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Homogeneous formulas and symmetric polynomials

Pavel Hrubeš∗ Amir Yehudayoff∗

Abstract

We investigate the arithmetic formula complexity of the elementary symmetric

polynomials Sk
n. We show that every multilinear homogeneous formula computing

Sk
n has size at least kΩ(log k)n, and that product-depth d multilinear homogeneous

formulas for Sk
n have size at least 2Ω(k1/d)n. Since Sn

2n has a multilinear for-

mula of size O(n2), we obtain a superpolynomial separation between multilinear

and multilinear homogeneous formulas. We also show that Sk
n can be computed

by homogeneous formulas of size kO(log k)n, answering a question of Nisan and

Wigderson. Finally, we present a superpolynomial separation between monotone

and non-monotone formulas in the noncommutative setting, answering a question

of Nisan.
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1 Introduction

We address two basic topics in arithmetic complexity: the power of homogeneity and

computing the symmetric polynomials. A basic structural result [3, 11] in arithmetic

complexity asserts that

(⋆) if a homogeneous polynomial of degree k has a formula of size s, then it has a

homogeneous formula of size at most sO(log k).

A natural question to ask is whether the upper bound given by (⋆) is tight, or perhaps the

true bound is, say, O(ks)? With our current techniques this question is unfortunately

out of reach. Most importantly, superpolynomial lower bounds on homogeneous formula

complexity (for low degree polynomials) are not known. Still, we can investigate this

question in restricted models of computation; we investigate the multilinear setting.

The elementary symmetric polynomials Sk
n (formally defined below) seem to be good

candidates for a separation in (⋆). Over an infinite field, they have non-homogeneous

formulas of size O(n2). In [6] it was conjectured that Sk
n requires homogeneous formulas

of size at least nΩ(log k), matching the upper bound given in (⋆). This, however, is not

the case – we show that Sk
n has homogeneous formulas of size kO(log k)n, which is linear

for a fixed k. In fact, the conjecture does not even hold for monotone formulas – Sk
n

have monotone formulas of size n1+o(1), if k is fixed.

The main part of this paper is devoted to multilinear homogeneous formulas comput-

ing Sk
n. In particular, we show that Sn

2n requires homogeneous multilinear formulas of

superpolynomial size. This implies a superpolynomial separation between multilinear

and homogeneous multilinear formulas. However, this bound does not match the bound

given by (⋆) – for a general k, the lower bound is of the form kΩ(log k)n (rather than

nΩ(log k)).

1.1 Results

Let us first give the usual definitions. An arithmetic circuit Φ over the field F is a

directed acyclic graph as follows. Every node in Φ of in-degree 0 is labelled by either a

variable or a field element in F. Every other node in Φ has fan-in at least two and is

labelled by either × or +. Nodes labelled by × are product nodes, and nodes labelled
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by + are sum nodes. An arithmetic circuit is called a formula, if the out-degree of every

node in it is one. A circuit Φ computes a polynomial Φ̂ in the obvious manner.

A polynomial f is homogeneous if the total degrees of all the monomials that occur in f

are the same. A polynomial f is multilinear if the degree of each variable in f is at most

one. A circuit Φ is homogeneous if every node in Φ computes a homogeneous polynomial.

A circuit Φ ismultilinear if every node in it computes a multilinear polynomial. A circuit

Φ over the real numbers is called monotone if every field element in Φ is a nonnegative

real number.

We define the size of a formula as the number of leaves in it1. The depth of a formula

is the length of the longest directed path in it. The product-depth of a formula Φ is the

largest number of product nodes in a directed path in Φ.

The elementary symmetric polynomial Sk
n is the polynomial in variables x1, . . . , xn de-

fined as ∑

i1<i2<···<ik

xi1xi2 · · ·xik ;

it is a homogeneous multilinear polynomial of degree k.

We show the following lower bounds on the size of multilinear homogeneous formulas

computing Sk
n.

Theorem 1. Let n ≥ 2k and d be nonzero natural numbers.

(i). Every homogeneous multilinear formula computing Sk
n has size at least kΩ(log k)n.

(ii). Every homogeneous multilinear formula of product-depth d computing Sk
n has size

at least 2Ω(k1/d)n.

