
ar
X

iv
:0

81
1.

00
37

v2
 [

cs
.C

C
]

 1
 J

an
 2

01
0

A complexity dichotomy for hypergraph partition functions∗

Martin Dyer
School of Computing
University of Leeds
Leeds LS2 9JT, UK

Leslie Ann Goldberg
Department of Computer Science,

University of Liverpool,
Liverpool L69 3BX, UK

Mark Jerrum
School of Mathematical Sciences,
Queen Mary, University of London

Mile End Road, London E1 4NS, UK

November 15, 2018

Abstract

We consider the complexity of counting homomorphisms from an r-uniform hypergraph G
to a symmetric r-ary relation H . We give a dichotomy theorem for r > 2, showing for which H
this problem is in FP and for which H it is #P-complete. This generalises a theorem of Dyer
and Greenhill (2000) for the case r = 2, which corresponds to counting graph homomorphisms.
Our dichotomy theorem extends to the case in which the relation H is weighted, and the
goal is to compute the partition function, which is the sum of weights of the homomorphisms.
This problem is motivated by statistical physics, where it arises as computing the partition
function for particle models in which certain combinations of r sites interact symmetrically. In
the weighted case, our dichotomy theorem generalises a result of Bulatov and Grohe (2005) for
graphs, where r = 2. When r = 2, the polynomial time cases of the dichotomy correspond simply
to rank-1 weights. Surprisingly, for all r > 2 the polynomial time cases of the dichotomy have
rather more structure. It turns out that the weights must be superimposed on a combinatorial
structure defined by solutions of an equation over an Abelian group. Our result also gives a
dichotomy for a closely related constraint satisfaction problem.

1 Introduction

We consider the complexity of counting homomorphisms from an r-uniform hypergraph G to a
symmetric r-ary relation H. We will give a dichotomy theorem for r > 2, showing that counting is
in polynomial time for certain H and is #P-complete for the remainder. Moreover our dichotomy
is effective, meaning that there is an algorithm that takes H as input and determines whether
the counting problem is polynomial time solvable or whether it is #P-complete. This generalises
a theorem of Dyer and Greenhill [10] for the case r = 2, which corresponds to counting graph
homomorphisms or H-colourings.

∗Partly funded by the EPSRC grant “The complexity of counting in constraint satisfaction problems”. Some of

the work was done while the authors were visiting the “Combinatorics and Statistical Mechanics” programme of the

Isaac Newton Institute for Mathematical Sciences, University of Cambridge.

1

http://arxiv.org/abs/0811.0037v2

Our dichotomy extends to the case in which the relation H is weighted, and we wish to compute
the partition function, which is the sum of weights of all homomorphisms. Here our dichotomy
theorem extends a result of Bulatov and Grohe [4] for the case of graphs, r = 2. In the graph
dichotomy, the polynomial time cases correspond simply to weights which form rank-1 matrices.
Surprisingly, for all r > 2, the polynomial time solvable cases are more structured. It turns out
that the weights must be superimposed on a combinatorial structure defined by solutions of an
equation over an Abelian group. We note that this already appears in a disguised form in the case
r = 2. The bipartite case, which has no obvious analogue for r > 2, corresponds to the equation
α1 + α2 = 1 over the group Z2.

A motivation for considering this question comes from statistical physics. Identifying V (G) with
a set of sites and D with a set of q spins, the quantity that we wish to compute, Zg(G), can be
viewed as the partition function of a statistical physics model in which certain sets of r sites interact
symmetrically, and their interaction contributes to the Hamiltonian of the system. The partition
function then gives the normalising constant for the Gibbs distribution of the system. The sets of
r interacting sites are the edges of G. (Sometimes, an edge of size greater than 2 is referred to as
a “hyperedge”, but we do not use that terminology here.) Clearly, the sites in an edge should be
distinct, although their spins need not be. In this application, the edges would usually represent
sets of sites which are in close physical proximity.

1.1 Notation and definitions

An r-uniform hypergraph G was defined by Berge [1] to be a system of subsets of a set V (G), where
n = |V (G)|, in which each subset has cardinality r. The elements of V (G) are the vertices of the
hypergraph, and the subsets are its edges. Then E(G) denotes the edge set of G. Let M = |E(G)|.
Note that the edges of G are distinct sets, otherwise the set system is a multihypergraph. Note also
that the edges are sets, not multisets, otherwise the multiset system has been called a hypergraph
with multiplicities [12]. Note that “r-uniform hypergraph with multiplicities” is synonymous with
“symmetric r-ary relation”. A loop is then a (multiset) edge in which all r vertices are the same [12].
Therefore a simple graph G = (V,E) (having no loops or parallel edges) is a 2-uniform hypergraph,
a graph with parallel edges is a 2-uniform multihypergraph, and a graph with loops is a 2-uniform
hypergraph with multiplicities, or a symmetric binary relation.

Let D be a finite set with q = |D|. We will assume q ≥ 2, since the cases q ≤ 1 are trivial. For
some r ≥ 3, we consider a symmetric r-ary function g with domain D and codomain a set of real

numbers. The codomain we will choose is the set of nonnegative algebraic numbers, Q
≥0

. Thus Q

denotes the field of all algebraic numbers, and we let Q
>0

denote the positive numbers in Q. Our
principal reason for this choice is that arithmetic operations and comparisons on such numbers can
be carried out exactly on a Turing machine. See, for example, [6]. Moreover, since our analysis
is entirely concerned with polynomial equations, it is natural to work in Q, which is the algebraic
closure of the rational field Q.

Given a symmetric function g : Dr → Q
≥0

and an r-uniform hypergraph G as input, the partition
function associated with g is

Zg(G) =
∑

σ:V (G)→D

∏

(u1,...,ur)∈E(G)

g(σ(u1), . . . , σ(ur)). (1)

Eval(g) is the problem of computing Zg(G), given the input G. Each choice for the function g leads
to a computational problem which we will call Eval(g), and we may ask how the computational

2

complexity of Eval(g) varies with g.

We may view (1) as the evaluation of a multivariate polynomial function of the weights g(x)
(x ∈ Dr). If there are N different irrational weights ξ1, ξ2, . . . ξN , we can perform the necessary
computations in the field Q(ξ1, ξ2, . . . ξN). It is known that this field is equivalent to Q(θ) for a
single algebraic number θ, the primitive element, and an algorithm to determine θ exists. We do not
need to consider the efficiency of this algorithm, since N is a constant. The standard representation
of a number in Q(θ) is a constant degree polynomial in θ with rational coefficients. Arithmetic
operations in Q(θ) can be carried out in this representation. For details, see [6]. We assume
that g is pre-processed so that all weights are given in this standard representation. Some of our
intermediate reductions seemingly require computing in larger algebraic number fields. This is true
even if all original weights are rational, and justifies our choice of Q as the codomain of g. We
will suppose, without further comment, that the necessary algebraic numbers are adjoined to Q(θ)
as required. In any case, we compute only in numbers fields which have constant degree over Q.
Despite this increase in field size during our reductions, we will show that the resulting algorithm
for the polynomial time solvable cases can perform its computations entirely within Q(θ). Note
that the exact representation in Q(θ) can also be used to compute in FP any polynomial number
of bits of the binary expansion of Zg(G), if this is required.

It is easy to bound the number of different monomials which occur in (1). Suppose there are K
nonzero weights, for some 0 ≤ K ≤

(
q
r

)
. Then the polynomial (1) has at most

(
M +K − 1

K − 1

)
= O(MK−1)

monomial terms, which is polynomial in the size of the input. Each monomial can be computed
exactly in FP, working in the field Q(θ). The coefficient of each monomial is an integer, which is
easily seen to be computable in #P. The nondeterministic Turing machine guesses σ : V (G) → D,
computes the term in (1) as a monomial in the weights and accepts if it is the chosen monomial.

Therefore Zg(G) can be computed exactly in FP#P as an element of Q(θ). Consequently, showing

that Zg(G) is #P-hard implies that it is complete for FP#P. We make use of this observation
below.

It will be helpful to describe a constraint satisfaction problem which is closely related to Eval(g).
An instance I of #CSP(g) consists of a set V (I) = {v1, . . . , vn} of variables and a multiset E(I) of
constraints. Each constraint has a scope, (u1, . . . , ur), which is a tuple of r variables. The partition
function Zg(I) is given by

Zg(I) =
∑

σ:V (I)→D

∏

(u1,...,ur)∈E(I)

g(σ(u1), . . . , σ(ur)). (2)

Thus, every instance G of Eval(g) can be viewed as an instance of #CSP(g) by taking the vertices
as variables and the edges as constraint scopes. The value of the partition function that gets
output is the same in both cases. Thus, we have a trivial polynomial time reduction from Eval(g)
to #CSP(g). The opposite is not necessarily true, because a constraint scope (u1, . . . , ur) of an
instance I of #CSP(g) might not be an edge – the same variable might appear more than once
amongst u1, . . . , ur. Also, the same scope might appear more than once in E(I). So an instance
I of #CSP(g) might not be a properly-formed instance of Eval(g). In fact, I is a multihypergraph
with multiplicities in general, rather than a hypergraph. Nevertheless, our main result applies also
to the problem #CSP(g) — see Corollary 3. We note that both the Eval(g) and the #CSP(g)
problems have been studied extensively.

