
ar
X

iv
:1

10
2.

23
00

v1
  [

cs
.C

C
] 

 1
1 

Fe
b 

20
11

Spectral Algorithms for Unique Games

Alexandra Kolla∗

Abstract

We give a new algorithm for Unique Games which is based on purely spectral techniques,
in contrast to previous work in the area, which relies heavily on semidefinite programming
(SDP). Given a highly satisfiable instance of Unique Games, our algorithm is able to recover a
good assignment. The approximation guarantee depends only on the completeness of the game,
and not on the alphabet size, while the running time depends on spectral properties of the
Label-Extended graph associated with the instance of Unique Games.

We further show that on input the integrality gap instance of Khot and Vishnoi, our al-
gorithm runs in quasi-polynomial time and decides that the instance if highly unsatisfiable.
Notably, when run on this instance, the standard SDP relaxation of Unique Games fails. As
a special case, we also re-derive a polynomial time algorithm for Unique Games on expander
constraint graphs.

The main ingredient of our algorithm is a technique to effectively use the full spectrum of the
underlying graph instead of just the second eigenvalue, which is of independent interest. The
question of how to take advantage of the full spectrum of a graph in the design of algorithms
has been often studied, but no significant progress was made prior to this work.

∗Microsoft Research.
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1 Introduction

A Unique Game is defined in terms of a constraint graph G = (V,E), an integer k which is called the
alphabet, a set of variables {xu}u∈V , one for each vertex u, and a set of permutations (constraints)
πuv : [k] → [k], one for each edge (u, v) ∈ E. An assignment to the variables (labeling) is said to
satisfy the constraint on the edge (u, v) ∈ E if πuv(xu) = xv. The edges are taken to be undirected
and hence πuv = (πvu)

−1. The goal is to assign a value from the set [k] to each variable xu so as to
maximize the number of satisfied constraints.

Khot [Kho02] conjectured that it is NP-hard to distinguish between the cases when almost all the
constraints of a Unique Game are satisfiable and when very few of the constraints are satisfiable:

Conjecture 1. (Unique Games Conjecture-UGC) For any constants ǫ, δ > 0, there is a k(ǫ, δ)
such that for any k > k(ǫ, δ), it is NP-hard to distinguish between instances of Unique Games with
alphabet size k where at least 1− ǫ fraction of constraints are satisfiable and those where at most δ
fraction of constraints are satisfiable.

There are two reasons which make UGC particularly intriguing. First, it is a well-balanced question.
Despite continuous efforts to prove or disprove it, there is still no consensus regarding its validity.
This seems to indicate that UGC is more likely to be resolved in the near future in contrast to the
P vs. NP problem for example, for which it is widely believed that P 6=NP but current techniques
have been unable to prove it. Second, as seen by a series of works, the truth of UGC implies that
the currently best known approximation algorithms for many important computational problems
have optimal approximation ratios. Since its origin, UGC has been successfully used to prove often
optimal hardness of approximation results for several important NP-hard problems such as Min-

2Sat-Deletion [Kho02], Vertex Cover [KR03], Maximum Cut [KKMO04] and non-uniform
Sparsest Cut [CKK+06,KV05]. In addition, in recent years, UGC has also proved to be intimately
connected to the limitations of semidefinite programming (SDP). Making this connection precise,
the authors in [Aus10] and [Rag08] show that if UGC is true, then for every constraint satisfaction
problem (CSP) the best approximation ratio is given by a certain simple SDP.

Arguably, a seemingly strong reason for belief in UGC is the failure of several attempts to design
efficient algorithms for Unique Games using current state-of-the-art techniques, such as linear and
semidefinite programming (LP/SDP). Indeed, several works [KV05,RS09] show limitations of LPs
and SDPs in solving Unique Games by exhibiting the existence of itegrality gap instances. Those
are Unique Games instances that fool the SDP since, even though they have no good satisfying
assignment, the respective SDP solution is high. The existence of such instances implies, in partic-
ular, that there is no hope for a “good” approximation algorithm based on those SDPs. Moreover,
recently it was shown that solving Unique Games is at least as hard as another seemingly hard
problem called the small set expansion problem [RS10]. Our work presents evidence that a different
set of techniques might be more powerful when it comes to designing algorithms for Unique Games
thus giving hope that such techniques can be used to potentially disprove UGC.

We present a purely spectral algorithm for Unique Games that finds highly satisfying assignments
when they exist. The running time of our algorithm depends on spectral properties of the Label-
Extended graph or the constraint graph associated with the instance of Unique Games. Our algo-
rithm runs in polynomial or quasi-polynomial time for a large class of instances, including those
where the standard SDP provably fails as well as instances where the constraint graph is an ex-
pander. At a high level, we show that given ǫ > 0, there is a δ = δ(ǫ) such that the algorithm is
able to distinguish between the following two cases:
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• YES case: There exists an assignment that satisfies (1− ǫ) fraction of the constraints.

• NO case: Every assignment satisfies less that δ fraction of the constraints.

In particular, our algorithm runs in quasi-polynomial time on input the SDP integrality gap instance
as it appears in [KV05] (hereafter referred to as KV). We note that the authors in [KV05] roughly
showed that, when run on a certain highly unsatisfiable instance of Unique Games, the standard
SDP relaxation has very high objective value and consequently fails to distinguish between the two
cases above. As another special case, our algorithm runs in polynomial time when the constraint
graph is an expander (therefore re-deriving results similar to [AKK+08] and [KT07]). Moreover,
similarly to [AKK+08,MM09,KT07,AIMS09], the performance of the algorithm does not depend
on the alphabet size k.

Our main result is the following:

Theorem. (Main) Let U = (G,M, k) be a (1 − ǫ) satisfiable instance of Unique Games on a d-
regular graph G with alphabet size k. Let M be the adjacency matrix of the label-extended graph of
G. Let W be the space spanned by eigenvectors of M that have eigenvalue greater than (1−γ)d, for
γ > 8ǫ. There is an algorithm that runs in time 2O(γ

ǫ
dim(W )) + poly(n · k) and finds an assignment

that satisfies at least (1−O( ǫ
γ−8ǫ + ǫ)) fraction of the constraints.

We also show a similar theorem for the special case where all the constraints are of the form Γ-
Max-Lin and the graph satisfies some special properties. That theorem is then used to derive the
above-mentioned algorithm for expanders.

