’ and vice versa. This proves that the two games
have exactly the same soundness and completeness parameters. [l

The relationship between d, , 6 and n is important for our purposes. We
thus point out that this argument changes the parameters 0 and 1 by at most
a factor of 2, increases the size of the instance by at most a polynomial factor
in n, 1/n and 1/§, and does not change d. This is acceptable in the setting
of Theorem 1.2 as well as Corollary 1.4—the requirements on d, n and ¢ as
functions of n are maintained and only the unspecified constants therein are
affected.

Bicriteria MuLTIicUT. Our hardness of approximation proof for SPARSEST-
CuT relies on a generalization of MULTICUT, where the solution M is required
to cut only a certain fraction of the demand pairs. For a given graph G = (V, E),
a subset of the edges M C FE will be called a cutset of the graph. A cutset
whose removal disconnects all the demand pairs is a multicut.

An algorithm is called an («, 3)-bicriteria approximation for MULTICUT if,
for every input instance, the algorithm outputs a cutset M that disconnects at
least an « fraction of the demands and has cost at most 3 times that of the
optimum multicut. In other words, if M* is a least cost cutset that disconnects
all the k demand pairs, then M disconnects at least ak demand pairs and

(M) < Be(M™).

Hypercubes, dimension cuts, and antipodal vertices. As usual, the
d-dimensional hypercube (for short, a d-cube) is the graph C' = (Vi, E¢) with
the vertex set Vo = {0,1}%, and an edge (u,v) € E¢ for any two vertices
u,v € {0,1}¢ that differ in exactly one dimension (coordinate). An edge (u,v)
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is called a dimension-a edge, for a € [d], if u and v differ in dimension a,
ie, u® v = 1, where 1, is a unit vector along dimension a. The set of all
the dimension-a edges in the hypercube is called the dimension-a cut in the
hypercube; a dimension cut is a dimension-a cut for some dimension a. The
antipode of a vertex u is the (unique) vertex w all of whose coordinates are
different from those of u, i.e., u = u @ 1 where 1 is the vector with 1 in every
coordinate. Notice that v is the antipode of u if and only if w is the antipode
of v; thus, {u,u} form an antipodal pair. The following simple fact will be key
in our proof.

Fact 1.6. In every hypercube, a single dimension cut disconnects every an-
tipodal pair.

Organization. In Section 2 we prove the part of Theorem 1.2 regarding the
MuLTICUT problem; our proof will actually hold for bicriteria approximation
for MuLTicUT. We will then show in Section 3 that this stronger result yields a
similar hardness of approximation for SPARSEST-CUT. Finally, in Section 4, we
modify the reduction to obtain a hardness of approximation for MIN-2CNF =
DELETION.

2. Hardness of bicriteria approximation for MuLTICUT

In this section we prove the part of Theorem 1.2 regarding the MuLTICUT
problem, namely, that the Unique Games Conjecture implies that it is NP-
hard to approximate MULTICUT within a certain factor L. Our proof will
actually show a stronger result—for every av > 7/8 it is NP-hard to distinguish
between whether there is a multicut of cost less than n2¢™! (the YES instance)
or whether every cutset that disconnects at least ak demand pairs has cost at
least n2¢T1L (the NO instance). This implies that it is NP-hard to obtain an
(o, L)-bicriteria approximation for MULTICUT.

We start by describing a reduction from unique 2-prover game to MULTICUT
(Section 2.1), and then proceed to analyze the YES instance (Section 2.2) and
the NO instance (Sections 2.3 and 2.4). Finally, we discuss the gap that is
created for a bicriteria approximation of MULTICUT (Section 2.5).

2.1. The reduction. Given a regular unique 2-prover game instance Gg =
(Q, Eg) with n = |Q|/2 and the corresponding edge weights w;; and bijections
bi; = [d] — [d], we construct a MULTICUT instance G = (V, E) with demand
pairs, as follows. For every vertex (i.e., question) ¢ € (@, construct a d-
dimensional hypercube Cf ; the dimensions in this cube correspond to answers
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for the question qf . For each of the 2n hypercubes, we let the edges inside the
hypercube have cost 1, and call them hypercube edges.

