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Abstrat. We introdue a new lass VPSPACE of families of polyno-

mials. Roughly speaking, a family of polynomials is in VPSPACE if its

oe�ients an be omputed in polynomial spae. Our main theorem

is that if (uniform, onstant-free) VPSPACE families an be evaluated

e�iently then the lass PARR of deision problems that an be solved

in parallel polynomial time over the real numbers ollapses to PR. As a

result, one must �rst be able to show that there are VPSPACE families

whih are hard to evaluate in order to separate PR from NPR, or even

from PARR.

Keywords: omputational omplexity, algebrai omplexity, Blum-Shub-

Smale model, Valiant's model.

1 Introdution

Two main ategories of problems are studied in algebrai omplexity theory:

evaluation problems and deision problems. A typial example of an evaluation

problem is the evaluation of the permanent of a matrix, and it is well known

that the permanent family is omplete for the lass VNP of �easily de�nable�

polynomial families [21℄. Deiding whether a multivariate polynomial has a real

root is a typial example of a deision problem. This problem is NP-omplete in

the Blum-Shub-Smale model of omputation over the real numbers [1,2℄.

The main purpose of this paper is to provide a transfer theorem onneting

the omplexity of evaluation and deision problems. This paper is therefore in

the same spirit as [13℄. In that paper, we showed that if ertain polynomials

an be evaluated e�iently then ertain deision problems beome easy. The

polynomials onsidered in [13℄ are those that an be written as exponential-

size produts of polynomials that are easy to ompute (see [13℄ for a preise

de�nition) over some �eld K. The deision problems under onsideration are

those that are in NP in the struture (K,+,−,=), in whih multipliation is not

allowed.

In the present paper we work with a larger lass of polynomial families, whih

we all VPSPACE. Roughly speaking, a family of polynomials (of possibly expo-

nential degree) is in VPSPACE if its oe�ients an be evaluated in polynomial

⋆

UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

http://arxiv.org/abs/cs/0610009v2


2 Pasal Koiran and Sylvain Perifel

spae. For instane, we show that resultants of systems of multivariate poly-

nomial equations form a VPSPACE family. Our main result is that if (uniform,

onstant-free) VPSPACE families an be evaluated e�iently then the lass PARR

of deision problems that an be solved in parallel polynomial time over the real

numbers ollapses to PR. This result relies ruially on a ombinatorial lemma

due to Grigoriev [11℄ and espeially on its e�etive version, reently established

in [7℄. The lass PARR plays roughly the same role in the theory of omputation

over the reals as PSPACE in disrete omplexity theory. In partiular, it on-

tains NPR [1℄ (but the proof of this inlusion is muh more involved than in the

disrete ase). It follows from our main result that in order to separate PR from

NPR, or even from PARR, one must �rst be able to show that there are VPSPACE

families whih are hard to evaluate. This seems to be a very hallenging lower

bound problem, but it is still presumably easier than showing that the perma-

nent is hard to evaluate.

Organization of the paper. Setion 2 realls some notions and notations from

algebrai omplexity (Valiant's model, the Blum-Shub-Smale model). The lass

VPSPACE is de�ned in Setion 3 (both in a uniform and a nonuniform setting)

and as an example we show in Setion 3.3 that resultants of multivariate poly-

nomial systems form a (uniform) VPSPACE family. It is not neessary to read

Setion 3.3 in order to understand the remainder of the paper. Some losure

properties of VPSPACE are given in Setion 3.4.

In Setion 4, the hypothesis that VPSPACE families are easy to evaluate is

disussed. It is shown that (assuming the generalized Riemann hypothesis) this

hypothesis is equivalent to: VP = VNP and P/poly = PSPACE/poly. The onjun-
tion of these two equalities is an extremely strong assumption: by results from [3℄

(see [12℄), it implies, assuming again GRH, that NC/poly = PSPACE/poly. This
onjuntion of equalities is still apparently onsistent with our urrent under-

standing of omplexity theory. We also disuss the uniform, onstant-free version

of the hypothesis that VPSPACE families are easy to evaluate. It turns out that

this stronger hypothesis implies that PSPACE ollapses to the polynomial-time

uniform version of NC. Suh a dramati ollapse of omplexity lasses looks ex-

tremely unlikely, but as far as we know it annot be refuted with the urrent

methods of omplexity theory.

Finally, the last two setions of the paper are devoted to the transfer theorem.

Setion 5 deals with sign onditions, an important tool from omputational real

algebrai geometry. The transfer theorem is stated at the beginning of Setion 6,

and proved thereafter.

2 Preliminaries

The notions of boolean omplexity theory that we use are quite standard. In the

present setion, we fous on algebrai omplexity.
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2.1 The Blum-Shub-Smale Model

In ontrast with boolean omplexity, algebrai omplexity deals with other stru-

tures than {0, 1}. In this paper we will fous on the ordered �eld (R,+,−,×,≤) of
the real numbers. Although the original de�nitions of Blum, Shub and Smale [2,1℄

are in terms of uniform mahines, we will follow [19℄ by using families of algebrai

iruits to reognize languages over R, that is, subsets of R∞ =
⋃

n≥0 R
n
.

An algebrai iruit is a direted ayli graph whose verties, alled gates,

have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is

a gate of outdegree 0. We assume that there is only one suh gate in the iruit.

Gates of indegree 2 are labelled by a symbol from the set {+,−,×}. Gates of
indegree 1, alled test gates, are labelled �≤ 0?�. The size of a iruit C, in
symbols |C|, is the number of verties of the graph.

A iruit with n input gates omputes a funtion from Rn
to R. On input

ū ∈ Rn
the value returned by the iruit is by de�nition equal to the value of its

output gate. The value of a gate is de�ned in the usual way. Namely, the value

of input gate number i is equal to the i-th input ui. The value of other gates is

then de�ned reursively: it is the sum of the values of its entries for a +-gate,
their di�erene for a −-gate, their produt for a ×-gate. The value taken by a

test gate is 0 if the value of its entry is > 0 and 1 otherwise. We assume without

loss of generality that the output is a test gate. The value returned by the iruit

is therefore 0 or 1.