Our key contribution is a technique of effectively using the full spectrum and eigenvectors of the
relevant graph rather than just the first few eigenvalues. Interestingly, prior to this work, researchers
had often attempted to take advantage of the full spectrum of a graph in the design of approximation
algorithms, but no significant progress was made. We believe that our techniques are of independent
interest and could contribute to developing better algorithms for a number of other problems. In
a recent breakthrough paper, Arora, Barak and Steurer [ABS10] used our main technique as a
crucial building block in their sub-exponential time algorithm for arbitrary instances of Unique
Games. Consequently, we believe that our results give evidence that spectral techniques might be
a more powerful tool than SDPs for attacking and, potentially even disproving, the Unique Games
Conjecture.

1.1 Comparison to Other Work on Unique Games

Several polynomial time approximation algorithms using linear and semidefinite programming have
been developed for Unique Games on arbitrary graphs (see [Kho02], [Tre05], [GT06], [CMM06a],
[CMM06b]). These algorithms start with an instance where the value of the SDP or LP relaxation
is 1 − ǫ and round it to a solution with value ν. Here, value of the game refers to the maximum
fraction of satisfiable constraints. For ν > δ, this would give an algorithm to distinguish between
the two cases. However, most of these algorithms give good approximations only when ǫ is very
small (ǫ = O(1/ log n) or ǫ = O(1/ log k)) and their approximation guarantee depends on the
alphabet size k 1. For constant ǫ, only the algorithm in [CMM06a] gives interesting parameters
with ν ≈ k−ǫ/(2−ǫ). We refer the reader to [CMM06a] for a comparison of parameters of various
algorithms.

1It might be good to think of k as O(log n) since this is the range of interest for most reductions.
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For some special cases of graphs, it has been shown that there are efficient algorithms that solve
Unique Games. One such example is when the constraint graph is a spectral expander. In that case,
the authors in [AKK+08] (and later [MM09] with improved parameters) showed that one can find a
highly satisfying assignment (with, say, ν ≥ 90%) in polynomial time. Notably, the approximation
guarantee of their algorithm depends on the expansion parameters of the graph rather than the
alphabet size. As another example, the authors in [AIMS09] presented efficient algorithms for
constraint graphs with large local expansion.

Compared to the previous papers, our algorithm uses purely spectral methods as opposed to linear
or semidefinite programming and runs in time that depends on spectral properties of the constraint
graph or the label-extended graph. The approximation guarantee does not depend on the size of
the graph or the size of the alphabet and thus our algorithm always finds a good assignment when
one exists. We note that, in an unpublished manuscript, Kolla and Tulsiani [KT07] developed a
spectral algorithm that runs in polynomial time and finds highly satisfying assignments on expander
constraint graphs.

1.2 Overview of Our Techniques: Recovering Solutions by Spectral Methods

Our basic approach for the Unique Games algorithm is exhaustive search in a subspace spanned
by several eigenvectors of a graph associated with the Unique Games instance. We identify a
“good” subspace which contains a vector that “encodes” a highly satisfying assignment and then
exhaustively search for this vector in (a discretization of) the subspace as we explain below.

Let U be our Unique Games instance which is (1 − ǫ) satisfiable. One can think of this instance
as “coming from” a completely satisfiable instance Ũ as follows: an adversary on input Ũ , picks
an ǫ fraction of edges and changes the constraints on those edges so that the resulting instance
U becomes (1 − ǫ) satisfiable. Let M be (the adjacency matrix of) the graph corresponding to

U and M̃ (the adjacency matrix of) the graph corresponding to Ũ . Assume, for simplicity, that
these graphs are d-regular. We first observe that a characteristic vector yα of a perfectly satisfying
assignment α for Ũ is an eigenvector of M̃ with eigenvalue d.

We next consider a space W which is the span of the eigenvectors of M with eigenvalue very close
to d and show that every characteristic vector yα is close to some vector in W (in ℓ2 norm).

Our algorithm simply looks at a set S ⊆ W of appropriately many candidate vectors and “reads-off”
an assignment.

Recover-SolutionS(U)

• For each x ∈ S, construct an assignment Lx by assigning to each vertex u, the index corre-
sponding to the largest entry in the block (xu1, . . . , xuk) i.e. Lx(u) = argmaxi xui.

• Out of all assignments Lx for x ∈ S, choose the one satisfying the maximum number of
constraints.

To choose S,we identify a set of nice vectors N ⊆ W such that the above algorithm works for
any vector v close to some vector in N . These are going to be the vectors that are close to the
assignment eigenvectors. We then construct a set S ⊆ W of test vectors such that at least one
vector v ∈ S is close to a vector in N . S is simply an epsilon-net for W . Lastly, we go over all
vectors in S until we find v. The running time of the algorithm will depend on the size of S which,
for an appropriately defined epsilon-net, it is exponential in the dimension of W .
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Certain “simple” graphs, including expander graphs and the Khot-Vishnoi instance, have only
a few eigenvalues close to d and thus the dimension of W is small. Consequently, exhaustive
enumeration in the subspace spanned by the corresponding eigenvalues will quickly find a good-
enough assignment.

1.3 Organization of the Paper

The rest of the paper is organized as follows: in section 2 we give some preliminary notation and
definitions that will be used in the rest of the paper. Section 3 contains the proofs of the main
theorem above as well as of a theorem for the Γ-Max-Lin case. More specifically, we prove the
main theorem in subsection 3.1. The proof of the theorem for the Γ-Max-Lin case appears in
subsection 3.2. Subsection 3.3 contains the generalization of the main theorem for non-regular
graphs. In section 4, we analyze our algorithm when run on the Khot-Vishnoi instance.

2 Preliminaries

2.1 Spectra of Graphs

We remind the reader that for a graph G, the adjacency matrix A = AG is defined as

AG(u, v) =

{
1 if (u, v) ∈ E
0 if (u, v) /∈ E

We will also be dealing with weighted graphs, where edge (u, v) has weight wuv ≥ 0 and the adja-
cency matrix is defined as AG(u, v) = wuv. We will also assume, w.l.o.g. that wuv ≤ 1 (if not, we
just re-scale the weights of the edges by the maximum weight). If the graph has n vertices, AG has
n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. We can always choose n eigenvectors γ1, · · · , γn such that
γi has eigenvalue λi which form an orthonormal basis of Rn. We note that if the graph is d-regular
(the total weight of edges adjacent to every node is d) then the largest eigenvalue is equal to d and
the corresponding unit length eigenvector is the (normalized) all-one’s vector.

For a graph G, let D be the diagonal matrix with diagonal entry D(u, u) =
∑

v:(u,v)∈E wuv equal
to the degree of node u, namely the sum of the weights of edges adjacent to u. The Laplacian of G
is defined as follows:

LG = D −AG

If the graph has n vertices, LG has n real eigenvalues 0 = µ1 ≤ µ2 ≤ · · · ≤ µn. We can always
choose n eigenvectors γ1, · · · , γn such that γi has eigenvalue µi which form an orthonormal basis
of Rn. We note that 0 is always an eigenvalue with corresponding unit length eigenvector the
(normalized) all-one’s vector. Moreover, if and only if the graph has k connected components, then
LG has k eigenvalues equal to zero.

