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Abstract. We consider the problem of providing a resolution proof of
the statement that a given graph with n vertices and average degree
roughly ∆ does not contain an independent set of size k. For randomly
chosen graphs and k ≤ n/3, we show that such proofs asymptotically
almost surely require size roughly exponential in n/∆6. This, in par-
ticular, implies a 2Ω(n) lower bound for constant degree graphs, and for
∆ ≈ n1/6, shows that there are almost always no short resolution proofs
for k as large as n/3 even though a maximum independent set is likely
to be much smaller, roughly n5/6 in size. Our result implies that for
graphs that are not too dense, almost all instances of the independent
set problem are hard for resolution. Further, it provides an uncondi-
tional exponential lower bound on the running time of resolution-based
search algorithms for finding a maximum independent set or approxi-
mating it within a factor of ∆/(6 ln ∆). We also give relatively simple
upper bounds for the problem and show them to be tight for the class
of exhaustive backtracking algorithms. We deduce similar complexity
results for the related vertex cover problem on random graphs, prov-
ing, in particular, that no polynomial-time resolution-based method can
achieve an approximation within a factor of 3/2.
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1. Introduction

An independent set in an undirected graph is a set of vertices no two of which
share an edge. The problem of determining whether or not a given graph con-
tains an independent set of a certain size is one of the classic NP-complete prob-
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lems (Karp 1972). Consequently, the complementary problem of determining
non-existence of independent sets of that size in the graph is co-NP-complete.
This paper studies the problem of providing a resolution-based logical proof of
the non-existence of independent sets.

Any result that holds for nearly all graphs can be alternatively formalized
as a result that holds with very high probability when a graph is chosen at
random from a “fair” distribution. We use this approach and study the res-
olution complexity of the independent set problem in random graphs chosen
from a standard distribution. Independent sets and many other combinato-
rial structures in random graphs have very interesting mathematical properties
as discussed at length in the texts by Bollobás (1985) and Janson,  Luczak &
Ruciński (2000). In particular, the size of the largest independent set can be de-
scribed with high certainty and accuracy in terms of a simple graph parameter,
namely, its edge-density.

This work proves that given almost any graph G and a number k,
exponential-size resolution proofs are required to show that G does not contain
an independent set of size k. In fact, when G has no independent set of size k,
exponential-size resolution proofs are required to show that independent sets
of even a much larger size k′ � k do not exist in G. This yields running time
lower bounds for certain classes of algorithms for approximating the size of the
largest independent sets in random graphs.

Closely related to the independent set problem are the problems of prov-
ing the non-existence of cliques or vertex covers of a given size. Our results
for the independent set problem also lead to bounds for these problems. As
the approximations for the vertex cover problem act differently from those for
independent sets, we state the results in terms of vertex covers as well as inde-
pendent sets. (Clique approximations are essentially identical to independent
set approximations.)

Many algorithms for finding a maximum-size independent set have been pro-
posed. Influenced by algorithms of Tarjan (1972) and Tarjan & Trojanowski
(1977), Chvátal (1977) devised a specialized proof system for the independent
set problem. In this system he showed that with probability asymptotically
approaching 1, proofs of non-existence of large independent sets in random
graphs with a linear number of edges must be exponential in size. Chvátal’s
system captures many backtracking algorithms for finding a maximum inde-
pendent set, including those of Tarjan (1972), Tarjan & Trojanowski (1977),
Jian (1986), and Shindo & Tomita (1990). In general, the transcript of any f -

driven algorithm (Chvátal 1977) for independent sets running on a given graph
can be translated into a proof in Chvátal’s system.
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Our results use the well-known resolution proof system of Robinson (1965)
for generic propositional logic, rather than Chvátal’s specialized proof system
for independent sets. Given a graph G and an integer k, we consider encoding
the existence of an independent set of size k in G as a propositional formula
and examine the proof complexity of such formulas in resolution. Resolution
on one of the encodings we present captures the behavior of Chvátal’s proofs
on the corresponding graphs. For all our encodings, we show that given a
randomly chosen graph G of moderate edge density, almost surely, the size of
any resolution proof of the statement that G does not have an independent
set of a certain size must be exponential in the number of vertices in G. This
implies an exponential lower bound on the running time of many algorithms for
searching for, or even approximating, a maximum independent set or minimum
vertex cover in G.

Although resolution is a relatively simple and well-studied proof system, one
may find the concept of resolution proofs of graph theoretic problems somewhat
unnatural. The tediousness of propositional encodings and arguments related
to them contributes even more to this. Chvátal’s proof system, on the other
hand, is completely graph theoretic in nature and relates well to many known
algorithms for the independent set problem. By proving that resolution can
efficiently simulate Chvátal’s proof system, we provide another justification for
studying the complexity of resolution proofs of graph problems.

We show that our results extend the known lower bounds for Chvátal’s sys-
tem (Chvátal 1977) to resolution and also extend them to graphs with many
more than a linear number of edges, yielding bounds for approximation al-
gorithms as well as for exact computation. More precisely, we show that no
resolution-based technique can achieve a polynomial-time approximation of the
maximum independent set size within a factor of ∆/(6 ln ∆). For the vertex
cover problem, we show an analogous result for approximation factors better
than 3/2. We discuss how these results complement the known hardness of
approximation results by H̊astad (1999), Trevisan (2001), and Dinur & Safra
(2005), which are conditioned on P 6= NP.

Recently, by computing a property related to the Lovász number of a ran-
dom graph, more precisely its vector chromatic number, Coja-Oghlan (2005)
gave an expected polynomial-time O(

√
∆/ ln ∆)-approximation algorithm for

the size of the maximum independent set in random graphs of density ∆. Our
results immediately imply that this new approach is provably stronger than
resolution-based algorithms.

In the proof complexity realm, exponential bounds for specialized struc-
tured formulas and for unstructured random k-CNF formulas have previously
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been shown by several researchers including Beame et al. (1998); Chvátal &
Szemerédi (1988); Haken (1985); Razborov (2004); Urquhart (1987); and Ben-
Sasson & Wigderson (2001). However, much less is known for large classes of
structured formulas. Our results significantly extend the families of structured
random formulas for which exponential resolution lower bounds are known be-
yond the graph coloring example recently shown by Beame et al. (2005). (Note
that our results neither imply nor follow from those of Beame et al. (2005).
Although the non-existence of an independent set of size n/K in a graph of
n vertices implies that the graph is not K-colorable, the argument requires
an application of the pigeonhole principle which is not efficiently provable in
resolution (Haken 1985).)

1.1. Main Idea. Our approach can be summarized as follows. For obtaining
our lower bounds, instead of looking at the general problem of disproving the
existence of any large independent set in a graph, we focus on a restricted class
of independent sets that we call block-respecting independent sets. We show
that even ruling out this smaller class of independent sets requires exponential-
size resolution proofs. These restricted independent sets are simply the ones
obtained by dividing the n vertices of the given graph into k consecutive blocks
of equal size (assuming k divides n) and choosing one vertex from each block.
Since it is easier to rule out a smaller class of independent sets, the lower bounds
we obtain for the restricted version are stronger and imply lower bounds for
the general problem.

We note that while block-respecting independent sets are a helpful tool
in analyzing general resolution proofs, we are able to derive a better lower
bound for DPLL proofs by applying a counting argument directly to the general
problem. This stronger DPLL lower bound is obtained in the same spirit as a
stronger 2Ω(n log n) lower bound obtained by Dantchev & Riis (2001) for DPLL

proofs of the weak pigeonhole principle, which does not follow from similar
bounds techniques for general resolution.

Most of the known resolution complexity lower bounds can be proved using
a general result of Ben-Sasson & Wigderson (2001) that is derived from earlier
arguments by Haken (1985) and Clegg, Edmonds & Impagliazzo (1996). It
provides a relationship between the size of resolution proofs and their width,
the length of their longest clause. Fitting into this framework, our main lower
bound argument uses the property that any proof of non-existence of an in-
dependent set of a certain size in a random graph is very likely to refer to a
relatively large fraction of the vertices of the input graph, and that any clause
capturing key properties of this large fraction of vertices must have large width.
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More precisely, the proof can be broadly divided into two parts, both of
which use the fact that random graphs are almost surely locally sparse. We
first show that the minimum number s of input clauses that are needed for any
refutation of the problem is large for most graphs. We then use combinatorial
properties of independent sets in random graphs to say that any clause min-
imally implied by a relatively large subset of these s clauses has to be large.
Here minimally implied means that implied by the size-s set of clauses but not
by any proper subset of it. These two arguments together allow us to deduce
that the width, and therefore size, of any such refutation must be large.

The lower bounds obtained this way turn out to apply even when the (un-
satisfiable) propositional formula under consideration encodes the existence of
a k-independent set for k much larger than the maximum independent set one
expects to see in the underlying random graph. We exploit this fact to de-
rive an almost-certain hardness of approximation result for resolution-based
algorithms for the independent set problem.

1.2. Road Map. We begin by discussing resolution and DPLL systems in
Section 2, and then outline some basic properties of independent sets, especially
in the context of random graphs, in Section 3. In Section 4 we describe three
natural propositional encodings of the independent set problem and compare
proof sizes for the different encodings. In Sections 5 we give a simulation of
Chvátal’s proof system by resolution. Section 6 discusses the proof complexity
of related graph theory problems, namely, minimum vertex cover and maxi-
mum clique. After describing relatively simple proof complexity upper bounds
based on exhaustive backtracking algorithms in Section 7, we present our main
technical contribution — resolution lower bounds — in Sections 8 to 10. Our
hardness of approximation results are derived in Section 11. Finally, in Sec-
tion 12 we prove a stronger lower bound that applies to exhaustive backtracking
algorithms (as well as the DPLL procedure) and qualitatively matches our up-
per bounds for the same. Note that proofs in Sections 4 to 7 contain somewhat
tedious details that the reader may want to skip initially.

2. Resolution and DPLL Proofs

A propositional formula F is said to be in conjunctive normal form (CNF) if it
is a conjunction of clauses, where each clause is a disjunction of literals and each
literal is either a variable or its negation. The construction of Tseitin (1968)
can be used to efficiently convert, using additional variables, any propositional
formula into CNF form. In this paper, we will only consider CNF formulas.
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2.1. General Resolution. The resolution principle, originally proposed by
Robinson (1965) for efficient automated deduction, forms the basis of many
popular systems for practical theorem proving. Lower bounds on resolution
proof sizes thus have a bearing on the running time of these algorithms.

To prove that a given input CNF formula F is unsatisfiable, we start with
the original input clauses of F and repeatedly choose pairs of clauses to apply
the resolution rule: given (A ∨ x) and (B ∨ ¬x), one can derive (A ∨B). This
rule has the property that a derived clause is satisfied by any assignment that
satisfies both the parent clauses. Since we are interested in proving that F is
unsatisfiable, the goal is to start with F and derive the empty (and trivially
unsatisfiable) clause, false.

Let φ be a set of clauses. A resolution derivation of clause C from φ is a
sequence of clauses π = C1, C2, . . . , Cs = C where each clause Ci is either an
element of φ or is derived by applying the resolution rule to two clauses Cj

and Ck, j, k < i, occurring earlier in π. A resolution derivation of the empty
clause, false, from φ is called a refutation or proof of φ. Given any resolution
refutation, we can associate with it in a natural way a directed acyclic graph
where edges go from parent clauses to the clause obtained by resolving them
on a certain literal. The special case where this graph is a tree is referred to as
tree-like resolution and is discussed in Section 2.2.

Let F be a set of clauses encoding a given problem as a CNF formula and
P a resolution proof of F . The size of P , size(P ), is the number of clauses
appearing in P . The resolution complexity of F , RES(F ), is the minimum of
size(P ) over all proofs P of F ; if no such proof exists, RES(F ) =∞. The width

of a clause is the number of literals occurring in it. The width of F , w(F ), and
the width of P , w(P ), are the maximum of the widths of all clauses in F and
P , respectively. The refutation width of F , w(F ` Λ), is the minimum of w(P )
over all proofs P of F . As we shall see in Section 2.3, in order to prove a lower
bound on RES(F ), it is sufficient to prove a lower bound on w(F ` Λ)−w(F ).

2.2. DPLL Procedure and Tree-like Resolution. The Davis-Putnam-
Logemann-Loveland or DPLL procedure (Davis et al. 1962; Davis & Putnam
1960) is both a proof system and a collection of algorithms for finding proofs.
A simple DPLL algorithm to refute a CNF formula F is to repeatedly choose a
variable x of F and recursively refute both F |x←0 and F |x←1. Variants of this
algorithm form the most widely used family of complete algorithms for formula
satisfiability. As a proof system, the DPLL procedure forms a special case of
resolution where the proof graph is a tree, that is, any derived clause that
is used more than once in the proof must be re-derived. The tree-resolution
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complexity of a given formula F is defined to be the minimum of size(P ), the
size of P , over all tree-like resolution proofs P of F .

DPLL refutations can be thought of as trees where we branch at each node
based on the value of a variable. DPLL refutations can be easily converted into
tree-like resolution proofs of essentially the same size, and vice versa. Given this
correspondence, we will use these two terms interchangeably and denote the
tree-resolution complexity of a formula F by DPLL(F ). This correspondence
also shows that a lower bound on the size of tree-like resolution proofs implies
a lower bound on DPLL refutation sizes and hence on the running time of DPLL-
based algorithms. The transcript of the execution of any algorithm for finding a
maximum independent set in a given graph is also a proof that no independent
set of a larger size exists. Our results show that the running time of any such
DPLL-based algorithm working on randomly chosen input graphs with not too
many edges will almost certainly be exponential in the size of the graph.

Although we described DPLL algorithms here as working on propositional
formulas, they capture a much more general class of algorithms that are based
on branching and backtracking. For instance, basic algorithms for finding a
maximum independent set, such as that of Tarjan (1972), branch on a vertex
v by either including v in the current independent set and deleting it and
all its neighbors from further consideration, or excluding v from the current
independent set; they then proceed recursively, finding a maximum independent
set in the remaining graph. More complicated algorithms, such as that of
Tarjan & Trojanowski (1977), branch in a similar manner on small subsets of
vertices, reusing subproblems already solved. Such algorithms also fall under
the category of resolution based (not necessarily tree-like) algorithms and our
lower bounds apply to them as well.

2.3. The Size-Width Relationship. Our proof uses the relationship be-
tween the size and the width of a resolution proof. Ben-Sasson & Wigderson
(2001) showed that any short proof of unsatisfiability of a CNF formula can
be converted to one of small width. Therefore, a lower bound on the width of
all resolution proofs of a given formula implies a lower bound on the size of all
such proofs.

Proposition 2.1 (Ben-Sasson & Wigderson 2001). For any CNF formula F ,
DPLL(F ) ≥ 2w(F`Λ)−w(F ).