The lass PR is the set of languages L ⊆ R∞
suh that there exists a tuple

ā ∈ Rp
(independent of n) and a P-uniform family of polynomial-size iruits

(Cn) satisfying the following ondition: Cn has exatly n+ p inputs, and for any

x̄ ∈ Rn
, x̄ ∈ L ⇔ Cn(x̄, ā) = 1. The P-uniformity ondition means that Cn an

be built in time polynomial in n by an ordinary (disrete) Turing mahine. Note

that ā plays the role of the mahine onstants of [1,2℄.

As in [6℄, we de�ne the lass PARR as the set of languages over R reognized by

a PSPACE-uniform family of algebrai iruits of polynomial depth (and possibly

exponential size), with onstants ā as for PR. Note at last that we ould also

de�ne similar lasses without onstants ā. We will use the supersript 0 to denote

these onstant-free lasses, for instane P0
R
and PAR0

R
.

2.2 Valiant's Model

In Valiant's model, one omputes polynomials instead of reognizing languages.

We thus use arithmeti iruits instead of algebrai iruits. A book-length treat-

ment of this topi an be found in [3℄.

An arithmeti iruit is the same as an algebrai iruit but test gates are not

allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together

with arbitrary onstants of R; there are +, − and ×-gates, and we therefore

ompute multivariate polynomials.

The polynomial omputed by an arithmeti iruit is de�ned in the usual

way by the polynomial omputed by its output gate. Thus a family (Cn) of

arithmeti iruits omputes a family (fn) of polynomials, fn ∈ R[x1, . . . , xu(n)].
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The lass VPnb de�ned in [15℄ is the set of families (fn) of polynomials omputed

by a family (Cn) of polynomial-size arithmeti iruits, i.e., Cn omputes fn
and there exists a polynomial p(n) suh that |Cn| ≤ p(n) for all n. We will

assume without loss of generality that the number u(n) of variables is bounded
by a polynomial funtion of n. The subsript �nb� indiates that there is no

bound on the degree of the polynomial, in ontrast with the original lass VP

of Valiant where a polynomial bound on the degree of the polynomial omputed

by the iruit is required. Note that these de�nitions are nonuniform. The lass

Uniform VPnb is obtained by adding a ondition of polynomial-time uniformity

on the iruit family, as in Setion 2.1.

The lass VNP is the set of families of polynomials de�ned by an exponential

sum of VP families. More preisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP

and a polynomial p suh that |ȳ| = p(n) and fn(x̄) =
∑

ǭ∈{0,1}p(n) gn(x̄, ǭ).
We an also forbid onstants from our arithmeti iruits in unbounded-

degree lasses, and de�ne onstant-free lasses. The only onstant allowed is

1 (in order to allow the omputation of onstant polynomials). As for lasses

of deision problems, we will use the supersript 0 to indiate the absene of

onstant: for instane, we will write VP0

nb
(for bounded-degree lasses, we are to

be more areful; see [15℄).

Note at last that arithmeti iruits are at least as powerful as boolean ir-

uits in the sense that one an simulate the latter by the former. Indeed, we an

for instane replae ¬u by 1 − u, u ∧ v by uv, and u ∨ v by u + v − uv. This
proves the following lassial lemma.

Lemma 1. Any boolean iruit C an be simulated by an arithmeti one of size

at most 3|C|, in the sense that on boolean inputs, both iruits output the same

value.

3 The Class VPSPACE

3.1 De�nition

We �x an arbitrary �eld K. The de�nition of VPSPACE will be stated in terms

of oe�ient funtion. A monomial xα1
1 · · ·xαu(n)

u(n) is enoded in binary by α =

(α1, . . . , αu(n)) and will be written x̄α
.

De�nition 1. Let (fn) be a family of multivariate polynomials with integer o-

e�ients. The oe�ient funtion of (fn) is the funtion a whose value on input

(n, α, i) is the i-th bit a(n, α, i) of the oe�ient of the monomial x̄α
in fn. Fur-

thermore, a(n, α, 0) is the sign of the oe�ient of the monomial x̄α
. Thus fn

an be written as

fn(x̄) =
∑

α

(

(−1)a(n,α,0)
∑

i≥1

a(n, α, i)2i−1x̄α
)

.

The oe�ient funtion is a funtion a : {0, 1}∗ → {0, 1} and an therefore be

viewed as a language. This allows us to speak of the omplexity of the oe�ient

funtion.
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De�nition 2. The lass Uniform VPSPACE0
is the set of all families (fn) of

multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-

ments:

1. the number u(n) of variables is polynomially bounded;

2. the polynomials fn have integer oe�ients;

3. the size of the oe�ients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the oe�ient funtion of (fn) is in PSPACE.

We have hosen to de�ne �rst Uniform VPSPACE0
, a uniform lass without

onstants, beause this is the main objet of study in this paper. In keeping with

the tradition set by Valiant, however, the lass VPSPACE, de�ned in Setion 3.5,

is nonuniform and allows for arbitrary onstants.

3.2 An Alternative Charaterization

Let Uniform VPAR0
be the lass of families of polynomials omputed by a

PSPACE-uniform family of onstant-free arithmeti iruits of polynomial depth

(and possibly exponential size). This in fat haraterizes Uniform VPSPACE0
.

Proposition 1. The two lasses Uniform VPSPACE0
and Uniform VPAR0

are

equal.

Proof. Let (fn) be a Uniform VPSPACE0
family. In order to ompute fn by an

arithmeti iruit of polynomial depth, we ompute all its monomials in parallel

and sum them in a divide-and-onquer-fashion. The resulting family of arith-

meti iruits is uniform due to the uniformity ondition on (fn).
For the onverse, take an arithmeti iruit of polynomial depth. We show

that we an build a boolean iruit of polynomial depth whih takes as input the

enoding α of a monomial and omputes the oe�ient of x̄α
. We proeed by

indution, omputing the oe�ient of x̄α
for eah gate of the original arithmeti

iruit. For the input gates, this is easy. For a +-gate, it is enough to add both

oe�ients. For a gate a × b, we ompute in parallel the sum of the cd over all

the monomials x̄β
and x̄γ

suh that β+γ = α, where c is the oe�ient of x̄γ
in

the gate a, and d the oe�ient of x̄β
in the gate b. The whole boolean iruit

remains uniform and of polynomial depth. Therefore, the oe�ient funtion is

in PSPACE by the �parallel omputation thesis�. ⊓⊔

We see here the similarity with PARR, whih by de�nition are those languages

reognized by uniform algebrai iruits of polynomial depth. But of ourse there

is no test gate in the arithmeti iruits of Uniform VPSPACE0
.

