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Abstract

An algorithm is designed solving a tropical linear system with the complexity
polynomial in the size of the system.

Introduction

A tropical or min-plus semiring (see e. g. [4]) has two operations: min, +. Examples are
provided by integers Z, nonnegative integers Z(≥0), real numbers R or nonnegative real num-
bers R(≥0). Also the extended semirings Z∞ := Z∪{∞} and respectively, Z(≥0)

∞ , R∞, R(≥0)
∞

are considered. Studying algorithms we deal mainly with Z or Z∞.
We say that a tropical linear system

min
1≤j≤n

{ai,j + xj}, 1 ≤ i ≤ m (1)

(or (m × n)-matrix A = (ai,j)) has a tropical solution x = (x1 . . . , xn) if for every row
1 ≤ i ≤ m there are two columns 1 ≤ k < l ≤ n such that

ai,k + xk = ai,l + xl = min
1≤j≤n

{ai,j + xj}

(see e. g. [3], [12]). Our purpose is to design an algorithm to solve (1).
In Section 1 we assume that coefficients ai,j ∈ Z (we call it the case of finite coefficients)

and that 0 ≤ ai,j ≤ M for all i, j. We describe an algorithm which yields a solution
x ∈ Zn of (1) or detects its insolvability within the complexity polynomial in M, n, m.
The algorithm runs by induction on m and starting with any solution of the first m − 1
equations of (1) the algorithm modifies it in a solution of (1) or detects the insolvability of
(1). One can view the algorithm as a tropical analogue of the Gram-Schmidt process with
respect to the tropical norm introduced in Section 1.

In Section 2 we study the case of the (extended) coefficients ai,j ∈ Z∞ and look for a
solution x ∈ Zn∞ of (1) with not all its coordinates xj, 1 ≤ j ≤ n equal ∞. We assume
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that 0 ≤ ai,j ≤ M for all finite coefficients. We describe an algorithm which solves (1)
also within the complexity polynomial in M, n, m. Reordering the columns and rows of
(m×n)-matrix A := (ai,j) the algorithm brings it to a block form (Ap,q), 1 ≤ p, q ≤ t such
that each of the first t − 1 diagonal blocks Ai,i, 1 ≤ i ≤ t − 1 has no (tropical) solution,
and all upper-triangular blocks Ap,q, 1 ≤ p < q ≤ t have all entries equal ∞. It would
be interesting to solve (1) within the complexity polynomial in logM, n, m. However,
it is unclear whether the algorithm itself described in Section 2 runs within the latter
complexity?

In Section 3 we study tropical non-homogeneous linear systems

min
1≤j≤n

{ai,j + xj, ai}, 1 ≤ i ≤ m (2)

and describe an algorithm for their solving relying on the algorithm from Section 2 with a
similar complexity bound.

In Section 4 as a consequence of the algorithm from Section 2 we give a characteriza-
tion of solvability of (1) in terms of the tropical and Kapranov ranks of matrix A (their
definitions are reminded in Section 4) and generalize this characterization to the extended
real coefficients from R∞. Note that for finite coefficients from R this follows from [7],
while for R∞ the solvability in terms of the tropical rank was established in [9].

In Section 5 we describe an algorithm which tests whether (1) has a unique (in the
tropical projective space) solution also within the complexity polynomial in M, n, m (an-
swering a question posed to the author by Thorsten Theobald). It would be interesting to
calculate the dimension of the set of tropical solutions of (1) within a similar complexity.
The latter problem is apparently difficult since in [3] an example of a linear polynomial
ideal is exhibited with an exponential lower bound on the size of its tropical bases.

Note that in [5] it was shown that one can test the tropical singularity of a square
matrix in polynomial time. It is known that calculations of the tropical rank [10] and of
the Kapranov rank [11] are both NP-hard in general. Moreover, it is proved in [11] that the
problem of solving systems of polynomial equations over a given infinite field is reducible
to the problem of testing whether the Kapranov rank of a matrix over this field equals 3.
In [12] it was established that solving tropical polynomial systems (already of degrees 2)
is NP-complete.