Proposition 2.2 (Ben-Sasson & Wigderson 2001). For any CNF formula F
over n variables and c = 1/(9 ln 2), RES(F ) ≥ 2c(w(F`Λ)−w(F ))2/n.
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3. Independent Sets in Random Graphs

For any undirected graph G = (V,E), let n = |V | and m = |E|. A k-

independent set in G is a set of k vertices no two of which share an edge.
We will describe several natural ways of encoding in clausal form the state-
ment that G has a k-independent set. Their refutations will be proofs that G
does not contain any k-independent set. We will be interested in size bounds
for such proofs.

Combinatorial properties of random graphs have been studied extensively
(see, for instance, Bollobás 1985; Janson et al. 2000). We use the standard
model G(n, p) for graphs where n vertices are fixed and each of the

(
n
2

)
possible

edges is included independently at random with probability p ∈ [0, 1]. G ∼
G(n, p) denotes a graph G chosen at random from this distribution. We will

state most of our results in terms of parameters n and ∆, where ∆
def
= np is

roughly the average degree of G (the exact average degree is (n− 1)p).
We will need both worst case and almost certain bounds on the size of the

largest independent set in graphs of density ∆.

Proposition 3.1 (Turan’s Theorem). Every graph G with n vertices and av-
erage degree ∆ has an independent set of size b n

∆+1
c. In general, for any integer

k satisfying ∆ < n
k−1
− 1, G has an independent set of size k.

For ε > 0, let k±ε be defined as follows:

k±ε = b2n

∆
(ln ∆− ln ln ∆ + 1− ln 2± ε)c

Proposition 3.2 (cf. Janson et al. 2000, Theorem 7.4). For every ε > 0
there is a constant Cε such that the following holds. Let ∆ = np, Cε ≤
∆ ≤ n/ ln2 n, and G ∼ G(n, p). With probability 1 − o(1) in n, the largest
independent set in G is of size between k−ε and k+ε.

This shows that while random graphs are very likely to have an independent
set of size k−ε, they are very unlikely to have one of size k+ε + 1. The number

of independent sets of a certain size also shows a similar threshold behavior.
While there are almost surely no independent sets of size (2n/∆) ln ∆, the
following lemma, which follows by a straightforward extension of the analysis
by Janson et al. (2000, Lemma 7.3), shows that there are exponentially many
of size (n/∆) ln ∆. We use this bound later to put a limit on the best one
can do with exhaustive backtracking algorithms that systematically consider
all potential independent sets of a certain size.
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Lemma 3.3. There is a constant C > 0 such that the following holds. Let
∆ = np, ∆ ≤ n/ ln2 n, and G ∼ G(n, p). With probability 1 − o(1) in n, G
contains at least 2C(n/∆) ln2 ∆ independent sets of size b(n/∆) ln ∆c.

Proof. Let Xk be a random variable whose value is the number of indepen-
dent sets of size k in G = (V,E). The expected value of Xk is given by:

E [Xk] =
∑

S⊆V,|S|=k

Pr [S is an independent set in G]

=

(
n

k

)
(1− p)(

k
2)

≥
(n

k

)k

e−cpk2

for c > 1/2, p = o(1) in n, and large enough n

=
(n

k
e−c∆k/n

)k

Let c = 0.55 and C = 0.05/ ln 2 so that ∆1−c/ ln ∆ ≥ 2C ln ∆. Setting k =

b(n/∆) ln ∆c and observing that
(
(n/k)e−c∆k/n

)k
decreases with k,

E
[
Xb(n/∆) ln∆c

]
≥

(
∆

ln ∆
e−c ln ∆

)(n/∆) ln ∆

≥ 2C(n/∆) ln2 ∆.

We now use the standard second moment method to prove that Xk for
k = b(n/∆) ln ∆c asymptotically almost surely lies very close to its expected
value. We begin by computing the expected value of X2

k and deduce from it
that the variance of Xk is small.

E
[
X2

k

]
=

∑

S⊆V
|S|=k

Pr [S is independent]
k∑

i=0

∑

T⊆V
|T |=k
|S∩T |=i

Pr [T is independent]

=

(
n

k

)
(1− p)(

k
2)

k∑

i=0

(
k

i

)(
n− k

k − i

)
(1− p)(

k
2)−(i

2)

Therefore
var [Xk]

E ([Xk])2 =
E [X2

k ]

(E [Xk])2 − 1

=

(
n
k

)
(1− p)(

k
2)
∑k

i=0

(
k
i

)(
n−k
k−i

)
(1− p)(

k
2)−(i

2)

[(
n
k

)
(1− p)(

k
2)
]2 − 1
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This last expression has been studied by Janson et al. (2000, page 181, equation
7.8). Following their calculation (Janson et al. 2000, Lemma 7.3), we obtain
that var[Xk]/(E[X2

k ])2 → 0 for k = b(n/∆) ln ∆c as n → ∞, when ∆ ≥√
n ln2 n. When ∆ ≤ √n ln2 n, another argument along their lines (Janson et al.

2000, Theorem 7.4) provides the same result. Applying the second moment
method, this leads to the desired bound. �

4. Encoding Independent Sets as Formulas

In order to use a propositional proof system to prove that a graph does not
have an independent set of a particular size, we first need to formulate the
problem as a propositional formula. This is complicated by the difficulty of
counting set sizes using CNF formulas.

One natural way to encode the independent set problem is to have indicator
variables that say which vertices are in the independent set and auxiliary vari-
ables that count the number of vertices in the independent set. This encoding
is discussed in Section 4.1. The clauses in this encoding, although capturing the
simple concept of counting, are somewhat involved. Moreover, the existence of
two different types of variables makes this encoding difficult to reason about
directly.

A second encoding, derived from the counting-based encoding, is described
in Section 4.2. It is based on a mapping from the vertices of the graph to k addi-
tional nodes as an alternative to straightforward counting, and uses variables of
only one type. This is essentially the same encoding as the one used by Bonet,
Pitassi & Raz (1997) for the clique problem, except that in our case we need to
add an extra set of clauses, called ordering clauses, to make the lower bounds
non-trivial. (Otherwise, lower bounds trivially follow from known lower bounds
for the pigeonhole principle (Haken 1985) which have nothing to do with the
independent set problem; in the work of Bonet et al. (1997) this problem did
not arise because the proof system considered was cutting planes where, as
shown by Cook et al. (1987), the pigeonhole principle has short proofs.)

Section 4.3 finally describes a much simpler encoding which is the one we
analyze directly for our lower bounds. This encoding considers only a restricted
class of independent sets that we call block-respecting independent sets, for
which the problem of counting the set size is trivial. Hence, the encoding uses
only one type of variable that indicates whether or not a given vertex is in the
independent set. Refutation of this third encoding rules out the existence of the
smaller class of block-respecting independent sets only. Intuitively, this should
be easier to do than ruling out all possible independent sets. In fact, we show
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that the resolution and DPLL refutations of this encoding are bounded above in
size by those of the mapping encoding and are at worst a small amount larger
than those of the counting encoding. As a result, we can translate our lower
bounds for this third encoding to each of the other encodings. Further, we give
upper bounds for the two general encodings which also apply to the simpler
block-respecting independent set encoding.

For the rest of this paper, identify the vertex set of the input graph with
{1, 2, . . . , n}. Each encoding will be defined over variables from one or more of
the following three categories:

◦ xv, 1 ≤ v ≤ n, which is true iff vertex v is chosen by the truth assignment
to be in the independent set,

◦ yv,i, 0 ≤ i ≤ v ≤ n, 0 ≤ i ≤ k, which is true iff precisely i of the first v
vertices are chosen in the independent set, and

◦ zv,i, 1 ≤ v ≤ n, 1 ≤ i ≤ k, which is true iff vertex v is chosen as the ith

node of the independent set.

A desirable property of all independent set encodings is their monotonicity,
i.e., for k′ > k, proving the non-existence of an independent set of size k′ in that
encoding must not be any harder than doing so for size k, up to a polynomial
factor. This property indeed holds for each of the three encodings we consider
below.

4.1. Encoding Based on Counting. The counting encoding, αcount(G, k),
of the independent set problem is defined over variables xv and yv,i. As men-
tioned previously, this encoding is somewhat tedious in nature. It has the
following three kinds of clauses:

(a) Edge Clauses: For each edge (u, v), αcount(G, k) has one clause saying
that at most one of u and v is selected; ∀(u, v) ∈ E, u < v : (¬xu ∨
¬xv) ∈ αcount(G, k)

(b) Size-k Clause: There is a clause saying that the independent set chosen
is of size k; yn,k ∈ αcount(G, k)

(c) Counting Clauses: There are clauses saying that variables yv,i correctly
count the number of vertices chosen. For simplicity, we first write
this condition not as a set of clauses but as more general proposi-
tional formulas. For the base case, αcount(G, k) contains y0,0 and the
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clausal form of (yv,0 ↔ (yv−1,0 ∧ ¬xv)) for v ∈ {1, . . . n}. Further,
∀i, v, 1 ≤ i ≤ v ≤ n, 1 ≤ i ≤ k, αcount(G, k) contains the clausal form
of (yv,i ↔ ((yv−1,i ∧ ¬xv) ∨ (yv−1,i−1 ∧ xv))), unless i = v, in which
case αcount(G, k) contains the clausal form of the simplified formula
(yv,v ↔ (yv−1,v−1 ∧ xv)).

Translated into clauses, these conditions take the following form. For-
mulas defining yv,0 for v ≥ 1 translate into {(¬yv,0 ∨ yv−1,0), (¬yv,0 ∨
¬xv), (yv,0∨¬yv−1,0∨xv)}. Further, formulas defining yv,i for v > i ≥ 1
translate into {(yv,i∨¬yv−1,i∨xv), (yv,i∨¬yv−1,i−1∨¬xv), (¬yv,i∨yv−1,i∨
yv−1,i−1), (¬yv,i ∨ yv−1,i ∨ xv), (¬yv,i ∨ yv−1,i−1 ∨ ¬xv)}, whereas in the
case i = v they translate into {(¬yv,v ∨ yv−1,v−1), (¬yv,v ∨ xv), (¬xv ∨
¬yv−1,v−1 ∨ yv,v)}.

Lemma 4.1. For any graph G over n vertices and k′ > k,

RES(αcount(G, k′)) < n · RES(αcount(G, k)) + 2n2 and

DPLL(αcount(G, k′)) < n · DPLL(αcount(G, k)) + 2n2.

Proof. If G contains an independent set of size k, then there are no res-
olution refutations of αcount(G, k). By our convention, RES(αcount(G, k)) =
DPLL(αcount(G, k)) =∞, and the result holds. Otherwise consider a refutation
π of αcount(G, k). Using π, we construct a refutation π′ of αcount(G, k′) such
that size(π′) ≤ (n − k + 1) · size(π) + 2(k′ − k)(n − k), which is less than
n · size(π) + 2n2. Further, if π is a tree-like refutation, then so is π ′.

αcount(G, k′) contains all clauses of αcount(G, k) except the size-k clause,
yn,k. Therefore, starting with αcount(G, k′) as initial clauses and using π mod-
ified not to use the clause yn,k, we derive a subclause of ¬yn,k. This clause,
however, cannot be a strict subclause of ¬yn,k because αcount(G, k) \ {yn,k} is
satisfiable. Hence, we must obtain ¬yn,k. Call this derivation Dn. By con-
struction, size(Dn) ≤ size(π). Making a copy of Dn, we restrict it by setting
xn ← false, yn,k ← yn−1,k to obtain a derivation Dn−1 of ¬yn−1,k. Continuing
this process, construct derivations Dp of ¬yp,k for p ∈ {n − 1, n − 2, . . . , k}
by further setting xp+1 ← false, yp+1,k ← yp,k. Again, by construction,
size(Dp) ≤ size(π). Combining derivations Dn, Dn−1, . . . , Dk into π′ gives
a derivation of size at most (n − k + 1) · size(π) of clauses ¬yp,k, k ≤ p ≤ n,
which is tree-like if π is.

Continuing to construct π′, resolve the above derived clause ¬yk,k with the
counting clause (¬yk+1,k+1∨yk,k) of αcount(G, k′) to obtain ¬yk+1,k+1. Now for v
going from k +2 to n, resolve the already derived clauses ¬yv−1,k+1 and ¬yv−1,k



Resolution Complexity of Indep. Sets and Vertex Covers 13

with the counting clause (¬yv,k+1 ∨ yv−1,k+1 ∨ yv−1,k) of αcount(G, k′) to obtain
¬yv,k+1. This gives a tree-like derivation of size less than 2(n − k) of clauses
¬yp,k+1, k + 1 ≤ p ≤ n, starting from clauses ¬yq,k, k ≤ q ≤ n. Repeating this
process (k′−k) times gives a tree-like derivation of size less than 2(k ′−k)(n−k)
of clauses ¬yp,k′ , k′ ≤ p ≤ n, starting from clauses ¬yq,k, k ≤ q ≤ n, derived
previously. In particular, ¬yn,k′ is now a derived clause. Resolving it with the
size-k′ clause yn,k′ of αcount(G, k′) completes refutation π′. �

4.2. Encoding Based on Mapping. This encoding, denoted αmap(G, k),
uses a mapping from n vertices of G to k nodes of the independent set as an
indirect way of counting the number of vertices chosen by a truth assignment
to be in the independent set. It can be viewed as a set of constraints restricting
the mapping (see Figure 4.1). The idea is to map the nodes of the independent
set to the sequence (1, 2, . . . , k) in the increasing order of their index as vertices
in the graph. This encoding is defined over variables zv,i and has the following
five kinds of clauses:

(a) Edge Clauses: For each edge (u, v), there are clauses saying that at most
one of u and v is chosen in the independent set; ∀(u, v) ∈ E, i, j, 1 ≤
i < j ≤ k : (¬zu,i ∨ ¬zv,j) ∈ αmap(G, k)

(b) Surjective Clauses: For each node i, there is a clause saying that some

vertex is chosen as the ith node of the independent set; ∀i, 1 ≤ i ≤ k :
(z1,i ∨ z2,i ∨ . . . ∨ zn,i) ∈ αmap(G, k)

(c) Function Clauses: For each vertex v, there are clauses saying that v is
not mapped to two nodes, i.e., it is not counted twice in the independent
set; ∀v, i, j, 1 ≤ v ≤ n, 1 ≤ i < j ≤ k : (¬zv,i ∨ ¬zv,j) ∈ αmap(G, k)

(d) 1-1 Clauses: For each node i, there are clauses saying that no two
vertices map to the ith node of the independent set; ∀i, u, v, 1 ≤ i ≤
k, 1 ≤ u < v ≤ n : (¬zu,i ∨ ¬zv,i) ∈ αmap(G, k)

(e) Ordering Clauses: For every pair of consecutive nodes, there are clauses
saying that vertices are not mapped to these in the reverse order. This,
by transitivity, implies that there is a unique mapping to k nodes once
we have chosen k vertices to be in the independent set. ∀u, v, i, 1 ≤ u <
v ≤ n, 1 ≤ i < k : (¬zu,i+1 ∨ ¬zv,i) ∈ αmap(G, k).
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Figure 4.1: Viewing independent sets as a mapping from n vertices to k nodes

Lemma 4.2. For any graph G and k′ ≥ k,

RES(αmap(G, k′)) ≤ RES(αmap(G, k)) and

DPLL(αmap(G, k′)) ≤ DPLL(αmap(G, k)).