For each question edge (¢;,q7) € Eq, we extend by (in the obvious way)
to a bijection from the vertices of C} to the vertices of C7, and denote the
resulting bijection by b}; : {0,1}* — {0,1}%. Formally, for every u € {0,1}"
(vertex in C}) and every a € [d], the a-th coordinate of bj;(u) is given by
(b3 (u)a = Uyt (a)- Then we connect every vertex u € C} to the corresponding
vertex bj;(u) € CF using an edge of cost wyA, where A = n/n is a scaling
factor. These edges are called cross edges.

Denote the resulting graph by G = (V, E). Notice that V is simply the
union of the vertex sets of the hypercubes C?, for all p € [2] and ¢ € [n], and
that the edge set E contains two types of edges, hypercube edges and cross
edges.

To complete the reduction, it remains to define the demand pairs. For a
vertex u € V, the antipode of u in G, denoted w, is defined to be the vertex
antipodal to u in the hypercube C¥ that contains u. The set D of demand
pairs then contains every pair of antipodal vertices in GG, and since the graph
contains 2n hypercubes, k = |D| = n2¢. Note that every vertex of G belongs
to exactly one demand pair.

2.2. The YES instance

LEMMA 2.1. If there is a solution A for the unique 2-prover game G such that
the total weight of the satisfied questions is at least 1 — 7, then the resulting
MULTICUT instance G contains a multicut M C E such that ¢(M) < 24+,

PrOOF. Let A be such a solution for Gg. Construct M by taking the fol-
lowing edges. For every question ¢ € @ and the corresponding answer A?
(of prover p), take the dimension-A? cut in cube C?. In addition, for every
edge (q}, q?) € Eg that the solution A does not satisfy, take all the cross edges
between the corresponding cubes C} and C?.

We first claim that removing M from G disconnects all the demand pairs.
To see this, we define a Boolean function f : V' — {0,1} on the graph vertices.
For every cube C?, consider the dimension-A? cut; it disconnects the cube

into two connected components, one containing the all-zeros vector 0 and one
containing the all-ones vector 1. For every v € C?, let f(v) = 0 if v is in the

3This is a standard technique in PCP constructions for graph optimization problems. A
hypercube can be interpreted as a “long code” (Bellare et al. 1998), and a dimension cut is
the encoding of an answer in the 2-prover game.
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same component as 0, and f(v) = 1 otherwise. This is exactly the A”-th bit
in v, ie., f(v) = vyr. Now consider any demand pair (v,?), and note that
f(v) = 1 — f(@). We will show below that every edge (u,v) ¢ M has the
property f(u) = f(v). This will clearly complete the proof of the claim.

Consider first a hypercube edge (u,v) in C? that is not a dimension-A?
edge. Then f(u) = upp = vgr = f(v), by the definition of f. Next consider a
cross edge (u,v) ¢ M. Then this edge lies between cubes C}! and C’]2 such that
the question edge (g, qf) is satisfied by the unique 2-prover game solution A.
Therefore, b;;(A}) = A? and f(u) = uq = vy, a1y = Ua2 = f(v).

Finally, we bound the cost of the solution. Let S be the set of question
edges not satisfied by the solution A. The total cost of the multicut solution is
thus

(M) =2n-271 297 Z wi; < 2%+ 2%An = 24t 1p, O

(¢} ,43)€S

2.3. Hypercube cuts, Boolean functions, influences, and juntas. We
will analyze the NO instance shortly, but first we set up some notation and
present a few technical lemmas regarding cuts in hypercubes. In particular, we
present Theorem 2.2, which will have a crucial role in what follows.