We mention that even in the classical algebra there are known two different notions of
a rank of an (m× n)-matrix A over a commutative integral domain K [8]. Define Rk(A)
to be the minimal r such that A = X1 · Y1 + · · · + Xr · Yr for suitable (m × 1)-matrices
X1, . . . , Xr and (1×n)-matrices Y1, . . . , Yr over K. Obviously Rk(A) is greater or equal to
the usual rank rk(A) and can be greater than the latter up to a factor 2 over polynomial
rings K.
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1 Solving tropical linear systems with finite coeffi-

cients

In this section we study the case of finite coefficients ai,j ∈ Z of system (1) and assume
that 0 ≤ ai,j ≤ M, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then w.l.o.g. one can look for a solution
x = (x1, . . . , xn) with coefficients xj ≥ 0, 1 ≤ j ≤ n being also integers.

We introduce the notation of the tropical norm of a vector ||x|| =
∑

1≤j≤n xj − n ·
min1≤j≤n{xj}. Observe that for the coordinatewise operations min, + on vectors x, y we
have ||min{x, y}|| ≤ max{||x||, ||y||} and ||x+ y|| ≤ ||x||+ ||y||. Vector x is equivalent in
the tropical projective space [7] to a normalized vector x − min1≤j≤n{xj} · (1, . . . , 1). For
normalized vectors an inequality ||min{x, y}|| ≤ min{||x||, ||y||} holds.

Theorem 1.1 There is an algorithm which for an input (1) either finds its solution or
detects its insolvability within complexity O(M · logM · n2 ·m2).

Lemma 1.2 If (1) has a solution (x1, . . . , xn) then (1) has a solution (x′1, . . . , x
′
n) satisfying

0 ≤ x′j ≤M, x′j ≤ xj, 1 ≤ j ≤ n.

Proof of Lemma 1.2. One can suppose w.l.o.g. that min1≤j≤n{xj} = 0. Therefore
for each row i it is fulfilled min1≤j≤n{ai,j + xj} ≤ M . Hence if column j0 satisfies the
property ai,j0 +xj0 = min1≤j≤n{ai,j +xj} for suitable row i (we call such column j0 active)
then x′j0 := xj0 ≤M . For any non-active j0 one can put x′j0 := min{xj0 ,M}.

Proof of Theorem 1.1 we carry out by induction on m. Assume by inductive hypoth-
esis that the algorithm has already produced a current solution x for ((m−1)×n)-submatrix
A′ of matrix A excluding the first row of A such that 0 ≤ xj ≤M, 1 ≤ j ≤ n. Reordering
the columns we suppose that a1,1 + x1 = min1≤j≤n{a1,j + xj}. The algorithm modifies
vector x (keeping the property of being a solution of A′) until the modified vector becomes
a solution also for the first row or detects that A has no solutions. One can assume that
a1,1 + x1 < a1,j + xj, j ≥ 2, otherwise the algorithm terminates the inductive step.

We construct by recursion a subset J of columns. At the beginning J = {1}. For a
current J = {1, . . . , k} for each 1 ≤ i ≤ k we have

ai,i + xi = min
1≤j≤n

{ai,j + xj} < ai,j1 + xj1 , j1 > i (3)

Suppose that there exists a row i = ik+1 for which there is a unique j0 /∈ J such that
ai,j0 +xj0 = min1≤j≤n{ai,j +xj}. Clearly, i > k due to (3). Transpose column j0 with k+ 1
and row i with k + 1, respectively. Put current J := {1, . . . , k + 1}. Then (3) is fulfilled
for new J .

Now assume that the algorithm fails to augment J . Observe that J does not depend
on the order of choosing rows i = ik+1 in the above construction.

First suppose that J = {1, . . . , n}. In this case (n× n)-submatrix of A induced by its
first n rows is tropically nonsingular, consequently (1) has no solution and the algorithm
halts.
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Now let k = |J | < n. If k = 1 we add to x1 number min2≤j≤n{a1,j+xj}−(a1,1+x1) ≥ 1
and obtain a solution of (1). Thereupon apply Lemma 1.2 to the obtained solution, thereby
the algorithm terminates the inductive step.

Thus, from now on we assume that k > 1. We call row i attracted if for every j0
such that ai,j0 + xj0 = min1≤j≤n{ai,j + xj}, we have j0 ∈ J . Obviously, the first row is
attracted. Reordering the rows one may suppose that exactly first l rows are attracted.
Note that for any row i > l there are at least two different columns j1, j2 /∈ J such that
ai,j1 + xj1 = ai,j2 + xj2 = min1≤j≤n{ai,j + xj}.