Proof. If G contains an independent set of size k, then there are no res-
olution refutations of αmap(G, k). By our convention, RES(αmap(G, k)) =
DPLL(αmap(G, k)) = ∞, and the result holds. Otherwise consider a refuta-
tion π of αmap(G, k). Observe that all clauses of αmap(G, k) are also clauses
of αmap(G, k′). Hence π is also a refutation of αmap(G, k′), proving the desired
bounds. �

4.3. Encoding Using Block-respecting Independent Sets. Fix b = n/k
for the rest of the paper and assume for simplicity that k divides n (denoted
k |n). Partition the vertices of G into k subsets, called blocks, of size b each,
so that block i, 1 ≤ i ≤ k, consists of vertices {b(i− 1) + 1, . . . , b(i− 1) + b}.1
A block-respecting independent set of size k in G is an independent set in G
with precisely one vertex in each of these k blocks. Note that the size of a
block-respecting independent set is implicit in the partitioning of the vertices
into blocks. Clearly, if a graph does not contain any k-independent set, then it
certainly does not contain any block-respecting independent set of size k either.

1 The restriction k |n is only to make the presentation cleaner. We can extend our
arguments to all k < n by letting each block have either b or b + 1 vertices for b = bn/kc.
The calculations are nearly identical to what we present here.
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In this sense, proving the non-existence of block-respecting independent sets is,
in principle, easier than proving the non-existence of (usual) independent sets.
We will formalize this shortly.

We now define a CNF formula αblock(G, k) over variables xv which asserts
that G contains a block-respecting independent set of size k. The encoding
αblock(G, k) contains the following three kinds of clauses:

(a) Edge Clauses: For each edge (u, v), there is one clause saying that
not both u and v are selected; ∀(u, v) ∈ E, u < v : (¬xu ∨ ¬xv) ∈
αblock(G, k)

(b) Block Clauses: For each block, there is one clause saying that at least
one of the vertices in it is selected; ∀ i, 0 ≤ i < k : (xbi+1 ∨ xbi+2 ∨ . . .∨
xbi+b) ∈ αblock(G, k)

(c) 1-1 Clauses: For each block, there are clauses saying that at most one
of the vertices in it is selected; ∀ i, p, q, 0 ≤ i < k, 1 ≤ p < q ≤ b :
(¬xbi+p ∨ ¬xbi+q) ∈ αblock(G, k)

αblock(G, k) is satisfiable iff G has a block-respecting independent set of size k
(under the fixed order of vertices and the induced partition into k blocks). Note
that there is no exact analog of Lemmas 4.1 and 4.2 for the block encoding. In
fact, the non-existence of a block-respecting independent set of size k doesn’t
even logically imply the non-existence of one of size k′ for all k′ > k. This
monotonicity, however, does hold when k | k′.

Lemma 4.3. For any graph G, k′ ≥ k, k | k′, and k′ |n,

RES(αblock(G, k′)) ≤ RES(αblock(G, k)) and

DPLL(αblock(G, k′)) ≤ DPLL(αblock(G, k)).

The result holds even when the 1-1 clauses are omitted from both encodings.

Proof. If G contains a block-respecting independent set of size k,
then there is no resolution refutation of αblock(G, k). By our convention,
RES(αblock(G, k)) = DPLL(αblock(G, k)) = ∞, and the result holds. Other-
wise consider a refutation π of αblock(G, k). The two encodings, αblock(G, k)
and αblock(G, k′), are defined over the same set of variables and have identical
edge clauses. We will apply a transformation σ to the variables so that the
block and the 1-1 clauses of αblock(G, k) become a subset of the block and the
1-1 clauses of αblock(G, k′), respectively.
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σ works as follows. Each block of vertices in αblock(G, k) consists exactly of
k′/k blocks of vertices in αblock(G, k′) because k | k′. σ sets all but the first n/k′

vertices of each block of αblock(G, k) to false. This shrinks all block clauses of
αblock(G, k) to block clauses of αblock(G, k′). Further, it trivially satisfies all 1-1
clauses of αblock(G, k) that are not 1-1 clauses of αblock(G, k′). Hence π|σ is a
refutation of αblock(G, k′) which in fact uses only a subset of the original block
and 1-1 clauses of the formula. �

4.4. Relationships Among Encodings. For reasonable bounds on the
block size, resolution refutations of the block encoding are essentially at least as
efficient as those of the other two encodings. We state the precise relationship
in the following lemmas.

Lemma 4.4. For any graph G over n vertices, k |n, and b = n/k,

RES(αblock(G, k)) ≤ b2 · RES(αcount(G, k)) and

DPLL(αblock(G, k)) ≤ (2 · DPLL(αcount(G, k)))log2 2b.

Proof. Fix a resolution proof π of αcount(G, k). We describe a transfor-
mation ρ on the underlying variables such that for each initial clause C ∈
αcount(G, k), C|ρ is either true or an initial clause of αblock(G, k). This lets us
generate a resolution proof of αblock(G, k) from π|ρ of size not much larger than
size(π). ρ is defined as follows: for each i ∈ {0, 1, . . . , k}, set ybi,i = true and
ybi,j = false for j 6= i; set all yv,i = false if vertex v does not belong to either
block i + 1 or block i; finally, for 1 ≤ j ≤ b, replace all occurrences of ybi+j,i+1

and ¬ybi+j,i with (xbi+1 ∨ xbi+2 ∨ . . . ∨ xbi+j), and all occurrences of ¬ybi+j,i+1

and ybi+j,i with (xbi+j+1 ∨ xbi+j+2 ∨ . . . ∨ xbi+b). Note that setting ybi,i = true

for each i logically implies the rest of the transformations stated above.
We first prove that ρ transforms the initial clauses of αcount(G, k) as claimed.

The edge clauses are the same in both encodings. The size-k clause yn,k and
the counting clause y0,0 of αcount(G, k) transform to true. The following can
also be easily verified by plugging in the substitutions for the y variables. The
counting clauses that define yv,0 for v ≥ 1 are either satisfied or translate into
the first block clause (x1 ∨ . . . ∨ xb). Further, the counting clauses that define
yv,i for v ≥ 1, i ≥ 1 are either satisfied or transform into the ith or the (i + 1)st

block clause, i.e., into (xb(i−1)+1 ∨ . . .∨ xb(i−1)+b) or (xbi+1 ∨ . . .∨ xbi+b). Hence,
all initial clauses of αcount(G, k) are either satisfied or transform into initial
clauses of αblock(G, k).

We now describe how to generate a valid resolution proof of αblock(G, k) from
this transformation. Note that the substitutions for ybi+j,i+1 and ybi+j,i replace
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these variables by a disjunction of (at most b) positive literals. Any resolution
step performed on such a y in the original proof must now be converted into a set
of equivalent resolution steps, which will lengthen the transformed refutation.
More specifically, a step resolving clauses (y ∨A) and (¬y ∨B) on the literal y
(where y is either ybi+j,i+1 or ybi+j,i) will now be replaced by a set of resolution
steps deriving (A′∨B′) from clauses (xu1

∨ . . .∨xup
∨A′), (xv1

∨ . . .∨xvq
∨B′),

and initial clauses of αblock(G, k), where all x variables mentioned belong to the
same block of G, {u1, . . . , up} is disjoint from {v1, . . . , vq}, p + q = b, and A′

and B′ correspond to the translated versions of A and B, respectively.

The obvious way of doing this is to resolve the clause (xu1
∨. . .∨xup

∨A′) with
all 1-1 clauses (¬xui

∨¬xv1
) obtaining (¬xv1

∨A′). Repeating this for all xvj
, 2 ≤

j ≤ q, gives us clauses (¬xvj
∨A′). Note that this reuses (xu1

∨ . . . ∨ xup
∨A′)

q times and is therefore not tree-like. Resolving all (¬xvj
∨ A′) in turn with

(xv1
∨ . . . ∨ xvq

∨ B′) gives us (A′ ∨ B′). This takes pq + q < b2 steps. Hence
the blow-up in size for general resolution is at most a factor of b2. Note that
this procedure is symmetric in A′ and B′; we could also have chosen the clause
(¬y ∨B) to start with, in which case we would need qp + p < b2 steps.

The tree-like case is somewhat trickier because we need to replicate clauses
that are reused by the above procedure. We handle this using an idea similar
to the one used by Clegg et al. (1996) for deriving the size-width relationship
for tree-like resolution proofs. Let newSize(s) denote the maximum over the
sizes of all transformed tree-like proofs obtained from original tree-like proofs
of size s by applying the above procedure and creating enough duplicates to
take care of reuse. We prove by induction that newSize(s) ≤ (2s)log2 2b. For
the base case, newSize(1) = 1 ≤ 2b = 2log2 2b. For the inductive step, consider
the subtree of the original proof that derives (A ∨ B) by resolving (y ∨ A)
and (¬y ∨ B) on the literal y as above. Let this subtree be of size s ≥ 2
and assume without loss of generality that the subtree deriving (y ∨ A) is of
size sA ≤ s/2. By induction, the transformed version of this subtree deriving
(xu1

∨ . . . ∨ xup
∨ A′) is of size at most newSize(sA) and that of the other

subtree deriving (xv1
∨ . . . ∨ xvq

∨ B′) is of size at most newSize(s − sA − 1).
Choose (xu1

∨ . . . xup
∨A′) as the clause to start the new derivation of (A′∨B′)

as described in the previous paragraph. The size of this refutation is at most
b·newSize(sA)+newSize(s−sA−1)+b2. Since this can be done for any original
proof of size s, newSize(s) ≤ b·newSize(sA)+newSize(s−sA−1)+b2 for s ≥ 2
and sA ≤ s/2. It can be easily verified that newSize(s) = 2bsblog2 s = (2s)log2 2b

is a solution to this. This proves the bound for the DPLL case. �
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Lemma 4.5. For any graph G over n vertices and k |n,

RES(αblock(G, k)) ≤ RES(αmap(G, k)) and

DPLL(αblock(G, k)) ≤ DPLL(αmap(G, k)).

Proof. In the general encoding αmap(G, k), a vertex v can potentially be
chosen as the ith node of the k-independent set for any i ∈ {1, 2, . . . , k}. In
the restricted encoding, however, vertex v belonging to block j can be thought
of as either being selected as the jth node of the independent set or not being
selected at all. Hence, if we start with a resolution (or DPLL) refutation of
αmap(G, k) and set zv,i = false for i 6= j, we get a simplified refutation where
all variables are of the form zv,j, with vertex v belonging to block j. Renaming
each such zv,j to xv, we get a refutation in the variables of αblock(G, k) that is
no larger in size than the original refutation of αmap(G, k).

All we now need to do is verify that for every initial clause of αmap(G, k),
this transformation either converts it into an initial clause of αblock(G, k) or
satisfies it. The transformed refutation will then be a refutation of αblock(G, k)
itself. This reasoning is straightforward:

(a) Edge clauses (¬zu,i∨¬zv,j) of αmap(G, k) that represented edge (u, v) ∈
E with u in block i and v in block j transform into the corresponding
edge clause (¬xu∨¬xv) of αblock(G, k). If vertex u (or v) is not in block
i (or j, resp.), then the transformation sets zu,i (or zv,j, resp.) to false

and the clause is trivially satisfied.

(b) Surjective clauses of αmap(G, k) clearly transform into the correspond-
ing block clauses of αblock(G, k) – for the ith such clause, variables corre-
sponding to vertices that do not belong to block i are set to false and
simply vanish, and we are left with the ith block clause of αblock(G, k).

(c) It is easy to see that all function and ordering clauses are trivially
satisfied by the transformation.

(d) 1-1 clauses (¬zu,i ∨ ¬zv,i) of αmap(G, k) that involved vertices u and v
both from block i transform into the corresponding 1-1 clause (¬xu ∨
¬xv) of αblock(G, k). If vertex u (or v) is not in block i, then the trans-
formation sets zu,i (or zv,i, resp.) to false and the clause is trivially
satisfied.

Thus, this transformed proof is a refutation of αblock(G, k) and the desired
bounds follow. �
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5. Simulating Chvátal’s Proof System

In this section, we show that resolution on αblock(G, k) can efficiently simulate
Chvátal’s proofs (Chvátal 1977) of non-existence of k-independent sets in G.
This indirectly provides bounds on the running time of various algorithms for
finding a maximum independent set in a given graph. We begin with a brief
description of Chvátal’s proof system. Let (S, t) for t ≥ 1 be the statement that
the subgraph of G induced by a vertex subset S does not have an independent
set of size t. (φ, 1) is given as an axiom and the goal is to derive, using a series
of applications of one of two rules, the statement (V, k), where V is the vertex
set of G and k is given as input. The two inference rules are –

Branching Rule: for any vertex v ∈ S, from statements (S \N(v), t− 1) and
(S \ {v} , t) one can infer (S, t), where N(v) is the set containing v and
all its neighbors in G;

Monotone Rule: from statement (S, t) one can infer any (S ′, t′) that (S, t)
dominates, i.e., S ⊇ S ′ and t ≤ t′.

For a graph G with vertex set V (G), let Chv(G, k) denote the size of the
smallest proof in Chvátal’s system of the statement (V (G), k). Following our
convention, Chv(G, k) =∞ if no such proof exists. As an immediate applica-
tion of the monotone rule, we have:

Proposition 5.1. For k′ > k, Chv(G, k′) ≤ Chv(G, k) + 1.

Proposition 5.2. Let G and G′ be graphs with V (G) = V (G′) and E(G) ⊆
E(G′). For any k, Chv(G′, k) ≤ 2 · Chv(G, k) and the number of applications
of the branching rule in the two shortest proofs is the same.

Proof. Let π be a proof of (V (G), k) in G. We convert π into a proof π ′

of (V (G′), k) in G′ by translating proof statements in the order in which they
appear in π. The axiom statement translates directly without any change. For
the derived statements, any application of a monotone inference can be applied
equally for both graphs. For an application of the branching rule in π, some
(S, t) is derived from (S \N(v), t− 1) and (S \ {v} , t). To derive (S, t) for G′,
the only difference is the replacement of (S \N(v), t− 1) by (S \N ′(v), t− 1),
where N ′(v) is the set containing v and all its neighbors in G′. If these two
statements are different then since N ′(v) ⊇ N(v), the latter follows from the
former by a single application of the monotone rule. In total, at most size(π)
additional inferences are added, implying size(π′) ≤ 2size(π). �
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The following lemma shows that by traversing the proof graph beginning
with the axioms one can locally replace each inference in Chvátal’s system by
a small number of resolution inferences.

Lemma 5.3. For any graph G over n vertices and k |n,

RES(αblock(G, k)) ≤ 4n · Chv(G, k).