In the case of Sn
2n, the first lower bound is superpolynomial and the latter exponential.

Since the symmetric polynomials have multilinear formulas of size O(n2) and product-

depth one (see Section 3.1), the theorem shows that homogeneous multilinear formulas

are superpolynomially weaker than multilinear formulas, and that constant depth ho-

mogeneous multilinear formulas are exponentially weaker than their nonhomogeneous

counterparts. Since monotone formulas are both homogeneous and multilinear, we have

1The total number of nodes in a tree where each internal node has fan-in at least two is at most

twice the number of leaves.
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a superpolynomial separation between monotone and non-monotone formulas. This

separation also holds in the noncommutative case, which answers a question raised in

[5]. The lower bounds are based on counting the number of monomials that occur in a

polynomial that is computed by a homogeneous multilinear formula. We get essentially

the same bounds as [8] get in the case of monotone formulas2. However, our arguments

are different than in [8], which may be useful for more general cases as well.

We also provide upper bounds on the formula complexity of Sk
n.

Theorem 2. Let n, k be nonzero natural numbers.

(i). Sk
n has a homogeneous formula of size kO(log k)n.

(ii). Sk
n has depth four (product-depth two) homogenous formula of size 2O(k1/2)n.

(iii). Sk
n has a monotone formula of size

2n · nlog( k−1
log(2n)

+1) ·
(
log(2n)

k − 1
+ 1

)k−1

= nO(log( k
log n

)).

For fixed k, all of the upper bounds given by Theorem 2 are essentially linear in n (i.e.,

linear in the first two cases, and n1+o(1) in the last one).

2 Lower bounds

In this section we prove the lower bounds given by Theorem 1.

2.1 Technical estimates

We need the following technical estimate.

Lemma 3. Let n ≥ 2k be nonzero natural numbers. Fix nozero natural numbers

k1, . . . , kp such that k1 + · · · + kp = k. Then for every natural number n1, . . . , np such

that n1 + · · ·+ np = n,
(
n1

k1

)
· · ·

(
np

kp

)
≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

2Our first lower bound can also be viewed as corollary of the bound in [8].
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Proof. 1) We shall first prove the lemma using the additional assumption that ki ≥ 2 for

every i = 1, . . . , p. We estimate the maximum of
(
n1

k1

)
· · ·

(
np

kp

)
with respect to n1, . . . , np

satisfying the given constraints.

First we show that we can assume 1.5ki ≤ ni for every i ∈ [p]. Let n1, . . . , np be

the integers where the maximum is attained. Assume without loss of generality that

n1/k1 ≥ n/k ≥ 2. For every i ∈ {2, . . . , p}, the choice of n1, . . . , np implies that(
n1−1
k1

)(
ni+1
ki

)
≤

(
n1

k1

)(
ni

ki

)
. Hence (ni + 1)/(ni + 1 − ki) ≤ n1/(n1 − k1), and so ni/ki ≥

n1/k1 − 1/ki ≥ 2− 1/2.

For i = 1, . . . , p and a real number z such that z > ki, define fi(z) =
zz

k
ki
i (z−ki)z−ki

. Thus

∂
∂z
fi = fi · ln(1/(1− ki/z)). Denote

F (z1, . . . , zp) = f1(z1)f2(z2) · · · fp(zp).

We shall determine the maximum of F on the set S ⊂ R
p defined by the constraints

z1 + · · ·+ zp = n and zi ≥ 1.5ki, i = 1, . . . , p. Since S is compact and F continuous, F

has a maximum on S. Let (z1, . . . , zp) ∈ S be the point at which F attains its maximum.

Our goal is to show that zi/ki = n/k for every i = 1, . . . , p. Assume without loss of

generality that z1/k1 ≤ zi/ki for every i = 2, . . . , p. Assume towards a contradiction

that there exists i = 2, . . . , p with z1/k1 < zi/ki, and consider f(z1 + x)f(zi − x) as a

function of x. Since

∂

∂x
f(z1 + x)f(zi − x)