2.2 The Label-Extended Graph

For a given instance of Unique Games on a constraint graph G = (V,E), let A be the adjacency
matrix of G and let M denote the nk×nk matrix such that the k×k block Muv is equal to wuvΠuv.
We use Πuv to denote the k × k matrix of the permutation πuv. Namely,

5



Πuv(i, j) =

{
1 if πuv(i) = j
0 otherwise

Note that πuv = (πvu)
−1 implies Πuv = Πvu

T therefore M is symmetric. We can view M as the
adjacency matrix of the Label-Extended graph for that instance of Unique Games. Let k denote the
size of the alphabet. We will denote this instance by U = (G,M, k).

Definition 2. (Characteristic vector of a labeling) For any labeling of the vertices L = {Lu}u∈V
with Lu ∈ [k] we define the characteristic vector of that labeling as the nk dimensional vector yL

with

yL(u, i) =

{
1 if i = Lu

0 otherwise

We will often normalize such vectors to make them unit vectors. In this case, we have

ỹL(u, i) =

{
1√
n

if i = Lu

0 otherwise

With some abuse of notation we will refer to both vectors as characteristic vectors of labelings
whenever it is clear from the context.

The following is an important observation:

Observation 3. Assume that a certain instance U is completely satisfiable. Namely, assume that
there is a labeling L = {Lu}u∈V with Lu ∈ [k] such that, for all (u, v) ∈ E we have πuv(Lu) = Lv.
Then the characteristic vector yL is a eigenvector of M with eigenvalue d, if G is a d-regular graph.
It is also an eigenvector of the laplacian LM with eigenvalue 0.

2.3 Γ-Max-Lin Instances

Let Γ be an abelian group. A Γ-Max-Lin instance of Unique Games on graph G(V,E) has for each
edge (u, v) ∈ E a constraint of the form xu − xv = cuv, where xu, xv are variables taking values
in Γ and cuv ∈ Γ. The alphabet k is the size of the group Γ. We note that if a pair of labels
(Lu, Lv) ∈ Γ× Γ satisfies a constraint xu − xv = cuv of the above form, then for all i ∈ Γ, the pair
(Lu + i, Lv + i) ∈ Γ × Γ also satisfies the constraint. This implies that any labeling {Lu}u∈V of
the vertices of G is shift-invariant. Namely, for all i ∈ Γ, the labelings {Lu}u∈V and {Lu + i}u∈V
satisfy the same set of constraints.

2.4 The Spectrum of Cayley Graphs

For the purposes of this paper, we will use a generalized definition for Cayley graphs. For back-
ground on the standard definition and properties of Cayley graphs see, for example, [Kas02,Spi09].

Definition 4. (Adjacency matrix of a Cayley graph) Let Ω be a group with n elements. The vertex
set of a Cayley graph C(Ω) is the group Ω. The adjacency matrix of C(Ω) is the n × n matrix
AC(Ω) defined as follows: For g1, g2 ∈ Ω, AC(Ω)(g1, g2) = f(g1 − g2), where “−” refers to the
inverse group operation and f : Ω → R+. Note that the above definition allows C(Ω) to have
weighted edges, with the only constraint being that the weight of an edge between g1 and g2 depends
on their group-theoretic difference.
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We note that the standard definition of a Cayley graph, given a set S of generators, is a special
case of the above, where f(g1 − g2) = 1 if g1 − g2 ∈ S and 0 otherwise.

For what follows, we will only be interested in Ω being abelian. In the rest of this section, for
simplicity, we will identify a vector f in Rn with the function f : Ω → R and we will use the two
interchangeably.

It is well known, that for the abelian case AC(Ω) has an eigenbasis that consists of the n group-
theoretic characters χg, g ∈ Ω. We remind the reader that every function f : Ω → R can be

written as follows: f(x) =
∑

g∈Ω f̂(g)χg(x) where f̂(g) is the fourier coefficient that corresponds
to character χg. For more background on characters and fourier analysis we refer the reader to
standard algebra textbooks and surveys see, for example [Art91], [Lin07], [Kas02].
Since definition 4 is slightly different than the usual, we present a proof of the following lemma for
completeness.

Lemma 5. Let C(Ω) be Cayley graph of an abelian group Ω, as in definition 4, and AC(Ω) be its

adjacency matrix. Then for every g ∈ Ω, AC(Ω)χg = |Ω|f̂(g)χg . Namely, every character χg is an

eigenvector of AC(Ω) and |Ω|f̂(g) is its corresponding eigenvalue. Here, with f̂ we denote fourier
coefficients.

Proof. It is enough to prove the equality for each entry of AC(Ω)χg, that is for every vertex x ∈ Ω

we will show {AC(Ω)χg}x = |Ω|f̂(g)χg(x). We calculate:

∑

y∈Ω
AC(Ω)(x, y)χg(y) =

∑

y∈Ω
f(x− y)χg(y) =

∑

z∈Ω
f(z)χg(x)χg(−z) = |Ω|f̂(g)χg(x)

2.5 The Khot-Vishnoi Graph

In [KV05], the authors considered the following family of graphs:

For parameters n and ǫ, let N = 2n and n = 2k. Denote by F the family of all boolean functions
on {−1, 1}k. For f, g ∈ F define the product fg as (fg)(x) = f(x)g(x). Let H = {χS |S ⊆ [k]}
be the set of characters of the group Fn

2 . Consider the equivalence relation ≡ on F defined as
f ≡ g iff there is an S ⊆ [k] such that f = gχS . This relation partitions F into equivalence
classes P1, · · · ,Pm, where m = N

n = 2n

n . For each equivalence class Pi, we could pick an arbitrary
representative pi ∈ Pi, so that

Pi = {piχS |S ⊆ [k]}

For 0 < ǫ ≤ 1 let f ∈ǫ F denote a random boolean function on {−1, 1}k where for every x ∈
{−1, 1}k , independently, f(x) = 1 with probability 1 − ǫ and f(x) = −1 with probability ǫ. For
the given parameter ǫ and boolean functions f, g ∈ F let

wtǫ({f, g}) := Prf ′∈1/2F ,µ∈ǫF
[
({f = f ′} ∧ {g = f ′µ}) ∨ ({g = f ′} ∧ {f = f ′µ})

]
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The KVn,ǫ constraint graph with parameters n and ǫ can now be defined to have vertex set
V = {P1, · · · ,Pm}. For every f ∈ Pi and g ∈ Pj , there is an edge between the vertices Pi

and Pj with weight wtǫ({f, g})

We next describe the set of constraints. The set of labels for the instance will be 2[k] := {S : S ⊆
[k]}, i.e. the set of labels [n] is identified with the set 2[k] (and, thus, n = 2k). This identification
will be used from now on. Let f ∈ Pi with f = piχS and g ∈ Pj with g = piχT for some S, T ⊆ [k].
The constraint πe for the edge e{f, g} corresponding to the pair of functions f, g can now be defined
as

πPi
e (T △ U) = S △ U, ∀U ⊆ [k]

Here, △ is the symmetric difference operator on sets.