3.3 An Example

Algebrai geometry is a natural soure of examples for the study of polynomi-

als from a omputational point of view. For instane, the Hilbert polynomial
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is studied in [4℄ from the point of view of disrete omplexity theory. Here we

study a di�erent example: the omputation of the resultant of a system of mul-

tivariate polynomials. A system of n+1 homogenous equations in n+1 omplex

variables has a nontrivial solution if and only if its resultant is zero. We sketh

the onstrution of the resultant below. More details an be found for instane

in [14℄ or [5℄.

Let f1, . . . , fn+1 ∈ C[X0, . . . , Xn] be a system of n+ 1 homogeneous polyno-

mials. The resultant onsists in the quotient of the determinants of two matries

M and M ′
:

R =
detM

detM ′
(1)

where the oe�ients of M are among those of the fi's, and M ′
is a submatrix

of M . The matrix M is alled Maaulay's matrix (a generalization of Sylvester's

for two univariate polynomials) and is desribed as follows. Let di be the degree

of fi and d = 1 +
∑n+1

i=1 (di − 1). Denote by Mond the set of all monomials in

X0, . . . , Xn of degree d: the ardinal of Mond is N =
(

d+n
d

)

.

The matrix M has N rows and N olumns, both indexed by the elements of

Mond. The row orresponding to the monomial x̄α
represents the polynomial

x̄α

xdi

i

fi, where i = min{j;xdj

j divides x̄α}.

Finally, the submatrix M ′
onsists in the rows and olumns of M that are �not

redued�, see [5℄. What we will ompute is not the resultant R itself but rather

a multiple of it, namely detM . Whenever detM ′ 6= 0, this does not hange

anything if we are only onerned by the vanishing of R.

From now on, we will assume for simpliity that all the di are equal. We will

let n go to in�nity, but the ommon value δ of the di will remain onstant. A

system (f1, . . . , fn+1) of n + 1 homogeneous polynomials of degree δ in n + 1
variables is enoded by the list of the oe�ients of the polynomials, i.e., by

k(n+1) variables (a1,1, . . . , a1,k, a2,1, . . . , an+1,k) where k =
(

n+δ
δ

)

is the number

of monomials of degree δ in n + 1 variables. Note that k is polynomial in n for

any �xed δ.

The matrix Macδn(f1, . . . , fn+1) is then de�ned as the Maaulay matrix M of

(f1, . . . , fn+1). This matrix is of size

(

n+d
d

)

, where d = 1 + (n + 1)(δ − 1). This
is exponential in n as soon as δ ≥ 2. Computing the determinant of M an be

done by a iruit of depth polylogarithmi in the size of M , thus polynomial in

n. The above onsiderations then prove the following proposition.

Proposition 2. For any �xed δ, the family (det(Macδn)) (the determinant of

the Maaulay matrix of a system of n+ 1 homogeneous polynomials of degree δ
in n+ 1 variables) is in Uniform VPSPACE0

.

Likewise, the determinants of the matries M ′
in (1) form a Uniform VPSPACE0

family.
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3.4 Closure Properties

The following lemma is lear from Proposition 1.

Lemma 2. Uniform VPSPACE0
is losed under big sums and big produts.

We an even make sums and produts over a set more ompliated than

{0, 1}, as proven in the following lemma.

Lemma 3. Let A be a language in PSPACE, (fn(x̄, ȳ)) a family in

Uniform VPSPACE0
and p(n) a polynomial, where |ȳ| = p(n). Then the fami-

lies (gn(x̄)) and (hn(x̄)) de�ned as follows are in Uniform VPSPACE0
.

gn(x̄) =
∑

ǭ∈A=p(n)

fn(x̄, ǭ) and hn(x̄) =
∏

ǭ∈A=p(n)

fn(x̄, ǭ).

Proof. It is enough to use Lemma 2 sine we have

∑

ǭ∈A=p(n)

fn(x̄, ǭ) =
∑

ǭ∈{0,1}p(n)

χA(ǭ)fn(x̄, ǭ), and

∏

ǭ∈A=p(n)

fn(x̄, ǭ) =
∏

ǭ∈{0,1}p(n)

[χA(ǭ)fn(x̄, ǭ) + (1− χA(ǭ))],

where χA, the harateristi funtion of A, is in Uniform VPSPACE0
by Lemma 1

and Proposition 1 sine A is deided by a Uniform family of boolean iruits of

polynomial depth. ⊓⊔

3.5 The Nonuniform Class VPSPACE

Let us now de�ne the nonuniform lasses VPSPACE0
and VPSPACE. Note that

the only di�erene between VPSPACE0
and Uniform VPSPACE0

is the nonuni-

formity of the oe�ient funtion.

De�nition 3. The lass VPSPACE0
is the set of all families (fn) of multivariate

polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following requirements:

1. the number u(n) of variables is polynomially bounded;

2. the polynomials fn have integer oe�ients;

3. the size of the oe�ients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the oe�ient funtion of (fn) is in PSPACE/poly.

Now, the lass VPSPACE is the set of all families (fn(x̄)) of multivariate polyno-

mials fn ∈ K[x1, . . . , xu(n)] suh that there exist a family (gn(x̄, ȳ)) ∈ VPSPACE0

together with a family of tuples of onstants (ā(n)) satisfying for all n:

fn(x̄) = gn(x̄, ā
(n)).



8 Pasal Koiran and Sylvain Perifel

We introdue temporarily a degree-bounded version of VPSPACE: this will

prove useful for omparing VPSPACE to VP and VNP sine the degree of the

polynomials in these last two lasses are polynomially bounded. A family (fn) of
polynomials is in VPSPACE0

b if (fn) ∈ VPSPACE0
and the size of the oe�ients

as well as the degree of fn are polynomially bounded. The lass VPSPACEb

is then de�ned from VPSPACE0
b in the same way as VPSPACE is de�ned from

VPSPACE0
in De�nition 3. This new lass is interesting for our purpose due to

the following two lemmas.

Lemma 4.

VPSPACEb = VP ⇐⇒ VPSPACE = VPnb.

Proof. Assume �rst that VPSPACE = VPnb, and take a family (fn) ∈ VPSPACEb.

Sine VPSPACEb ⊂ VPSPACE, (fn) is in fat in VPnb by hypothesis. Now, sine

the degree of (fn) is polynomially bounded, (fn) ∈ VP.