For 1 ≤ i ≤ l denote

ai := min
k<j≤n

{ai,j + xj} − min
1≤j≤n

{ai,j + xj} ≥ 1

and a := min1≤i≤l{ai}. The algorithm modifies vector (x1, . . . , xn) in such a way that

yj := xj + a, 1 ≤ j ≤ k; yj := xj, j > k.

Then vector y := (y1, . . . , yn) is still a solution of A′ and a1,1 + y1 = min1≤j≤n{a1,j + yj}.
Moreover, the tropical norm

||(a1,j + y1, . . . , a1,n + yn)|| = ||(a1,j + x1, . . . , a1,n + xn)|| − a · (n− k)

has dropped.
Thereupon the algorithm applies Lemma 1.2 to vector (y1, . . . , yn). Observe that this

does not change the tropical norm since each of the first k columns is active (taking into
account that k > 1) and hence every yj ≤M, j > k and thereby yj does not change in the
course of application of Lemma 1.2.

Thus, we have described a single iteration of the algorithm. The nest iteration starts
with the modified vector y replacing x. The complexity of the execution of the iteration
can be bounded by O(logM ·m·n). The total number of iterations does not exceed tropical
norm ||(a1,j+x1, . . . , a1,n+xn)|| ≤ 2·M ·(n−1). Since the described induction (considering
each time one more row of matrix A) requires m steps, we conclude the complexity bound
in Theorem 1.1.

2 Solving tropical linear systems with coefficients ex-

tended by infinity

From now on we assume that entries of (1) ai,j ∈ Z∞ and 0 ≤ ai,j ≤M when ai,j ∈ Z. We
are looking for solutions (x1, . . . , xn) over Z∞ with not all the coordinates equal ∞.

Theorem 2.1 There is an algorithm which for a tropical linear system (1) over Z∞ either
finds a solution or detects its insolvability within complexity O(M · log(M · n) · n4 ·m2).
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Lemma 2.2 If (x1, . . . , xn) ∈ (R∞)n is a solution of (1) then there exists a solution
(x′1, . . . , x

′
n) of (1) such that for any 1 ≤ j, j1 ≤ n it holds:

• x′j =∞ iff xj =∞;
• 0 ≤ x′j ≤ min{xj, (M + 1) · n}, provided that xj 6=∞;
• xj − xj1 > M iff x′j − x′j1 > M .

Proof of Lemma 2.2. In the course of the proof we will modify vector (x1, . . . , xn)
keeping for it the same notation. One can assume w.l.o.g. that 0 = x1 = min1≤j≤n{xj}.
Consider a graph whose vertices are finite coordinates xj, and a pair of coordinates xp, xq is
connected by an edge if for some row i we have ai,p+xp = ai,q+xq = min1≤j≤n{ai,j +xj} 6=
∞.

Consider a connected component of the graph which contains x1. Let the component
contain p vertices, and after their reordering one can assume that it consists of x1, . . . , xp,
hence xj ≤ M · (p− 1), 1 ≤ j ≤ p. After reordering the coordinates one can assume that
xp+1 = minj>p{xj}. If xp+1 = ∞ the Lemma is proved. Otherwise, if xp+1 ≥ M · p + 1
then replace xj with xj − xp+1 + (M · p + 1) for all j > p. Take a connected component
of the graph which contains xp+1. Let it consist of q vertices xp+1, . . . , xp+q. As above we
conclude that xp+j ≤ M · (p + q − 1) + 1, 1 ≤ j ≤ q. Continuing in this way we complete
the proof of Lemma.

The proof of Theorem 2.1 we carry out by induction on m and first formulate the
inductive hypothesis. Suppose that ((m− 1)× n)-submatrix A′ of A (after reordering the
rows and columns) has a block structure

A1,1 ∞ · · · ∞ ∞
A2,1 A2,2 · · · ∞ ∞
· · · · · · · · · · · · · · ·

At−1,1 At−1,2 · · · At−1,t−1 ∞
At,1 At,2 · · · At,t−1 At,t


where Ap,q is of size up × vq, 1 ≤ p, q ≤ t − 1, while the lowest blocks At,q are of sizes
ut × vq, 1 ≤ q < t, the rightmost blocks Ap,t are of sizes up × vt, 1 ≤ p < t, finally the
diagonal block At,t is of size ut×vt where ut = m−1−u1−· · ·−ut−1, vt = n−v1−· · ·−vt−1.