Proof. Let V denote the vertex set of G. Partition V into k consecutive
blocks of size n/k each. Let Gblock be the graph obtained by adding to G all
edges (u, v) such that vertices u and v belong to the same block of G. In other
words, Gblock is G modified to contain a clique on each block, so that every
independent set of size k in Gblock is block-respecting with respect to G. By
Proposition 5.2, the shortest proof in Chvátal’s system, say πChv, of (V, k) in
Gblock is at most twice in size as the shortest proof of (V, k) in G. We will use
πChv to guide the construction of a resolution refutation πRES of αblock(G, k)
such that size(πRES) ≤ 2n · size(πChv), proving the desired bound.

Observe that without loss of generality, for any statement (S, t) in πChv, t is
at least the number of blocks of G containing vertices in S. This is so because
it is true for the final statement (V, k), and if it is true for (S, t), then it is also
true for both (S \ {v} , t) and (S \ N(v), t − 1) from which (S, t) is derived.
Call (S, t) a trivial statement if t is strictly bigger than the number of blocks of
G containing vertices in S. The initial statement (φ, 1) of the proof is trivial,
whereas the final statement (V, k) is not. Furthermore, all statements derived
by applying the monotone rule are trivial.

πRES will have a clause associated with each non-trivial statement (S, t) oc-

curring in πChv. This clause will be a subclause of the clause CS
def
= (
∨

u∈NS
xu),

where NS is the set of all vertices in V \ S that are in blocks of G containing
at least one vertex of S. πRES will be constructed inductively, using the non-
trivial statements of πChv. Note that the clause associated in this manner with
(V, k) will be the empty clause, making πRES a refutation.

Suppose (S, t) is non-trivial and is derived in πChv by applying the branching
rule to vertex v ∈ S. Write the target clause CS as (Cb

S ∨Cr
S), where Cb

S is the
disjunction of all variables corresponding to vertices of NS that are in the same
block as v, and Cr

S is the disjunction of all variables corresponding to vertices
of NS that are in the remaining blocks. Before deriving the desired subclause
of CS, derive two clauses Cl1 and Cl2 as follows depending on the properties
of the inference that produced (S, t):

Case 1: Both (S \ {v} , t) and (S \N(v), t− 1) are trivial. It is easy to see
that since (S, t) is non-trivial, if (S \ {v} , t) is trivial then v is the only vertex
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of S in its block. Let Cl1 be the initial block clause for the block containing
v, which is precisely (xv ∨ Cb

S). The fact that (S \ N(v), t − 1) is also trivial
implies that the neighbors of v include not only every vertex of S appearing
in the block containing v but also all vertices in S ∩B, where B is some other
block that does not contain v. Resolving the block clause for block B with all
edge clauses (¬xv ∨ ¬xu) for u ∈ S ∩B gives a subclause Cl2 of (¬xv ∨ Cr

S).
Case 2: (S \ {v} , t) is trivial but (S \ N(v), t − 1) is non-trivial. Set Cl1

exactly as in case 1. Given that (S \ N(v), t − 1) is non-trivial, by the induc-
tive assumption the prefix of πRES constructed so far contains a subclause of
CS\N(v). Since the given proof applies to Gblock, N(v)∪ v contains every vertex
in the block containing v as well as all neighbors of v in G that are not in v’s
block. Therefore, the subclause of CS\N(v) we have by induction is a subclause
of (Cr

S ∨ xu1
∨ . . . ∨ xup

), where each ui is a neighbor of v in S in blocks other
than v’s block. Derive a new clause Cl2 by resolving this clause with all edge
clauses (¬xv ∨ ¬xui

). Observe that Cl2 is a subclause of (¬xv ∨ Cr
S).

Case 3: (S\{v} , t) is non-trivial but (S\N(v), t−1) is trivial. Set Cl2 as in
case 1. Since (S \ {v} , t) is non-trivial, by the inductive assumption the prefix
of πRES constructed so far contains a subclause Cl1 of CS\{v}, i.e., a subclause
of (xv ∨ CS).

Case 4: Both (S \ {v} , t) and (S \N(v), t− 1) are non-trivial. In this case,
derive Cl1 as in case 3 and Cl2 as in case 2.

It is easy to verify that Cl1 is a subclause of (xv ∨ CS) and Cl2 is a sub-
clause of (¬xv ∨ Cr

S). If either Cl1 or Cl2 does not mention xv at all, then
we already have the desired subclause of CS. Otherwise resolve Cl1 with Cl2
to get a subclause of CS. This completes the construction. Given any non-
trivial statement in πChv, it takes at most 2n steps to derive the subclause
associated with it in the resolution proof, given that we have already derived
the corresponding subclauses for the two branches of that statement. Hence,
size(πRES) ≤ 2n · size(πChv). �

It follows that lower bounds on the complexity of αblock apply to Chvátal’s
system and hence also to many algorithms for finding a maximum independent
set in a given graph that are captured by his proof system, such as those of
Tarjan (1972), Tarjan & Trojanowski (1977), Jian (1986), and Shindo & Tomita
(1990).

6. Relation to Vertex Cover and Coloring

This section discusses how the independent set problem relates to vertex covers
and colorings of random graphs in terms of resolution complexity.
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6.1. Vertex Cover. As for independent sets, for any undirected graph G =
(V,E), let n = |V |, m = |E|, and ∆ = m/n. A t-vertex cover in G is a set
of t vertices that contains at least one endpoint of every edge in G. I is an
independent set in G if and only if V \ I is a vertex cover of G. Hence, the
problem of determining whether or not G has a t-vertex cover is the same as
that of determining whether or not it has a k-independent set for k = n−t. We
use this correspondence to translate our bounds on the resolution complexity
of independent sets to those on the resolution complexity of vertex covers.

Consider encoding in clausal form the statement that G has a t-vertex
cover. The only defining difference between an independent set and a vertex
cover is that the former requires at most one of the endpoints of every edge
to be included, where as the latter requires at least one. Natural methods to
count remain the same, that is, explicit counting variables, implicit mapping
variables, or blocks. Similar to the independent set encoding variables, let
x′v, 1 ≤ v ≤ n, be a set of variables such that x′v = true iff vertex v is
chosen to be in the vertex cover. Let y′v,i, 1 ≤ v ≤ n, 1 ≤ i ≤ t, denote the
fact that exactly i of the first v vertices are chosen in the vertex cover. Let
z′v,i, 1 ≤ v ≤ n, 1 ≤ i ≤ t, represent that vertex v is mapped to the ith node of
the vertex cover.

The counting encoding of vertex cover, V Ccount(G, t), is defined analogous
to αcount(G, k) except for the change that for an edge (u, v) ∈ E, the edge clause
for vertex cover is (x′u ∨ x′v) and not (¬x′u ∨ ¬x′v). The rest of the encoding
is obtained by setting k ← t, xv ← x′v, yv,i ← y′v,i. The mapping encoding of
vertex cover, V Cmapping(G, t) is similarly defined analogous to αmapping(G, k)
by setting k ← t, zv,i ← z′v,i, except for the change in the edge clauses for edges
(u, v) ∈ E from (¬zu,i ∨ ¬zv,i) to (z′u,i ∨ z′v,i). For b = n/(n − t), the block

encoding of vertex cover over (n− t) blocks of size b each, V Cblock(G, t), is also
defined analogous to αblock(G, k) by setting k ← (n− t), xv ← ¬x′v. It says that
each edge is covered, and exactly b− 1 vertices from each block are selected in
the vertex cover, for a total of (n − t)(b − 1) = t vertices. Note that the 1-1
clauses of αblock translate into “all-but-one” clauses of V Cblock.

It is not surprising that the resolution complexity of various encodings of
the vertex cover problem is intimately related to that of the corresponding
encodings of the independent set problem. We formalize this in the following
lemmas.

Lemma 6.1. For any graph G over n vertices,

RES(V Ccount(G, t)) ≤ RES(αcount(G, n− t)) + 6nt2.
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Proof. If G has an independent set of size (n − t), then there is no res-
olution refutation of αcount(G, n − t). Consequently, RES(αcount(G, n − t)) =
DPLL(αcount(G, n− t)) =∞, trivially satisfying the claimed inequalities. Oth-
erwise, consider a refutation π of αcount(G, n − t). We use π to construct a
refutation π′ of V Ccount(G, t) that is not too big.

Recall that the variables of π are xu, 1 ≤ u ≤ n, and yv,i, 0 ≤ i ≤ v ≤ n, 0 ≤
i ≤ n− t. The variables of π′ will be x′u, 1 ≤ u ≤ n, and y′v,i, 0 ≤ i ≤ v ≤ n, 0 ≤
i ≤ t. Notice that the number of independent set counting variables yv,i is
not the same as the number of vertex cover counting variables y′v,i. We handle
this by adding dummy counting variables, transforming π, and removing extra
variables. To obtain π′, apply transforms σ1, σ2, and σ3 defined below to π.

σ1 simply creates new counting variables yv,i, 0 ≤ v ≤ n, (n− t+1) ≤ i ≤ v,
and adds counting clauses corresponding to these variables as unused initial
clauses of π. σ2 sets xu ← ¬x′u, yv,i ← y′v,v−i. Intuitively, σ2 says that i of
the first v vertices being in the independent set is equivalent to exactly v − i
of the first v vertices being in the vertex cover. σ3 sets y′v,i ← false for
0 ≤ v ≤ n, (t + 1) ≤ i ≤ v. Since σ1, σ2, and σ3 only add new clauses, rename
literals or set variables, their application transforms π into another, potentially
simpler, refutation on a different set of variables and initial clauses. Call the
resulting refutation π′′.

The initial edge clauses (¬xu ∨¬xv) of π transform into edge clauses (x′u ∨
x′v) of V Ccount(G, t). The initial size-(n − t) clause of π transforms into the
initial size-t clause of V Ccount(G, t). Finally, the initial counting clauses of
π, including those corresponding to the variables added by σ1, transform into
counting clauses of V Ccount(G, t) and n extra clauses. To see this, note that
σ2 transforms counting formulas y0,0 into y′0,0, (yv,0 ↔ (yv−1,0 ∧ ¬xv)) into
(y′v,v ↔ (y′v−1,v−1∧x′v)), for i ≥ 1 : (yv,i ↔ ((yv−1,i∧¬xv)∨ (yv−1,i−1∧xv))) into
(y′v,v−i ↔ ((y′v−1,v−i−1∧x′v)∨ (y′v−1,v−i∧¬x′v))), and (yv,v ↔ (yv−1,v−1∧xv)) into
(y′v,0 ↔ (yv−1,0 ∧ ¬x′v)). Applying σ3 to set y′v,i ← false for (t + 1) ≤ i ≤ v
removes all but the initial counting clauses of V Ccount(G, t) and the counting
formulas corresponding to the variables y′v,t+1, t + 1 ≤ v ≤ n, that simplify to
(¬y′v−1,t ∨ ¬x′v). Call this extra set of (n − t) clauses Bdry(G, t), or boundary

clauses for (G, t).

At this stage, we have a refutation π′′ of size at most size(π) starting from
clauses V Ccount(G, t)∪Bdry(G, t). The boundary clauses together say that no
more than t vertices are chosen in the vertex cover. This, however, is implied
by the rest of the initial clauses. Using this fact, we first give a derivation πBdry

of every boundary clause starting from the clauses of V Ccount(G, t). Appending
π′′ to πBdry gives a refutation π′ of V Ccount(G, t).
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Let Si =
∨min{i,t}

i′=0 y′n−i,t−i′ for 0 ≤ i ≤ n − t. Let Rv,i,j = (¬y′v,i ∨ ¬y′v,j)
for 0 ≤ i < j ≤ v ≤ n and j ≤ t. We first give a derivation of these S
and R clauses, and then say how to derive the boundary clauses from these.
S0 = y′n,t is an initial clause, and Si, i ≥ 1, is obtained by sequentially resolving
Si−1 with the counting clauses (¬y′n−i+1,t−i′ ∨ y′n−i,t−i′ ∨ y′n−i,t−i′−1) for 0 ≤ i′ <
min{i, t}. Similarly, when i = 0, Rv,0,v is derived by resolving counting clauses
(¬y′v,0 ∨ ¬x′v) and (¬y′v,v ∨ x′v) on x′v, clauses Rv,0,j for 0 < j < v are derived
by sequentially resolving Rv−1,0,j with the counting clauses (¬y′v,j ∨ y′v−1,j ∨ x′v)
and (¬y′v,0 ∨ ¬x′v). Note that Rv,0,v and Rv,0,j are defined and derived only
when j ≤ t. When i > 0, Rv,i,v is derived by sequentially resolving Rv−1,i−1,v−1

with the counting clauses (¬y′v,i ∨ y′v−1,i−1 ∨ ¬x′v) and (¬y′v,v ∨ y′v−1,v−1 ∨ ¬x′v),
and resolving the result on x′v with the counting clause (¬y′v,v ∨ x′v). Finally,
Rv,i,j for j < v is derived by resolving Rv−1,i,j with the counting clauses (¬y′v,i∨
y′v−1,i ∨ x′v) and (¬y′v,j ∨ y′v−1,j ∨ x′v), resolving Rv−1,i−1,j−1 with the counting
clauses (¬y′v,i ∨ y′v−1,i−1 ∨ ¬x′v) and (¬y′v,j ∨ y′v−1,j−1 ∨ ¬x′v), and resolving the
result of the two on x′v.

To derive the boundary clause (¬y′v−1,t∨¬x′v) for any v, resolve each pair of
clauses (¬y′v,t−i′ ∨ y′v−1,t−i′−1 ∨¬x′v) and Rv−1,t−i′−1,t for 0 ≤ i′ ≤ min{n− v, t},
and resolve all resulting clauses with Sn−v. Note that when min{n− v, t} = t,
there is no Rv−1,t−i′−1,t, but the corresponding counting clause itself is of the
desired form, (¬y′v,0 ∨ ¬x′v). This finishes the derivation πBdry of all clauses in
Bdry(G, t). As stated earlier, appending π′′ to πBdry gives a refutation π′ of
V Ccount(G, t).

For general resolution, size(π′) = size(π′′) + size(πBdry) ≤ size(π) +
size(πBdry). Each Si in πBdry, starting with i = 0, is derived in min{i, t} resolu-
tion steps from previous clauses, and each Rv,i,j , starting with i = 0, v = j = 1,
requires at most 5 resolution steps from previous clauses. Hence, size(πBdry) ≤
nt + 5nt2 ≤ 6nt2 for large enough n, implying that size(π′) ≤ size(π) + 6nt2.
Note that this approach doesn’t quite work for tree-like resolution proofs be-
cause πBdry itself becomes exponential in size due to the heavy reuse of clauses
involved in the derivation of the various Rv,i,j . �

Given that the encodings αcount(G, n−t) and V Ccount(G, t) are duals of each
other, the argument made for the lemma above can also be made the other way,
immediately giving us the following reverse result:

Lemma 6.2. For any graph G over n vertices,

RES(αcount(G, k)) ≤ RES(V Ccount(G, n− k)) + 6nk2.
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Lemma 6.3. For any graph G over n vertices and (n− t) |n,

RES(V Cblock(G, t)) = RES(αblock(G, n− t)) and

DPLL(V Cblock(G, t)) = DPLL(αblock(G, n− t)).