∣∣∣
x=0

= f(z1)f(zi) ln

(
1− ki/zi
1− k1/z1

)
> 0,

there exists ε > 0 such that (z1 + ε, . . . , zi − ε, . . . , zp) ∈ S and f(z1 + ε)f(zi − ε) >

f(z1)f(zi); a contradiction to the choice of z1, . . . , zp. Hence, since z1+ · · ·+ zp = n and

k1 + · · ·+ kp = k, we have zi/ki = n/k for every i = 1, . . . , p. So the maximum value of

F on S is

∏

i=1,...,p

nki

kki

nn−ki

(n− k)zi−ki
=

nn

kk(n− k)n−k

Stirling’s approximation tells us that for every nonzero N,K ∈ N with 1.5K ≤ N ,

(1/3)K−1/2 NN

KK(N −K)N−K
≤

(
N

K

)
≤ K−1/2 NN

KK(N −K)N−K
,
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which implies

(
n1

k1

)
· · ·

(
np

kp

)
≤ (k1 · · · kp)−1/2F (n1, . . . np)

≤ (k1 · · · kp)−1/2 nn

kk(n− k)n−k

≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

2) Assume without loss of generality that k1, . . . , kℓ = 1, and denote k′ = k1 + · · ·+ kℓ
and n′ = n1 + · · ·+ nℓ. Since

(
n1

k1

)
· · ·

(
nℓ

kℓ

)
≤

(
n′

k′

)
, part 1) shows that

(
n1

k1

)
· · ·

(
np

kp

)
≤ 3k1/2(kℓ+1 · · · kp)−1/2

(
n− n′

k − k′

)(
n′

k′

)
≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

⊓⊔

2.2 In-degree two

Let f be a homogeneous polynomial of degree k. We say that f is balanced if there exist

p homogeneous polynomials f1, . . . , fp such that f = f1f2 · · · fp with

(i). (1/3)ik < deg fi ≤ (2/3)ik, i = 1, . . . , p− 1, and

(ii). deg(fp) = 1 .

For a balanced polynomial f , denote by minv(f) the number of variables that occur in

fp.

The following lemma shows that a small homogeneous formula can be written as a short

sum of balanced polynomials.

Lemma 4. Let Φ be a homogeneous formula with in-degree at most two of size s and

degree k > 0. Then there exist balanced polynomials f1, . . . , fs′ such that s′ ≤ s,

Φ̂ = f1 + · · ·+ fs′

and
∑

i=1,...,sminv(fi) ≤ s. If Φ is multilinear, so are f1, . . . , fs′.
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For a node w in a formula Φ, denote by Φw the sub-formula of Φ with output node w,

and by Φ(w=α) the formula obtained by deleting the edges going into w and labeling w

(which is now an input node) by the field element α.

Proof. Let us first note the following:

Claim 5. If Φ is a formula of degree k ≥ 2, then there exists a node w in Φ such that

(1/3)k ≤ deg(w) < (2/3)k, where deg(w) = deg(Φ̂w).

Proof. There exists a node v in Φ such that deg(v) ≥ (2/3)k, but for every child w

of v (i.e., the edge (w, v) occurs in Φ), deg(w) < (2/3)k. Hence v is a product node

v = w1 × w2. If deg(w1) ≥ deg(w2) then w = w1 has the correct properties, otherwise

set w = w2. ⊓⊔

We prove the lemma by induction on s and k. If k = 1, Φ̂ is a balanced polynomial

and minv(Φ̂) ≤ s, since Φ contains at most s variables. Assume that k ≥ 2. Let w be

a node in Φ of degree k′ such that (1/3)k ≤ k′ < (2/3)k; the node w exists by Claim 5.

Homogeneity implies that we can write

Φ̂ = h · Φ̂w + Φ̂(w=0),

where h is a polynomial of degree k−k′. Let sw denote the size of Φw and let s(w=0) denote

the size of Φ(w=0). Thus sw+s(w=0) ≤ s. By the inductive assumption, Φ̂w = h1+· · ·+hs′w

and Φ̂w=0 = g1 + · · · + gs′
(w=0)

, where s′w ≤ sw, s
′
w=0 ≤ sw=0, h1, . . . , hs′w are balanced

polynomials such that
∑

i minv(hi) ≤ sw, and g1, . . . , gs′
(w=0)

are balanced polynomials

such that
∑

j minv(gj) ≤ s(w=0). (It may happen that Φ̂(w=0) is the zero polynomial.)