For the onverse, take a family (fn) ∈ VPSPACE: remember that it an

be written as fn(x̄) = gn(x̄, ā
(n)) for some onstants ā(n) and (gn(x̄, ȳ)) ∈

VPSPACE0
. For onveniene, let us rename the u(n) variables of gn by

v1, . . . , vu(n), thus we have:

gn(v̄) =
∑

α

(

(−1)a(n,α,0)
2p(n)
∑

i=1

a(n, α, i)2i−1v̄α
)

,

where a is in PSPACE/poly. In this expression, p(n) is a polynomial and 2p(n)

bounds the size of the oe�ients as well as the degree of gn. In order to use

the hypothesis, we have to somehow de�ne a family (hn) ∈ VPSPACE0
b
that will

�simulate� (gn). Let us de�ne

(

hn(z1,1, . . . , z1,p(n), z2,1, . . . , zu(n),p(n), w1, . . . , wp(n))
)

,

where intuitively the variable zi,j is to replae v2
j

i in gn, and wi will take the

value 22
i

. More formally, hn is de�ned as follows:

� replae vki in gn by

∏

j∈Jk
zi,j , where the set Jk onsists of the bits set to 1

in the binary representation of k;

� replae the oe�ient 2i−1
in the term

∑2p(n)

i=1 a(n, α, i)2i−1
of gn by

∏

j∈Ji−1
wj , where the set Ji−1 onsists of the bits set to 1 in the binary

representation of i− 1.

The degree of hn is then polynomially bounded and all the oe�ients are among

−1, 0 and 1. Note furthermore that the oe�ient funtion is still in PSPACE.

Therefore (hn) ∈ VPSPACE0
b, thus (hn) ∈ VP by hypothesis. It remains to replae

zi,j by v2
j

i and wi by 22
i

to show that (gn(v̄) = gn(x̄, ȳ)) ∈ VPnb, and then to

replae ȳ by the original onstants in order to show that (fn) ∈ VPnb. ⊓⊔

Lemma 5. VPSPACEb ontains VNP.
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Proof. Let (HCn) be the family de�ned by

HCn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑

σ

n
∏

i=1

xi,σ(i)

where the sum is taken over all n-yles σ over {1, . . . , n}. This polynomial ounts

the number of Hamilton yles in a graph given by its adjaeny matrix. (HCn)
is VNP-omplete, see [21℄ or [15℄. Sine VPSPACEb is losed under p-projetions
and ontains HCn, the lemma follows. ⊓⊔

4 On the Hypothesis that VPSPACE has Small Ciruits

In this setion, we investigate some onsequenes of the hypotheses VPSPACE =
VPnb and Uniform VPSPACE0 = Uniform VP0

nb.

Proposition 3. Under the generalized Riemann hypothesis (GRH),

VPnb = VPSPACE ⇐⇒ [P/poly = PSPACE/poly and VP = VNP].

Moreover, the impliation from right to left holds even without GRH.

Proof. Assume �rst that P/poly = PSPACE/poly and VP = VNP. By Lemma 4,

the equality VPSPACE = VPnb is equivalent to the degree-bounded ana-

logue VPSPACEb = VP. Let (fn) ∈ VPSPACEb: its oe�ient funtion is in

PSPACE/poly, thus in P/poly by our assumption. Sine the set of oe�ient

funtions of VNP families ontains ⊕P/poly (see [3℄), hene P/poly, (fn) is in

fat in VNP. By our assumption again, it is in VP.

For the onverse, assume now that VPSPACE = VPnb. Again, this is equiv-

alent to VPSPACEb = VP. Hene VNP = VP sine VP ⊆ VNP ⊆ VPSPACEb

by Lemma 5. It remains to show that a language A in PSPACE/poly belongs

in fat to P/poly. A is reognized by a P/poly-uniform family of polynomial-

depth boolean iruits, and by Lemma 1 and Proposition 1 there exists a family

(fn) ∈ VPSPACE suh that on any boolean input x̄ ∈ {0, 1}n, fn(x̄) ∈ {0, 1} and
fn(x̄) = 1 if and only if x̄ ∈ A.

By our assumption, (fn) ∈ VPnb, thus there exists a family of polynomial-size

arithmeti iruits (Cn), with arbitrary onstants, that omputes (fn). In order

to evaluate these iruits on boolean inputs with boolean iruits, the problem

now is to eliminate the onstants. We proeed as in [3℄. Let ȳ be the onstants

for the iruit Cn, and all gn(X̄, Ȳ ) the polynomial omputed by Cn where the

onstants are replaed by the new variables Ȳ . Thus gn(X̄, ȳ) = fn(X̄), therefore
the system S of equations in Ȳ de�ned by

S =
(

gn(x̄, Ȳ ) = fn(x̄)
)

x̄∈{0,1}n

has a solution ȳ over C. All the equations in this system have integer oe�ients,

degree bounded by 2q(n) and weight by 22
q(n)

for some polynomial q, where the
weight of a polynomial is the sum of the absolute value of its oe�ients.
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By Theorem 4.4 of [3, p. 64℄, assuming GRH there exists a prime number

p ≤ 2n
2q(n)

suh that S has a solution over Fp. There indeed exists suh a p ≤ a
as soon as

π(a)

dO(n)
>

√
a log(wa),

where d and w are bounds on the degree and weight of the equations respetively,

and π(a) is the number of primes ≤ a. Thus there exists a polynomial-size arith-

meti iruit over Fp omputing the polynomial gn(X̄, ȳ′) and this polynomial

takes the same values as fn(X̄) on boolean inputs.

Note that the size of p is polynomial, and a solution ȳ′ of this system S over

Fp also has polynomial size. Therefore a polynomial-size boolean iruit working

modulo p an now easily ompute the value of gn(X̄, ȳ′) over Fp. This boolean

iruit has the same value on boolean inputs as fn. Hene A ∈ P/poly, and the

announed result is proved. ⊓⊔

We now turn in the next proposition to the most uniform version of the

hypothesis, whih is stronger than that of Proposition 3. For the proof, we need

two de�nitions from [16℄ and [15℄.

De�nition 4. The formal degree of an arithmeti iruit C is the formal degree

of its output gate, where the formal degree of a gate is de�ned reursively:

� the formal degree of an input gate is 1;

� the formal degree of a +-gate or a −-gate is the maximum of the formal

degrees of its inputs;

� the formal degree of a ×-gate is the sum of the formal degrees of its inputs.