3

The problem #CSP(g) may be generalised to the case in which the parameter g is replaced by a

set of functions Γ. If Γ is a set of functions (of various arities) from D to Q
≥0

, then #CSP(Γ) is
the problem of computing the partition function of an instance I in which each constraint with
r-ary scope specifies a particular r-ary function from Γ which should be applied to the scope in the
partition function. See [4] or [9] for further details. If the functions in Γ are not required to have
any additional properties, like symmetry or given arity, #CSP(Γ) is actually no more general than
#CSP(g), at least from the viewpoint of computational complexity. It can be shown that the two
problems have the same complexity under polynomial time reductions [5]. Note, however, that the
reduction from #CSP(Γ) to #CSP(g) given in [5] does not preserve symmetry. So this equivalence
does not permit us to replace a family Γ of symmetric functions by a single symmetric function g.
This holds even in the simplest possible case in which Γ has two unary functions. Hence, restricted
to symmetric functions, #CSP(Γ) may be a more general problem than #CSP(g), but we do not
consider it further here.

1.2 Previous work

The computational complexity of problems of the type we consider here was first investigated by
Dyer and Greenhill [10], who examined the complexity of Eval(g) in the special case in which r = 2
and g : D2 → {0, 1}, so g is equivalent to a symmetric relation on D. This is the problem of
counting homomorphisms from an input simple graph G to a fixed (undirected) graph H, possibly
with loops, where the function g represents the adjacency matrix of H. They showed that there is
a polynomial time algorithm when each connected component of H is either a complete unlooped
bipartite graph or a complete looped graph. In all other cases the counting problem Eval(g) is
#P-complete.

More generally, Bulatov and Grohe [4] considered the complexity of #CSP(g) when g is a symmetric
binary function on D. If the input is a simple graph G, we can think of this as counting weighted
homomorphisms from G to an undirected graph H with nonnegative edge weights. The function
g is equivalent to the weighted adjacency matrix A of H. If H is connected, then we say that the
matrix A is “connected”, otherwise the “connected components” of A correspond to the connected
components of the graph H. Similarly, we say that A is bipartite if and only if H is bipartite. In
this setting, Bulatov and Grohe [4] established the following important theorem, which is central
to our analysis.

Theorem 1 (Bulatov and Grohe). Let A be a symmetric matrix with non-negative real entries.

(1) If A is connected and not bipartite, then Eval(A) is in polynomial time if the row rank of A
is at most 1; otherwise Eval(A) is #P-hard.

(2) If A is connected and bipartite, then Eval(A) is in polynomial time if the row rank of A is at
most 2; otherwise Eval(A) is #P-hard.

(3) If A is not connected, then Eval(A) is in polynomial time if each of its connected components
satisfies the corresponding condition stated in (1) or (2); otherwise Eval(A) is #P-hard.

Although Theorem 1 is stated for real numbers, we will make use of it only in the case of the
algebraic numbers, since it is not clear to us how it extends to the models of real computation
discussed in [4]. We prefer to work entirely in the standard Turing machine model of computation,
though there may well be models of real computation in which Theorem 1 is valid. For algebraic

4

numbers, which include the rationals, all the arithmetic operations and comparisons required in
our reductions, and those of [4], can be carried out exactly in the Turing machine model.

In the unweighted case of #CSP(Γ), where all functions in Γ have codomain {0, 1}, Bulatov [2] has
recently shown that there is a dichotomy between those Γ for which #CSP(Γ) is polynomial time
solvable, and those for which it is #P-complete. The dichotomy can be extended to the case in
which all functions in Γ have codomain Q≥0, the nonnegative rational numbers, using polynomial
time reductions [5]. However, the reductions involved do not seem to extend to functions with

codomain Q
≥0

.

Establishing the existence of a dichotomy for #CSP(Γ) is a major breakthrough. Nevertheless,
the techniques of [2] shed very little light on which Γ render #CSP(Γ) polynomial time solvable,
and which Γ render it #P-hard. In the current state of knowledge, Bulatov’s dichotomy [2] is not
effective, and its decidability is an open question.

1.3 The new results

Our main theorem, Theorem 2, gives a dichotomy for the case in which Γ contains a single symmetric
function g. For this problem, we identify a set of functions g for which Eval(g) is computable in

FP, and we show that, for every other function g, Eval(g) is complete for FP#P.

We examine both Eval(g) and #CSP(g) in this setting, and give an explicit dichotomy theorem
in both cases, extending the theorems of Dyer and Greenhill [10] and Bulatov and Grohe [4] to
r > 2. In the r > 2 case, the problem Eval(g) can be understood as evaluating sums of weighted
homomorphisms from an input hypergraph G to a fixed weighted hypergraph with multiplicities H.
The weights of edges in H are represented by the function g.

As in the r = 2 case, there is a dichotomy, but this time some nontrivial algebraic structure is
involved in the classification. The polynomial time solvable cases have rank-1 weights as before,
but this time, these weights are superimposed on a combinatorial structure defined by solutions to
an equation over an Abelian group. In particular, Eval(g) is polynomial time solvable if and only
if each connected piece of the domain factors as the cartesian product of two sets A and [s]. Then,
for any α1, . . . , αr ∈ A and i1, . . . , ir ∈ [s], the value of g((α1, i1), . . . , (αr, ir)) is equal to 0 unless
(α1, . . . , αr) is a solution to an equation in an Abelian group with domain A. In that case, the value
g((α1, i1), . . . , (αr, ir)) is just the product of some positive weights λi1 , . . . , λir . A “connected piece”
of the domain is defined as follows: two elements z and z′ are linked if there are some z2, . . . , zr−1

such that g(z, z2, ..., zr−1, z
′) > 0. In general, two elements z and z′ are connected if there is a

sequence of c elements z1, . . . , zc with z = z1 and z′ = zc such that each pair (zi, zi+1) is linked.
See Theorem 2 for details.

In fact, it turns out that there is only one way to factor the connected component of the domain
into A and [s] (see Theorem 4). Thus, there is a straightforward algorithm that takes g and
determines whether Eval(g) is in FP or is #P-hard. See Sections 7 and 8.

Our result is in a similar spirit to the result of Kĺıma, Larose and Tesson [11] which gives a
dichotomy for the problem of counting the number of solutions to a system of equations over a
fixed semigroup. Although our application is rather different, parts of our proof draw inspiration
from the proof of their theorem.

5

2 The main theorem

For 1 ≤ k ≤ r, we will define

f [k](z1, . . . , zk) =
∑

zk+1,...,zr∈D

g(z1, . . . , zr).

Note that f [k] is symmetric and that f [r](z1, . . . , zr) = g(z1, . . . , zr). Let

R[k] = {(z1, . . . , zk) : f
[k](z1, . . . , zk) > 0}

be the relation underlying f [k]. We will view relations either as subsets of Dk or as functions
Dk → {0, 1} according to convenience. To avoid trivialities, we assume that R[1] is the complete
relation, i.e., that all elements of D participate in the relation; if not, an equivalent problem can
be formed by simply removing the non-participating elements from D. For any k < r we have
f [k](z1, . . . , zk) =

∑
zk+1∈D

f [k+1](z1, . . . , zk+1) so if k ≥ 2 then (z1, z2) ∈ R[2] is equivalent to

“there exist z3, . . . , zk such that (z1, . . . , zk) ∈ R[k]”. Let ≡ be the equivalence relation which

is the transitive, reflexive closure of R[2]. The domain D is partitioned into equivalence classes
(“connected components”) D = D1 ∪ · · · ∪Dm by ≡.

We will use the following notation: We will let ℓ range over [m], and use it to refer to a particular
connected component Dℓ. When applied to any function as a subscript, it denotes the restriction

of that function to the relevant connected component. For example, f
[k]
ℓ : (Dℓ)

k → Q
≥0

denotes

the restriction of f [k] to the ℓth connected component Dℓ. Likewise, gℓ is the restriction of g to Dℓ.

Given the definition of ≡, it is clear that f [k] = f
[k]
1 ⊕ · · · ⊕ f

[k]
m (meaning that f [k](z1, . . . , zk) = 0

unless z1, . . . , zk are all in the same connected component). We can now state the main theorem.

Theorem 2. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3 and connected components
D1, . . . ,Dm as above. If g satisfies the following conditions, for all ℓ ∈ [m], then Eval(g) is in FP.

Otherwise, Eval(g) is complete for FP#P. Moreover, the dichotomy is effective.

• There is a set Aℓ and a positive integer sℓ, such that Dℓ is the Cartesian product of Aℓ and
[sℓ] (which we write as Dℓ

∼= Aℓ × [sℓ]).

• There are positive constants {λℓ,i : i ∈ [sℓ]} and a relation Sℓ ⊆ Aℓ such that, for α1, . . . , αr ∈
Aℓ and i1, . . . , ir ∈ [sℓ],

gℓ((α1, i1), . . . , (αr, ir)) = λℓ,i1 · · · λℓ,irSℓ(α1, . . . , αr).