Also a vector (y1, . . . , yn) ∈ Zn, 0 ≤ yj ≤ (M + 1) · n, 1 ≤ j ≤ n is yielded. For
each diagonal block Ap,p = (au+i,v+j), 1 ≤ p < t, u := u1 + · · · + up−1, 1 ≤ i ≤ up, v :=
v1+· · ·+vp−1, 1 ≤ j ≤ vp (except for the lowest diagonal block At,t) we have au+i,v+i+yv+i =
min1≤j≤vp{au+i,v+j + yv+j} for 1 ≤ i ≤ vp and au+i,v+i + yv+i < au+i,v+j + yv+j, i < j ≤ vp.
Therefore, in particular up ≥ vp, p < t. It is not excluded that ut = 0, while the case
vt = 0 would mean that the algorithm under description terminates with the output that
system (1) has no solutions (cf. below Lemma 2.5).

Every entry of each upper-triangular block Ap,q, p < q (as well as of Ap,t, p < t) equals
∞. Moreover, the vector from Zn∞ whose coordinates in the first t− 1 blocks equal ∞ and
in the last t-th block coincide with yj for v1 + · · · + vt−1 < j ≤ n, is a tropical solution of
matrix A′.
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For the sake of simplifying notations denote matrix B′ = At,t of size (r−1 := ut)×(s :=
vt). One can assume that B′ has no rows consisting fully of ∞ entries, otherwise the
corresponding row of matrix A′ one can join to the previous (t− 1)-th block.

We assume that matrix A′ is obtained from A by deleting its (m − r + 1)-th row. By
B = (bi,j), 1 ≤ i ≤ r, 1 ≤ j ≤ s denote (r × s)-submatrix of A located in its lower right
corner. Deleting the first row from B we obtain B′. Also one can suppose w.l.o.g. that
b1,1 + yn−s+1 = min1≤j≤s{b1,j + yn−s+j}.

The algorithm will modify vector (yn−s+1, . . . , yn) (keeping for a current vector the
same notation) while preserving the property that (yn−s+1, . . . , yn) is a (tropical) solution
of B′. One can assume w.l.o.g. that b1,1+yn−s+1 < min2≤j≤s{b1,j+yn−s+j}, since otherwise
the vector from Zn∞ with all coordinates in the first t − 1 blocks equal ∞ and coinciding
with vector (yn−s+1, . . . , yn) in the last t-th block provides a solution of A which would
terminate the inductive step. In this case in the block structure u1, . . . , ut−1, v1, . . . , vt−1, vt
do not change, while ut increases by one. Applying Lemma 2.2 one can assume w.l.o.g.
that 0 ≤ yj ≤ (M + 1) · n, n− s+ 1 ≤ j ≤ n.

As above in the proof of Theorem 1.1 the algorithm constructs recursively a set J ⊂
{n− s+ 1, . . . , n} of columns of matrix B, while modifying vector (yn−s+1, . . . , yn), and we
describe a single iteration of this modification. As in the proof of Theorem 1.1 (n−s+1) ∈
J . Again as above introduce the set of attracted rows. For every attracted row i denote

bi := min
j /∈J
{bi,j−n+s + yj} −min

j∈J
{bi,j−n+s + yj} ≥ 1.

Then b := min{bi} ≥ 1 where min is taken over all the attracted rows. Thus, the algorithm
modifies vector (yn−s+1, . . . , yn) adding b to every yj for j ∈ J . Thereupon the algorithm
applies Lemma 2.2 to vector (yn−s+1, . . . , yn) which satisfies B′. Hence one can assume
w.l.o.g. that 0 ≤ yj ≤ (M + 1) · s, n− s+ 1 ≤ j ≤ n.

The algorithm introduces the following directed graph G with s vertices {n − s +
1, . . . , n}. There is an edge in G from j1 to j2 if yj1 − yj2 ≤ M . Observe that an ap-
plication of Lemma 2.2 to vector (yn−s+1, . . . , yn) does not change graph G. Denote by
S ⊂ {n− s+ 1, . . . , n} the set of all the vertices which can be reached in G starting with
vertex n − s + 1. In the course of executing the algorithm, while modifying J, G, S we
keep for them the same notations.

Lemma 2.3 After any subsequent iteration of the algorithm set J remains to be a subset
of S. Set S after an iteration becomes a subset of S before the iteration.