De�nition 5. The lass VP0
is the set of families of polynomials omputed by

a family of onstant-free (i.e. using only 1 as a onstant) polynomial-size arith-

meti iruits of polynomial formal degree.

The following proposition is similar to Proposition 3, but in a uniform set-

ting and without assuming the generalized Riemann hypothesis. It is not lear

whether the assumption Uniform VP0

nb
= Uniform VNP0

nb
in this proposition an

be replaed by the assumption Uniform VP0 = Uniform VNP0
.

Proposition 4. Uniform VP0

nb
= Uniform VPSPACE0

if and only if

P = PSPACE and Uniform VP0

nb = Uniform VNP0

nb.

Proof. Assume �rst that P = PSPACE and Uniform VP0

nb
= Uniform VNP0

nb
. Take

a family (fn) ∈ Uniform VPSPACE0
. Its oe�ient funtion is in PSPACE, hene

in P by assumption. The sum of the monomials with their oe�ients is therefore

in Uniform VNP0

nb
. Thus (fn) ∈ Uniform VP0

nb
by assumption.

For the onverse, let us �rst show that P = PSPACE. Let A be a PSPACE

language: it is deided by a uniform family of polynomial-depth boolean ir-

uits. By Lemma 1 and Proposition 1, we obtain a family of polynomials
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(fn) ∈ Uniform VPSPACE0
that agrees with the boolean iruits on boolean

inputs, i.e.,

∀x̄ ∈ {0, 1}n, fn(x̄) ∈ {0, 1} and [fn(x̄) = 1 ⇐⇒ x̄ ∈ A].

By our assumption, (fn) ∈ Uniform VP0

nb
so that there exists a uniform family

of polynomial-size arithmeti iruits that omputes (fn). Of ourse, on boolean

inputs suh iruits an be evaluated in polynomial time (working modulo 2 to

avoid over�ows). This implies that PSPACE = P.

Now, the proof of Uniform VNP0

nb
= Uniform VP0

nb
is lear sine

Uniform VP0

nb
⊆ Uniform VNP0

nb
⊆ Uniform VPSPACE0

. ⊓⊔

We an now prove a onsequene of the hypothesis Uniform VPSPACE0 =
Uniform VP0

nb.

Proposition 5.

Uniform VPSPACE0 = Uniform VP0

nb =⇒ PSPACE = P-uniform NC.

Proof. By Proposition 4, the hypothesis already implies P = PSPACE.

Let us now prove that ⊕P ⊆ P-uniform NC under the hypothesis that

Uniform VPSPACE0 = Uniform VP0

nb
. It is enough to show that the ⊕P-omplete

language ⊕HamiltonPath (the problem of deiding whether there is an odd num-

ber of Hamilton paths in a graph, see [18, p. 448℄) is in P-uniform NC. For a graph

given by its boolean adjaeny matrix (ai,j) (where ai,j = 1 i� there is an edge

between i and j), the number of Hamilton paths is

∑

1≤j<k≤n

∑

σ∈Sj,k

n−1
∏

i=1

ai,σ(i),

where Sj,k is the set of all the n-yles σ ∈ Sn beginning in j and ending in k (j
is di�erent from k in order to ount paths in the graph and not yles, and j is

smaller than k in order not to ount twie eah path, whih would trivialize the

problem ⊕HamiltonPath). The polynomial

pn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑

j<k

∑

σ∈Sj,k

n−1
∏

i=1

xi,σ(i)

therefore outputs the number of Hamilton paths on the boolean enoding

x1,1 . . . x1,nx2,1 . . . xn,n of a graph G. This family of polynomials (pn) is eas-

ily seen to be in Uniform VPSPACE0
, has polynomially bounded degree, and its

evaluation modulo 2 provides the answer to the question �G ∈ ⊕HamiltonPath?�.
By our assumption, (pn) ∈ Uniform VP0

nb
so that there exists a P-uniform

family of polynomial-size arithmeti iruits (Cn) that omputes (pn). We are

going to build a family of iruits (Dn) that omputes a family of polynomials

(qn) ∈ VP0
suh that on boolean inputs, pn and qn have the same parity. Note

that despite the polynomial bound on its degree, (pn) needs not be already in
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VP0
beause the formal degree of Cn needs not be polynomial (indeed, onstants

of exponential size might be omputed by Cn). This is why we annot diretly

evaluate Cn in parallel with the algorithm of [16℄.

The idea here is that we an ompute only the remainder modulo 2 of the

onstants beause we are only interested in the result modulo 2. Dn is then

built from Cn as follows. First, note that pn has degree n − 1. We ompute

eah homogeneous omponent separately: eah gate α of Cn is split into n − 1
gates α1, . . . , αn−1, the gate αi omputing the homogeneous omponent of de-

gree i of α. The homogeneous omponents of degree 0 (i.e. the onstants) are

not omputed, only their remainder modulo 2 is taken into aount. In other

words, we replae an even onstant by the onstant 0, and an odd one by 1. The

P-uniformity remains beause we an ompute in polynomial time the the on-

stants modulo 2. The last step of Dn is to ompute the sum of the homogeneous

omponents of the output gate.

It is easy and well known how to ompute these homogeneous omponents

at eah step, while keeping a polynomial iruit size: we merely disard the

homogeneous omponents of degree > n − 1. With this onstrution, it is lear

that pn and qn oinide modulo 2, that the onstrution is P-uniform, and that

the formal degree of Dn is at most n − 1 beause there is no onstant in the

iruit any more. Hene (qn) ∈ VP0
.

In order to deide ⊕HamiltonPath, we therefore only have to ompute the

value of qn modulo 2 on the given input, that is, to evaluate a P-uniform iruit

of polynomial size s(n) and polynomially bounded formal degree n−1. Theorem
5.3 of [16℄ tells us that suh a iruit an be evaluated modulo 2 by a logspae-

uniform algorithm in parallel time O(log(s(n)) log(ns(n))), i.e. O(log(n)2), and
with O(n2) proessors, thus plaing ⊕P in P-uniform NC2

.

Hene, assuming that Uniform VPSPACE0 = Uniform VP0

nb we have proved

that

PSPACE = P ⊆ ⊕P ⊆ P-uniform NC2.