Hence

Φ̂ = hh1 + · · ·+ hhsw + g1 + · · ·+ gs(w=0)
. (2.1)

Since (1/3)k < deg h ≤ (2/3)k and (1/3)k ≤ k′ < (2/3)k, hhi is a balanced polynomial

of degree k. Hence (2.1) is an expression of Φ̂ in terms of balanced polynomials. More-

over, minv(hhi) = minv(hi), and hence
∑

iminv(hhi) +
∑

j minv(gj) ≤ sw + s(w=0) ≤ s.

In the case that Φ is multilinear, we can assume without loss of generality that Φ is

in fact syntactically multilinear (see, for example, [7]), that is, for every product node

v = v1×v2 in Φ, the set of variables that occur in Φv1 and the set of variables that occur

in Φv2 are disjoint. This implies that the polynomials hh1, . . . , hhs′w are multilinear. The

lemma follows by induction. ⊓⊔
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The following lemma bounds the number of monomials in a balanced polynomial.

Lemma 6. Let f be a balanced multilinear polynomial of degree k with at most n vari-

ables, 2k ≤ n. Then the number of monomials that occur in f is at most

3k−c log k+3/2

(
n

k

)
minv(f)/n,

where c > 0 is a universal constant.

Proof. Assume that f = f1 · · · fp, where fi has degree ki and ni variables (so np =

minv(f)). Homogeneity implies k1+· · ·+kp = k and multilinearity implies n1+· · ·+np ≤
n (without loss of generality we can assume that n1 + · · · + np = n). Since each fi is

also homogeneous and multilinear, it contains at most
(
ni

ki

)
monomials. Thus, since

kp = 1, f contains at most
(
n1

k1

)
· · ·

(
np−1

kp−1

)
np monomials, which, by Lemma 3, is at most

3k1/2(k1 · · · kp)−1/2
(
n−np

k−1

)
np. For every 1 ≤ i ≤ log k/(2 log 3), we have ki ≥ k1/2, and so

3(k1 · · · kp)−1/2 ≤ 3k−c log k with c > 0 a universal constant. Since
(
n−np

k−1

)
≤

(
n−1
k−1

)
=

(
n
k

)
k
n
,

the number of monomials that occur in f is at most

3k−c log k+1/2

(
n− np

k − 1

)
np ≤ 3k−c log k+3/2

(
n

k

)
minv(f)

n
.

⊓⊔

We can now bound the number of monomials in a polynomial by its multilinear homo-

geneous formula complexity.

Proposition 7. Let Φ be a multilinear homogeneous formula with in-degree at most

two. Assume that Φ has size s, degree k > 0 and at most n variables, 2k ≤ n. Then the

number of monomials that occur in Φ̂ is at most

3k−c log k+3/2

(
n

k

)
s

n
,

where c is a universal constant.

Proof. By Lemma 4, there exist balanced multilinear polynomials f1, . . . , fs′ such that

Φ̂ = f1+ · · ·+fs′ and
∑

i=1,...,s′ minv(fi) ≤ s. By Lemma 6, there exists a constant c > 0

such that for every i = 1, . . . , s′, the number of monomials that occur in fi is at most

3k−c log k+3/2
(
n
k

)
minv(f)/n. The proposition follows, since the number of monomials that

occur in Φ̂ is at most the sum of the number of monomials that occur in the fi’s. ⊓⊔
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Corollary 8. The first part of Theorem 1 holds.

Proof. The number of monomials in Sk
n is

(
n
k

)
. ⊓⊔

2.3 Bounded depth

A homogeneous polynomial f has a (p, ℓ)-form if there exist homogeneous polynomials

f1, . . . , fp such that f = f1f2 · · ·fp and every fi has degree at least ℓ. Denote minv(f) =

mini=1,...,p ni, where ni is the number of variables that fi is defined over.

The following lemma shows that a small constant depth multilinear formula can be

written as a short sum of formed polynomials.

Lemma 9. Let Φ be a multilinear homogeneous formula of size s and product-depth d

computing a polynomial of degree k. Let q > 1 be a natural number such that k(2q)−d >

1. Then there exist (q, k(2q)−d)-form polynomials f1, . . . , fs′ such that z1/k1 < zi/ki,

Φ̂ = f1 + · · ·+ fs′

and
∑

i=1,...,s′ minv(fi) ≤ s.