This result also holds without the 1-1 clauses of αblock and the corresponding
all-but-one clauses of V Cblock.

Proof. If G has an independent set of size (n− t), then it also has a vertex
cover of size t. In this case, there are no resolution refutations of V Cblock(G, t) or
αblock(G, n− t), making the resolution complexity of both infinite and trivially
satisfying the claim.

Otherwise, consider a refutation π of αblock(G, n−t). We use π to construct a
refutation π′ of V Cblock(G, t), which is of the same size and is tree-like if π is. π ′

is obtained from π by simply applying the transformation xv ← ¬x′v, 1 ≤ v ≤ n.
Since this is only a 1-1 mapping between literals, π′ is a legal refutation of size
exactly size(π). All that remains to argue is that the initial clauses of π ′ are the
clauses of V Cblock(G, t). This, however, follows immediately from the definition
of V Cblock(G, t).

Given the duality of the encodings V Cblock(G, t) and αblock(G, n− t), we can
repeat the argument above to translate any refutation of the former into one
of the latter. Combining this with the above, the resolution complexity of the
two formulas is exactly the same. �

6.2. Coloring. A K-coloring of a graph G = (V,E) is a function col : V →
{1, 2, . . . , K} such that for every edge (u, v) ∈ E, col(u) 6= col(v). For a random
graph G chosen from a distribution similar to G(n, p), the resolution complexity
of the formula χ(G,K) saying that G is K-colorable has been addressed by
Beame et al. (2005).

Suppose G is K-colorable. Fix a K-coloring col of G and partition the
vertices into color classes Vi, 1 ≤ i ≤ K, where Vi = {v ∈ V : col(v) = i}. Each
color class, by definition, must be an independent set, with the largest of size

at least n/K. Thus, non-existence of a k
def
= n/K size independent set in G

implies the non-existence of a K-coloring of G.
Let α(G, k) be an encoding of the k-independent set problem on graph G.

The correspondence above can be used to translate properly encoded resolution
proofs of α(G, k) into those of χ(G,K). A lower bound on RES(χ(G,K)) (e.g.,
Beame et al. 2005) would then imply a lower bound on RES(α(G, k)). However,
such a translation between proofs must involve a resolution counting argument
showing that K sets of vertices, each of size less than n/K, cannot cover all
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n vertices. This argument itself is at least as hard as a resolution proof of
PHP n

n−K , the (weak) pigeonhole principle on n pigeons and (n−K) holes, for
which an exponential lower bound has been shown by Raz (2004). This makes
any translation of a proof of α(G, k) into one of χ(G,K) necessarily large,
ruling out any interesting lower bounds for independent sets as a consequence
of those for coloring.

On the other hand, non-existence of a K-coloring does not imply the non-
existence of a k-independent set. In fact, there are very simple graphs with no
K-coloring but with an independent set as large as (n − K) (e.g., a clique of
size (K + 1) along with (n−K − 1) nodes of degree zero). Consequently, our
lower bounds for independent sets do not give any interesting lower bounds for
K-coloring.

7. Upper Bounds

Based on a very simple exhaustive backtracking strategy, we give upper bounds
on the DPLL (and hence resolution) complexity of the independent set and the
vertex cover encodings we have considered.

Lemma 7.1. There is a constant C0 such that if G is a graph over n vertices
with no independent set of size k, then

DPLL(αmap(G, k)) ≤ 2C0k ln(ne/k).

This bound also holds when αmap(G, k) does not include the 1-1 clauses.

Proof. A straightforward way to disprove the existence of a k-independent
set is to go through all

(
n
k

)
subsets of vertices of size k and use as evidence

an edge from each subset. We use this strategy to construct a refutation of
αmap(G, k).

To begin with, apply transitivity to derive all ordering clauses of the form
(¬zu,j ∨ ¬zv,i) for u < v and i < j. If j = i + 1, this is simply one of the
original ordering clauses. For j = i + 2, derive the new clause (¬zu,i+2 ∨ ¬zv,i)
as follows. Consider any w ∈ {1, 2, . . . , n}. If u < w, we have the ordering
clause (¬zw,i+1 ∨ ¬zu,i+2), and if u ≥ w, then v > w and we have the ordering
clause (¬zv,i ∨ ¬zw,i+1). Resolving these n ordering clauses (one for each w)
with the surjective clause (z1,i+1 ∨ . . . ∨ zn,i+1) gives the new ordering clause
(¬zu,i+2∨¬zv,i) associated with u and v. This clearly requires only n steps and
can be done for all u < v and j = i + 2. Continue to apply this argument for
j = i + 3, i + 4, . . . , k and derive all new ordering clauses in n steps each.
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We now construct a tree-like refutation starting with the initial clauses
and the new ordering clauses we derived above. We claim that for any i ∈
{1, 2, . . . , k} and for any 1 ≤ vi < vi+1 < . . . < vk ≤ n, a subclause of
(¬zvi,i ∨¬zvi+1,i+1 ∨ . . .∨¬zvk,k) can be derived. We first argue why this claim
is sufficient to obtain a refutation. For i = k, the claim says that a subclause
of ¬zvk,k can be derived for all 1 ≤ vk ≤ n. If any one of these n subclauses
is a strict subclause of ¬zvk,k, it has to be the empty clause, resulting in a
refutation. Otherwise, we have ¬zvk,k for every vk. Resolving all these with the
surjective clause (z1,k ∨ . . . ∨ zn,k) results in the empty clause.

We now prove the claim by induction on i. For the base case, fix i = 1.
For any given k vertices v1 < v2 < . . . < vk, choose an edge (vp, vq) that
witnesses the fact that these k vertices do not form an independent set. The
corresponding edge clause (¬zvp,p ∨ ¬zvq ,q) works as the required subclause.

For the inductive step, fix vi+1 < vi+2 < . . . < vk. We will derive a subclause
of (¬zvi+1,i+1∨¬zvi+2,i+2∨. . .¬zvk,k). By induction, derive a subclause of (¬zvi,i∨
¬zvi+1,i+1∨ . . .∨zvk,k) for any choice of vi < vi+1. If for some such vi, ¬zvi,i does
not appear in the corresponding subclause, then the same subclause works here
for the inductive step and we are done. Otherwise, for every vi < vi+1, we have
a subclause of (¬zvi,i ∨ ¬zvi+1,i+1 ∨ . . . ∨ ¬zvk,k) that contains ¬zvi,i. Resolving
all these subclauses with the surjective clause (z1,i ∨ z2,i ∨ . . . ∨ zn,i) results in
the clause (zvi+1,i ∨ . . . ∨ zvk,i ∨ ¬zu1,j1 ∨ . . . ∨ ¬zup,jp

), where each zuc,jc
lies in

{zvi+1,i+1, . . . , zvk,k}. Observe that for each positive literal zvq ,i, i + 1 ≤ q ≤ k,
in this clause, (¬zvq ,i ∨ ¬zvi+1,i+1) is either a 1-1 clause or an ordering clause.
Resolving with all these clauses finally gives (¬zvi+1,i+1∨¬zu1,j1 ∨ . . .∨¬zup,jp

),
which is the kind of subclause we wanted to derive. This proves the claim.

Associate each subclause obtained using the iterative procedure above with
the tuple (vi, vi+1, . . . , vk) for which it was derived, giving a total of

∑k
i=1

(
n
i

)
≤

(ne/k)k subclauses. Each of these subclauses is used at most once in the proof.
Further, the derivation of each such subclause uses at most n new ordering
clauses, each of which can be derived in at most n2 steps. Thus, with enough
copies to make the refutation tree-like, the size of the proof is O(n3(ne/k)k),
which is at most 2C0k ln(ne/k) for a large enough constant C0. �

Lemma 7.2. There is a constant C ′0 such that if G is a graph over n vertices
with no independent set of size k, then

DPLL(αcount(G, k)) ≤ 2C′

0
k ln(ne/k).

Proof. As in the proof of Lemma 7.1, we construct a refutation by looking
at each size-k subset of vertices and using as evidence an edge from that subset.
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For every i, v such that 0 ≤ i ≤ v < n, first derive a new counting
clause (¬yv+1,i+1 ∨ yv,i ∨ yv−1,i ∨ . . .∨ yi,i) by resolving original counting clauses
(¬yu+1,i+1 ∨ yu,i+1 ∨ yu,i) for u = v, v − 1, . . . , i + 1 together, and resolving the
result with the counting clause (¬yi+1,i+1∨yi,i). Next, for any edge (i, j), i > j,
resolve the edge clause (¬xi ∨ ¬xj) with the counting clauses (¬yi,i ∨ xi) and
(¬yj,j ∨ xj) to get the clause (¬yi,i ∨ ¬yj,j). Call this new clause Ei,j. We now
construct a tree-like refutation using the initial clauses, these new counting
clauses, and the new Ei,j clauses.

We claim that for any i ∈ {1, 2, . . . , k} and for any 1 ≤ vi < vi+1 <
. . . < vk ≤ n with vj ≥ j for i ≤ j ≤ k, we can derive a subclause of
(¬yvi,i ∨ yvi−1,i ∨ ¬yvi+1,i+1 ∨ yvi+1−1,i+1 ∨ . . . ∨ ¬yvk,k ∨ yvk−1,k) such that if
yvj−1,j occurs in the subclause for some j, then so does ¬yvj ,j. Note that for
vj = j, the variable yvj−1,j does not even exist and will certainly not appear
in the subclause. Given this claim, we can derive for i = k a subclause Bj

of (¬yj,k ∨ yj−1,k) for each j ∈ {k + 1, . . . , n} and a subclause Bk of ¬yk,k. If
any such Bj is the empty clause, the refutation is complete. Otherwise every
Bj contains ¬yj,k. Let j ′ be the largest index such that Bj′ does not contain
yj′−1,k. Since Bk has to be the clause ¬yk,k, such a j ′ must exist. Resolving all
Bj, j ∈ {j ′, . . . , k}, with each other gives the clause yn,k. Resolving this with
the size-k clause yn,k gives the empty clause.

We now prove the claim by induction on i. For the base case i = 1, fix
1 ≤ v1 < v2 < . . . < vk ≤ n. Choose an edge (vp, vq) that witnesses the
fact that v1, . . . , vk do not form an independent set. Resolve the corresponding
edge clause (¬xvp

∨ ¬xvq
) with the counting clauses (¬yvp,p ∨ yvp−1,p ∨ xp) and

(¬yvq ,q∨yvq−1,q∨xq) to get (¬yvp,p∨yvp−1,p∨¬yvq ,q∨yvq−1,q), which is a subclause
of the desired form.

For the inductive step, fix vi+1 < vi+2 < . . . < vk. By induction, derive a
subclause Cj of (¬yj,i ∨ yj−1,i ∨ ¬yvi+1,i+1 ∨ yvi+1−1,i+1 ∨ . . . ∨ ¬yvk,k ∨ yvk−1,k)
for any j in {i, i + 1, . . . , vi+1 − 1}. If for some such j, neither ¬yj,i nor yj−1,i

appears in Cj, then this subclause also works here for the inductive step and
we are done. Otherwise for every j, Cj definitely contains ¬yj,i, possibly yj−1,i,
and other positive or negative occurrences of variables of the form yv′,i′ where
i′ > i. Now use all these Cj to derive clauses C ′j such that each C ′j contains
¬yj,i but not yj−1,i. The other variables appearing in C ′j will all be of the form
yv′,i′ for i′ > i.

If {vi+1, . . . , vk} is not an independent set, then there is an edge (vp, vq)
witnessing this. In this case, simply use Ep,q as the desired subclause and the
inductive step is over. Otherwise there must be an edge (i, vq) from vertex i
touching this set. Let C ′i be the clause Ei,vq

. For j going from i + 1 to k, do
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the following iteratively. If yj−1,i does not appear in Cj, then set C ′j = Cj.
Otherwise set C ′j to be the clause obtained by resolving Cj with C ′j−1. If C ′j−1

does not contain ¬yj,i, then it can be used as the desired subclause for this
inductive step and the iteration is stopped here, otherwise it continues onto
the next value of j. If the desired subclause is not derived somewhere along
this iterative process, then we end up with all C ′j containing ¬yj,i but not yj−1,i.
Resolving all these with the new counting clause (¬yvi+1,i+1∨yvi+1−1,i∨yvi+1−2,i∨
. . . ∨ yi,i) finally gives a subclause of the desired form. This proves the claim.

Associate each subclause obtained using the iterative procedure above with
the tuple (vi, vi+1, . . . , vk) for which it was derived, giving a total of

∑k
i=1

(
n
i

)
≤

(ne/k)k subclauses. Each of these subclauses is used at most once in the proof.
Further, the derivation of each such subclause uses one new counting clause and
one new clause Ei,j, each of which can be derived in at most n steps. Thus,
with enough copies to make the refutation tree-like, the size of the proof is
O(n(ne/k)k), which is at most 2C′

0
k ln(ne/k) for a large enough constant C ′0. �

Theorem 7.3 (Independent Set Upper Bounds). There are constants c0, c
′
0

such that the following holds. Let ∆ = np, ∆ ≤ n/ ln2 n, and G ∼ G(n, p). Let
k be such that G has no independent set of size k. With probability 1 − o(1)
in n,

DPLL(αmap(G, k)) ≤ 2c0(n/∆) ln2 ∆,

DPLL(αcount(G, k)) ≤ 2c′
0
(n/∆) ln2 ∆, and

DPLL(αblock(G, k)) ≤ 2c0(n/∆) ln2 ∆.

The bounds also hold when the 1-1 clauses are removed from αmap(G, k) or
αblock(G, k). The block encoding bound holds when k |n.

Proof. By Proposition 3.1, n/(∆ + 1) < k ≤ n. Hence k ln(ne/k) ≤
n ln(e(∆ + 1)). We will use this fact when ∆ is a relatively small constant.

Fix any ε > 0 and let Cε be the corresponding constant from Proposi-
tion 3.2. When ∆ < Cε, the desired upper bounds in this theorem are of
the form 2O(n). Moreover, the upper bounds provided by Lemmas 7.1 and 7.2
for the mapping and the counting encoding, respectively, are exponential in
k ln(ne/k) ≤ n ln(e(∆ + 1)), and thus also of the form 2O(n) when ∆ < Cε.
Hence, for large enough constants c0 and c′0, the claimed bounds hold with prob-
ability 1 for the mapping and the counting encodings when ∆ < Cε. Lemma 4.5
extends this to the block encoding as well.
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Assume for the rest of this proof that Cε ≤ ∆ ≤ n/ ln2 n. Let kmin ≤ k be
the smallest integer such that G does not have an independent set of size kmin.
By Proposition 3.2, with probability 1− o(1) in n, kmin ≤ k+ε + 1.