We denote the label-extended graph of the instance described above with K̃Vn,ǫ. The graph

K̃Vn,ǫ has vertex set {−1, 1}n. Between two vertices f, g ∈ {−1, 1}n there is an edge with weight
n ·wtǫ({f, g}).

It will be useful, for the purposes of this paper, to consider an equivalent definition of KVn,ǫ and

K̃Vn,ǫ, by translating to the {0, 1} language. Let Hn = {0, 1}n be the group Fn
2 with addition

(modulo 2) as group operation. Let n = 2k. Then the set H is the Hadamard code on n bits.
Namely,

H =
{
hy ∈ {0, 1}n, y ∈ {0, 1}k |s.t. hy(x) = 〈x, y〉, x ∈ {0, 1}k

}

Note that |H| = n and H is a subgroup of Hn.
The graph KVn,ǫ is just a Cayley graph of the quotient group of Hn by H, namely of the group
Q = Hn�H. The vertex set V = {P1, · · · ,Pm} consists of the N

n cosets of H. For every f in the
coset Pi and for every g in the coset Pj , there is an edge between the vertices Pi and Pj with weight
wtǫ({f, g}). For simplicity of notation, we will identify the cosets with their representatives, i.e.
if x = Pi is a vertex of KVn,ǫ, then we will use x to refer both to the coset Pi as well as to its
representative pi.

The total weight of all the edges between two cosets x = Pi and y = Pj is

A(x, y) =
∑

f∈Pi,g∈Pj

ǫ|f+g|(1− ǫ)n−|f+g| =
∑

h1,h2∈H
ǫ|x+h1+y+h2|(1− ǫ)n−|x+h1+y+h2|

Note that the graph is n-regular, namely the total weight of edges adjacent to any node x is

∑

y∈Q

∑

h1,h2∈H
ǫ|x+h1+y+h2|(1− ǫ)n−|x+h1+y+h2| = n

∑

y∈Q

∑

h2∈H
ǫ|x+y+h2|(1− ǫ)n−|x+y+h2|

= n
∑

z∈Hn

ǫ|z|(1− ǫ)n−|z| = n
n∑

i=0

(
n

i

)
ǫi(1− ǫ)n−i = n(1− ǫ+ ǫ)n = n

The label-extended graph K̃Vn,ǫ is a Cayley graph of Hn, since for every two vertices u, v ∈ {0, 1}n
we have that the corresponding entry of the adjacency matrix of K̃Vn,ǫ depends only on the hamming

distance of u and v, or, in other words, on u − v = u + v (modulo 2). Moreover, K̃Vn,ǫ can be
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described as an “ǫ-perturbed” version of the standard hypercube graph: the weight between two
vertices u, v ∈ {0, 1}n is proportional to the probability that if one starts from the n-bit string u
and flips each one of its bits independently with probability ǫ, then one gets the n-bit string v.
The following appears in [KV05]. We give the informal statement here, for simplicity. We refer the
reader to [KV05] for the full statement and details.

Claim 6. (Integrality Gap for Unique Games, Informal Statement) Let n be an integer and ǫ > 0
be a parameter. Then for the instance of Unique Games described above, with label-extended graph
K̃Vn,ǫ the following hold:

• Every labeling L : V → [n] satisfies at most a 1
nǫ fraction of the total weight of the edges.

• The standard SDP relaxation for Unique Games has objective value greater than 1− 9ǫ.

2.6 Additional Notation

For simplicity of the presentation, we will assume that G is a regular graph, namely
∑

v wuv = d
for all nodes u. At the end of the next section, we show that the results can easily be generalized
to non-regular graphs.

For the sake of convenience, in the rest of the paper we will often use the term eigenspace to refer
to the space spanned by a set of eigenvectors that don’t necessarily have the same eigenvalue. The
relevant set of eigenvectors that span this space will always be clear from the context. We use
poly(n) to refer to some polynomial function in n.

We also use the following notation for the time needed to compute eigenvalues and eigenvectors:

Definition 7. Let U = (G,M, k) be an instance of Unique Games on a graph G on n nodes and
with alphabet size k. Let M be the adjacency matrix of the label-extended graph of G. Let W be
some space spanned by eigenvectors of M . We denote by TW (M) the time needed to compute an
eigenbasis and the corresponding eigenvalues of W . Note that TW (M) is polynomial in the dimen-
sion of M , namely TW (M) = poly(n · k).

We also note that in the rest of this paper we use the terms “assignment” and “labeling” inter-
changeably.

3 Recovering Solutions by Spectral Methods

In this section, we will show how, given a (1−ǫ) satisfiable instance of Unique Games U = (G,M, k)
on graph G and with alphabet size k, the eigenvectors of the label-extended graph M may be used
to recover good assignments. Specifically, we show the following:

Theorem 8. (Main) Let U = (G,M, k) be a (1− ǫ) satisfiable instance of Unique Games on a d-
regular graph G on n nodes with alphabet size k. Let M be the adjacency matrix of the label-extended
graph of G as above. Let W be the space spanned by eigenvectors of M that have eigenvalue greater
than (1 − γ)d, for γ > 8ǫ. There is an algorithm that runs in time 2O(γ

ǫ
dim(W )) + poly(n · k) and

finds an assignment that satisfies at least (1−O( ǫ
γ−8ǫ + ǫ)) fraction of the constraints.
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In particular, the theorem implies that for small enough ǫ, for every 1 − ǫ satisfiable instance of
Unique Games that satisfies the assumptions of the theorem, one can find an assignment that
satisfies more than 90 percent of the constraints in time that depends on the spectral profile of M .
We also remark the following:

Remark: If the algorithm of theorem 8 fails to find an assignment that satisfies at least (1 −
O( ǫ

γ−8ǫ + ǫ)) fraction of the constraints, then for the input U , every assignment satisfies less than
(1 − ǫ) fraction of the constraints. Here, the constant in the O(·) notation is the same as the one
guaranteed by the theorem above.