• There is an Abelian group (Aℓ,+) and an equation α1 + · · · + αr = a (for some element
a ∈ Aℓ) which defines Sℓ in the sense that (α1, . . . , αr) ∈ Sℓ if and only if α1 + · · ·+ αr = a.

The algorithm used in the polynomial time solvable cases of Theorem 2 still works if the instance
is a CSP instance rather than a hypergraph. Thus, we have the following corollary.

Corollary 3. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3 and connected components
D1, . . . ,Dm as above. If g satisfies the conditions in Theorem 2 for all ℓ ∈ [m], then #CSP(g) is

in FP. Otherwise, #CSP(g) is complete for FP#P. Moreover, the dichotomy is effective.

Some of the#P-hardness proofs in the proof of Theorem 2 could be simplified if we allowed ourselves
a general CSP instance rather than a hypergraph, but we refrain from using this simplification
in order to obtain the strongest-possible result (that is, to obtain Theorem 2 rather than just
Corollary 3).

6

3 A restatement of the main theorem

We introduce some further notation and restate the main theorem more compactly. Along the way
we gather more information, e.g., about the factorization Dℓ

∼= Aℓ × [sℓ].

We define the equivalence relation ∼k on D as follows: z1 ∼k z
′
1 iff there is a λ in Q

>0
such that,

for all z2, . . . , zk ∈ D, f [k](z1, z2, . . . , zk) = λf [k](z′1, z2, . . . , zk). Note that ∼k refines ∼k−1. Also,

∼2 refines ≡ since, for any z1, z
′
1 ∈ D, z1 ∼2 z

′
1 implies that there exists z2 satisfying R[2](z1, z2)

and R[2](z′1, z2), which in turn implies z1 ≡ z′1.

Let [x][k] = {y : y ∼k x} be the equivalence class of x under ∼k. Choose a unique representative

x̄[k] ∈ [x][k]. Thus x̄[k] = ȳ[k] if and only if x ∼k y. Let A[k] =
{
x̄[k] : x ∈ D

}
. Let A

[k]
ℓ denote the

restriction of A[k] to Dℓ so A
[k]
ℓ =

{
x̄[k] : x ∈ Dℓ

}
.

Note that R[k] is consistent with ∼k in the sense that R[k](z1, . . . , zk) = R[k](z̄
[k]
1 , . . . , z̄

[k]
k), so we can

quotient R[k] by ∼k to get a relation S[k] = R[k]/∼k on A[k]. Note that S[k] is just the restriction

of R[k] to A[k]. Also, S
[k]
ℓ is the restriction of R

[k]
ℓ to A

[k]
ℓ .

Suppose k is in the range 2 ≤ k ≤ r. We say that g is k-factoring if the following conditions hold
for every ℓ ∈ [m].

1. There is a positive integer s
[k]
ℓ such that Dℓ is the Cartesian product of A

[k]
ℓ and [s

[k]
ℓ] (which

we write as Dℓ
∼= A

[k]
ℓ × [s

[k]
l]).

2. There are positive constants {λ
[k]
ℓ,i : i ∈ [s

[k]
ℓ]} such that, for α1, . . . , αk ∈ A

[k]
ℓ and i1, . . . , ik ∈

[s
[k]
ℓ],

f
[k]
ℓ ((α1, i1), . . . , (αk, ik)) = λ

[k]
ℓ,i1

· · ·λ
[k]
ℓ,ik
S
[k]
ℓ (α1, . . . , αk).

If g is k-factoring then we say that g is k-equational if, for every ℓ ∈ [m], there is an Abelian group

(A
[k]
ℓ ,+) and an equation α1 + · · · + αk = a (for some element a ∈ A

[k]
ℓ) which defines S

[k]
ℓ in the

sense that (α1, . . . , αk) ∈ S
[k]
ℓ if and only if α1 + · · · + αk = a.

Our main theorem (Theorem 2) can be restated as follows:

Theorem 4. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. If g is r-factoring
and r-equational then Eval(g) is in FP. Otherwise, Eval(g) is complete for FP#P. Moreover, the
dichotomy is effective.

Before proving Theorem 4, we prove that it is equivalent to Theorem 2. First, it is easy to see that
if g satisfies the conditions of Theorem 4 (that is, it is r-factoring and r-equational) then it also

satisfies the conditions of Theorem 2 (taking Aℓ to be A
[r]
ℓ , sℓ to be s

[r]
ℓ , and λℓ,i to be λ

[r]
ℓ,i). The

other direction is a little less obvious. Suppose that g satisfies the conditions of Theorem 2. Fix any
ℓ ∈ [m]. From the first condition of Theorem 2, we have Dℓ

∼= Aℓ × [sℓ]. Consider any α,α′ ∈ Aℓ

and any i, i′ ∈ [sℓ]. We will argue that (α, i) ∼r (α
′, i′) if and only if α = α′. First, suppose α = α′.

Then, for any α2, . . . , αr ∈ Aℓ and i2, . . . , ir ∈ [sℓ], the second condition of Theorem 2 gives

gℓ((α, i), (α2 , i2), . . . , (αr, ir)) = λℓ,iλℓ,i2 · · ·λℓ,irSℓ(α,α2, . . . , αr)

and
gℓ((α

′, i′), (α2, i2), . . . , (αr, ir)) = λℓ,i′λℓ,i2 · · · λℓ,irSℓ(α,α2, . . . , αr),

7

so, by the definition of ∼r, (α, i) ∼r (α
′, i′). Next, suppose (α, i) ∼r (α

′, i′). Then there is a positive
constant λ such that, for any α2, . . . , αr ∈ Aℓ and i2, . . . , ir ∈ [sℓ],

λℓ,iλℓ,i2 · · ·λℓ,irSℓ(α,α2, . . . , αr) = λλℓ,i′λℓ,i2 · · ·λℓ,irSℓ(α
′, α2, . . . , αr).

We conclude that, for any α2, . . . , αr ∈ Aℓ, Sℓ(α,α2, . . . , αr) = Sℓ(α
′, α2, . . . , αr). By the third

condition in Theorem 2, we conclude that α = α′. We have now shown that (α, i) ∼r (α
′, i′) if and

only if α = α′. This implies that we can take the set A
[r]
ℓ of unique representatives to be Aℓ and we

can take s
[r]
ℓ to be sℓ. Then, taking λ

[r]
ℓ,i to be λℓ,i, g is r-factoring and r-equational (so it satisfies

the conditions of Theorem 4). So we conclude that the two theorems are equivalent.

Now that we have shown that Theorem 4 is equivalent to Theorem 2, the rest of the paper will focus
on proving Theorem 4. The case r = 2 is that of weighted graph homomorphism, which was analysed
by Bulatov and Grohe [4]. Theorem 4 is true also when r = 2. In this situation, it could be viewed
as a restatement of their result. Note, however, that “2-equational” is a restricted notion that

places severe constraints on the groups (A
[2]
ℓ ,+) that can arise. Indeed the only possibilities that

are consistent with the connectivity relation ≡ are the 2-element group C2 (“bipartite component”)
and the trivial group (“non-bipartite component”).

It will follow from the proof of Theorem 4 (assuming that #P 6⊆ FP) that a symmetric function g
of arity r ≥ 3 that is r-factoring and r-equational is k-factoring and k-equational for all 2 ≤ k < r.

In fact, the Abelian groups (A
[k]
ℓ ,+) will all be trivial for k < r: non-trivial group structure is only

possible at the top level. As a first step in the proof of Theorem 4, we verify that non-trivial group
structure is only possible at the top level.

Lemma 5. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. If g is k-factoring and

k-equational for some k < r then for every ℓ ∈ [m] there are positive constants {λ
[k]
ℓ,i : i ∈ Dℓ} such

that, for i1, . . . , ik ∈ Dℓ,

f
[k]
ℓ (i1, . . . , ik) = λ

[k]
ℓ,i1

· · ·λ
[k]
ℓ,ik
.

Proof. g is k-factoring so Dℓ
∼= A

[k]
ℓ × [s

[k]
l] and, for α1, . . . , αk ∈ A

[k]
ℓ and i1, . . . , ik ∈ [s

[k]
ℓ],

f
[k]
ℓ ((α1, i1), . . . , (αk, ik)) = λ

[k]
ℓ,i1

· · · λ
[k]
ℓ,ik
S
[k]
ℓ (α1, . . . , αk).

Now consider α1, . . . , αk+1 ∈ A
[k]
ℓ and i1, . . . , ik+1 ∈ [s

[k]
ℓ]. If

f
[k+1]
ℓ ((α1, i1), . . . , (αk+1, ik+1)) > 0

then
f
[k]
ℓ ((α1, i1), . . . , (αk−1, ik−1), (αk, ik)) > 0

and
f
[k]
ℓ ((α1, i1), . . . , (αk−1, ik−1), (αk+1, ik+1)) > 0.

So since g is k-equational,

α1 + · · ·+ αk−1 + αk = α1 + · · ·+ αk−1 + αk+1 = a

so αk = αk+1. By symmetry, α1 = · · · = αk+1.