Proof. First let us note the following:

Claim 10. Let r > 1 be a real number such that kr−d > 1. Then there exists a product

node w in Φ such that deg(w) ≥ kr−d+1 and deg(v) < deg(w)/r for every child v of w.

Moreover, if r = 2q with q ∈ N, then Φ̂w is in (q, k(2q)−d)-form.

Proof. The proof is by induction on d. If d = 1 and u = u1 × u2 · · · × uj is a product

node in Φ, then deg(u) = k and deg(ui) ≤ 1 < k/r. So we can set w = u. Assume

that d > 1, and let u = u1 × u2 · · · × uj be a product node in Φ with deg(u) = k. If

for every i = 1, . . . , j, deg(ui) < k/r, then we can set w = u. Otherwise there exists

ui such that deg(ui) ≥ k/r. In this case, Φui
is of product-depth d′ < d and degree at

least k/r. By the inductive assumption, there exists a product node w in Φui
such that

deg(w) ≥ deg(ui)r
−d′+1 ≥ kr−d+1 with the desired property.

Let f be a polynomial of degree at least m. If f = f1f2 · · · fn with deg(fi) < m/t,

t ∈ N, for every i = 1, . . . , n, then f is of (⌊t/2⌋, m/t)-form; this is achieved by an

appropriate grouping of f1, . . . , fn. Hence if r = 2q, the node w defines a polynomial of

(q, k(2q)−d)-form. ⊓⊔
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Let w be a node given by Claim 10. As in the proof of Lemma 4, we can write

Φ̂ = h · Φ̂w + Φ̂(w=0).

Let sw denote the size of Φw and let s(w=0) denote the size of Φ(w=0). The polynomial

Φ̂(w=0) is either zero or of degree k. In the latter case, by induction, it can be written

as
∑

i=1,...,s′
(w=0)

gi with s′(w=0) ≤ s(w=0), where the gi’s are in (q, k(2q)−d)-form and
∑

i=1,...,s′
(w=0)

minv(gi) ≤ s(w=0). The polynomial Φ̂w is in (q, k(2q)−d)-form. Moreover,

if it is written as f1 · · · fq, then every fi contains at most sw variables. Since q > 1

and by multilinearity, the polynomial f = (hf1)f2 · · · fq is a polynomial of (q, k(2q)−d)-

form with minv(f) ≤ sw. Altogether, Φ̂ can be written as f +
∑

i=1,...,s′
(w=0)

gi where

minv(f) +
∑

i=1,...,s′
(w=0)

minv(gi) ≤ sw + s(w=0) ≤ s. ⊓⊔

The following lemma bounds the number of monomials in a formed polynomial.

Lemma 11. Let f be a multilinear polynomial of (p, ℓ)-form of degree k with at most n

variables, where 2k ≤ n and p, ℓ ≥ 2. Then the number of monomials that occur in f is

at most 3k3/2ℓ−(p−1)/2
(
n
k

)
minv(f)/n.

Proof. Assume that f = f1 · · ·fp, where fi has degree ki and ni variables, assume

without loss of generality that np = minv(f). Homogeneity implies k1+ · · ·+kp = k and

multilinearity implies n1 + · · ·+ np ≤ n (without loss of generality n1 + · · ·+ np = n).

Since each fi is also homogeneous and multilinear, it contains at most
(
ni

ki

)
monomials.

Thus, f contains at most
(
n1

k1

)
· · ·

(
np−1

kp−1

)(
np

kp

)
monomials, which, by Lemma 3, is at most

3k1/2(k1 · · · kp−1)
−1/2

(
n−np

k−kp

)(
np

kp

)
. We have

(
n− np

k − kp

)(
np

kp

)
=

k − kp + 1

n− np + 1

(
n− np + 1

k − kp + 1

)
np

kp

(
np − 1

kp − 1

)
≤ k − kp + 1

(n− np + 1)kp

(
n

k

)
np.