We also consider the special case where the constraints are arbitrary Γ-Max-Lin. For such con-
straints, we prove theorem 9 below.

Theorem 9. Let U = (G,M, k) be a (1− ǫ) satisfiable Γ-Max-Lin instance of Unique Games on a
d-regular graph G on n nodes with alphabet size k. Let S(1−γ) be the space spanned by eigenvectors
of G that have eigenvalue greater than (1 − γ)d. Assume moreover that every unit-length vector
φ ∈ S(1−γ) has ‖φ‖∞ ≤ C√

n
for some constant C. Then, for γ = Ω(

√
ǫ), there is an algorithm that

runs in time 2O(k·DS) + poly(n · k) and finds an assignment that satisfies at least (1− ζ) fraction of
the constraints for some ζ = O(

√
ǫ). Here DS denotes the dimension of S(1−γ) and the constant in

the Ω(·) notation depends on C.

Assuming that TS(1−γ)
(M) < 2O(k·DS) the algorithm in theorem 9 has running time that solely

depends on the spectral profile of G, since roughly, the space of eigenvectors of M with large eigen-
value has dimension equal to k times the dimension of the corresponding eigenspace of G.

The result for expander graphs as it appears in [KT07] can be derived as a corollary of theorem 9.

Corollary 10. (Unique Games are Easy on Expanders) Let U = (G,M, k) be a (1− ǫ) satisfiable
Γ-Max-Lin instance of Unique Games. Assume moreover that G is a d-regular spectral expander
on n nodes. Namely, the second eigenvalue of the adjacency matrix of G is λ ≤ (1 − γ)d, for
γ = Ω(

√
ǫ). Then, there is a polynomial time algorithm that finds an assignment that satisfies at

least (1− ζ) fraction of the constraints for some ζ = O(
√
ǫ).

Proof. The eigenspace S(1−γ) of theorem 9 consists solely of the all 1’s vector. The ℓ∞ norm
assumption is trivially satisfied with C = 1. Then, the conclusion of the theorem implies that
for γ = Ω(

√
ǫ), there is an algorithm that runs in time 2O(k·1) + TS(1−γ)

(M) = 2O(k) + poly(n · k)
and finds an assignment that satisfies at least an 1 − O(

√
ǫ) fraction of the constraints. By the

statement of the Unique Games Conjecture, it is enough to consider k to be at most logarithmic
in n. Therefore the algorithm runs in 2O(log n) + poly(n · k) = poly(n) time.

We remark that the Γ-Max-Lin requirement is necessary for corollary 10. The proof fails to pro-
duce similar guarantee for the general case. This is due to the fact that the spectral properties of
label-extended graphs that correspond to arbitrary Unique Games are poorly understood.

3.1 Proof of Theorem 8

We prove theorem 8 by combining two facts. First we show that characteristic vectors of good
labelings have large projection onto the eigenspace of M spanned by eigenvectors with large eigen-
values. Then we show that if M has at most D large eigenvalues then we can find a vector close
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(in ℓ2-norm) to such a characteristic vector of a labeling in time exponential in D, by looking at an
appropriate epsilon-net for this eigenspace. Our proof is inspired by the approach that the authors
in the unpublished manuscript [KT07] used in order to recover satisfying assignments on expanders.

Proof Overview. Assume we are given a (1 − ǫ) satisfiable instance U = (G,M, k) that satisfies

the assumptions of theorem 8. We define a completely satisfiable game Ũ = (G, M̃ , k) (with value
1) that “corresponds” to U as follows:

Definition 11. (Completion of a Game) Let U = (G,M, k) be as above and let L = {L(u)} be
an assignment that satisfies (1 − ǫ) fraction of the constraints. Let e = (u, v) be an edge with
constraint xv = πuv(xu) that is not satisfied by this assignment, with labels L(u), L(v) on its
endpoints. Construct a new game by changing the constraint on every such edge e = (u, v) by

replacing πuv with a permutation π̃uv for which π̃uv(L(u)) = L(v). Let Ũ = (G, M̃ , k) be this new
completely satisfiable game. We say that Ũ is a “completion” of U .

For the sake of the proof, we will assume that an almost satisfiable instance U = (G,M, k) is
constructed as follows:

• Let Ũ = (G, M̃ , k) be a completion of U .
• Let an adversary pick the ǫ fraction of edges that were unsatisfied in U and change their

constraints back to the original ones. We can now think of M as a “perturbation” of M̃ and
U as a “perturbed” game of Ũ .

Let W be the span of the eigenvectors of M with eigenvalue at least (1−γ)d, for some γ > 8ǫ. The
algorithm simply looks at a set S ⊆ W of appropriately many candidate vectors and “reads-off”
an assignment. We describe later on how to choose the set S.

Recover-SolutionS(U)
• For each x ∈ S, construct an assignment Lx by assigning to each vertex u, the index corre-

sponding to the largest entry in the block (xu1, . . . , xuk) i.e. Lx(u) = argmaxi xui.

• Out of all assignments Lx for x ∈ S, choose the one satisfying the maximum number of
constraints.

To choose S, we look at the highest eigenvectors for the matrix M̃ . Those are the assignment
eigenvectors, namely the characteristic vectors of the (perfectly) satisfying assignments of Ũ (since
they all have eigenvalue equal to d). We will first observe that every such eigenvector y is close to
some vector in W , and the length of the projection of y onto W depends on ǫ, γ. We then identify
a set of nice vectors N ⊆ W such that the above algorithm works for any vector v close to some
vector in N . These are going to be the vectors that are close to the assignment eigenvectors. We
then construct a set S ⊆ W of test vectors such that at least one vector v ∈ S is close to a vector
in N . S is simply an epsilon-net for W . Lastly, we go over all vectors in S until we find v. The
running time of the algorithm will depend on the size of S which, for an appropriately defined
epsilon-net, it is exponential in the dimension of W .

3.1.1 Eigenspaces and Labelings

Our first step is to identify an appropriate eigenspace W of M such that characteristic vectors of
good labelings have large projection onto W .

11



For the matrix M̃ , let L = {L(u)}u∈V (G) be a completely satisfying assignment. Define vector y(L)

as

yui
(L) =

{
1√
n

if i = L(u)

0 otherwise

It is easy to see that y(L) is an eigenvector of M̃ with eigenvalue d. Since y(L) corresponds to the
satisfying assignment L, it can be seen as the characteristic vector of the assignment. We refer to
such vectors as the “assignment” eigenvectors. Our next goal is to show that, for some appropriate
choice of γ, the eigenspace W contains vectors close to an assignment vector.