Proof of Lemma 2.3. At the current iteration inclusion J ⊂ S holds by virtue
of construction of J since for any row i and any pair of columns j ∈ S, l /∈ S we have
bi,l−n+s+yl 6= bi,j−n+s+yj, unless bi,l−n+s = bi,j−n+s =∞. Therefore, after the modification
of vector (yn−s+1, . . . , yn) its coordinates yj for j ∈ J increase, while the other coordinates
do not change. Consequently, the modified S is a subset of the previous S.

Lemma 2.4 For any attracted row i and any l /∈ S we have bi,l−n+s =∞.
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Proof of Lemma 2.4. If bi,l−n+s <∞ then bi,l−n+s + yl < bi,j−n+s + yj for any j ∈ S
which contradicts to that row i is attracted and that J ⊂ S (due to Lemma 2.3).

Now assume that J = S. Denote by vt := #J and by ut the number of attracted rows
of B. Reorder the rows and the columns of B (and respectively, of A) in such a way that
the set of the first vt columns of B coincides with J , and the set of the first ut rows of
B coincides with the set of attracted rows of B. Moreover, one can suppose that for any
1 ≤ i ≤ vt we have

bi,i + yn−s+i = min
1≤j≤s

{bi,j + yn−s+j} < min
i<l≤s
{bi,l + yn−s+l}. (4)

Then the algorithm constructs a modified block decomposition of A being a refinement
of the block decomposition from the inductive hypothesis: the last ut rows (respectively,
the last vt columns) of A are partitioned into the first ut rows and the remaining ut+1 :=
ut − ut rows (respectively, into the first vt columns and the remaining vt+1 := vt − vt
columns). Thus, as blocks of A we obtain the new ones At,q, q ≤ t; Ap,t, p ≤ t; At+1,q, q ≤
t + 1; Ap,t+1, p ≤ t + 1. The diagonal block At,t satisfies the inductive hypothesis by its
construction, see (4), and each entry of At,t+1 equals∞ due to Lemma 2.4. This completes
the inductive step for m rows (i. e. for matrix A).

The algorithm terminates when it is impossible to continue its work. It can happen
when either all the rows of (1) or all its columns are exhausted. First consider the case
when all the rows of (1) are exhausted (i. e. A contains all the rows of (1)), but not all
the columns are exhausted. Then two possibilities can occur. Either a (modified) vector
(yn−s+1, . . . , yn) is a solution of matrix B, then the algorithm terminates before completing
a block decomposition of matrix A (at the inductive step) and outputs a solution of (1)
(see above). Or the inductive step is completed with all the rows of B being attracted
(since all the rows of (1) are exhausted) and with J = S 6= {n− s+ 1, . . . , n} (since not all
the columns of (1) are exhausted). In the latter case ut = ut, in other words blocks At+1,q

are void, block At,t+1 is not empty with each its entry equal ∞. Then (1) has a solution
whose coordinates at first t blocks equal ∞ and at (t+ 1)-th block equal, say, 0 (or other
arbitrary integers).

Secondly, consider the case when all the columns of (1) are exhausted, i. e. J = {n −
s+1, . . . , n}. Then observe that ut = ut, vt = vt, thus blocks At+1,q; Ap,t+1, 1 ≤ p, q ≤ t+1
being void. Consider (n× n)-submatrix C̃ = (c̃i,j) of A consisting of its first vp rows from
each block of decomposition of A, 1 ≤ p ≤ t. Denote by C = (ci,j) matrix such that
ci,j := c̃i,j + yj, 1 ≤ i, j ≤ n. Evidently, the tropical linear systems with matrices C̃ and C
have solutions simultaneously.

Lemma 2.5 Let (n × n)-matrix C be decomposed into blocks Cp,q of sizes vp × vq, 1 ≤
p, q ≤ t; n = v1 + · · · + vt. Moreover, for each diagonal block Cp,p = (cv+i,v+j), 1 ≤ i, j ≤
vp, 1 ≤ p ≤ t where v = v1 + · · · vp−1 we have

cv+i,v+i = min
1≤j≤vp

{cv+i,v+j} < min
i<l≤vp

{cv+i,v+l}
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for every 1 ≤ i ≤ vp. In addition, any entry of an upper-triangular block Cp,q, p < q equals
∞. Then a tropical linear system with matrix C has no solution over Z∞.