The minimality of np implies np ≤ n/p. Hence

k − kp + 1

(n− np + 1)kp
≤ k

(n− np)kp
≤ k

n(1− 1/p)kp
≤ k

n
,

where the last inequality follows from the assumption p, kp ≥ 2. Therefore
(
n−np

k−kp

)(
np

kp

)
≤

k
n

(
n
k

)
np and the lemma follows. ⊓⊔
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The following proposition bounds the number of monomials in a polynomial that has a

small multilinear homogeneous formula of constant depth.

Proposition 12. Let Φ be a multilinear homogeneous formula of size s, degree k,

product-depth d, and over at most n variables, where n ≥ 2k and k1/d ≥ 8. Then

the number of monomials that occur in Φ̂ is at most 6k3/22−k1/d/8
(
n
k

)
s/n.

Proof. Let q = ⌊k1/d/4⌋ ≥ 2 and let ℓ = k(2q)−d ≥ 2. Combining Lemmas 11 and 9, the

polynomial Φ̂ contains at most 3k3/2ℓ−(q−1)/2
(
n
k

)
s/n. Since ℓ−(q−1)/2 ≤ 2 · 2−k1/d/8, the

proposition follows. ⊓⊔

Corollary 13. The second part of Theorem 1 holds.

Proof. The number of monomials in Sk
n is

(
n
k

)
. ⊓⊔

3 Upper bounds and separations

In this section we show several upper bounds on the complexity of the symmetric poly-

nomials. We consider four models of computation in the following subsections.

3.1 Multilinear nonhomogeneous depth three

We now show that Sk
n can be computed by multilinear formulas of depth three (and

product-depth one) of size O(n2). These formulas are of course not homogeneous, and we

obtain a separation between homogeneous multilinear and non-homogeneous multilinear

formulas. The construction was first suggested by Ben-Or (see [9]), and we give it here

for completeness.

For t ∈ R, denote

ft = (x1t+ 1)(x2t + 1) · · · (xnt + 1) =
n∑

k=0

tkSk
n.

11



Evaluating at t = 1, . . . , n+ 1,




f1
f2
. . .

fn+1


 = A




S0
n

S1
n

· · ·
Sn
n




with

A =




10 11 · · · 1n

20 21 · · · 2n

· · ·
(n+ 1)0 (n+ 1)1 · · · (n + 1)n


 .

Since the matrix A is invertible, we can express every Sk
n as a linear combination of

f1, . . . , fn+1. Since ft has a formula of depth two and size roughly n computing it, we

can compute the symmetric polynomials with a depth three formula of size roughly n2.

(The same argument holds whenever there are more than n nonzero elements in the

underlying field.)

3.2 Homogeneous non-multilinear

We now give an upper bound on the homogeneous formula size of Sk
n. Let w be a weight

function that assigns a positive natural number w(x) to every variable x. The w-degree

of a monomial xi1xi2 · · ·xik is defined as w(xi1) + w(xi2) + · · ·+ w(xik). A constant has

w-degree zero. We say that a polynomial f is w-homogeneous if all monomials in f

have the same w-degree. A circuit Φ is w-homogeneous if every node in Φ computes a

w-homogeneous polynomial.

Lemma 14. (i). Let Φ be a w-homogeneous formula in variables x1, . . . , xk, and let

φ1, . . . , φk be homogeneous formulas of degrees w(x1), . . . , w(xk). Then the formula

Φ(φ1, φ2, . . . , φk) is homogeneous of degree that is equal to the w-degree of Φ; the

formula Φ(φ1, φ2, . . . , φk) is obtained by substituting the formula φi instead of xi

for every i = 1, . . . , k.

(ii). Let f be a polynomial of degree k that has a w-homogeneous circuit of size s, then

f has a w-homogeneous formula of size (sk)O(log k).
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Proof. (i) is by a straightforward induction on the size of Φ.

The proof of (ii) follows by the construction in [3] – this construction transforms a w-

homogeneous circuit into a w-homogeneous formula with the appropriate size. Here is

a rough sketch of the construction. Let Φ be the circuit computing f (assume without

loss of generality that the in-degree of Φ is at most two). Let V be the set of nodes v in

Φ such that the w-degree of v is at least k/2, and v = v1×v2 with the w-degrees of both

v1 and v2 less than k/2. It can be shown that f =
∑

v∈V hvΦ̂v1Φ̂v2 with hv having a

circuit of size at most roughly the size of Φ. If we denote by L(s, k) the smallest formula

for a polynomial of degree k that has a circuit of size s, we have that L(s, k) is at most

roughly sL(s, k/2). Thus L(s, k) is at most roughly slog k. ⊓⊔

Theorem 15. Sk
n has a homogeneous formula of size kO(log k)n, and a depth four ho-

mogenous formula of size 2O(k1/2)n.