Claim 12. (Closeness) For every completely satisfying assignment L there is a unit vector vL ∈ W

such that vL = αy(L) + βy(L)⊥, with α > 0 and |β| ≤
√

2ǫ
γ . Here both y(L) and y(L)⊥ are unit

vectors and y(L)⊥ ⊥ y(L). By taking, for example, γ ≥ 200ǫ, we have |β| ≤ 1
10 .

Proof. We can easily see that (y(L))TMy(L) ≥ d(1 − 2ǫ). We can now write y(L) = avL + b(vL)⊥,
with a > 0, vL ∈ W and (vL)⊥ ∈ W⊥. We calculate:

(1− 2ǫ)d ≤ (y(L))TMy(L) = a2(vL)
TMvL + b2((vL)⊥)

TM(vL)⊥ ≤ a2d+ b2(1− γ)d

from which we get that |b| ≤
√

2ǫ
γ .

Now, we can in turn express vL = αy(L) + βy(L)⊥, where α = 〈vL, y(L)〉 = a =
√
1− b2 ≥

√
1− 2ǫ

γ

or, equivalently, |β| =
√
1− α2 ≤

√
2ǫ
γ .

We have now managed to show that there exists a set of “nice” vectors N = {vL} ⊆ W .
The next claim shows that, if we knew the vL’s then we could set S = N and the algorithm
Recover-SolutionN (U) would return a highly satisfying assignment for U .

Claim 13. If x is a vector such that x = αy(L)+βy(L)⊥ for some y(L) with α > 0 and y(L)⊥ ⊥ y(L),
then the coordinate xuL(u) is maximum in absolute value in at least (1− 2β2

α2 )n blocks.

Proof. Within each block u, in order for coordinate L(u) to be no longer the maximum one, it must
happen that for some j

α
1√
n
+ β(y(L)⊥)uL(u) ≤ β(y(L)⊥)uj

However, this gives

[(y(L)⊥)uj − (y(L)⊥)uL(u)]
2 ≥ α2

β2n
⇒

2(y(L)⊥)
2
uj + 2(y(L)⊥)

2
uL(u) ≥ α2

β2n
⇒

∥∥∥(y(L)⊥)u
∥∥∥
2
≥ (y(L)⊥)

2
uj + (y(L)⊥)

2
uL(u) ≥ α2

2β2n

Since
∥∥y(L)⊥

∥∥ = 1, this can only happen for at most 2β2

α2 n blocks.

12



3.1.2 Eigenspace Enumeration: Finding the Set S of Test Vectors

Our next step is to show that the search for a good assignment can be done in time exponential to
the number of large eigenvalues of M , namely the dimension of W .

Since we don’t know the y(L) (if we did, we would be done), and the space W contains infinitely
many unit vectors, we cannot identify N . To get around this, we discretize W with an appropriate
epsilon-net. If we let w(0), . . . , w(dim(W )−1) be an eigenbasis for W . We define the set S as

S =



v =

(dim(W )−1)∑

s=0

αsw
(s) | αs ∈

√
2ǫ

γdim(W )
Z, ‖v‖ ≤ 1





It can be calculated (see, for instance [FO05]) that the number of points in the set S is at most
2O(γ

ǫ
dim(W )).

To conclude the proof of theorem 8, it remains to show that S has a vector close to a nice vector
vL ∈ N . By construction, S contains at least one vector close to every vector in N and thus it also

contains at least one vector v such that v = αvL + β(vL)⊥ for some L and |β| ≤
√

2ǫ
γ . Together

with claim 12, this implies that we can also write v = ay(L)+ by
(L)
⊥ , with |b| ≤

√
2ǫ
γ +

√
2ǫ
γ = 2

√
2ǫ
γ .

Thus, by claim 13, for this vector v, Recover-SolutionS(U) recovers an assignment which agrees
with y(L) in (1−O( ǫ

γ−8ǫ)) fraction of the blocks.
We will consider that a constrain is violated if one of the two following events happen: either
the assignment we recovered does not agree with the initial perfectly satisfying assignment or the
constraint is one of the (at most) ǫ fraction of constraints that were changed. It follows that
the assignment which we recovered, violates constraints on edges that have total weight at most
O( ǫ

γ−8ǫ)nd+ ǫnd. Since the total weight of constraints is nd/2, theorem 8 follows. The algorithm

runs in 2O(γ
ǫ
dim(W )) + TW (M) = 2O(γ

ǫ
dim(W )) + poly(n · k) time.

3.2 Proof of Theorem 9

Let θ > 0 such that γ ≥ θ ≥ Ω(ǫγ). Let W be the span of eigenvectors of M with eigenvalue

at least (1 − θ)d. Let Y be the span of eigenvectors of M̃ with eigenvalue at least (1 − γ)d. In
particular, Y contains all the assignment eigenvectors, namely the characteristic vectors of the
(perfectly) satisfying assignments of Ũ (since they all have eigenvalue equal to d). Let Y⊥ be the
orthogonal complement of Y .
For the proof, we will use theorem 8 together with a bound on the dimension of W. Roughly we
show that the dimension of W is at most as large as the dimension of Y which, in turn, is at most
k times the dimension of S(1−γ). To conclude, we apply theorem 8 for the eigenspace W .

We will assume w.l.o.g that the graphs we are dealing with are connected. Otherwise, we apply
the results to each connected component individually.

Definition 14. Let Φ be an eigenbasis for G. For every eigenvector φ = (φu)u∈V ∈ Φ let φ̃ to
be the kn-dimensional vector φ̃ui = φu, for i = 1, · · · , k. Due to shift invariance, there exist k
satisfying labelings of the unique games instance which we denote by Li, i = 1, · · · , k. Let y(Li) be
the characteristic vector of labeling Li and let E(φ) = {φ̃ · y(Li)| for i = 0, · · · , k − 1}. Here ·
denotes entry-wise vector product. We define the following set of k × n vectors: Φ̃ =

⋃
φ∈Φ E(φ).
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We note that the set Φ̃ consists of orthogonal unit vectors, since every two vectors in Φ̃ have disjoint
support. The next observation immediately follows from the fact that, due to the shift-invariance
property of Γ-Max-Lin instances, M̃ is the adjacency matrix of k disconnected copies of G.

Observation 15. Φ̃ is an eigenbasis of M̃ . Consequently, the dimension of Y is at most k ·DS,
where DS is the dimension of S(1−γ), as per the assumption of the theorem.

Lemma 16. Assume γ ≥ θ ≥ Ω(ǫγ) for some appropriately large constant. Then any unit-length
vector w ∈ W can be expressed as αy+βy⊥ where y ∈ Y and y⊥ ∈ Y⊥ are both unit length vectors,

and |β| ≤ O(
√

θ
γ3 ). By taking, for example, γ ≥ Ω( 3

√
θ) and, consequently, γ ≥ Ω(

√
ǫ), we get

|β| ≤ 1
8 .