For the mapping-based encoding,

DPLL(αmap(G, k)) ≤ DPLL(αmap(G, kmin)) by Lemma 4.2

≤ 2C0kmin ln(n/kmin) by Lemma 7.1

≤ 2C0(k+ε+1) ln(n/(k+ε+1)) almost surely

≤ 2(c0n/∆) ln2 ∆ for large enough c0.

The bound for αblock(G, k) follows immediately from this bound for
αmap(G, k) and Lemma 4.5. Further, Lemma 7.1 implies that these bounds
hold even when the corresponding 1-1 clauses are removed from the mapping
and the block encodings. For the counting-based encoding,

DPLL(αcount(G, k)) ≤ n · DPLL(αcount(G, kmin)) + 2n2 by Lemma 4.1

≤ n2C′

0
kmin ln(n/kmin) + 2n2 by Lemma 7.2

≤ n2C′

0
kmin ln(n/kmin) + 2n2

≤ n2C′

0
(k+ε+1) ln(n/(k+ε+1)) + 2n2 almost surely

≤ 2(c′
0
n/∆) ln2 ∆

for a large enough constant c′0. This finishes the proof. �

Corollary 7.4 (Vertex Cover Upper Bounds). There are constants c0, c
′′
0

such that the following holds. Let ∆ = np, ∆ ≤ n/ ln2 n, and G ∼ G(n, p). Let
t be such that G has no vertex cover of size t. With probability 1− o(1) in n,

RES(V Ccount(G, t)) ≤ 2c′′
0
(n/∆) ln2 ∆, and

DPLL(V Cblock(G, t)) ≤ 2c0(n/∆) ln2 ∆.

The bounds also hold when the all-but-one clauses are removed from
V Cblock(G, t). The block encoding bound holds when (n− t) |n.

Proof. Apply Theorem 7.3 with k set to (n−t) and use Lemmas 6.1 and 6.3
to translate the result of the Theorem to the encodings of vertex cover. Note
that RES(αcount(G, n− t)) ≤ DPLL(αcount(G, n− t)). �
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8. Key Concepts for Lower Bounds

This section defines the key concepts that will be used in the lower bound
argument given in the next section. Fix a graph G and partition its n vertices
into k consecutive subsets of size b each. For any edge (u, v) in G, call it an
inter-block edge if u and v belong to different blocks of G, and an intra-block

edge otherwise.

Definition 8.1. A truth assignment to variables of αblock(G, k) is critical if it
sets exactly one variable in each block to true.

Critical truth assignments satisfy all block, 1-1, and intra-block edge clauses,
but may leave some inter-block edge clauses unsatisfied.

Definition 8.2. The block multi-graph of G, denoted B(G), is the multi-
graph obtained from G by identifying all vertices that belong to the same
block and removing any self-loops that are thus generated.

B(G) contains exactly k nodes and possibly multiple edges between pairs of
nodes. The degree of a node in B(G) is the number of inter-block edges touching
the corresponding block of G. Given the natural correspondence between G
and B(G), we will write nodes of B(G) and blocks of G interchangeably. For
a subgraph H of G, B(H) is obtained in an analogous way by identifying all
vertices of H that are in the same block of G and removing self-loops.

Definition 8.3. Let S be a set of blocks of G. H is block-induced by S if it
is the subgraph of G induced by all vertices present in the blocks S. H is a
block-induced subgraph of G if there exists a subset S of blocks such that H
is block-induced by S.

If H is block-induced by S, then B(H) is induced by S in B(G). The
reverse, however, may not hold. If H is a block-induced subgraph, then there
is a unique minimal block set S such that H is block-induced by S. This S
contains exactly those blocks that have non-zero degree in B(H). With each
block-induced subgraph, associate such a minimal S and say that the subgraph
is induced by |S| blocks. Note that every block in any such minimal S must
have non-zero degree.

Definition 8.4. The block width of a clause C with respect to G, denoted
wG

block(C), is the number of different blocks of G the variables appearing in C
come from.
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Clearly, w(C) ≥ wG
block(C). For a block-induced subgraph H of G, let E(H)

denote the conjunction of the edge clauses of αblock(G, k) that correspond to
the edges of H. Let H be induced by the block set S.

Definition 8.5. H critically implies a clause C, denoted H
c→ C, if E(H)→

C evaluates to true for all critical truth assignments to the variables of
αblock(G, k).

Definition 8.6. H minimally implies C, denoted H
m→ C, if H

c→ C and for

every subgraph H ′ of G induced by a proper subset of S, H ′
c

6→ C.

Note that “minimally implies” should really be called “minimally critically
implies,” but we use the former phrase for brevity. Note further that if H

m→ C,
then every block of H has non-zero degree.

Definition 8.7. The complexity of a clause C, denoted µG(C), is the mini-
mum over the sizes of subsets S of blocks of G such that the subgraph of G
induced by S critically implies C.

Proposition 8.8. Let G be a graph and Λ denote the empty clause.

(a) For C ∈ αblock(G, k), µG(C) ≤ 2.

(b) µG(Λ) is the number of blocks in the smallest block-induced subgraph
of G that has no block-respecting independent set.

(c) Subadditive property: If clause C is a resolvent of clauses C1 and C2,
then µG(C) ≤ µG(C1) + µG(C2).

Proof. Each initial clause is either an edge clause, a block clause or a 1-
1 clause. Any critical truth assignment, by definition, satisfies all block, 1-1,
and intra-block edge clauses. Further, an edge clause corresponding to an inter-
block edge (u, v) is implied by the subgraph induced by the two blocks to which
u and v belong. Hence, complexity of an initial clause is at most 2, proving
part (a).

Part (b) follows from the definition of µG. Part (c) follows from the simple
observation that if G1 critically implies C1, G2 critically implies C2, and both
G1 and G2 are block-induced subgraphs, then G1∪2, defined as the block graph
induced by the union of the blocks G1 and G2 are induced by, critically implies
both C1 and C2, and hence critically implies C. �
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9. Proof Sizes and Graph Expansion

This section contains the main ingredients of our lower bound results and is
technically the most interesting and challenging part at the core of this paper.
We use combinatorial properties of block graphs and independent sets to obtain
a lower bound on the size of resolution refutations for a given graph in terms
of its expansion properties. Next, we argue that random graphs almost surely
have good expansion properties. Section 10 combines these two to obtain an
almost certain lower bound for random graphs.

The overall argument in a little more detail is as follows. We define the
notion of “boundary” for block-induced subgraphs as a measure of the number
of blocks in it that have an isolated vertex and thus contribute trivially to
any block-respecting independent set. Lemmas 9.2 and 9.4 relate this graph-
theoretic concept to resolution refutations. The main lower bound follows in
three steps from here. First, Lemma 9.8 argues that one must almost surely
consider a large fraction of the blocks of a graph to prove the non-existence
of a block-respecting independent set in it. Second, Lemma 9.9 shows that
almost all subgraphs induced by a large fraction of blocks must have a large
boundary. Finally, Lemma 9.10 combines these two to obtain an almost certain
lower bound on the width of any refutation.

We begin by defining the notion of boundary.

Definition 9.1. The boundary of a block-induced subgraph H, denoted
β(H), is the set of blocks of H that have at least one isolated vertex.

9.1. Relating Proof Size to Graph Expansion. We first derive a rela-
tionship between the width of clauses and the boundary size of block-induced
subgraphs that minimally imply them.

Lemma 9.2. Let C be a clause in the variables of αblock(G, k) and H be a
block-induced subgraph of G. If H

m→ C, then wG
block(C) ≥ |β(H)|.

Proof. We use a toggling property of block-respecting independent sets (Fig-
ure 9.1) to show that each boundary block of H contributes at least one literal
to C.

Let H be induced by a set S of blocks. Fix a boundary block B ∈ S.

Let HB be the subgraph induced by S \ {B}. By minimality of H, HB

c

6→ C.
Therefore, there exists a critical truth assignment γ such that γ(E(HB)) =
true but γ(C) = false. Since γ(C) = false and H

c→ C, it follows that
γ(E(H)) = false. Further, since γ(E(HB)) = true, γ(E(H) \ E(HB)) must
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Figure 9.1: Toggling property of block-respecting independent sets; selected
vertices are shown in bold

be false, implying that γ violates the edge clause corresponding to an inter-
block edge (v, w), v ∈ B,w 6∈ B. In particular, γ(v) = true.

Fix an isolated vertex u ∈ B. Create a new critical truth assignment γ̄ as
follows: γ̄(v) = false, γ̄(u) = true, and γ̄(x) = γ(x) for every other vertex
x in H. By construction, γ̄(E(HB)) = γ(E(HB)) = true. Further, since u
does not have any inter-block edges and γ is critical, even γ̄(E(H)) is true.
It follows from H

c→ C that γ̄(C) = true. Recall that γ(C) = false. This is
what we earlier referred to as the toggling property. Since γ and γ̄ differ only
in their assignment to variables in block B, clause C must contain at least one
literal from B. �

The subgraph of G induced by the empty set of blocks clearly has a block-
respecting independent set while the subgraph induced by all blocks does not.
This motivates the following definition. Let s+ 1 denote the minimum number
of blocks such that some subgraph of G induced by s + 1 blocks does not have
a block respecting independent set.
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Definition 9.3. The sub-critical expansion of G, denoted e(G), is the maxi-
mum over all t, 2 ≤ t ≤ s, of the minimum boundary size of any subgraph H
of G induced by t′ blocks, where t/2 < t′ ≤ t.

Lemma 9.4. Any resolution refutation of αblock(G, k) must contain a clause of
width at least e(G).

Proof. Let π be a resolution refutation of αblock(G, k). By Proposition 8.8,
µG(Λ) = s + 1 and all initial clauses of αblock(G, k) have complexity at most 2.
Therefore, for all t, 2 ≤ t ≤ s, there exists a clause C t in π such that µG(Ct) > t
and no ancestor of C t has complexity greater than t.

Since µG(Ct) > 2, Ct cannot be an initial clause. It must then be a resolvent
of two parent clauses C t

1 and Ct
2. By Proposition 8.8 (c) and the fact that no

ancestor of C t has complexity greater than t, one of these clauses, say C t
1,

must have µG(Ct
1) between (t + 1)/2 and t. If H t is a block-induced subgraph

that witnesses the value of µG(Ct
1), then by Lemma 9.2, wG

width(Ct
1) ≥ |β(H t)|.

Hence, w(Ct
1) ≥ |β(H t)| so that π contains a clause of width at least |β(H t)|.

When t is chosen such that |β(H t)| is maximized, we have by the definition
of e(G) that |β(H t)| ≥ e(G). This finishes the proof. �

Corollary 9.5. Let c = 1/(9 ln 2) and k |n. For any graph G with its n
vertices partitioned into k blocks of size b = n/k each,

RES(αblock(G, k)) ≥ 2c(e(G)−b)2/n and

DPLL(αblock(G, k)) ≥ 2e(G)−b.

Proof. This follows immediately from Lemma 9.4 and Propositions 2.2
and 2.1 by observing that the initial width of αblock(G, k) is b. �

9.2. Lower Bounding Sub-critical Expansion. Throughout this section,
the probabilities are with respect to the random choice of a graph G from the
distribution G(n, p) for some fixed parameters n and p. Let B(G) be a block
graph corresponding to G with block size b.

For the rest of this paper, we will fix b to be 3, which corresponds to the
largest independent set size (k = n/3) for which the results in this section
hold. Although the results can be generalized to any b ≥ 3, our best bounds
are obtained for the simpler case of b = 3 that we present. Note that for
b = 2, all clauses in αblock(G, n/2) are of length two. Consequently, when
unsatisfiable, αblock(G, n/2) has a resolution refutation of size O(n2), ruling out
any super-polynomial lower bounds.
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Definition 9.6. B(G) is (r, q)-dense if some subgraph of G induced by r
blocks (i.e., some subgraph of B(G) with r nodes) contains at least q edges.

The following lemma shows that for almost all random graphs G, the cor-
responding block graph B(G) is locally sparse.

Lemma 9.7. Let G ∼ G(n, p) and B(G) be a corresponding block graph with
block size 3. For r, q ≥ 1,

Pr[B(G) is (r, q)-dense] <
(ne

3r

)r
(

9er2p

2q

)q

.

Proof. Let H be a subgraph of G induced by r blocks. H contains 3r
vertices. For G ∼ G(n, p), the number of edges contained in H has the binomial
distribution with parameters

(
3r
2

)
and p. Therefore,

Pr [H has at least q edges] ≤
((3r

2

)

q

)
pq <

(
9r2

2

q

)
pq ≤

(
9er2p

2q

)q

.

Summing this over all
(

n/3
r

)
≤ (ne/3r)r subgraphs H induced by r blocks gives

the desired bound. �

We use this local sparseness property of the block graphs of almost all
random graphs to prove that the smallest block-induced subgraph one needs to
consider for proving that G does not have a block-respecting independent set
is almost surely large.

Lemma 9.8. There is a constant C such that the following holds. Let ∆ = np
and s < Cn/∆3. The probability that G ∼ G(n, p) contains a subgraph induced
by at most s blocks that has no block-respecting independent set is o(1) in s.

Proof. The probability that G contains a subgraph induced by at most s
blocks that has no block-respecting independent set is the same as the prob-
ability that there is some minimal subgraph H of G induced by r ≤ s blocks
that has no block-respecting independent set. By minimality, H has no isolated
vertices and hence no boundary blocks. Consequently, each of the r blocks that
induce H must have at least 3 inter-block edges. Hence, the subgraph of B(G)
with the r nodes corresponding to the r blocks that induce H must have at
least 3r/2 edges.

Thus, the probability that G contains such a block-induced subgraph H is
at most

s∑

r=1

Pr[B(G) is (r, 3r/2)-dense].
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By Lemma 9.7, we have Pr[B(G) is (r, 3r/2)-dense] < D(r) where

D(r) =
(ne

3r

)r

(3erp)3r/2

=
(ne

3
(3ep)3/2 r1/2

)r

=
(
Q(n, p) r1/2

)r

for Q(n, p) = (ne/3)(3ep)3/2. Now

D(r + 1)

D(r)
=

(
Q(n, p) (r + 1)1/2

)r+1

(Q(n, p) r1/2)
r

= Q(n, p) (r + 1)1/2

(
r + 1

r

)r/2

≤ Q(n, p) (r + 1)1/2 e1/2

≤ ne

3

(
3e∆

n

)3/2

e1/2(r + 1)1/2

=

(
3e6∆3(r + 1)

n

)1/2

This quantity, and hence D(r + 1)/D(r), is at most 1/2 for 1 ≤ r < Cn/∆3,

where C
def
= 1/(12e6) is a constant. Let s + 1 = Cn/∆3. It follows that the

probability that G contains such a block-induced subgraph H is bounded above
by a geometric series in r with common ratio 1/2. It is therefore at most twice
the largest term of the series which is less than D(1). Now

D(1) = Q(n, p) =
ne

3

(
3e∆

n

)3/2

=

(
3e5∆3

n

)1/2

=

(
3e5C

s + 1

)1/2

.