8

Now if ((α, i), (β, j)) ∈ R[2] then there exist α2, . . . , αk and i2, . . . , ik such that

f [k+1]((α, i), (β, j), (α2 , i2), . . . , (αk, ik)) > 0.

Thus, α = β. Taking the transitive closure, we note that if (α, i) and (β, j) are both in Dℓ then

α = β. Hence |A
[k]
ℓ | = 1 so Dℓ = [s

[k]
ℓ].

Our strategy for proving Theorem 4 is now as follows. Suppose Eval(g) is not #P-hard. We
prove, for k = 2, 3, . . . , r in turn, that g is k-factoring and k-equational. For k = 2 this follows
straightforwardly from Theorem 1. The inductive step from k to k + 1 is where the work lies, but
Lemma 5 plays a role. Ultimately, we deduce that g is r-factoring and r-equational. Conversely, if
g is r-factoring and r-equational, the partition function Zg may be computed in polynomial time
using existing algorithms for counting solutions to systems over Abelian groups, and hence Eval(g)
is polynomial time solvable.

4 Preliminaries

An easy observation that will be frequently used in the rest of this paper is the following.

Lemma 6. If Eval(f [k]) is #P-hard, for some 2 ≤ k < r, then so is Eval(g).

Proof. An instance of Eval(f [k]) is a k-uniform hypergraph. Simply pad each edge e = (u1, . . . , uk)
to size r by adding r− k fresh vertices as follows: (u1, . . . , uk, z

e
k+1, . . . , z

e
r). It is easy to verify that

this is a polynomial time reduction from Eval(f [k]) to Eval(g).

Another easy observation is that the partition function Zg(G) factorises if G is not connected. So
we may assume henceforth that the instance hypergraph G is connected.

For z ∈ D let λ′[k]z be defined so that, for all z2, . . . , zk ∈ D,

f [k](z, z2, . . . , zk) = λ′
[k]
z f

[k](z̄[k], z2, . . . , zk).

(Recall from the definition of ∼k that λ′[k]z does not depend on z2, ..., zk .) Then, by symmetry, we
have

f [k](z1, . . . , zk) = λ′
[k]
z1 · · ·λ′

[k]
zk
f [k](z̄

[k]
1 , . . . , z̄

[k]
k). (3)

Define
f̃ [k](z1, z

′
1) =

∑

z2,...,zk∈D

f [k](z1, z2, . . . , zk)f
[k](z′1, z2, . . . , zk).

Let R̃[k] be the (symmetric) binary relation underlying f̃ [k]. It will turn out that R̃[k] and ∼k

coincide when g is not #P-hard.

For the purposes of this paper, a symmetric relation R ⊂ Ak is said to be a Latin hypercube if, for
all α1, . . . , αk−1 ∈ A, there exists a unique αk ∈ A such that (α1, . . . , αk) ∈ R. Note that symmetry
implies similar statements with the αis permuted. This definition specialises to the familiar notion
of Latin square if we take k = 3 and think of α1, α2 and α3 as ranging over rows, columns and
symbols, respectively. For k > 3 it is consistent with the existing, if less familiar, notion of Latin
(k − 1)-hypercube.

We use the following interpolation result, which is [10, Lemma 3.2]

9

Lemma 7. Let η1, . . . , ηm be known distinct nonzero constants Suppose that we know values
Z1, . . . , Zm such that Zp =

∑m
ℓ=1 γℓη

p
ℓ for 1 ≤ p ≤ m. The coefficients γ1, . . . , γm can be eval-

uated in polynomial time.

Lemma 7 has the following consequence, since if we have ηi = ηj below we can combine γi and γj
into γi + γj.

Corollary 8. Let η1, . . . , ηm be known nonzero constants Suppose that we know values Z1, . . . , Zm

such that Zp =
∑m

ℓ=1 γℓη
p
ℓ for 1 ≤ p ≤ m. The value Z0 =

∑m
ℓ=1 γℓ can be computed in polynomial

time.

As mentioned earlier, the base case (k = 2) in the proof of Theorem 4 will follow from the result
of Bulatov and Grohe [4]. They examined the complexity of #CSP(g) and there is no immediate
polynomial time reduction from #CSP(g) to Eval(g). The next lemma provides such a reduction
for the case that we require.

Lemma 9. Suppose h : D2 → Q
≥0

has connected components D1, . . . ,Dℓ, and underlying rela-
tion Rh. Suppose also that Rh has no bipartite components. If the restriction hℓ of h to any
component Dℓ is not rank 1, then Eval(h) is #P-hard.

Proof. Let I be an instance of #CSP(h). View I as a multigraph with possible loops and parallel
edges. Form the graph G as the “2-stretch” of I; that is to say, subdivide each edge of I by
introducing a new vertex. Note that G is a simple graph without loops. Define the symmetric

function h(2) : D2 → Q
≥0

by h(2)(x, y) =
∑

z∈D h(x, z)h(y, z). Note that Zh(G) = Zh(2)
(I), and

hence #CSP(h(2)) reduces to Eval(h).

Suppose Eval(h) is not #P-hard. Then #CSP(h(2)) is not #P-hard. By [4, Thm 1(1)], h(2), viewed

as a matrix, is a direct sum of rank-1 matrices; i.e., each h
(2)
ℓ has rank 1. But each h

(2)
ℓ is the “Gram

matrix” of hℓ (the product of hℓ, viewed as a matrix, and its transpose), and it is a elementary fact
that the rank of a matrix and its corresponding Gram matrix are equal [13]. Thus, for all ℓ, the
restrictions hℓ of h to Dℓ are rank 1.

5 Factoring

Lemma 10. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Either Eval(f [2]) is
#P-hard (which implies that Eval(g) is #P-hard) or g is 2-factoring and 2-equational.

Proof. First, note that R[2] has no bipartite components: If (z1, z2) ∈ R[2] then there is a z3 such

that (z1, z2, z3) ∈ R[3]. By the symmetry of f [3], we find that (z1, z3) and (z2, z3) are also in R[2],
so the component containing z1 and z2 is not bipartite.

Now, by [4] (using Lemma 9), f
[2]
ℓ has rank 1. Thus, there are positive constants {µz : z ∈ D} such

that, for every ℓ ∈ [m] and every z1, z2 in Dℓ, the following holds.

f
[2]
ℓ (z1, z2) = µz1µz2 . (4)

We conclude that all elements in Dℓ are related by ∼2, so |A
[2]
ℓ | = 1. Thus, we can take s

[2]
ℓ = |Dℓ|

and λ
[2]
ℓ,z = µz and the trivial equation (since |A

[2]
ℓ | = 1).

10

The parenthetical claim in the statement of this lemma and subsequent ones comes from Lemma 6.

Lemma 11. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Let k be an integer in
{3, . . . , r}. Suppose that g is (k− 1)-factoring and (k− 1)-equational. Either Eval(f [k]) is #P-hard
(which implies that Eval(g) is #P-hard), or all the following hold: (i) there are positive constants

{λ
[k]
z : z ∈ D} such that f [k](z1, . . . , zk) = λ

[k]
z1 · · ·λ

[k]
zk R

[k](z1, . . . , zk), (ii) for every connected

component ℓ ∈ [m], the relation S
[k]
ℓ is a Latin hypercube, and (iii) for every ℓ ∈ [m], the sum

∑
z∈[α][k] λ

[k]
z is independent of α ∈ A

[k]
ℓ .

Proof. Assume Eval(f [k]) is not #P-hard. Fix ℓ ∈ [m] and z1, z
′
1 ∈ Dℓ. By the Cauchy-Schwarz

inequality,
(∑

z2,...,zk∈Dℓ

f
[k]
ℓ (z1, z2, . . . , zk)f

[k]
ℓ (z′1, z2, . . . , zk)

)2
≤

∑

z2,...,zk∈Dℓ

f
[k]
ℓ (z1, z2, . . . , zk)

2
∑

z2,...,zk∈Dℓ

f
[k]
ℓ (z′1, z2, . . . , zk)

2,

i.e.,

f̃
[k]
ℓ (z1, z

′
1)

2 ≤ f̃
[k]
ℓ (z1, z1)f̃

[k]
ℓ (z′1, z

′
1), (5)

with equality precisely when z1 ∼k z
′
1. Note that the difference between the right-hand-side and

the left-hand-side in Equation (5) can be seen as a 2 by 2 determinant.

Now Eval(f̃ [k]) ≤ Eval(f [k]) since f̃ [k](u, v) can be simulated by a pair of constraints

f [k](u,w2, . . . , wk)f
[k](v,w2, . . . , wk)

using new variables w2, . . . , wk, so Eval(f̃ [k]) is not #P-hard. R̃[k] has no bipartite components

since it is reflexive, so by [4] and Lemma 9, f̃ [k] decomposes into a sum of rank-1 blocks.