Combining claims 15 and 16, we can proceed as follows: From claim 16 we obtain that W has
dimension dim(W ) ≤ dim(Y ). Otherwise, we would find a vector orthogonal to all the vectors in
Y which cannot be close to their span. From claim 15 we obtain dim(Y ) = k ·DS .
To conclude the proof of theorem 9, we apply theorem 8 with W being the (at most) k · DS

dimensional eigenspace of M with eigenvalues ≥ (1− θ)d.

Finally, it remains to argue about the running time of the algorithm. Since dim(W ) ≤ k · DS ,
the number of points is exponential in kDS . Hence, the algorithm runs in 2O(k·DS) + TW (M) =
2O(k·DS) + poly(n · k) time.

3.2.1 Perturbation of Eigenspaces: Proof of Claim 16

We next prove claim 16. Towards this end, we will apply some results from matrix perturbation
theory. To find appropriate γ and θ such that the eigenspaces W and Y are close, we use the
following claim which essentially appears in [DK70] as the sin θ theorem and was used in [KT07].

Lemma 17. Let w be a unit length eigenvector of M with eigenvalue λ ≥ (1 − θ)d, and let λs

denote the largest eigenvalue of M̃ which is smaller than (1 − γ)d. Then, w can be written as

αy + βy⊥ with |β| ≤ ‖(M̃−M)w‖
(λ−λs)

. Here y ∈ Y and y⊥ ∈ Y ⊥ are unit length vectors.

As seen by the previous lemma, in order to prove that the space Y does not change by much

due to the perturbation, we simply need to bound
∥∥∥(M̃ −M)w

∥∥∥. We will need the fact that w is

somewhat “uniform” across blocks. To formalize this, let w̄ be the n-dimensional vector such that
w̄u = ‖wu‖ where wu is the k-dimensional vector (wu1, . . . , wuk)

T . We then show that w̄ is very
close to a vector in S(1−γ).

Claim 18. If w is a unit-length eigenvector of M with eigenvalue more than (1 − θ)d and w̄ as

above, then we can write w̄ as w̄ = aφ + bφ⊥ with |b| ≤
√

θ
γ and φ ∈ S(1−γ), φ⊥ ∈ S⊥

(1−γ), both

having unit length.

Proof. Since, w corresponds to a large eigenvalue, we have that

(1− θ)d ≤ (w)TMw =
∑

u,v

wu
TAuv · Πuvwv ≤

∑

u,v

‖wu‖Auv ‖wv‖ = (w̄)TAw̄

14



Here the second inequality follows from the fact that the operator norm of Πuv is at most 1. Writing
w̄ as aφ+ bφ⊥, we get

(w̄)TAw̄ ≤ a2d+ b2(1− γ)d

⇒ (1− θ)d ≤ a2d+ b2(1− γ)d ⇒ |b| ≤
√

θ

γ

Using the above, and the fact that the matrix M̃ is only perturbed in ǫ fraction of the edges, we

can now bound
∥∥∥(M̃ −M)w

∥∥∥ as follows.

Claim 19.

∥∥∥(M̃ −M)w
∥∥∥ ≤ O

(√
θ
γ

)
d

Proof. Define the n× n matrix R as Ruv = wuv ≤ 1 when the block (M̃ −M)uv has any non-zero

entry, and Ruv = 0 otherwise. Note that if (M̃ −M)uv is non-zero, then it must be the (scaled)

difference of two permutation matrices. Thus, for all v we have
∥∥∥(M̃ −M)uvwv

∥∥∥ ≤ 2Ruv ‖wv‖. We

calculate:

∥∥∥(M̃ −M)w
∥∥∥ =

√√√√∑

u

∥∥∥∥∥
∑

v

(M̃ −M)uvwv

∥∥∥∥∥

2

≤

√√√√∑

u

(
∑

v

∥∥∥(M̃ −M)uvwv

∥∥∥
)2

≤

√√√√∑

u

(
∑

v

2Ruv ‖wv‖
)2

= 2 ‖Rw̄‖

To estimate ‖Rw̄‖, we break it up as

‖Rw̄‖ ≤ |a| ‖Rφ‖+ |b| ‖Rφ⊥‖

Since each row of R has total sum of entries at most d, |b| ‖Rφ⊥‖ ≤
√

θ
γd. Also,

‖Rφ‖ =

√∑

u

|
∑

v

Ruvφv |2 ≤

√√√√∑

u

(
∑

v

Ruv|φv|
)2

≤ C√
n

√√√√∑

u

(
∑

v

Ruv

)2

Since R has a total sum of entries at most ǫnd, this expression is maximized when it has d 1s in ǫn
rows. This gives ‖Rφ‖ ≤ C

√
ǫd. And, putting everything together we obtain

∥∥∥(M̃ −M)w
∥∥∥ ≤ 2C

√
ǫd+ 2

√
θ

γ
d ≤ O

(√
θ

γ

)
d

We note that the O(·) in the above expression depends on C. We obtained the last inequality by
using the assumption of the lemma θ ≥ Ω(ǫγ).
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Combining the above bound with claim 17, we get that any unit-length vector w ∈ W can be

expressed as αy+βy⊥ where y ∈ Y and |β| ≤ O(
√

θ
γd · 1

(1−θ)d−λs
). Recall that λs was smaller than

(1− γ)d, which implies

|β| ≤ O

(√
θ

γ
· 1

γ − θ

)
(1)

To conclude the proof of claim 16 we take θ << γ. We calculate:

|β| ≤ O

(√
θ

γ
· 1

γ − θ

)
≤ O

(√
θ

γ3

)
(2)

It is sufficient to consider γ ≥ Ω( 3
√
θ) and observe that this also implies, by the assumption θ ≥

Ω(ǫγ) that γ ≥ Ω(
√
ǫ).

3.3 Generalizing to Non-Regular Graphs

It remains to show that the above results hold for non-regular graphs. We will consider eigenvectors
and eigenvalues of the Laplacian matrix of the label-extended graph. Let G and M as before. Let
D be the nk × nk diagonal matrix with block Duu = deg(u) · Ik, where Ik is the k × k identity
matrix. The Laplacian of the label-extended graph is the matrix LM = D − M . Let d be the

average degree of G, and therefore of M , namely d =
∑

u∈V du
n .

We re-state the main theorem 8 to capture the non-regular case.

Theorem 20. Let U = (G,M, k) be a (1 − ǫ) satisfiable instance of Unique Games and W the
eigenspace of LM with eigenvalues less than γd, for γ ≥ 8ǫ. There is an algorithm that runs in
time 2O(γ

ǫ
dim(W )) + poly(n · k) and finds an assignment that satisfies at least (1 − O( ǫ

γ−8ǫ + ǫ))
fraction of the constraints.