Proof of Lemma 2.5. Suppose that vector (z1, . . . , zn) is a tropical solution of matrix
C. Let p be the first block (zv+1, . . . , zv+vp) of (z1, . . . , zn) which contains a finite coordinate.
Then (zv+1, . . . , zv+vp) is a tropical solution of matrix Cp,p. Take a unique 1 ≤ j0 ≤ vp such
that

zv+j0 = min
1≤j≤vp

{zv+j} < min
1≤j≤j0

{zv+j}.

Then we conclude that (zv+1, . . . , zv+vp) is not a tropical solution of j0-th row of matrix Cp,p
because cv+j0,v+j0 + zv+j0 < min1≤j≤vp, j 6=j0{cv+j0,v+j + zv+j}. The achieved contradiction
proves the Lemma.

Lemma 2.5 implies the correctness of the described algorithm: it outputs a solution of
(1) over Z∞ iff (1) is solvable.

Now we estimate the complexity of the algorithm. We recall that in the course of
an iteration modifying vector (yn−s+1, . . . , yn) the modified set S becomes a subset of the
previous set S (see Lemma 2.3). First we bound from above the number of iterations while
S does not change. Observe that the integer N := (s − 1) · yn−s+1 − yn−s+2 − · · · − yn
increases after every iteration because the algorithm adds an integer b ≥ 1 to each yj for
j ∈ J ⊂ S (due to Lemma 2.3), while n − s + 1 ∈ J , in addition J 6= S (otherwise,
the algorithm completes the inductive step). At the beginning of the inductive step N ≥
−(s − 1) · (M + 1) · n (cf. Lemma 2.2). If N becomes larger than M · s2 then S should
change (since not all the vertices of S become reachable in graph G). Therefore, after at
most of O(M · s · n) iterations set S changes. Again due to Lemma 2.3 S can be modified
at most s times. Thus, the whole number of iterations in the inductive step is less than
O(M · s2 · n) ≤ O(M · n3).

The complexity of executing a single iteration is bounded by log(M · n) · m · n (cf.
Lemma 2.2). The number of inductive steps (augmenting the set of rows of (1) under
consideration) does not exceed m. Summarizing, this provides the complexity bound O(M ·
log(M · n) · n4 ·m2) of the algorithm and completes the proof of Theorem 2.1.

When the paper was already submitted the author has learned that a different algorithm
for solving tropical linear systems was designed in [1] with a similar complexity bound as
in Theorem 2.1 (implying also Corollary 4.2 below). The approach from [1] involves mean
payoff games and provides in addition an algorithm for solving min-linear systems [4]

min
1≤j≤n1

{ai,j + xj} = min
1≤l≤n2

{bi,l + yl}, 1 ≤ i ≤ m (5)

For the first time an algorithm for solving system (5) within the similar complexity
bound polynomial in n1, n2, m, M was proposed in [6]. In [2] there was produced an
example of system (5) with sizes n1 = n2 = 2, m = 3 and a1,1 = a1,2 = b1,2 = 1, a2,2 =
b2,2 = M (the remaining entries vanish) for which the algorithm from [6] runs with the
complexity lower bound polynomial in M .
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Observe that an example of this sort (with matrices of a constant size) for the algorithm
from Theorem 2.1 (for a different problem of solving a tropical linear system (1)) would be
impossible, because the algorithm from Theorem 2.1 runs actually within the complexity
polynomial in exp(n ·m), logM . Indeed, for each t and row 1 ≤ i ≤ r of matrix B consider
the set of columns 1 ≤ j ≤ s such that bi,j +yn−s+j = min1≤l≤s{bi,l+yn−s+l} (cf. (4)). One
can verify that the sets of all such pairs i, j are distinct at different steps of the algorithm.
On the other hand, it is unclear whether the algorithm from Theorem 2.1 runs within the
complexity polynomial in n, m, logM (rather than in M)?

3 Solving tropical non-homogeneous linear systems

Treating (1) as a tropical homogeneous linear system one can consider its non-homogeneous
counterpart (2). Denote by Â the matrix of size m × (n + 1) obtained from A = (ai,j)
by joining as the last (n + 1)-th column (a1, . . . , am)T . Then (2) has a tropical solution
over Z∞ iff the homogeneous linear system with the matrix Â has a tropical solution
(x1, . . . , xn, xn+1) such that xn+1 6= ∞. We describe an algorithm which can test the
existence of such a solution.