Therefore, D(1) is o(1) in s as claimed. �

We again use the local sparseness property to prove that for almost all
random graphs, any subgraph induced by not too many blocks must have a
large boundary. The intuition is that for sparse subgraphs, most blocks have
degree less than 3 and thus belong to the boundary.

Lemma 9.9. There is a constant c such that the following holds. Let ∆ = np,

0 < ε ≤ 1/6, b′ = 3(1 − ε), t ≤ cn/∆
b′

b′−2 , and G ∼ G(n, p). The probability
that there exists r ∈ (t/2, t] such that G has a subgraph H induced by r blocks
with β(H) ≤ εr is o(1) in t.
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Proof. Fix b′, ε, and t satisfying the conditions of the lemma. Let H be a
subgraph of G induced by r blocks. By definition, all r blocks inducing H must
have non-zero degree in B(H). Moreover, if H has at most εr boundary blocks,
the other (1 − ε)r blocks of non-zero degree inducing it must have degree at
least 3. Hence, the r nodes of B(G) that induce H form a subgraph with at
least (1− ε)r3/2 = b′r/2 edges. Therefore, H has at most εr boundary blocks
only if B(G) is (r, b′r/2)-dense. Thus, by Lemma 9.7, the probability that such
an H exists is at most

Pr[B(G) is (r, b′r/2)-dense] <
(ne

3r

)r
(

9erp

b′

)b′r/2

=

(
e

3

(
3e∆

1− ε

)b′/2 ( r

n

)(b′−2)/2
)r

For r > t/2, it suffices to obtain an upper bound on this probability that
is exponentially small in r. Rearranging the terms in the expression above,
Pr[B(G) is (r, b′r/2)-dense] ≤ 2−r when

r

n
≤

(
3

2e

)2/(b′−2)(
1− ε

3e∆

)b′/(b′−2)

=

(
1− ε

2e2

)2/(b′−2)
1− ε

3e∆b′/(b′−2)
.

Note that ε ≤ 1/6 and b′ = 3(1 − ε) ≥ 5/2. Hence (1 − ε)/(2e2)2/(b′−2) is at
least (5/(12e2))4 and it suffices to have

r

n
≤
(

5

12e2

)4
5

18e∆b′/(b′−2)
=

c

∆b′/(b′−2)

for a constant c
def
= 55/(12418e9). Therefore, the probability that B(G) is

(r, b′r)-dense is at most 2−r for r ≤ cn/∆b′/(b′−2). It follows that the probability
that there exists such an H with r ∈ (t/2, t] is at most

∑t
r=d(t+1)/2e 2−r. This

sum is o(1) in t as required. �

Lemmas 9.8 and 9.9 combine to give the following lower bound on sub-
critical expansion:

Lemma 9.10. For each ε ∈ (0, 1/6] there is a constant cε such that the following
holds. Let ∆ = np, b′ = 3(1 − ε), W = n/∆b′/(b′−2), and G ∼ G(n, p). The
probability that e(G) < cεW is o(1) in W .
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Proof. Let C be the constant from Lemma 9.8 and c be the one from
Lemma 9.9. Let s + 1 be the minimum number of blocks such that some
subgraph of G induced by s + 1 blocks does not have a block-respecting in-
dependent set. By Lemma 9.8, s ≤ Cn/∆3 with probability o(1) in n. Now
let t = min(C, c)W . Conditioned on s > Cn/∆3 and because b′ < 3, we have
that t ≤ s as in the definition of e(G). By Lemma 9.9, the probability that
some subgraph of G induced by r blocks with t/2 < r ≤ t ≤ s has less than
εr > εt/2 = cεW boundary blocks is o(1) in n, where cε = (ε/2) min(C, c). It
follows from a union bound on the two bad events (s is small or some subgraph
has small boundary) that e(G) < cεW with probability o(1) in n. �

10. Lower Bounds for Resolution and

Associated Algorithms

We now use the ideas developed in Sections 8 and 9, and bring the pieces of
the argument together in a general technical result from which our resolution
complexity lower bounds follow.

Lemma 10.1. For each δ > 0 there are constants Cδ, C
′
δ > 0 such that the

following holds. Let ∆ = np and G ∼ G(n, p). With probability 1− o(1) in n,

RES(αblock(G, n/3)) ≥ 2Cδn/∆6+2δ

and

DPLL(αblock(G, n/3)) ≥ 2C′

δ
n/∆3+δ

.

Proof. Observe that the expressions n/∆6+2δ and n/∆3+δ in the desired
bounds decrease as δ increases. Hence, it suffices to prove the bounds for
δ ∈ (0, 2], and for δ > 2, simply let Cδ = C2 and C ′δ = C ′2.

Let ε = δ/(6 + 3δ), b′ = 3(1 − ε), and W = n/∆b′/(b′−2). For δ ∈ (0, 2], we
have that ε ∈ (0, 1/6]. From Lemma 9.10, there is a constant cε such that with
probability 1 − o(1) in n, e(G) ≥ cεW . It follows from Corollary 9.5 that for
c = 1/(9 ln 2) and with probability 1− o(1) in n,

RES(αblock(G, n/3)) ≥ 2c(cεW−3)2/n and

DPLL(αblock(G, n/3)) ≥ 2cεW−3.

Given the relationship between ε and δ, there are constants Cδ, C
′
δ > 0

depending only on δ such that c(cεW −3)2 ≥ CδW
2 and cεW −3 ≥ C ′δW . Note

also that b′/(b′ − 2) = (3− 3ε)/(1− 3ε) = 3 + δ. Hence,

log2(RES(αblock(G, n/3))) ≥ CδW
2/n = Cδn/∆

2b′

b′−2 = Cδn/∆6+2δ and
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log2(DPLL(αblock(G, n/3))) ≥ C ′δW = C ′δn/∆
b′

b′−2 = C ′δn/∆3+δ.

This finishes the proof. �

Theorem 10.2 (Independent Set Lower Bounds). For each δ > 0 there are
constants Cδ, C ′δ, C ′′δ , C ′′′δ , C ′′′′δ > 0 such that the following holds. Let ∆ = np,
k ≤ n/3, k |n, and G ∼ G(n, p). With probability 1− o(1) in n,

RES(αmap(G, k)) ≥ 2Cδn/∆6+2δ

,

DPLL(αmap(G, k)) ≥ 2C′

δ
n/∆3+δ

,

RES(αcount(G, k)) ≥ 2C′′

δ
n/∆6+2δ

,

DPLL(αcount(G, k)) ≥ 2C′′′

δ
n/∆3+δ

,

RES(αblock(G, k)) ≥ 2Cδn/∆6+2δ

,

DPLL(αblock(G, k)) ≥ 2C′

δ
n/∆3+δ

, and

Chv(G, k) ≥ 2C′′′′

δ
n/∆6+2δ

.

The bounds for the block encoding require k | (n/3).

Proof. All of the claimed bounds follow by applying monotonicity of the
encoding at hand, using its relationship with the block encoding, and applying
Lemma 10.1. Let Cδ and C ′δ be the constants from Lemma 10.1. For the
mapping-based encoding,

RES(αmap(G, k)) ≥ RES(αmap(G, n/3)) by Lemma 4.2

≥ RES(αblock(G, n/3)) by Lemma 4.5

≥ 2Cδn/∆6+2δ

by Lemma 10.1,

DPLL(αmap(G, k)) ≥ DPLL(αmap(G, n/3)) by Lemma 4.2

≥ DPLL(αblock(G, n/3)) by Lemma 4.5

≥ 2C′

δ
n/∆3+δ

by Lemma 10.1.

For the counting-based encoding,

RES(αcount(G, k)) ≥ 1

n

(
RES(αcount(G, n/3))− 2n2

)
by Lemma 4.1

≥ 1

n

(
1

2
RES(αblock(G, n/3))− 2n2

)
by Lemma 4.4

≥ 2C′′

δ
n/∆6+2δ

by Lemma 10.1
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for a large enough constant C ′′δ . Similarly,

DPLL(αcount(G, k)) ≥ 1

n

(
DPLL(αcount(G, n/3))− 2n2

)
by Lemma 4.1

≥ 1

n

(
1

2
DPLL(αblock(G, n/3))1/ log2 6 − 2n2

)
by Lemma 4.4

≥ 2C′′′

δ
n/∆3+δ

by Lemma 10.1 for a large enough constant C ′′′δ .
The bounds for the block encoding follow immediately from Lemmas 4.3

and 10.1. Finally, for the bound on the proof size in Chvátal’s system,

Chv(G, k) ≥ Chv(G, n/3)− 1 by Proposition 5.1

≥ 1

4n
RES(αblock(G, n/3))− 1 by Lemma 5.3

≥ 2C′′′′

δ
n/∆6+2δ

by Lemma 10.1

for a large enough constant c′′′′δ . �

Corollary 10.3 (Vertex Cover Lower Bounds). For each δ > 0 there are

constants C̃δ, Cδ, C
′
δ > 0 such that the following holds. Let ∆ = np, t ≥ 2n/3,

(n− t) |n, and G ∼ G(n, p). With probability 1− o(1) in n,

RES(V Ccount(G, t)) ≥ 2
eCδn/∆6+2δ

,

RES(V Cblock(G, t)) ≥ 2Cδn/∆6+2δ

, and

DPLL(V Cblock(G, t)) ≥ 2C′

δ
n/∆3+δ

.

The bounds for the block encoding require (n− t) | (n/3).

Proof. Let Cδ, C
′
δ, and C ′′δ be the constants from Theorem 10.2 and let C̃δ

be any constant less than C ′′δ . For the counting encoding bound, apply Theo-
rem 10.2 with k set to (n− t) and use Lemma 6.2 to translate the results to the
encoding of vertex cover. For the block encoding bounds, apply Theorem 10.2
in conjunction with Lemma 6.3. �

11. Hardness of Approximation

Instead of considering the decision problem of whether a given graph G has an
independent set of a given size k, one may consider the related optimization



42 Beame, Impagliazzo & Sabharwal

problem: given G, find an independent set in it of the largest possible size. We
call this optimization problem the maximum independent set problem. One
may similarly define the minimum vertex cover optimization problem.

Since the decision versions of these problems are NP-complete, the opti-
mization versions are NP-hard and do not have any known polynomial-time
solutions. From the perspective of algorithm design, it is then natural to ask
whether there is an efficient algorithm that finds an independent set of size
“close” to the largest possible or a vertex cover of size close to the smallest
possible. That is, is there an efficient algorithm that finds an “approximate”
solution to the optimization problem? In this section, we rule out the exis-
tence of any such efficient “resolution-based” approximation algorithms, for
appropriately defined measures of closeness.

We note that the notion of approximation we are using in this paper is the
natural one for the optimization versions of the two problems under considera-
tion. Specifically, on input G, an approximation algorithm for the independent
set problem will find an independent set of a size often smaller than the max-
imum independent set size M(G). An alternative view of approximation is
to consider procedures that, given G, provide short proofs of non-existence of
independent sets of a size often larger than M(G). While this second notion of
approximation fits proof systems, it does not relate well to the standard notion
of approximation algorithms for optimization problems and makes our bounds
incomparable with known hardness-of-approximation results for the two prob-
lems. We, therefore, choose the former notion, i.e., approximation with respect
to finding an optimal independent set or vertex cover.

Remark 11.1. The results we prove in this section contrast well with the
known approximation hardness results for the two problems which are all based
on the PCP (probabilistically checkable proofs) characterization of NP (Arora
et al. 1998; Arora & Safra 1998). H̊astad (1999) showed that unless P = NP,
there is no polynomial-time n1−ε-approximation algorithm for the clique (and
hence the independent set) problem for any ε > 0. For graphs with maximum
degree ∆max, Trevisan (2001) improved this to a factor of ∆max/2O(

√
ln ∆max).

More recently, Dinur & Safra (2005) proved that unless P = NP, there is no
polynomial-time 10

√
5 − 21 ≈ 1.36 factor approximation algorithm for the

vertex cover problem. Our results, on the other hand, hold irrespective of the
relationship between P and NP, but apply only to the class of resolution-based
algorithms to be defined shortly. Further, they provide an exponential lower
bound not only for the worst-case input to a resolution-based algorithm but
for nearly all input graphs of small enough density.
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11.1. Maximum Independent Set Approximation. We begin by mak-
ing several of the above notions precise. Let A be an algorithm for finding a
maximum independent set in a given graph.

Definition 11.2. Let γ ≥ 1. A is a γ-approximation algorithm for the max-
imum independent set problem if on input G with maximum independent set
size k̂, A produces an independent set of size at least k̂/γ.

In other words, if A produces an independent set of size k̄ on input G, it
proves that G does not have one of size k̄γ + 1. This reasoning allows us to use
our lower bounds from the previous section to prove that even approximating
a maximum independent set is exponentially hard for certain resolution-based
algorithms.

Definition 11.3. A γ-approximation algorithm A for the maximum inde-
pendent set problem is resolution-based if it has the following property: if A
outputs an independent set of size k̄ on input G, then its computation history
along with a proof of correctness within a factor of γ yields a resolution proof
of αmap(G, k) or αcount(G, k) for k ≤ k̄γ + 1, k |n.

The manner in which the computation history and the proof of correctness
are translated into a resolution refutation of an appropriate encoding depends
on specific details of the approximation algorithm and varies with context. We
will shortly see a nearly trivial example of this when proving Proposition 11.4.

Let ARES−ind
γ denote the class of all resolution-based γ-approximation algo-

rithms for the maximum independent set problem. We show that while there
is a trivial algorithm in this class for γ ≥ ∆ + 1, there isn’t an efficient one for
γ ≤ ∆/(6 ln ∆).

Proposition 11.4. For γ ≥ ∆ + 1, there is a polynomial-time algorithm in
ARES−ind

γ .

Proof. Let A be the polynomial-time algorithm that underlies the bound
in Turan’s theorem (Proposition 3.1), that is, on a graph G with n nodes and
average degree ∆ as input, A produces an independent set of size k̄ ≥ n/(∆+1).
Since the size of a maximum independent set in G is at most n, A is a (∆ + 1)-
approximation algorithm. We will argue that A is also resolution-based.

To be resolution-based, the computation history of A on G along with a
proof of correctness within a factor of (∆ + 1) must yield a resolution proof of
a suitable encoding α(G, k) for some k ≤ k∗ = k̄(∆ + 1) + 1, k |n. When G has
no edges, ∆ = 0 and A produces an independent set of size k̄ = n. In this case,
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there is nothing to prove. When G has at least one edge (u, v), k∗ ≥ n + 1 and
we can choose k = n. In this case, A indeed yields a straightforward resolution
proof of α(G, k) for both the mapping and the counting encodings by utilizing
the edge clause(s) corresponding to (u, v). Therefore, A is resolution-based as
a (∆ + 1)-approximation algorithm. �

While Proposition 3.2 guarantees that there is almost never an independent
set of size larger than (2n/∆) ln ∆, Theorem 10.2 shows that there is no efficient
way to prove this fact using resolution. Indeed, there exist efficient resolution
proofs only for the non-existence of independent sets of size larger than n/3.
We use this reasoning to prove the following hardness of approximation result.