Recall that the dimensions of the hypercubes in the multicut instance corre-
spond to answers to the 2-prover game. Therefore, we would like to determine
which dimensions are the most significant participants in a cut on the cube, as
follows. Let C' = (Vi, E¢) be a d-dimensional hypercube. It will be useful to
represent cuts on the hypercube C' as functions f : Vo — Z. Such a function f
corresponds to a partition of Vi into sets {f~*(r) : r € f(V)}, which in turn
corresponds to the cutset {(u,v) € E¢ : f(u) # f(v)}. Notice that f can be
described as a function on d Boolean variables (corresponding to the dimen-
sions of the hypercube), where the dimension a € [d] corresponds to the a-th
variable. The influence of a dimension (variable) a € [d] on the function f,
denoted I/, is defined as the fraction of the dimension a-edges (u,v) € E¢ for
which f(u) # f(v). In other words, I/ = Prycy, [f(u) # f(u & 1,)] where 1, is
a unit vector along dimension a. The total influence (also called average sensi-
tivity) of f is Zae[d] I7. We say that the function f is a k-junta if there exists
a subset J C [d] with |J| < k such that for every variable (dimension) a ¢ J
and for every u € Vg, we have f(u) = f(u ® 1,). In other words, f depends
on at most k variables, and the remaining variables have zero influence. Two
functions f and f’ are said to be e-close if Pryev, [f(u) # f'(u)] <e.

An important special case is that of Boolean functions, ie., g : Vo —
{0,1}, which corresponds to a bipartition of V. The balance of a Boolean
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function g is defined as min{|g~*(0)|/|Vc|, |9~ (1)]/|Ve|}, i-e., the minimum of
Pryev,[g(u) = 0] and Pryev, [g(u) = 1].

The next theorem, due to Friedgut (1998), asserts that every Boolean func-
tion of low total influence is close to a junta. We will later use it to determine a
set of dimensions that are the most significant participants in a low-cost cutset.

THEOREM 2.2 (Friedgut’s (1998) Junta Theorem). Let g be a Boolean func-
tion defined on a hypercube and fix € > 0. Then g is e-close to a Boolean
function h defined on the same cube and depending on only 2°"/%) variables,
where T'= 3~ ;13 is the total influence of g.

2.4. The NO instance

LEMMA 2.3. There exists L = Q(min{n~' logd~'}) such that if the MULTI-
CUT instance G has a cutset of cost at most 247'nL whose removal disconnects
an « > 7/8 fraction of the demand pairs, then there is a solution A for the
unique 2-prover game G¢ whose value is larger than 9.

PROOF. Let L = cmin{1/n,log(1/6)} for a constant ¢ > 0 to be determined
later, and let M C E be a cutset of cost ¢(M) < 24+1n L whose removal discon-
nects an « > 7/8 fraction of the demand pairs. Using M, we will construct for
the unique 2-prover game G a randomized solution A whose expected value is
larger than d, thereby proving the existence of a solution of value larger than ¢.
The randomized solution A, which is a strategy for the two provers, is defined
as follows. Label each connected component of G \ M as either 0 or 1 inde-
pendently at random with equal probabilities, and define a Boolean function
f:V — {0,1} by letting f(v) be the label of the connected component of
v € V. Next, for each vertex (question) ¢/ € @ consider the restriction of f to
the hypercube C? C V, denoted ficr, and apply to it Theorem 2.2 (Friedgut’s
Junta Theorem) with ¢ = 1/60, to obtain a subset of the variables (dimen-
sions) J? C [d]; the idea is that for many hypercubes we obtain |JP| < 20(2/9),
Finally, choose the answer A? uniformly at random from J?, independently of
all other events.

We proceed to analyze the expected value of this randomized solution A.
Recall that the value of a solution is equal to the probability that, for a question
edge (g}, q?) chosen at random with probability proportional to its weight, we
have a? = by(a;). Notice that although ¢; and ¢; are correlated, each one
is uniformly distributed because @) is regular. Without loss of generality, we
assume that removing M disconnects at least as many demand pairs inside
the cubes {C}}icp as inside the cubes {C?}iep). Now we claim that with a
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constant probability over the choice of a question edge, the cut M has a low
cost over edges incident on the two corresponding hypercubes, and disconnects
many demand pairs in these two hypercubes. In other words, the quality of the
cut locally is nearly as good as the quality of the cut globally. In particular, we
upper bound the probability of the following four “bad” events (for a random
question edge (¢, ¢q})):

& = fewer than a 1/8-fraction of the vertices v € C} satisfy f(v) # f(v).
& = M contains more than 295 hypercube edges in C}.
&3 = M contains more than 2**°L hypercube edges in C?.