Note that this onstrution does not seem to be logspae uniform beause

evaluating the onstants modulo 2 is a P-omplete problem.

Sine we onstrut a iruit family whih is only polynomial-time uniform,

one ould also use the onstrution of [22℄ instead of the parallel algorithm of

[16℄. Indeed, as pointed out in [16℄, the onstrution of [22℄ an be performed in

polynomial time. ⊓⊔

Remark 1. Despite its unlikeliness, the separation �PSPACE 6= P-uniform NC�

is not known to hold to the authors' knowledge (by ontrast, PSPACE an be

separated from logspae-uniform NC thanks to the spae hierarhy theorem).

5 Sign Conditions

5.1 De�nition

Given are s polynomials f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign ondition is merely

an s-tuple S ∈ {−1, 0, 1}s. Intuitively, the i-th oordinate of S represents the
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sign of fi: −1 for < 0, 0 for 0, and 1 for > 0. Aordingly, the sign ondition of a

point x̄ ∈ Rn
is the tuple S ∈ {−1, 0, 1}s suh that Si = −1 if fi(x̄) < 0, Si = 0

if fi(x̄) = 0 and Si = 1 if fi(x̄) > 0.
Of ourse some sign onditions are not realizable, in the sense that the poly-

nomials an nowhere take the orresponding signs (think for instane of x2 + 1
whih an only take positive values over R). We say that a sign ondition is

satis�able if it is the sign ondition of some x̄ ∈ Rn
and we all N the number

of satis�able sign onditions. The key result detailed in the next setion is that

among all possible sign onditions, there are few satis�able ones (i.e. N is small),

and there exists a polynomial spae algorithm to enumerate them all.

5.2 A PSPACE Algorithm for Sign Conditions

The following theorem will prove to be a entral tool in our proofs. The bound

on the number of satis�able sign onditions follows from the Thom-Milnor

bounds [17℄ (see Grigoriev [10, Lemma 1℄); the enumeration algorithm is from

Renegar [20, Prop. 4.1℄.

Theorem 1. Let f1, . . . , fs ∈ Z[x1, . . . , xn] be s polynomials of maximal degree

d, and whose oe�ients have bit size ≤ L. Then:

1. there are N = (sd)O(n)
satis�able sign onditions;

2. there is an algorithm using work spae (logL)[n log(sd)]O(1)
whih, on input

(f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
omponent of the i-th satis�able sign ondition.

If S is the i-th satis�able sign ondition produed by this enumeration algorithm,

we say that the rank of S is i (the rank is therefore merely the index of the sign

ondition in the enumeration). Note that if d = 2n
O(1)

, s = 2n
O(1)

and L = 2n
O(1)

as will be the ase, then the work spae of the algorithm is polynomial in n.

5.3 Enumerating all Possibly Tested Polynomials

In the exeution of an algebrai iruit, the values of some polynomials at the

input x̄ are tested to zero. If two points x̄ and ȳ have the same sign ondition

with respet to all polynomials possibly tested to zero, then they will either both

belong to the language, or both be outside of it: indeed the results of all the tests

will be the same during the exeution of the iruit. Therefore we an handle

sign onditions (i.e. boolean words) instead of algebrai inputs.

Note that in order to �nd the sign ondition of the input x̄, we have to be able
to enumerate in polynomial spae all the polynomials that an ever be tested to

zero in some omputation of an algebrai iruit. This is done as in [9, Th. 3℄.

Proposition 6. Let C be a onstant-free algebrai iruit with n variables and

of depth d.

1. The number of di�erent polynomials possibly tested to zero in some ompu-

tation of C is 2d
2O(n)

.
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2. There exists an algorithm using work spae (nd)O(1)
whih, on input C and

integers (i, j) in binary, outputs the j-th bit of the i-th of these polynomials.

Proof. C is slied in levels orresponding to the depth of the gates: input gates

are on the level 0 and the output gate is the only one on level d.
Suppose that the results of the tests of the levels 0 to i− 1 are �xed: we an

then ompute all the polynomials tested at level i. Sine our agebrai iruits

have fan-in at most 2, there are at most 2d−i
gates on level i of C: in partiular,

at most 2d−i
polynomials an be tested on level i. But the degree of a polynomial

omputed at level i is at most 2i and the size of its oe�ients is (nd)O(1)2i.
Therefore, by Theorem 1 there are at most (2d)O(n)

possible outomes for the

tests of level i, and they are moreover enumerable in spae (nd)O(1)
. Therefore

we an ompute all the (2d)O(n)
possible outomes of all the tests of level i

and proeed indutively. This gives an algorithm using work spae (nd)O(1)
for

enumerating all the polynomials that an possibly be tested in an exeution of the

iruit. Sine there are 2dO(n)
possible outomes at eah level, the total number

of polynomials for the whole iruit (that is, for d levels) is (2dO(n))d = 2d
2O(n)

,

as laimed in the statement of the proposition. ⊓⊔
Note that this proposition an also be useful when our algebrai iruit is

not onstant-free: it is enough to replae the onstants by fresh variables. The

only risk is indeed to take more polynomials into aount sine we have replaed

spei� onstants by generi variables.

6 A Transfer Theorem

In this setion we prove our main result.

Theorem 2. Uniform VPSPACE0 = Uniform VP0

nb =⇒ PAR0

R
= P0

R
.

Note that the ollapse of the onstant-free lass PAR0

R
to P0

R
implies the ollapse

of PARR to PR: just replae onstants by new variables in order to transform a

PARR problem into a PAR0

R
problem, and then replae these variables by their

orignal values in order to transform a P0
R
problem into a PR problem.

Let A ∈ PAR0

R
: it is deided by a uniform family (Cn) of onstant-free alge-

brai iruits of polynomial depth. For onveniene, we �x n and work with Cn.