When z1 6∼k z
′
1 we have strict inequality in (5), which implies

f̃
[k]
ℓ (z1, z

′
1) =

∑

z2,...,zk∈D

f [k](z1, z2, . . . , zk)f
[k](z′1, z2, . . . , zk) = 0, (6)

since otherwise f̃ [k] would not decompose into rank 1 blocks.

So for each choice of canonical representatives α2, . . . , αk in A
[k]
ℓ there is at most one representative

α1 ∈ A
[k]
ℓ such that fℓ

[k](α1, . . . , αk) > 0. There is at least one such representative α1 since, by
Lemma 5,

f
[k−1]
ℓ (α2, . . . , αk) = λ

[k−1]
ℓ,α2

· · ·λ
[k−1]
ℓ,αk

,

and the λ
[k−1]
ℓ,αj

values are positive. This is part (ii) of the lemma.

Recall the definition of λ′[k]z from Equation (3). For α ∈ A
[k]
ℓ , let λ̄α denote the sum λ̄α =∑

z∈[α][k] λ
′[k]
z . Similarly, let µ̄α =

∑
z∈[α][k] λℓ,z

[k−1]. Fix z2, . . . , zk ∈ Dℓ. By Lemma 5,

λ
[k−1]
ℓ,z2

· · ·λ
[k−1]
ℓ,zk

= f
[k−1]
ℓ (z2, . . . , zk) =

∑

z1∈Dℓ

f
[k]
ℓ (z1, . . . , zk)

=
∑

z1∈Dℓ

λ′
[k]
z1 · · · λ′

[k]
zk
f
[k]
ℓ (z̄

[k]
1 , . . . , z̄

[k]
k)

= λ̄α1λ
′[k]
z2 · · ·λ′

[k]
zk
f
[k]
ℓ (α1, z̄

[k]
2 , . . . , z̄

[k]
k),

11

where α1 is the unique representative in A
[k]
ℓ such that f [k](α1, z̄

[k]
2 , . . . , z̄

[k]
k) > 0. So for fixed

α2, . . . , αk ∈ A
[k]
ℓ , there is a representative α1 ∈ A

[k]
ℓ such that

µ̄α2 · · · µ̄αk
=

∑

z2∈[α2][k]

· · ·
∑

zk∈[αk][k]

λ
[k−1]
ℓ,z2

· · ·λ
[k−1]
ℓ,zk

=
∑

z2∈[α2][k]

· · ·
∑

zk∈[αk][k]

λ̄α1λ
′[k]
z2 · · ·λ′

[k]
zk
f
[k]
ℓ (α1, . . . , αk)

= λ̄α1 · · · λ̄αk
f
[k]
ℓ (α1, . . . , αk).

Since we have a Latin hypercube (Part (ii) of the lemma), any of α1, . . . , αk is determined by
the other k − 1 of them. Thus, we can derive a similar equality omitting any other µ̄αi

on the
left-hand-side. Now the right-hand-side of the above equality is symmetric in the αj ’s, and the left-
hand-side has exactly one αj missing, so by symmetry we conclude µ̄α1 = · · · = µ̄αk

and, further,

µ̄αj
is constant for αj ∈ A

[k]
ℓ . Moreover, λ̄α1 · · · λ̄αk

f
[k]
ℓ (α1, . . . , αk) is constant on representatives

α1, . . . , αk ∈ A
[k]
ℓ with f

[k]
ℓ (α1, . . . , αk) > 0. That is, for any set of k representatives α′

1, α
′
2, . . . , α

′
k ∈

A
[k]
ℓ with f

[k]
ℓ (α′

1, . . . , α
′
k) > 0, the value of that expression λ̄α′

1
· · · λ̄α′

k
f
[k]
ℓ (α′

1, . . . , α
′
k) is the same.

Now define λ
[k]
x = cℓλ

′[k]
x /λ̄[x][k], where cℓ is a constant, depending only on ℓ, to be determined

below. Then, whenever f
[k]
ℓ (z1, . . . , zk) > 0,

f
[k]
ℓ (z1, . . . , zk) = λ′

[k]
z1 · · · λ′

[k]
zk
f
[k]
ℓ (z̄

[k]
1 , . . . , z̄

[k]
k)

= c−k
ℓ λ[k]z1 · · ·λ[k]zk

λ̄[z1][k] · · · λ̄[zk][k] f
[k]
ℓ (z̄

[k]
1 , . . . , z̄

[k]
k).

But
c−k
ℓ λ̄[z1][k] · · · λ̄[zk][k]f

[k]
ℓ (z̄

[k]
1 , . . . , z̄

[k]
k)

is independent of z1, . . . , zk (assuming, as we are, that f
[k]
ℓ (z1, . . . , zk) > 0), so, by appropriate

choice of cℓ,

f
[k]
ℓ (z1, . . . , zk) = λz1

[k] · · · λzk
[k]R

[k]
ℓ (z1, . . . , zk).

The choice of component Dℓ was arbitrary, so a similar statement holds for f [k] over its whole
range, as required by part (i) of the lemma.

Finally, ∑

z∈[α][k]

λ[k]z = cℓ
∑

z∈[α][k]

λ′
[k]
z /λ̄α = cℓ,

establishing part (iii).

Lemma 12. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Let k be an integer in
{3, . . . , r}. Suppose that g is (k − 1)-factoring and (k − 1)-equational. Suppose there are positive

constants {λ
[k]
z : z ∈ D} such that f [k](z1, . . . , zk) = λ

[k]
z1 · · · λ

[k]
zk R

[k](z1, . . . , zk). Either Eval(f [k]) is

#P-hard (which implies that Eval(g) is #P-hard), or, for every ℓ ∈ [m], the multiset {λ
[k]
z : z ∈

[α][k]} is independent of the choice of α ∈ A
[k]
ℓ .

Proof. In preparation for the proof, consider the unary constraint U(x) applied to a variable x and

defined as follows: Take k − 1 new variables x2, . . . , xk then add the constraint f [k](x, x2, . . . , xk).

12

The resulting unary relation U(x) will be used in the reduction that follows. For any ℓ ∈ [m] and

α ∈ A
[k]
ℓ , let nℓ = |A

[k]
ℓ | and cℓ =

∑
z∈[α][k] λ

[k]
z (which, by Lemma 11, is independent of the choice

of α ∈ A
[k]
ℓ). For any z1 ∈ Dℓ,

U(z1) =
∑

z2,...,zk∈Dℓ

f
[k]
ℓ (z1, . . . , zk) =

∑

z2,...,zk∈Dℓ

λ[k]z1 · · ·λ[k]zk
R

[k]
ℓ (z1, . . . , zk)

=
∑

α2,...,αk∈A
[k]
ℓ

:(z̄
[k]
1 ,α2,...,αk)∈R

[k]
ℓ

∑

z2∈[α2][k],...,zk∈[αk][k]

λ[k]z1 · · ·λ[k]zk

= λ[k]z1

∑

α2,...,αk∈A
[k]
ℓ

:(z̄
[k]
1 ,α2,...,αk)∈R

[k]
ℓ

(∑

z2∈[α2][k]

λ[k]z2

)
· · ·

(∑

zk∈[αk][k]

λ[k]zk

)

= λ[k]z1 n
k−2
ℓ ck−1

ℓ ,

where the final equality uses part (ii) of Lemma 11.

The idea of the proof is to use U to “power up” vertex weights λ
[k]
z . In this way we discover that

not only is
∑

z∈[α][k] λ
[k]
z independent of α ∈ A

[k]
ℓ , but so also is

∑
z∈[α][k](λ

[k]
z)j for any positive

integer j. This implies that the multiset of weights on an equivalence class [α][k] is independent of

α ∈ A
[k]
ℓ .

For z1, . . . , zk ∈ Dℓ and j ≥ 1, define

ψz1 = (λ[k]z1 n
k−2
ℓ ck−1

ℓ)j−1λ[k]z1

and
h
[j]
ℓ (z1, . . . , zk) = ψz1 · · ·ψzkR

[k]
ℓ (z1, . . . , zk).

Let h[j] = h
[j]
1 ⊕· · ·⊕h

[j]
m . We will give a reduction from Eval(h[j]) to Eval(f [k]). Suppose G = (V,E)

is a k-uniform hypergraph (an input to Eval(h[j])). For j ≥ 1, the hypergraph G[j] is obtained from
G as follows: for each vertex v in G of degree dv, add (k − 1)(j − 1)dv new vertices and (j − 1)dv
new edges, each one incident at v and at k − 1 of the new vertices. Then

Zh
[j]
ℓ (G) =

∑

σ:V→Dℓ

∏

(u1,...,uk)∈E

h
[j]
ℓ (σ(u1), . . . , σ(uk))

=
∑

σ:V→Dℓ

∏

(u1,...,uk)∈E

ψσ(u1) · · ·ψσ(uk)R
[k]
ℓ (σ(u1), . . . , σ(uk))

=
∑

σ:V→Dℓ

∏

v∈V

(λ
[k]
σ(v)n

k−2
ℓ ck−1

ℓ)(j−1)dv
∏

(u1,...,uk)∈E

λ
[k]
σ(u1)

· · ·λ
[k]
σ(uk)

R
[k]
ℓ (σ(u1), . . . , σ(uk))

=
∑

σ:V→Dℓ

∏

v∈V

(λ
[k]
σ(v)n

k−2
ℓ ck−1

ℓ)(j−1)dv
∏

(u1,...,uk)∈E

f
[k]
ℓ (σ(u1), . . . , σ(uk))

= Zf
[k]
ℓ (G[j]).