&4 = M contains more than 2L cross edges between C} and C?.

First, by our assumption above, removing M disconnects at least an o > 7/8
fraction of the demand pairs inside the cubes {C}},ef,. Thus, the expected
fraction of demand pairs (v,7) in C} that are not disconnected in G\ M (and
thus clearly f(v) = f(7)) is at most 1/8. In addition, the expected fraction of
demand pairs (v,7) in C} that are disconnected in G\ M and satisfy f(v) =
f(@) is at most 1/2, because different connected components of G\ M are
labeled independently. Thus, the expected fraction of vertices v € C} for which
f(v) = f(v) is at most 5/8, and by Markov’s inequality, Pr[&;] < 5/7. Next,
the cutset M contains at most 27"'nL hypercube edges, thus the expected
number of edges in C} U C} that are contained in M is at most 27 L, and by
Markov’s inequality Pr[€s U &] < 1/16. Finally, Pr[€4] < 1/16, as otherwise
the total cost of M along the cross edges corresponding to this event is more
than 1/16 - (2¢"5nL) - A = 2" nL > ¢(M). Taking a union bound, we upper
bound the probability that any of the bad events occurs by
PI"[51U(€2U53U54] < 24’136 < g

In order to lower bound the expected value of the randomized solution A,
we would like to show that if none of the four bad events above happens,
then the two sets of dimensions J} and sz obtained using Friedgut’s Junta
Theorem are relatively small, and further they are in “weak agreement”, and
these two properties will immediately imply that the randomized solution A
satisfies Pr[b;;(A}) = A3] > 0. Observe that if (u,v) € E and f(u) # f(v),
then (u,v) € M. If the event & does not occur, then the total influence of
ficr is at most 64L, and thus |J}| < 20(L/2) - Similarly, if the event & does not
occur, then the total influence of fics is at most 64L, and thus | J7| < 20(L/) In

addition, if the event &, does not occur, then the balance of fc1 is at least 1 /16.
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We now claim that if none of the above bad events happens then there is
a € J} for which bjj(a) € J?. Indeed, assume towards a contradiction that
Jin b;jl(JjQ) = (). Then by construction there is a Boolean function g; : C} —
{0,1} that is e-close to fier and depends on variables in J}! only. Clearly, the
balance of g} is close to that of ficr, namely, at least 1 /16 — e. Similarly, there
is a Boolean function g? : C’J2 — {0,1} that is e-close to f\cj? and depends on
variables in Jj2 only. We can relate these two functions via b;]. :C — C’]z,
namely by considering h : C} — {0,1} given by h(v) = g]?(b;j(v)).
Notice that h is e-close to f|c]2 ) bgj, and that it depends only on variables in
b;;'(J?). Therefore g} and h depend on disjoint sets of variables. It follows that
Pryecilg; (v) # h(v)] > 1/16 — ¢, because if we condition on the value of the
variables in b;;' (J?) we see that i (v) is determined, but this does not affect the
distribution of g (v), which still attains each value (0 or 1) with probability at
least 1/16 — . Consequently, g; and h = g7 o bj; are not, say, (1/17 — ¢)-close.

On the other hand, the event &£ not occurring implies that at most 32nL2¢
vertices v € C} satisfy f(v) # f(bj;(v)). In other words, fiea 1s (32nL)-close
to f\cf o bj;. The former is e-close to g} while the latter is e-close to gjz o bl;
(because bi; is a bijection on the variables), and by the triangle inequality we
find that g} and h = g7 obj; are (2¢ + 32nL)-close. If ¢ > 0 is sufficiently small,
2e +32nL < 1/17 — ¢, which yields a contradiction and completes the proof of
the claim.