For the proof of Theorem 2 we will need to �nd the sign ondition of the input

x̄ with respet to the polynomials f1, . . . , fs of Proposition 6, that is to say,

with respet to all the polynomials that an be tested to zero in an exeution of

Cn. We denote by N the number of satis�able sign onditions with respet to

f1, . . . , fs.
Note that most of the forthoming results depend on the polynomials

f1, . . . , fs, therefore on the hoie of Cn. For instane, one Cn and f1, . . . , fs are
hosen, the satis�able sign onditions are �xed and we will speak of the i-th sat-

is�able sign ondition without referring expliitly to the polynomials f1, . . . , fs.
In order to �nd the sign ondition of the input, we will give a polynomial-

time algorithm whih tests some VPSPACE family for zero. Here is the formalized

notion of a polynomial-time algorithm with VPSPACE tests.
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De�nition 6. A polynomial-time algorithm with Uniform VPSPACE0
tests is a

Uniform VPSPACE0
family (fn(x1, . . . , xu(n))) together with a uniform onstant-

free family (Cn) of polynomial-size algebrai iruits endowed with speial

test gates of indegree u(n), whose value is 1 on input (a1, . . . , au(n)) if

fn(a1, . . . , au(n)) ≤ 0 and 0 otherwise.

Observe that a onstant number of Uniform VPSPACE0
families an be used in

the preeding de�nition instead of only one: it is enough to ombine them all in

one by using �seletion variables�. The following Theorem 3 is the main result

en route to showing the transfer theorem. It is proved via suessive lemmas in

Setions 6.1 to 6.3: we proeed as in [11℄ but onstrutively.

Theorem 3. There is a polynomial-time algorithm with Uniform VPSPACE0

tests that, on input x̄, omputes the rank of the sign ondition of x̄ with respet

to f1, . . . , fs.

6.1 Trunated Sign Conditions

A trunated sign ondition is merely an element T of {0, 1}s. Contrary to full

sign onditions, only the two ases = 0 and 6= 0 are distinguished. We de�ne in

a natural way the trunated sign ondition T of a point x̄: Ti = 0 if and only if

fi(x̄) = 0.
Of ourse, there are fewer satis�able trunated sign onditions than full ones,

and of ourse there exists a polynomial spae algorithm to enumerate them.

Furthermore, trunated sign onditions an be viewed as subsets of {1, . . . , s}
(via the onvention k ∈ T ⇐⇒ Tk = 1), therefore enabling us to speak of

inlusion of trunated sign onditions.

We �x an order ≤T ompatible with inlusion and easily omputable in par-

allel, e.g. the lexiographi order. Let us all T (i)
the i-th satis�able trunated

sign ondition with respet to this order.

Lemma 6. There is an algorithm using work spae polynomial in n whih, on

input (f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
omponent of T (i)

(the i-th satis�able trunated sign ondition with respet to

≤T ).

Proof. It is enough to use the algorithm of Theorem 1, followed by a fast parallel-

sorting proedure, for instane Cole's parallel merge-sort algorithm [8℄. ⊓⊔

Note that the trunated sign ondition of the input x̄ is the maximal trun-

ated satis�able sign ondition T satisfying ∀i, Ti = 1 ⇒ fi(x̄) 6= 0. Hene we

have to �nd a maximum. This will be done by binary searh.

Lemma 7. There is a Uniform VPSPACE0
family (gn) of polynomials satisfying,

for real x̄ and boolean i,

gn(x̄, i) =
∏

j≤i

(

∑

k 6∈T (j)

fk(x̄)
2
)

.
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Proof. Lemma 6 asserts that deiding whether k 6∈ T (j)
is in PSPACE. Then we

use twie Lemma 3 (one for the sum and one for the produt). ⊓⊔

Proposition 7. There is a polynomial-time algorithm with Uniform VPSPACE0

tests whih on input x̄ outputs the rank m of its trunated sign ondition T (m)
.

Proof. The algorithm merely onsists in performing a binary searh thanks to

the polynomials of Lemma 7: if the trunated sign ondition of the input x̄ is

T (m)
, then

∏

j≤i

(
∑

k 6∈T (j) fk(x̄)
2
)

= 0 if and only if m ≤ i. By making i vary, we
�nd m in a number of steps logarithmi in the number of satis�able trunated

sign onditions, i.e. in polynomial time. ⊓⊔

6.2 Binary Searh for the Full Sign Condition

We say that a (full) sign ondition S is ompatible with the trunated sign

ondition T if ∀i, Ti = 0 ⇔ Si = 0 (i.e. they agree for �= 0� and for � 6= 0�).
Let N ′

denote the number of (full) satis�able sign onditions ompatible with

the trunated sign ondition of the input x̄. Obviously, N ′ ≤ N . The following

lemma is straightforward after Lemma 6 and Theorem 1.

Lemma 8. There is an algorithm using work spae polynomial in n whih, on

input (i, j, k), ouputs the j-th bit of the i-th satis�able sign ondition ompatible

with T (k)
.

Sine we know the trunated sign ondition of x̄ after running the algorithm

of Proposition 7, we know whih polynomials vanish at x̄. We an therefore

disard the zeros in the (full) ompatible satis�able sign onditions. Hene we

are now onerned with two-valued sign onditions, that is, elements of {−1, 1}s′
with s′ ≤ s. In what follows arithmeti over the �eld of two elements will be

used, hene it will be simpler to onsider that our sign onditions have values

among {0, 1} instead of {−1, 1}: 0 for > 0 and 1 for < 0. Thus sign onditions

are viewed as vetors over {0, 1}, or alternately as subsets of {1, . . . , s′}. The set
{0, 1}s′ is endowed with the inner produt u.v =

∑

i uivi(mod 2), and we say

that u and v are orthogonal whenever u.v = 0 (see [7℄).

The following proposition from [7℄ will be useful. It onsists in an improve-

ment of the result of [11℄: �rst (and most importantly), it is onstrutive, and

seond, the range [N ′/2−
√
N ′/2, N ′/2 +

√
N ′/2] here is muh better than the

original one [N ′/3, 2N ′/3].

Proposition 8. Let V be a set of N ′
vetors of {0, 1}s′.

1. There exists a vetor u orthogonal to at least N ′/2 −
√
N ′/2 and at most

N ′/2 +
√
N ′/2 vetors of V .

2. Suh a vetor u an be found on input V by a logarithmi spae algorithm.

Our aim is to �nd the sign ondition of x̄. We will use Proposition 8 in

order to divide the ardinality of the searh spae by two at eah step. This

is based on the following observation: if u ∈ {0, 1}s′, the value of the produt
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∏

j∈u fj(x̄) is negative if the inner produt of u and the sign ondition of x̄ is

1, and is positive otherwise. The idea is then to hoose u judiiously so that

the number of satis�able sign onditions having the same inner produt with

u as the sign ondition of x̄ is halved at eah step. Therefore, in a logarithmi

number of steps, the sign ondition of x̄ will be uniquely determined. This gives

the following algorithm for �nding the sign ondition of x̄.