Theorem 11.5 (Independent Set Approximation). There is a constant c such
that the following holds. Let δ > 0, ∆ = np, ∆ ≥ c, γ ≤ ∆/(6 ln ∆), and
G ∼ G(n, p). With probability 1 − o(1) in n, every algorithm A ∈ ARES−ind

γ

takes time exponential in n/∆6+2δ.

Proof. Recall the definitions of k+ε and Cε from Proposition 3.2. Fix ε > 0
such that k+ε < (2n/∆) ln ∆ and let c ≥ Cε. The claimed bound holds trivially
for ∆ ≥ n1/6. We will assume for the rest of the proof that Cε ≤ ∆ ≤ n/ ln2 n.

From Proposition 3.2, with probability 1− o(1) in n, a maximum indepen-
dent set in G is of size kmax ≤ k+ε < (2n/∆) ln ∆. If A approximates this
within a factor of γ, then, in particular, it proves that G does not have an
independent set of size k = kmaxγ + 1 ≤ n/3. Convert the transcript of the
computation of A on G along with an argument of its correctness within a
factor of γ into a resolution proof π of an appropriate encoding α(G, k). From
Theorem 10.2, size(π) must be exponential in n/∆6+2δ. �

11.2. Minimum Vertex Cover Approximation. A similar reasoning can
be applied to approximation algorithms for finding a minimum vertex cover.

Definition 11.6. Let γ ≥ 1. A is a γ-approximation algorithm for the mini-
mum vertex cover problem if on input G with minimum vertex cover size t̂, A
produces a vertex cover of size at most t̂γ.

Definition 11.7. A γ-approximation algorithm A for the minimum vertex
cover problem is resolution-based if it has the following property: if A outputs
a vertex cover of size t̄ on input G, then its computation history along with a
proof of correctness within a factor of γ yields a resolution proof of V Ccount(G, t)
for t ≥ t̄/γ − 1, (n− t) |n.
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Let ARES−V C
γ denote the class of all resolution-based γ-approximation al-

gorithms for the minimum vertex cover problem. We prove that there is no
polynomial-time resolution-based algorithm for the vertex cover problem that
achieves an approximation factor better than 3/2.

Theorem 11.8 (Vertex Cover Approximation). There is a constant c such
that the following holds. Let δ > 0, ∆ = np, ∆ ≥ c, γ < 3/2, and G ∼ G(n, p).
With probability 1 − o(1) in n, every algorithm A ∈ ARES−V C

γ takes time
exponential in n/∆6+2δ.

Proof. This proof is very similar to that of Theorem 11.5. Recall the
definitions of k+ε and Cε from Proposition 3.2. Fix ε > 0 such that k+ε <
(2n/∆) ln ∆, and let c ≥ Cε. The claimed bound holds trivially for ∆ ≥ n1/6.
We will assume for the rest of the proof that Cε ≤ ∆ ≤ n/ ln2 n.

From Proposition 3.2 and the relation between independent sets and vertex
covers, with probability 1 − o(1) in n, a minimum vertex cover in G is of size
tmin ≥ n − k+ε > n − (2n/∆) ln ∆. If A approximates this within a factor of
γ, then, in particular, it proves that G does not have a vertex cover of size
t = tmin/γ − 1 ≥ 2n/3. Convert the transcript of A’s computation on G along
with an argument of its correctness within a factor of γ into a resolution proof π
of V Ccount(G, t). By Corollary 10.3, size(π) must be exponential in n/∆6+2δ. �

We end this section with the remark that if t = n/2 and the block encoding
V Cblock(G, n/2) were constructed with blocks of size two rather than three, one
could obtain (in polynomial time) a polynomial size refutation of the resulting
formula when unsatisfiable. This is because, as pointed out in the beginning
of Section 9.2, all clauses of this formula would be of length two. This suggests
that one might be able to obtain a resolution-based 2-appximation algorithm
for the vertex cover problem. However, a short proof of V Cblock(G, n/2) may
not necessarily translate into a short proof of V Ccount(G, n/2), which is what
we really need for an upper bound.

12. Stronger Lower Bounds for Exhaustive

Backtracking Algorithms and DPLL

We conclude the technical sections of this paper with a stronger lower bound
for a natural class of backtracking algorithms for the independent set and the
vertex cover problems, namely the class of exhaustive backtracking search al-
gorithms. The key difference between the algorithms captured by resolution
that we have considered so far and the ones in this class is that the latter do
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not reuse computation performed for previous branches; instead, they system-
atically rule out all potential independent sets or vertex covers of the desired
size by a possibly smart but nonetheless exhaustive search. As an illustration,
we will give an example of a non-trivial exhaustive backtracking algorithm for
the independent set problem shortly.

The argument for our lower bound is based on the density of independent
sets and vertex covers in random graphs and is quite straightforward in the
light of Lemma 3.3. We derive as a consequence a tighter lower bound for
the DPLL complexity of the mapping and the counting encodings of the two
problems, which allows the edge density in the underlying graph to be much
higher than in Theorem 10.2 and Corollary 10.3.

Returning to the class of exhaustive backtracking algorithms, recall that the
approach we used for our upper bounds (cf. Section 7) was to systematically
rule out all potential independent sets of a certain size k′ = kmin. This is the
simplest algorithm in the class. Of course, instead of simply considering all(

n
k′

)
subsets of vertices of size k′ as we did, one can imagine more complex

techniques for exhaustive search. For instance, an idea similar to the one used
by Beame et al. (2005) for the graph coloring problem would be to consider all
subsets of size u < k′ in the first stage. For a random graph, most of these
subsets are very likely to already contain an edge and need not be processed
further. For any remaining subset S, one can recursively refute the existence
of an independent set of size k′ − u in the residual graph with |n− k −N(S)|
vertices, where N(S) denotes all neighbors of S outside S. This is also an
exhaustive backtracking algorithm.

Such algorithms may require a more complex analysis than we gave in our
upper bound proofs and could potentially be more efficient. However, as the
following result shows, any technique that systematically rules out all possible
k′-independent sets by an exhaustive backtracking search cannot improve the
relatively simple upper bounds in Theorem 7.3 and Corollary 7.4 by more than
a constant factor in the exponent.

Let Aind
exhaustive (or AV C

exhaustive) denote the class of backtracking algorithms
for proving non-existence of independent sets (vertex covers, resp.) of a given
size in a given graph, that work by recursively subdividing the problem based on
whether or not a set of vertices is included in the independent set (vertex cover,
resp.) and that do not reuse computation performed in previous branches.
For example, our approach in Section 7 as well as the more complex two-
phase algorithm sketched above, both belong to Aind

exhaustive. We show that such
algorithms must almost always branch exponentially often.
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Theorem 12.1 (Exhaustive Backtracking Algorithms). There are constants
C and c such that the following holds. Let ∆ = np, c ≤ ∆ ≤ n/ ln2 n, and
G ∼ G(n, p). With probability 1 − o(1) in n, every algorithm A ∈ Aind

exhaustive

(or AV C
exhaustive) running on input (G, k) must branch at least 2C(n/∆) ln2 ∆ times

when G does not have an independent set (vertex cover, resp.) of size k.

Proof. Let C be the constant from Lemma 3.3. Recall the definitions of k+ε

and Cε from Proposition 3.2. Fix ε > 0 such that k+ε+1 > (2n/∆) ln ∆, and let
c ≥ Cε. With probability 1− o(1) in n, any algorithm A ∈ Aind

exhaustive succeeds
in proving the non-existence of a k-independent set in G only when k ≥ k+ε +1.
However, Lemma 3.3 says that G almost surely contains at least 2C(n/∆) ln2 ∆

independent sets of size k∗ = b(n/∆) ln ∆c, which is less than (k+ε + 1)/2, and
hence less than k. As a result, while recursively subdividing the problem based
on whether or not to include a vertex in the k-independent set, A must explore
at least 2C(n/∆) ln2 ∆ distinct k∗-independent sets before finding a contradictory
edge for each and backtracking. This proves the desired lower bound on the
number of times algorithm A must branch.

For the vertex cover case, note that the algorithms in AV C
exhaustive are the

duals of the algorithms in Aind
exhaustive; including a vertex in a vertex cover to

create a smaller subproblem is equivalent to not including it in an independent
set. Further, the number of vertex covers of size (n − k) in G is exactly the
same as the number of independent sets of size k in G. Hence, the above lower
bound applies to the algorithms in AV C

exhaustive as well. �

Theorem 12.2 (Stronger DPLL Lower Bounds). There are constants C and
c such that the following holds. Let ∆ = np, c ≤ ∆ ≤ n/(2 ln2 n), and
G ∼ G(n, p). With probability 1− o(1) in n,

DPLL(αmap(G, k)) ≥ 2C(n/∆) ln2 ∆,

DPLL(αcount(G, k)) ≥ 2C(n/∆) ln2 ∆,

DPLL(V Cmap(G, t)) ≥ 2C(n/∆) ln2 ∆, and

DPLL(V Ccount(G, t)) ≥ 2C(n/∆) ln2 ∆.

Proof. The DPLL complexity of the encodings, by our convention, is ∞ if
G does have an independent set of size k. If it does not, the tree T associated
with any DPLL refutation of αmap(G, k) or αcount(G, k) can be viewed as the
trace of an exhaustive backtracking algorithm A ∈ Aind

exhaustive on input (G, k)
as follows. A non-leaf node in T representing a resolution step (equivalently, a
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DPLL branch) on variable xv corresponds to the decision of A to branch based
on whether or not to include vertex v in the independent set it is creating.
Nodes in T representing a resolution step on the counting variables represent
the counting process of A.

Given this correspondence, Theorem 12.1 immediately implies the desired
lower bounds for the independent set problem. The results for the vertex cover
problem can be derived in an analogous manner. Note that refuting the block
encoding may be easier than ruling out all independent sets (vertex covers,
resp.) of size k. Hence, Theorem 12.1 does not translate into a bound for this
encoding. �

We see that these lower bounds match the upper bounds in Theorem 7.3
and Corollary 7.4 up to a constant factor in the exponent.

13. Discussion

In this paper, we used a combination of combinatorial and probabilistic argu-
ments to obtain lower and upper bounds on the resolution complexity of several
natural CNF encodings of the independent set, vertex cover, and clique prob-
lems. Our results hold almost surely when the underlying graph is chosen at
random from the G(n, p) model. Consequently, they hold (deterministically)
for nearly all graphs. A key step in the main lower bound arguments was to
simplify the task by considering the induced block graph in place of the original
graph. The expansion properties of the block graph then allowed us to relate
refutation width with structural properties of the graph.

Our results imply exponential lower bounds on the running time of
resolution-based backtracking algorithms for finding a maximum independent
set (or, equivalently, a maximum clique or a minimum vertex cover) in a given
graph. Such algorithms include some of the best known ones for these com-
binatorial problems (Jian 1986; Shindo & Tomita 1990; Tarjan 1972; Tarjan
& Trojanowski 1977). For graphs of low enough density, our lower bounds for
these algorithms hold for nearly all input graphs, not only in the worst case.

A noteworthy contribution of this work is the hardness of approximation
result. We showed unconditionally that there is no polynomial-time resolution-
based approximation algorithm that guarantees a solution within a factor less
than ∆/(6 ln ∆) for the maximum independent set problem or within a factor
less than 3/2 for the minimum vertex cover problem. This complements the
hardness results conditioned on P 6= NP that rule out efficient approximations
within factors of ∆max/2O(

√
ln ∆max) (Trevisan 2001) and 10

√
5 − 21 ≈ 1.36
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(Dinur & Safra 2005) for the two problems, respectively. (Here ∆max denotes
the maximum degree of the underlying graph rather than the average degree.)

On the flip side, some algorithms, such as those of Robson (1986), Beigel
(1999), Chen et al. (2001), and Tomita & Seki (2003), employ techniques that
do not seem to be captured by resolution. The techniques they use, such
as unrestricted without loss of generality arguments (Robson 1986), vertex
folding (Chen et al. 2001), creation of new vertices (Beigel 1999), and pruning
of search space using approximate coloring (Tomita & Seki 2003), represent
global properties of graphs or global changes therein that appear hard to argue
locally using a bounded number of resolution inferences. For instance, the
algorithm of Robson (1986) involves the reasoning that if an independent set
contains only one element of N(v), then without loss of generality, that element
can be taken to be the vertex v itself. It is unclear how to model this behavior
efficiently in resolution.

Restricted versions of these general properties, however, can indeed be sim-
ulated by resolution. This applies when one restricts, for instance, to vertices of
small, bounded degree, as is done in many case-by-case algorithms cited earlier
(Jian 1986; Shindo & Tomita 1990; Tarjan 1972; Tarjan & Trojanowski 1977).

It is also interesting and not too surprising that the spectral algorithm of
Coja-Oghlan (2005) for the independent set problem achieves an O(

√
∆/ ln ∆)-

approximation in expected polynomial time and, in the light of our almost
certain lower bounds, cannot be simulated by resolution.

We conclude with a few directions for extending the results in this pa-
per. An analysis of the complexity of the independent set and other related
problems under stronger proof systems, such as Cutting Planes (Bonet et al.

1997; Impagliazzo et al. 1994), bounded-depth Frege systems (Ajtai 1994), or
an extension of resolution that allows “without loss of generality” reasoning
as mentioned above, will further broaden our understanding of the inherent
complexity of these graph problems.

An intriguing question is, how far can the hardness of approximation for
resolution-based algorithms for the vertex cover problem be pushed? We
showed that anything better than a 3/2-approximation is impossible using
resolution-based techniques. It is unclear how this relates to the well-known
greedy 2-approximation algorithm for the problem.

Finally, the DPLL upper bounds that we derived are based on a rather simple
enumeration, with natural search space pruning, of all potential independent
sets. As Theorem 12.1 points out, this is the best one can do using any exhaus-
tive backtracking algorithm. Considering more complex techniques may let us



50 Beame, Impagliazzo & Sabharwal

close the gap of a factor of nearly O(∆5) in the exponent that currently exists
between our lower and upper bounds for general resolution. It appears that we
have not taken advantage of the full power of general resolution, specifically
the reuse of derived clauses.
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Johan Håstad (1999). Clique is Hard to Approximate within n1−ε. Acta Mathe-

matica 182, 105–142.

Russell Impagliazzo, Toniann Pitassi & Alasdair Urquhart (1994). Upper
and lower bounds for tree-like cutting planes proofs. In 9th Annual IEEE Symposium

on Logic in Computer Science, 220–228. Los Alamitos, CA.

Svante Janson, Tomasz  Luczak & Andrzej Ruciński (2000). Random Graphs.
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