Using the above claim we infer that for a random question edge,

PrA7 = b;(A})] > Pr[A] € J} nb; (7)), A2 = by(A])]
> L g0  g-owe _ 90wy
-7
We conclude that the expected value of the randomized solution A is given
by Pr[A? = b;(A})] > 2790 > §, where the last inequality holds if ¢ > 0 is
sufficiently small, and this completes the proof of Lemma 2.3. ]

2.5. Putting it all together. The above reduction from unique 2-prover
game to MULTICUT produces a gap of L(n) = Q(min{1/n(n),log(1/d(n))}).
We assumed d(n,d) < O(logn), and thus the resulting MULTICUT instance G
has size N = (n29)°M) = p®M_ [t follows that in terms of the MuULTICUT
instance size N, the gap is

10) = 2w Sy o e )
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This completes the proof of the part of Theorem 1.2 regarding the MuLTICUT
problem, namely, that the Unique Games Conjecture implies that it is NP-
hard to approximate MULTICUT within the above factor L(N). In fact, the
above proof shows that it is NP-hard to obtain even a (7/8, L(NN))-bicriteria
approximation.

Note that the number of demand pairs is £ = n2? = n®® and thus the
hardness of approximation factor is similar when expressed in terms of £ as well.
Note also that all edge weights in the MULTICUT instance constructed above
are bounded by a polynomial in the size of the graph. Therefore, via a stan-
dard reduction, a similar hardness result holds for the unweighted MuLTICUT
problem as well.

3. Hardness of approximating SPARSEST-CUT

In this section we prove the part of Theorem 1.2 regarding the SPARSEST-CUT
problem. The proof follows immediately from the next lemma in conjunction
with the hardness of bicriteria approximation of MULTICUT (from Section 2).

LEMMA 3.1. Let 0 < a < 1 be a constant. If there exists a polynomial-time
algorithm for SPARSEST-CUT that produces a cut whose value is within factor
p > 1 of the minimum, then there is a polynomial time algorithm that computes
an («a, 2=)-bicriteria approximation for MULTICUT.

ProOOF. Fix 0 < a < 1, and suppose A is a polynomial-time algorithm for
SPARSEST-CUT that produces a cut whose value is within factor p > 1 of the
minimum. Now suppose we are given an input graph G = (V, E) and k demand
pairs D = {{s1,t1},...,{sk, tx}}. We may assume without loss of generality
that every s; is connected (in G) to its corresponding t;.

We now describe the bicriteria approximation algorithm for MurLTicUT. It
is an iterative algorithm where M = () at the beginning and the following is
executed at each iteration: we apply algorithm A to G with D as the set of
demand pairs, letting M’ be the cutset produced by A and D’ be the demand
pairs in D that are disconnected by M’ and then set M «— M U M’ and
D «— D\ D'. Note that D changes throughout the iterations, but G does not.
The iterations proceed as long as |D| > (1 — «)k, and eventually the final M
is output.

This algorithm clearly runs in polynomial time, and there are at most ak
iterations. For the sake of analysis, fix an optimal multicut M* C FE, i.e., a
cutset of G whose removal disconnects all the demand pairs and has the least
cost. We first claim that in every iteration, there is a cut whose value (in the
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SPARSEST-CUT sense) is at most ¢(M*)/(1— a)k; this follows since the number
of remaining demands pairs is |D| > (1 — «)k and removing M* disconnects all
these demand pairs. By the approximation guarantees of A, at every iteration
we have

c(M¥)
M)<p - ——2-|D|.
Summing over all the iterations, we can upper bound the cost of the output
cut by

(M) p
M)<p- k= M™).
(M) <p (1—-a)k 1—ac( )

Clearly, the output cut disconnects at least ak demand pairs in G, and this
concludes the proof of the lemma. O

4. Hardness of approximating MIN-2CNF = DELETION

In this section, we modify the reduction in Section 2.1 to obtain a hardness
of approximation for MIN-2CNF = DELETION. In particular, we reduce the
MULTICUT instance obtained in Section 2.1 to MIN-2CNF = DELETION, such
that a solution to the latter gives a MULTICUT of the same cost in the former.