Proof. An application of Newton’s identities. Let P k
n be the polynomial

∑
i=1,...,n x

k
i .

Let Zk be a polynomial in the variables y1, . . . , yk defined inductively as Z0 = 1, and for

k ≥ 0,

Zk+1 =
1

k + 1

(
y1 · Zk − y2 · Zk−1 + y3 · Zk−2 − · · ·+ (−1)k+1yk+1 · Z0

)
.

Newton’s identities assert that

Sk
n = Zk(P

1
n , . . . , P

k
n ).

Define the weight w as w(yi) = i. Thus Zk is a w-homogeneous polynomial of w-

degree k and degree k (this follows by induction on k). The definition of Zk shows

that it has a w-homogeneous circuit of size O(k2). By Lemma 14, there exists a w-

homogeneous formula of size kO(log k) computing Zk. Since the degree of P i
n is i and

it has a homogeneous formula of size kn, the polynomial Sk
n = Zk(P

1
n , . . . , P

k
n ) has a

homogenous formula of size kO(log k)n.

Since Zk is w-homogeneous of w-degree k, the only monomials that occur in it are of

the form yi1yi2 · · · yit with i1 + i2 + · · ·+ it = k. The number of i1 ≥ i2 ≥ · · · ≥ it that

sum up to k is known as the partition function of k. A classical result of Hardy and

Ramanujan says that the partition function of k is at most 2O(k1/2). Thus Zk has 2
O(k1/2)

monomials, and so it has a depth two formula of size 2O(k1/2), which implies that Sk
n has

a depth four homogeneous formula of the appropriate size. ⊓⊔
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3.3 Monotone

Let L(k, n) denote the size of a smallest monotone formula computing Sk
n. We present an

elementary upper bound on L(k, n). The main features of the estimate are the following:

(i). L(k, n) is polynomial, if k ≤ logn. Moreover, L(log n, n) = O(n3).

(ii). L(k, n) = nO(log(n)), if k ≥ √
n.

(iii). L(k, n) = O(n logk−1 n), for a fixed k. More exactly, L(k, n) ≤ 3n
(
e logn
k−1

)k−1
, if k

is fixed and n sufficiently large.

Theorem 16. If k ≥ 2 then

L(k, n) ≤ 2n · nlog( k−1
log(2n)

+1) ·
(
log(2n)

k − 1
+ 1

)k−1

Hence L(k, n) can be written as nO(log( k
log n

)).

Proof. Let us assume that n is power of two. Otherwise choose n′ which is a power of

two such that n < n′ < 2n. Recall that we define formula size as the number of leaves.

Hence L(1, n) = n. Since

Sk
n(x1, . . . , x2n) =

∑

i=0,...,k

Si
n(x1, . . . , xn)S

k−i
n (xn+1, . . . , x2n),

we obtain L(k, 2n) ≤ 2
∑

i=1,...,k L(i, n). Hence in order to upper bound L(k, n), it is

sufficient to find a nonnegative function g s.t.

g(2n, k) ≥ 2
∑

i=1,...,k

g(i, n), g(n, 1) ≥ n, (3.1)

for every n, k ≥ 1

Let us first show the following:

Claim 17. Let α > 0 be a fixed paramater. Then g(n, k) = n1+α

(1−2−α)k−1 satisfies (3.1).
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Proof. Consider g(n, k) = n1+αβk−1. Then g(n, 1) ≥ 1 if n ≥ 1 and α ≥ 0. In order to

satisfy (3.1), it suffices to have

(2n)1+αβk−1 ≥ 2n1+αβk−1 + 2n1+α
∑

i=1,...,k−1

βi−1, resp.

βk−1 ≥ (2α − 1)−1
∑

i=1,...,k−1

βi−1.