Proof. Let W be the span of the eigenvectors of LM with eigenvalue less than γd, for some γ ≥
8ǫ. We again recover highly satisfying assignments using our algorithm Recover-SolutionS(U).
Similarly to the previous section, the set S ⊆ W will be a discretization of our new W .

All we need to show is the following analog of claim 12. We use the same notation as in section 3.1.

Claim 21. For every completely satisfying assignment L there is a unit vector vL ∈ W such that

vL = αy(L) + βy(L)⊥, with |β| ≤
√

2ǫ
γ . Here y(L) and y(L)⊥ are both unit length vectors and

y(L)⊥ ⊥ y(L). By taking, for example, γ ≥ 200ǫ, we have |β| ≤ 1
10 .

Proof. (Of Claim)

We first observe that the assignment eigenvectors yL are eigenvectors of L
M̃

with eigenvalue 0.

We next see that

(y(L))TLMy(L) = (y(L))T (D −M)y(L) = (y(L))T (D − M̃ + M̃ −M)y(L)

= (y(L))T (M̃ −M)y(L) ≤ 2ǫ2|E|
n

= 2ǫd
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We can now write y(L) = avL + b(vL)⊥, with vL ∈ W and (vL)⊥ ∈ W⊥. We calculate:

2ǫd ≥ (y(L))TLMy(L) = a2(vL)
TLMvL + b2((vL)⊥)

TLM (vL)⊥ ≥ b2γd

from which we get that |b| ≤
√

2ǫ
γ .

Now, we can in turn express vL = αy(L)+βy(L)⊥, where α = 〈vL, y(L)〉 = |a| =
√
1− b2 ≥

√
1− 2ǫ

γ

or, equivalently, |β| =
√
1− α2 ≤

√
2ǫ
γ .

To conclude the proof of the theorem, we observe that the analog of claim 13 follows immediately.
We define S as in section 3.1.2, namely

S =



v =

(dim(W )−1)∑

s=0

αsw
(s) | αs ∈

√
2ǫ

γdim(W )
Z, ‖v‖ ≤ 1





where w(i) are now eigenvectors of our new W . The theorem follows.

4 Solving Unique Games on the Khot-Vishnoi Instance

In this section, we show that, when run on the Khot-Vishnoi integrality gap instance, our main
algorithm runs in quasi-polynomial time and correctly decides the (un)satisfiability of the instance.
Namely, we show the following:

Claim 22. Our main algorithm (as in theorem 8) when given input the integrality gap instance of

Khot and Vishnoi as described in the preliminaries section, with label-extended graph K̃Vn,ǫ, runs
in time npoly(log n) and correctly decides that the instance is highly unsatisfiable. Here N = 2n the
number of nodes of Hn and n is the alphabet size.

The proof goes by showing that the eigenspace W as per theorem 8 has relatively low dimension.
The theorem guarantees that exhaustive search in W would find a good assignment if such as-
signment existed and consequently, failure to find such an assignment, will correctly classify the
Khot-Vishnoi instance as unsatisfiable.

The rest of this section is devoted to the proof of claim 22. We use the equivalent definition of
K̃Vn,ǫ as a Cayley graph of Hn which is an “ǫ-perturbed” version of the hypercube graph. We will

need the following claim for the spectrum of K̃Vn,ǫ. We denote the adjacency matrix of K̃Vn,ǫ by
MKV .

Claim 23. The following is true for the spectrum of K̃Vn,ǫ.

• The eigenvectors are the characters of the group Hn.

• The eigenvalue that corresponds to χω is (1− 2ǫ)rn, where r = |ω| is the hamming weight of
ω, and appears with multiplicity Cr =

(
n
r

)
.
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Proof. The first item above is immediate from the definition of the graph as it appears in the
preliminaries section.

For the second item, we just need to calculate the eigenvalues corresponding to χω or, equivalently,
the quadratic form

1√
N

(χω)
TMKV(

1√
N

χω) =
1

N

∑

x,y∈Hn

χω(x)MKV(x, y)χω(y)

=
1

2n

∑

x,y∈Hn

χω(x)nǫ
|x+y|(1− ǫ)n−|x+y|χω(y)

=
n

2n

∑

x,y∈Hn

χω(x+ y)ǫ|x+y|(1− ǫ)n−|x+y|

=
n

2n
2n
∑

z∈Hn

χω(z)ǫ
|z|(1− ǫ)n−|z|

= nEz∈ǫF
[
χω(z)

]
=

n∏

i=1

Ezi∈{0,1}[(−1)ωi·zi ] = n(1− 2ǫ)|ω|

To conclude the proof, we need to argue about the multiplicity of each eigenvalue or, equivalently,
the number of characters χω of a given hamming weight r. It is easily seen that there are Cr =

(n
r

)

characters of Hn that correspond to hamming weight r.

We will directly apply theorem 8. For this purpose we need to calculate the dimension of the
eigenspace W of K̃Vn,ǫ for some appropriate γ ≥ Ω(

√
ǫ).

Lemma 24. Let γ = C
√
ǫ for some sufficiently large constant C. The dimension of the eigenspace

W of the graph K̃Vn,ǫ with eigenvalues ≥ (1−γ) is at most DW ≤ 1
ǫn

O( 1
ǫ
) = poly(n) = poly(logN).

Proof. We first need to identify an upperbound on r such that (1 − 2ǫ)r ≤ (1 − γ), for γ = C
√
ǫ.

It is enough to take r = log 1−γ
log 1−2ǫ . In order to approximate r, we use the Taylor series expansion:

log
1

1− x
=

∞∑

i=1

xi

i

And for ǫ, γ small enough we get

r =
log 1− γ

log 1− 2ǫ
=

log 1
1−γ

log 1
1−2ǫ

≈ γ

ǫ
≤ C

1√
ǫ
≤ C̃

1

ǫ

for some appropriately large constant C̃. The dimension of W can now be bounded, using claim 23,

as follows: DW ≤∑C̃1/ǫ
r=0

(
n
r

)
≤ 1

ǫn
O( 1

ǫ
).

We conclude by arguing, according to theorem 8, that our algorithm will run in time bounded by

2DW = 2
1
ǫ
·nO( 1ǫ )

= N
1
ǫ
·(logN)O( 1ǫ )

= N (poly(logN)). It will fail to find a highly satisfying assignment
and thus decide that the above instance is highly unsatisfiable. Here we used the fact that for the
graph in question, TSW

(M) ≤ 2DW .
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