The MIN-2CNF = DELETION instance contains 2%n variables, one for each
demand pair {u,u}. In particular, for every demand pair {u,u} € D, we
associate the literal z, with u and the literal x7 = —x,, with w. For every edge
e = (u,v) in the graph G there is a clause (v, = z,) whose weight is equal to
the edge-weight w,.

The following lemma is immediate from the construction and implies an
analog of Lemma 2.3 for MIN-2CNF = DELETION.

LEMMA 4.1. Given an assignment S of cost W to the above instance of MIN-
2CNF = DELETION, we can construct a solution of cost W to the MULTICUT
instance G.

PROOF. Let M be the set of edges (u,v) for which S(z,) # S(x,). Then M
corresponds to the clauses that are not satisfied by S and has weight W. The
lemma follows from observing that M is indeed a multicut—S' is constant over
connected components in G \ M, and for every demand pair (u,u), we have

S(xy) # S(zg). O

We now give an analog of Lemma 2.1.
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LEMMA 4.2. If there is a solution A for the unique 2-prover game G such
that the total weight of the satisfied questions is at least 1 — 7, then there
exists an assignment S for the above MIN-2CNF = DELETION instance such
that ¢(S) < 2¢t1p,

Proor. Given the solution A for Gg, we construct an assignment S as fol-
lows. For every question ¢¥ and for every vertex u in the corresponding hyper-
cube C7, define S(z,) to be the Af-th bit of u, i.e., S(,,) = usr. Note that this
is a valid assignment, i.e., S(x,) = 1—.S5(27) for all vertices u, as uyr = 1 p.

We bound the cost of the solution by first analyzing the clauses correspond-
ing to hypercube edges in the corresponding MULTICUT instance. Consider
unsatisfied clauses containing both variables in the same hypercube C¥, and
note that the hypercube edges corresponding to these clauses form a dimension-
AP cut in the cube C?. Therefore, the total weight of these clauses is at most
(24-1)(2n) = 2%n.

Finally, consider an unsatisfied clause (z, = z,) corresponding to vertices
in different hypercubes C} and C7. Then S(z,) # S(x,) implies that u,: =
Uy, (AY) # v 42, Or bij(Al) # A?. There are at most 27 such clauses for each
question pair not satisfied by the solution A. Therefore, the total weight of
such clauses is at most 29nA = 29n.

The lemma follows from adding the total weight of these two types of edges.

O

Lemmas 4.1 and 4.2 along with Lemma 2.3 imply the part of Theorem 1.2
regarding MIN-2CNF = DELETION.

5. Concluding remarks

Several important questions are left open. First, one would like to eliminate
the dependence on the Unique Games Conjecture, and obtain a “standard”
hardness of approximation result. Yet another challenge is to improve the
hardness factor. For MuLTICUT, the Q(logk) integrality ratio lower bound
of Agarwal et al. (2005) suggests that the inapproximability bound may be
improved. In particular, (log k)¢ hardness for a constant ¢ > 1/2 will separate
the approximability of MULTICUT from that of SPARSEST-CUT (in light of
the recent approximation due to Arora et al. 2005). The main bottleneck to
improving the hardness factor lies in Friedgut’s Junta Theorem (and similarly
in the result of Kahn et al. (1988) that we used in the conference version).
These bounds are tight in general, as shown by the tribes function (Ben-Or &
Linial 1989) (see also Friedgut 1998, Section 2).
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A third challenge is to obtain hardness of approximation results for the
uniform-demand case of the SPARSEST-CUT problem or for the BALANCED-
CuTt problem. Our results do not apply to this special but important case; in
particular, if a 2-prover system has a low-cost balanced cut, then the corre-
sponding graph on hypercubes would have a low-cost balanced cut regardless
of the value of the 2-prover game. Very recently, Devanur et al. (2006) have
shown a lower bound of Q(loglogn) on the integrality ratio of the natural SDP
relaxation for this problem. Alternatively, of course, one might improve the
approximation algorithms for any of these problems.
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