Thus (for connected G)

Zh[j]
(G) =

∑

ℓ∈[m]

Zh
[j]
ℓ (G) =

∑

ℓ∈[m]

Zf
[k]
ℓ (G[j]) = Zf [k]

(G[j]),

13

so Eval(h[j]) ≤ Eval(f [k]).

Assume Eval(f [k]) is not #P-hard. Then Eval(h[j]) is not #P-hard for any j ≥ 1. Recall from the
statement of the lemma that g is (k − 1)-factoring and (k − 1)-equational. Then from Lemma 11
part (iii), ∑

z∈[α][k]

ψz = (nk−2
ℓ ck−1

ℓ)j−1
∑

z∈[α][k]

(λ[k]z)j

is independent of α ∈ A
[k]
ℓ for all j ≥ 1. This can only occur if the multiset {λ

[k]
z : z ∈ [α][k]} is

independent of α ∈ A
[k]
ℓ .

We will use the following corollary of Lemmas 10, 11 and 12.

Corollary 13. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Let k be an integer in
{3, . . . , r}. Suppose that g is (k− 1)-factoring and (k− 1)-equational. Either Eval(f [k]) is #P-hard
(which implies that Eval(g) is #P-hard), or g is k-factoring.

Proof. By Lemma 11 part (i) there are positive constants {λ
[k]
z : z ∈ D} such that

f [k](z1, . . . , zk) = λ[k]z1 · · ·λ[k]zk
R[k](z1, . . . , zk).

Fix any ℓ ∈ [m]. By Lemma 12, the multiset {λ
[k]
z : z ∈ [α][k]} is independent of the choice of

α ∈ A
[k]
ℓ Let s

[k]
ℓ be the size of this multiset. Then Dℓ

∼= A
[k]
ℓ × [s

[k]
ℓ] giving condition (1) in the

definition of k-factoring. Also, if the element z ∈ Dℓ corresponds to the i’th element of the ∼k

class [z][k] then the value λ
[k]
z just depends upon i (and on ℓ) — it is independent of the equivalence

class [z][k]. We denote this value as λ
[k]
ℓ,i . Thus, for α1, . . . , αk ∈ A

[k]
ℓ and i1, . . . , ik ∈ [s

[k]
ℓ],

f
[k]
ℓ ((α1, i1), . . . , (αk, ik)) = λ

[k]
ℓ,i1

· · ·λ
[k]
ℓ,ik
R

[k]
ℓ (α1, . . . , αk),

giving condition (2) in the definition of k-factoring.

Lemma 14. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Let k be an integer in
{3, . . . , r}. Suppose that g is k-factoring. Then, for every ℓ ∈ [m],

Zf
[k]
ℓ (G) = Λ

[k]
ℓ (G) ZS

[k]
ℓ (G),

where
Λ
[k]
ℓ (G) =

∏

v∈V (G)

∑

i∈[s
[k]
ℓ

]

(λ
[k]
ℓ,i)

dv . (7)

Proof. For G = (V,E),

Zf
[k]
ℓ (G) =

∑

σ:V→A
[k]
ℓ

,τ :V→[s
[k]
ℓ

]

∏

(u1,...,uk)∈E

f
[k]
ℓ ((σ(u1), τ(u1)), . . . , (σ(uk), τ(uk)))

=
∑

σ:V→A
[k]
ℓ

,τ :V→[s
[k]
ℓ

]

∏

(u1,...,uk)∈E

λ
[k]
ℓ,τ(u1)

· · ·λ
[k]
ℓ,τ(uk)

S
[k]
ℓ (σ(u1), . . . , σ(uk))

=
∑

σ:V→A
[k]
ℓ

(∏

(u1,...,uk)∈E

S
[k]
ℓ (σ(u1), . . . , σ(uk))

)(∑

τ :V→[s
[k]
ℓ

]

∏

v∈V

(
λ
[k]
ℓ,τ(v)

)dv
)

= ZS
[k]
ℓ (G) Λ

[k]
ℓ (G).

14

Lemma 15. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. Let k be an integer in
{3, . . . , r}. Suppose that g is (k− 1)-factoring and (k− 1)-equational. Either Eval(f [k]) is #P-hard

(which implies that Eval(g) is #P-hard), or Eval(S[k]) ≤ Eval(f [k]).

Proof. Suppose that G is a connected k-uniform hypergraph. For any positive integer, p, let

G1, . . . , Gp be copies of G. Let {vj1, . . . , v
j
n} be the vertices of Gj . Construct G[p] by taking

the union of G1, . . . , Gp along with n(k − 1)p new vertices and 2np new edges: For each i ∈

[n], t ∈ [k − 1] and j ∈ [p] we add a vertex uji,t. Then we add edges (uji,1, . . . , u
j
i,k−1, v

j
i) and

(uji,1, . . . , u
j
i,k−1, v

(j mod n)+1
i).

Now by Corollary 13, g is k-factoring, so Dℓ
∼= A

[k]
ℓ × [s

[k]
ℓ]. By Lemma 14,

Zf [k]
(G[p]) =

∑

ℓ∈[m]

Λ
[k]
ℓ (G[p]) ZS

[k]
ℓ (G[p]). (8)

We now look at the constituent parts of the right-hand-side of Equation (8). First,

ZS
[k]
ℓ (G[p]) =

∑

σ:V (G[p])→A
[k]
ℓ

∏

(w1,...,wk)∈E(G[p])

S
[k]
ℓ (σ(w1), . . . , σ(wk)).

By Part (ii) of Lemma 11, S
[k]
ℓ is a Latin hypercube. So, given the values σ(vj1), . . . , σ(v

j
n), the

values σ(uji,1), . . . , σ(u
j
i,k−2) (for i ∈ [n]) can be chosen arbitrarily from A

[k]
ℓ . Then there is exactly

one choice for each σ(uji,k−1) so that

(σ(uji,1), . . . , σ(u
j
i,k−1), σ(v

j
i)) ∈ S

[k]
ℓ .

Then for j < n to have

(σ(uji,1), . . . , σ(u
j
i,k−1), σ(v

(j mod n)+1
i)) ∈ S

[k]
ℓ

we must have σ(vj+1
i) = σ(vji). (If j = n then

(σ(uji,1), . . . , σ(u
j
i,k−1), σ(v

(j mod n)+1
i)) ∈ S

[k]
ℓ

just ensures v1i = vni so it adds no new constraint.) Thus,

ZS
[k]
ℓ (G[p]) =

∑

σ:V (G1)→A
[k]
ℓ

∏

(w1,...,wk)∈E(G1)

S
[k]
ℓ (σ(w1), . . . , σ(wk))

∣∣A[k]
ℓ

∣∣n(k−2)p

=
∣∣A[k]

ℓ

∣∣n(k−2)p
ZS

[k]
ℓ (G).

Also, using dΓ(w) to denote the degree of vertex w in hypergraph Γ,

Λ
[k]
ℓ (G[p]) =

∏

w∈V (G[p])

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)d
G[p] (w)

=




∏

i∈[n]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)dG(vi)+2




p


∏

i∈[n]

∏

t∈[k−1]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)2



p

,

15

where the first factor on the right-hand-side is the product over vertices vji and the second factor

is the product over vertices uji,t.

So Zf [k]
(G[p]) is equal to

∑

ℓ∈[m]

(∏

i∈[n]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)dG(vi)+2
)p(∏

i∈[n]

∏

t∈[k−1]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)2
)p∣∣A[k]

ℓ

∣∣n(k−2)p
ZS

[k]
ℓ (G).

We can now use Corollary 8 with Zp = Zf [k]
(G[p]), γℓ = ZS

[k]
ℓ (G) and

ηℓ =

(∏

i∈[n]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)dG(vi)+2
)(∏

i∈[n]

∏

t∈[k−1]

∑

h∈[s
[k]
ℓ

]

(
λ
[k]
ℓ,h

)2
)∣∣A[k]

ℓ

∣∣n(k−2)
.

Let us take stock. Suppose g is not #P-hard and that g is (k− 1)-factoring and (k− 1)-equational.
We know by Corollary 13 that g is k-factoring, and by Part (ii) of Lemma 11 that the various

relations S
[k]
ℓ are Latin hypercubes. The final step, the subject of the following section, is to show

that the latter have additional structure, namely that they are defined by equations over an Abelian
groups. It will follow that g is k-equational.

6 Constraint satisfaction and Abelian group equations

Let S be an arity-k relation on a ground set A. Recall our earlier discussion, in Section 1, on the
relation between Eval(S) and #CSP(S). Every instance G of Eval(S) can be viewed as an instance
of #CSP(S) by taking the vertices as variables and the edges as constraint scopes. However, we
noted that the converse is not true, since an instance I of #CSP(S) might not be a properly-formed
instance of Eval(S). Nevertheless, by copying variables, we can view an instance I of #CSP(S) as
being a k-uniform hypergraph G, together with some binary equality constraints on variables. For
variables U and W , the constraint = (U,W) is satisfied if and only if σ(U) = σ(W). The following
lemma shows that, in our setting, these equality constraints do not add any real power - they can
be implemented by interpolation.