� Let E be the set of all the satis�able sign onditions.

� While E ontains more than one element, do

• Find by Proposition 8 a vetor u orthogonal to at least |E|/2−
√

|E|/2
and at most |E|/2 +

√

|E|/2 vetors of E.

• Let b be the result of the test �
∏

j∈u fj(x̄) < 0?�.

• Let the new E be the set of all sign onditions in E whih have inner

produt b with u.

� Enumerate all the satis�able sign onditions and �nd the one that produes

exatly the same results as in the loop: this is the sign ondition of x̄.

Note that the number of steps is O(logN ′), whih is polynomial in n. The last
step of this algorithm (namely, reovering the rank of the sign ondition of x̄
from the list of results of the loop) is detailed in Setion 6.3.

We now show how to perform this algorithm in polynomial time with

Uniform VPSPACE0
tests. The main tehnial di�ulty is that aording to De�-

nition 6 we an use only one VPSPACE family, whereas we want to make adaptive

tests. We therefore have to store the intermediate results of the preeding tests in

some variables c̄ (a �list of hoies�) of the VPSPACE polynomial. Proposition 8

shows that, by reusing spae, there exists a logspae algorithm that, given any set

V of N ′
vetors together with a �list of hoies� c ∈ {0, 1}l (with l = O(logN ′)),

enumerates l + 1 vetors u(1), . . . , u(l+1)
satisfying the following ondition (⋆):

� u(1)
is orthogonal to at least N ′/2 −

√
N ′/2 and at most N ′/2 +

√
N ′/2

vetors of V .

� Let Vi ⊆ V be the subset of all the vetors v ∈ V satisfying ∀j ≤ i, v.u(j) =
cj . Then the vetor u(i+1)

is orthogonal to at least |Vi|/2−
√

|Vi|/2 and at

most |Vi|/2 +
√

|Vi|/2 vetors of Vi.

Note that |Vi| is roughly divided by 2 at eah step, so the number of steps is

O(logN ′). In partiular, sine s′ and N ′
are simply exponential, the following

lemma is easily derived by ombining what preedes with Lemma 8.

Lemma 9. There is an algorithm using work spae polynomial in n whih, on

input (i, j, k, c) in binary, outputs the j-th bit of u(i) ∈ {0, 1}N ′

, where the vetors

u(1), . . . , u(l+1)
satisfy ondition (⋆) for the input onsisting of:

� the set V of the N ′
(full) satis�able sign onditions ompatible with T (k)

,

� together with the list of hoies c ∈ {0, 1}l.
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Lemma 10. There exists a Uniform VPSPACE0
family (hn) satifsying, for real

x̄ and boolean (i, k, c):

hn(x̄, i, k, c) =
∏

j∈u(i)

fj(x̄),

where u(1), . . . , u(l+1)
are de�ned as in Lemma 9 (in partiular they depend on

T (k)
).

Proof. Lemma 9 asserts that deiding whether j ∈ u(i)
is done in polynomial

spae. The use of Lemma 3 then onludes the proof. ⊓⊔

Therefore, by a Uniform VPSPACE0
test, one is able to know the sign of the

polynomial hn(x̄, i, k, c) =
∏

j∈u(i) fj(x̄). As mentioned before, this gives us the

inner produt of u(i)
and the (full) sign ondition of x̄: this sign is < 0 if and

only if the inner produt is 1. By beginning with c = 0 · · · 0 (step 1), and at step

i ≥ 2 letting ci−1 = 1 if and only if the preeding test was < 0, the number

of sign onditions that have the same inner produts as that of x̄ is divided by

(roughly) two at eah step. At the end, we therefore have a list of hoies c that
only the sign ondition of x̄ ful�lls. This proves the following lemma.

Lemma 11. There is a polynomial-time algorithm with Uniform VPSPACE0

tests whih on input x̄ outputs the list of hoies c (de�ned as above) whih

uniquely haraterizes the sign ondition of x̄, provided we know the rank k of

the trunated sign ondition T (k)
of x̄.

We are now able to reover the rank of the sign ondition of x̄ from this

information, as explained in the next setion.

6.3 Reovering the Rank of the Sign Condition

Lemma 12. There is an algorithm using work spae polynomial in n whih, on

input c ∈ {0, 1}l (a list of hoies) and k, outputs the rank of a satis�able sign

ondition ompatible with T (k)
that ful�lls the list of hoies c.

Proof. In polynomial spae we reompute all the vetors u(i)
as in Lemma 9,

then we enumerate all the sign onditions thanks to Theorem 1 until we �nd one

that ful�lls the list of hoies c. ⊓⊔

The proof of Theorem 3 follows easily from Proposition 7 and Lemmas 11�12.

6.4 A Polynomial-time Algorithm for PARR Problems

Remember that A ∈ PAR0
R
and (Cn) is a uniform family of polynomial-depth

algebrai iruits deiding A.

Lemma 13. There is a (boolean) algorithm using work spae polynomial in n
whih, on input i (the rank of a satis�able sign ondition), deides whether the

elements of the i-th satis�able sign ondition S are aepted by the iruit Cn.



VPSPACE and a Transfer Theorem over the Reals 19

Proof. We follow the iruit Cn level by level. For test gates, we ompute the

polynomial f to be tested. Then we enumerate the polynomials f1, . . . , fs as

in Proposition 6 for the iruit Cn and we �nd the index j of f in this list.

By onsulting the j-th bit of the i-th satis�able sign ondition with respet to

f1, . . . , fs (whih is done by the polynomial-spae algorithm of Theorem 1), we

therefore know the result of the test and an go on like this until the output

gate. ⊓⊔

Theorem 4. Let A ∈ PAR0

R
. There exists a polynomial-time algorithm with

Uniform VPSPACE0
tests that deides A.

Proof. A is deided by a uniform family (Cn) of polynomial depth algebrai

iruits. On input x̄, thanks to Theorem 3 we �rst �nd the rank of the sign

ondition of x̄ with respet to the polynomials f1, . . . , fs of Proposition 6. Then

we onlude by Lemma 13. ⊓⊔

Theorem 2 follows immediately from this result. One ould obtain other ver-

sions of these two results by hanging the uniformity onditions or the role of

onstants.
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