This holds if β = 1 + (2α − 1)−1 = (1− 2−α)−1. ⊓⊔

The claim shows that for every α > 0, L(k, n) ≤ n1+α

(1−2−α)k−1 . Let z := k−1
logn

and α :=

log(1 + z). Then

n1+α

(1− 2−α)k−1
=

n1+α

(z/(1 + z))k−1

= n1+log(1+z)
(
1 + z−1

)k−1
.

This gives the statement of the theorem. ⊓⊔

Weakly equivalent polynomials and Boolean complexity

We say that two polynomials f and g are weakly equivalent if for every monomial α,

the coefficient of α is nonzero in f iff its coefficient in g is nonzero. Results in Boolean

complexity yield better upper bounds for a monotone polynomial weakly equivalent

to Sk
n than the ones in Theorem 16. As shown in [4, 1], k-threshold function Thk

n has

monotone Boolean formulas of size O(n logn), if k is fixed. In fact, the construction gives

a monotone arithmetic formula computing a monotone polynomial weakly equivalent to

Sk
n. Our lower bounds apply to any polynomial weakly equivalent to Sk

n. This shows

that using our techniques we cannot hope to prove better lower bounds than Ω(n log n),

if k is fixed.

In the converse direction, a monotone arithmetic formula computing Sk
n, or a weakly

equivalent polynomial, can be interpreted as a monotone Boolean formula computing

Thk
n. Since for k ≥ 2 such a formula must be of size Ω(n logn) (see [2]), we have

Ω(n logn) lower bound on the size of monotone formulas computing Sk
n, or a weakly

equivalent polynomial.
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Finally, observe that if Sk
n has a multilinear homogeneous formula Φ of size s, then

there exists a monotone formula Φ′ of size s computing a monotone polynomial weakly

equivalent to Sk
n. (The formula Φ′ is obtained by replacing every constant a in Φ by

|a|.) Hence the lower bound Ω(n log n) applies also to homogeneous multilinear formulas

computing Sk
n, k ≥ 2.

3.4 Noncommutative

A noncommutative polynomial over a field F is a polynomial in which the variables

do not multiplicatively commute, for example, x1x2 and x2x1 are two different polyno-

mials. A noncommutative formula is a formula which we understand as computing a

noncommutative polynomial. Exponential lower bounds on the size of noncommutative

formulas computing determinant and permanent were given in [5]. In that paper, Nisan

posed the problem of separating monotone and general noncommutative formulas. Let

us define Sk
n as the noncommutative polynomial

∑

i1<i2<···<ik

xi1xi2 · · ·xik .

The lower bound from Section 2.2 and the upper bound from Section 3.1 apply also to

noncommutative setting, and yield:

Proposition 18. Sn
2n has a noncommutative formula of size O(n2), but every monotone

noncommutative formula for it has size at least nO(logn).

4 Summary

Whereas Boolean complexity of threshold functions has been mapped quite accurately,

the arithmetic complexity of symmetric polynomials is folded in subtle mist. Here we

summarise the basic known results on the formula complexity of Sk
n.
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Lower bound Upper bound

Depth three, infinite fields 3 Ω(n2), if k ∼ n O(n2)

Homogeneous kO(log k)n

Homogeneous multilinear kΩ(log k)n nO(log( k
log n

))

Homogeneous depth three 4
(

n
⌊k/2⌋

)
2−k

Homogeneous depth four 2O(k1/2)n

Homog. mult. product-depth d 2Ω(k1/d)n

Monotone bounds are the same as the multilinear homogeneous ones, and in both cases

we can add the lower bound Ω(n logn) taken from monotone Boolean complexity of

threshold functions (see Section 3.3).

Note that the lower bound and the upper bound on multilinear homogeneous complexity

are both polynomial, if k = logn, both superpolynomial, if k = n/2, but if k = log2 n,

the lower bound is polynomial, whereas the upper bound is nO(log logn). The ‘match’

between multilinear homogeneous lower bounds and homogeneous upper bounds is also

slightly irritating. However, the bounds cannot be exactly the same, for in the multilie-

near homogeneous case, we need at least Ω(n log n) if k ≥ 2.

Let us end with the following two questions:

(i). Can Sk
n be computed by a monotone formula of size poly(n) · kO(log k)?

(ii). Does the central symmetric polynomial Sn
2n have polynomial size homogeneous for-

mula?
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