Lemma 16. Let S = S1 ⊕ · · · ⊕ Sm be a symmetric k-ary relation on a ground set A, such that
each Sℓ is a Latin hypercube. Then #CSP(S) ≤ Eval(S).

Proof. For ℓ ∈ [m], let Aℓ be the ground set of Sℓ.

Let I be an instance of #CSP(S) comprising a connected hypergraph G with vertices {v1, . . . , vn}
and ν equality constraints. Note that this is without loss of generality – an instance I may be
represented as a hypergraph G together with equality constraints in which equality is only applied
to variables in the same connected component of G.

For a positive integer p, construct a hypergraph G[p] by combining G with νp(k−1) new vertices and

2νp new edges: For j ∈ [p] and i ∈ [ν] add vertices uji,1, . . . , u
j
i,k−1. If the i’th equality constraint is

= (vs, vt) then add the 2p edges (vs, u
j
i,1, . . . , u

j
i,k−1) and (vt, u

j
i,1, . . . , u

j
i,k−1) for j ∈ [p].

Now, suppose we are given the values σ(v1), . . . , σ(vn) in Aℓ. By the Latin hypercube property, we

can have (σ(vs), σ(u
j
i,1), . . . , σ(u

j
i,k−1)) ∈ S and (σ(vt), σ(u

j
i,1), . . . , σ(u

j
i,k−1)) ∈ S only if σ(vs) =

16

σ(vt). In that case, there are |Aℓ|
k−2 choices for σ(uji,1), . . . , σ(u

j
i,k−1). So

ZS(G[p]) =
∑

ℓ∈[m]

ZSℓ(I)|Aℓ|
(k−2)p.

We can now use Corollary 8.

The following lemma establishes the algebraic structure of the Sℓ, using a result of Bulatov and
Dalmau [3]. The proof itself has similarities to that of Pálfy’s theorem [14] (see, for example, [7]).

Lemma 17. Suppose k ≥ 3. Let S = S1 ⊕ · · · ⊕ Sm be a symmetric k-ary relation on a ground
set A such that, for each ℓ ∈ [m], Sℓ is a Latin hypercube. Suppose Eval(S) is not #P-hard. Then
for each ℓ ∈ [m], the relation Sℓ is defined by an equation over an Abelian group Gℓ = 〈Aℓ,+〉 as
follows: for some element a ∈ Aℓ, (α1, . . . , αk) ∈ Sℓ if and only if α1 + · · ·+ αk = a.

Proof. Suppose Eval(S) is not #P-hard. Fix ℓ ∈ [m], and fix any element aℓ ∈ Aℓ and denote it by
0. If (α, β, γ, 0, . . . , 0) ∈ Sℓ we will write γ = α · β. Then we will call (α, β, γ) a triple and denote
the set of triples by Tℓ. We will call (α, β, γ, 0, . . . , 0) ∈ Sℓ the corresponding padded triple. For
given α and β, the existence and uniqueness of γ in a padded triple follows directly from the fact
that Sℓ is a Latin hypercube. Thus we may regard α · β as a binary operation on Aℓ, and hence
Aℓ = 〈Aℓ, ·〉 is an algebra. By symmetry, the binary operation of Aℓ is commutative, and satisfies
the identity α · (α · β) = β for all α, β ∈ Aℓ. However, the operation is not necessarily associative.

By Lemma 16, #CSP(S) ≤ Eval(S), so #CSP(S) is not #P-hard. Thus, by [3], there is a Mal’tsev
polymorphism ϕ(α, β, γ) on A which preserves S. Recall that a Mal’tsev operation ϕ : A3 → A is
any function which satisfies the identities ϕ(α, β, β) = ϕ(β, β, α) = α for all α, β ∈ A. We may use
ϕ to calculate, as follows. Each line of a table is a triple in Tℓ, and the Mal’tsev polymorphism
implies that the bottom line is also a triple in Tℓ, using the fact that ϕ(0, 0, 0) = 0 in the padded
triples (which follows from the Mal’tsev property). Thus

α γ α · γ
β γ β · γ
γ β β · γ

ϕ(α, β, γ) β α · γ

and hence ϕ(α, β, γ) = β · (α · γ) is a term of the algebra Aℓ. We have

ϕ(α, β, γ) = β · (α · γ) = β · (γ · α) = ϕ(γ, β, α),

so ϕ is a symmetric Mal’tsev operation (in the sense that it is symmetric in the first and third
arguments).

Define a new binary operation + on Aℓ by α + β = ϕ(α, 0, β) = 0 · (α · β). It follows immediately
that + is commutative. Hence

0 + α = α+ 0 = 0 · (α · 0) = ϕ(α, 0, 0) = α,

so 0 is an identity for +. Denote 0 · 0 by 02, and define −α by α · 02. Then

(−α) + α = α+ (−α) = 0 · (α · (α · 02)) = 0 · (02) = 0 · (0 · 0) = 0,

so −α is an inverse for α. As usual, we write α− β for α+ (−β).

17

We have
α 02 α · 02

0 02 0
β β · 0 0

α+ β β · 0 α · 02

so α+ β = (β · 0) · (α · 02) and since + is commutative, α+ β = β + α = (α · 0) · (β · 02). Then

α · 0 β · 02 α+ β
02 0 0
γ · 0 0 γ

ϕ(α · 0, 02, γ · 0) β · 02 (α+ β) + γ

Therefore, since ϕ is symmetric in its first and third arguments,

(α + β) + γ = ϕ(α · 0, 02, γ · 0) · (β · 02) = ϕ(γ · 0, 02, α · 0) · (β · 02)

= (γ + β) + α = α+ (γ + β) = α+ (β + γ).

The operation + is therefore associative, and hence the algebra Gℓ = 〈Aℓ,+,−, 0〉 is an Abelian
group. Hence, since −X is defined to be X ·02 and α−02 = −(−α+02), we have, for any α, β ∈ Aℓ,

α− 02 02 −α+ 02

0 02 0
02 β −β

α β −α− β + 02

where we used the fact that, by definition, ϕ(x, 0, y) = x + y. Thus α · β = −α − β + 02., and it
follows that

Tℓ =
{
(α, β,−α − β + 02) ∈ A3

ℓ : α, β ∈ Aℓ

}

=
{
(α, β, γ) ∈ A3

ℓ : α+ β + γ = 02 in Gℓ

}
. (9)

In particular, (α,−α, 02) ∈ Tℓ for all α ∈ Aℓ, and hence (0, 0, 02) ∈ Tℓ. It follows further that

ϕ(α, β, γ) = β · (α · γ) = −β − (α · γ) + 02 = −β − (−α− γ + 02) + 02 = α− β + γ,

so the Mal’tsev operation is the term α− β + γ in the Abelian group Gℓ.

Now assume by induction that the conclusion of the lemma is true for any S of arity less than k. It is
true for arity 3 by (9), since then, for any ℓ ∈ [m], Sℓ = Tℓ. For larger k, suppose (α1, α2, . . . , αk) ∈
Sℓ is arbitrary. Then, using the Mal’tsev operation and padding the triples (α1,−α1, 0

2), (0, 0, 02),
we have

α1 α2 α3 α4 · · · αk

α1 −α1 02 0 · · · 0
0 0 02 0 · · · 0

0 α1 + α2 α3 α4 · · · αk

Now the (k − 1)-ary relation

S′
ℓ = {(α′

2, α
′
3, . . . , α

′
k) ∈ Ak−1

ℓ : (0, α′
2, α

′
3, . . . , α

′
k) ∈ Sℓ}

is symmetric and has the same Mal’tsev operation as Sℓ. Thus we can define the same Abelian
group Gℓ, and by induction we will have

S′
ℓ = {(α′

2, α
′
3, . . . , α

′
k) ∈ A

k−1
ℓ :

∑k
j=2 α

′
j = a′ in Gℓ},

18

for some a′ ∈ Aℓ. But we have shown that, for all (α1, α2, α3, . . . , αk) ∈ Sℓ, we have (α1 +
α2, α3 . . . , αk) ∈ S′

ℓ. Thus, since Gℓ is an Abelian group,

Sℓ = {(α1, α2, α3, . . . , αk) ∈ Ak
ℓ :

∑k
j=1 αj = a in Gℓ},

where a = a′, completing the induction and the proof.

7 Proof of Theorem 4

Proof. Let g : Dr → Q
≥0

be a symmetric function with arity r ≥ 3. First, suppose that g is
r-factoring and r-equational. Then applying Lemma 14 with k = r, we find that, for connected G,

Zg(G) =
∑

ℓ∈[m]

Λ
[r]
ℓ (G) ZS

[r]
ℓ (G). (10)

Now since g is r-equational, S
[r]
ℓ is defined by an equation over an Abelian group (A

[r]
ℓ ,+). Now,

by [11, Lemma 13], Eval(S
[r]
ℓ) is polynomial time solvable: The Abelian group is a direct product of

cyclic groups of prime power. For each of these cyclic groups, we just need to count the solutions
to a system of linear equations over the field Zp and this can be done in polynomial time (see [11]).

Thus, Eval(S
[r]
ℓ) is in FP. To show that Eval(g) is in FP, it remains to show that Λ

[r]
ℓ (G), as defined

in (7), can be computed in FP. This is immediate over the number field Q(θ, λ
[r]
ℓ,1, . . . , λ

[r]
ℓ,sℓ

). In

Section 8, we show that it can even be computed in FP over the number field Q(θ).

Suppose now that Eval(g) is not #P-hard. Then by Lemma 10, g is both 2-factoring and 2-
equational. Next suppose that, for some k ∈ {3, . . . , r}, g is (k−1)-factoring and (k−1)-equational.

Since Eval(g) is not #P-hard, we know that Eval(f [k]) is not #P-hard. By Corollary 13, g is k-

factoring. Suppose, for contradiction, that g is not k-equational. By Part (ii) of Lemma 11, each S
[k]
ℓ

is a Latin hypercube, so by Lemma 17, Eval(S[k]) is #P-hard. By Lemma 15, Eval(f [k]) is #P-hard,
giving the contradiction. So g is k-equational. By induction, g is r-factoring and r-equational.

It remains to consider the effectiveness of the dichotomy. For this, we must show that there is an
algorithm that determines whether g is r-factoring and r-equational. This is nearly identical to a
proof that the dichotomy in Theorem 2 is effective, however the notation is simpler in the latter
context, so we provide this proof next.

Lemma 18. The dichotomy in Theorem 2 is effective.

Proof. We must show that there is an algorithm that determines whether the conditions in The-
orem 2 are satisfied. The connected components D1, . . . ,Dm can easily be determined. Then, for
each ℓ ∈ [m], there are a constant number of possibilities for the decompositions Dℓ

∼= Aℓ × [sℓ]
(ℓ ∈ [m]) which can all be checked, if necessary. Then, for the third condition, there are only a
finite number of possibilities for the group structure, corresponding to the factorisations of |Aℓ|.
Again, these can all be checked to see if any defines Sℓ, for each ℓ ∈ [m].

For the second condition, for each ℓ ∈ [m], we need to decide the satisfiability of a system of the
form

g((α1, i1), . . . , (αr, ir)) = λℓ,i1 · · ·λℓ,ir for all (α1, . . . , αr) ∈ Sℓ and i1, . . . , ir ∈ [sℓ]. (11)

19

Thus we have

λℓ,i = g((α1, i), . . . , (αr, i))
1/r for all (α1, . . . , αr) ∈ Sℓ and i ∈ [sℓ], (12)

and hence (11) is equivalent to the system

g((α1, i1), . . . , (αr, ir))
r =

r∏

j=1

g((α1, ij), . . . , (αr, ij))

for all (α1, . . . , αr) ∈ Sℓ and i1, . . . , ir ∈ [sℓ], which can be decided in constant time by computation
in the number field Q(θ).

8 Computation of Zg(G) in Q(θ)

Observe that (7), (10) and (12) seem together to imply that, in the polynomial time computable
cases, we must compute Zg(G) in the number field Q(θ, λ1,1, . . . , λ1,s1 , . . . , λm,1, . . . , λm,sm), where,

for ℓ ∈ [m] and i ∈ [sℓ], λℓ,i = λ
[r]
ℓ,i is an r

th root of one of the original weights. This seems anomalous,

since Zg(G) is actually an element of Q(θ). We conclude by showing that the computation of Zg(G)
can be done entirely within Q(θ), as might be hoped.

To do this, we must expand the expressions

Λ
[r]
ℓ (G) =

∏

v∈V (G)

sℓ∑

i=1

(λℓ,i)
dv .

To simplify the text, we drop the subscript ℓ in the rest of this section, writing s for sℓ and λi for

λℓ,i and Λ[r] for Λ
[r]
ℓ . Thus, we wish to expand

Λ[r](G) =
∏

v∈V (G)

(s∑

i=1

λdvi

)
.

The exponents of λi (i ∈ [s]) in the monomials of the expansion of Λ[r](G) are given by

∑

v∈V (G)

δv,idv , where

s∑

i=1

δv,i = 1 and δv,i ∈ {0, 1} (i ∈ [s], v ∈ V (G)). (13)

Recall that M denotes the number of edges of G. Thus there are O(M s) possible monomials in the

λi, and the integer coefficient of each monomial
∏s

i=1 λ
Mi

i are given by computing the number of
solutions to systems of equations of the form

∑

v∈V (G)

δv,idv = Mi, where

s∑

i=1

δv,i = 1 and δv,i ∈ {0, 1} (i ∈ [s], v ∈ V (G)). (14)

This can be done for all 0 ≤ Mi ≤ rM (i ∈ [s]) in O(nM s) time by dynamic programming. An
easy counting argument shows that

∑
v∈V (G) dv = rM , so this returns a nonzero coefficient for the

monomial
∏s

i=1 λ
Mi

i only if
∑s

i=1Mi = rM . Thus, in fact, there are at most
(
rM + s− 1

s− 1

)
= O(M s−1)

20

such monomials, which is clearly polynomial in the input size.

Thus we can compute in FP a representation of Λ[r](G) as a multivariate polynomial with monomials∏s
i=1 λ

Mi

i such that
∑s

i=1Mi = rM and Mi ≥ 0 (i ∈ [s]). We can express each such monomial
in terms of the original weights, as follows. Let rij (i ∈ [s], j ∈ [M]) be nonnegative integers such

that
∑s

i=1 rij = r (j ∈ [M]) and
∑M

j=1 rij = Mi (i ∈ [s]). Such numbers always exist, though they

will usually be far from unique, and can be computed in O(M) time. They are the entries of a
contingency table with row totals Mi (i ∈ [s]) and column totals r (j ∈ [M]). See, for example, [8].
Now each column rij (j ∈ [M]) can be interpreted as an r-multiset {i1j , . . . , irj} ⊆ [s], where i ∈ [s]
appears with multiplicity rij . Thus, choosing any (α1, . . . , αr) ∈ S, we have

s∏

i=1

λMi

i =

M∏

j=1

s∏

i=1

λ
rij
i =

M∏

j=1

(
λi1j · · ·λirj

)
=

M∏

j=1

g((α1, i1j), . . . , (αr, irj)),

using (11). This can be computed in O(M) time in Q(θ), so Zg(G) can be evaluated in O(M s) time.
The most demanding part of the computation seems to be the O(nM s) time needed to determine
the relevant monomials by dynamic programming. But clearly all computations can be done in FP,
and by working entirely within Q(θ).

References

[1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970.

[2] A. Bulatov, The complexity of the counting constraint satisfaction problem, in Automata,
Languages and Programming, 35th International Colloquium (ICALP 2008) Part 1, Lecture
Notes in Computer Science 5125, Springer, 2008, pp. 646–661.

[3] A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint satis-
faction problem, Information and Computation 205 (2007), 651–678.

[4] A. Bulatov and M. Grohe, The complexity of partition functions, Theoretical Computer Science
348 (2005), 148–186.

[5] A. Bulatov, M. Dyer, L. Goldberg and M. Jerrum, personal communication.

[6] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics
138, Springer Verlag, Berlin, 1993.

[7] K. Denecke and S. Wismath, Universal algebra and applications in theoretical computer science,
Chapman and Hall/CRC, London, 2002.

[8] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, in Discrete probability
and algorithms (D. Aldous, P. Varaiya, J. Spencer and J. Steele, eds.), IMA Volumes on
Mathematics and its Applications 72, Springer Verlag, New York, 1995, pp. 15–41.

[9] M. Dyer, L. Goldberg and M. Jerrum, The complexity of weighted Boolean #CSP, SIAM
Journal on Computing, to appear.

[10] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random Struc-
tures and Algorithms 17 (2000), 260–289.

21

[11] O. Kĺıma, B. Larose and P. Tesson, Systems of equations over finite semigroups and the #CSP
dichotomy conjecture, in Mathematical Foundations of Computer Science, 31st International
Symposium (MFCS 2006), Lecture Notes in Computer Science 4162, Springer, 2006, pp. 584–
595.

[12] C. Lange and G. Ziegler, On generalized Kneser hypergraph colorings, Journal of Combinato-
rial Theory A 114 (2007), 159–166.

[13] L. Mirsky, An introduction to linear algebra, Dover, New York, 1990.

[14] P. Pálfy, Unary polynomials in algebras I, Algebra Universalis 18 (1984), 262–273.

22

	1 Introduction
	1.1 Notation and definitions
	1.2 Previous work
	1.3 The new results

	2 The main theorem
	3 A restatement of the main theorem
	4 Preliminaries
	5 Factoring
	6 Constraint satisfaction and Abelian group equations
	7 Proof of Theorem ??
	8 Computation of Zg(G) in Q ()