The algorithm from Theorem 2.1 brings matrix Â (after handling all its m rows) to the
block form (Ap,q) with block sizes u1, . . . , ut; v1, . . . , vt (possibly ut = 0). We assume that

the homogeneous system with the matrix Â has a tropical solution (which is detected by
the algorithm from Theorem 2.1), otherwise (2) has no tropical solution.

The proof of Lemma 2.5 entails that any solution of the homogeneous system with the
matrix Â has coordinates equal ∞ in the first t− 1 blocks of sizes v1, . . . , vt−1 (we remind
that the algorithm from Theorem 2.1 reorders the columns and rows of Â). On the other
hand, there is a solution with all finite coordinates in the last t-th block of size vt. Thus,
the criterion of solvability of (2) is that the last (n+ 1)-th column of Â belongs to the last
t-th block.

Assume that the entries ai,j, ai satisfy the same bounds as ai,j from (1). Making use of
Theorem 2.1, we get

Corollary 3.1 There is an algorithm which for an input (2) either finds its solution over
Z∞ or detects its insolvability within complexity O(M · log(M · n) · n4 ·m2).

4 Solvability of tropical linear systems via tropical

and Kapranov ranks

As a direct consequence of Theorem 2.1 we get a criterion of solvability of a tropical linear
system (1) over Z∞ in terms of its tropical and Kapranov ranks [7].

Similar to matrices over Z we call (n × n)-matrix A = (ai,j) tropically non-singular
if there exists a unique assignment {ai,π(i)}1≤i≤n for a permutation π ∈ Sym(n) with
a minimal sum

∑
1≤i≤n ai,π(i) (in this case the latter sum is obviously finite). Then as
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usually, the tropical rank of an (m× n)-matrix is defined as the maximal size of tropically
non-singular submatrices.

For an (m× n)-matrix A = (ai,j) its lifting is defined as an (m× n)-matrix F = (fi,j)
over the field of Puiseux series K = C((t1/∞)) such that ord(fi,j) = ai,j or fi,j = 0 when
ai,j = ∞. Then the Kapranov rank of A is said to be less or equal to r if there exists a
lifting F of A with the rank (over K) at most r.

Corollary 4.1 The following three statements are equivalent:
i) A tropical linear system (1) with (m× n)-matrix A has a solution over Z∞;
ii) The tropical rank of A is less than n;
iii) The Kapranov rank of A is less than n.

Proof of Corollary 4.1. The implication iii) ⇒ ii) is evident (cf. e. g. [7]). In [7] it
is also shown the equivalence of ii) and iii) for matrices over R (so, with finite coefficients).
Also the equivalence of i) and ii) was established in [9].

The implication ii) ⇒ i) follows from Theorem 2.1. Indeed, if (1) has no solutions, the
algorithm designed in the proof of Theorem 2.1 terminates by exhausting the columns of
(1). Hence there is an (n×n)-submatrix C̃ = (c̃i,j) of A such that (n×n)-matrix C = (ci,j)
for which ci,j = c̃i,j + yj for an appropriate vector (y1, . . . , yn) ∈ Zn fulfils the properties
of Lemma 2.5. Clearly, matrix C has a unique minimal assignment located on its diagonal
and thereby is tropically non-singular, the same holds for C̃ as well.

To establish the remaining implication i)⇒ iii) consider a solution (x1, . . . , xn) ∈ (Z∞)n

of A. We take a vector z := (z1, . . . , zn) ∈ Kn such that zj = txj or zj = 0 when xj =∞.
Our purpose is to produce an (m × n)-matrix F = (fi,j) over K such that F · z = 0 and
ord(fi,j) = ai,j or fi,j = 0 when ai,j =∞ (i. e. F will be a lifting of A).

Fix a row i for the time being. If min1≤j≤n{ai,j + xj} = ∞ we have fi,j · zj = 0, 1 ≤
j ≤ n. Now let ai,l + xl = min1≤j≤n{ai,j + xj} < ∞ for all l ∈ L for a certain subset
L ⊂ {1, . . . , n} with at least two elements. We look for fi,j =

∑
k≥ai,j gj,k ·t

k as polynomials

with indeterminate coefficients gj,k ∈ Z. Fix in an arbitrary way all fi,j := tai,j (when
ai,j < ∞) for all j except a single l0 ∈ L. Expanding equality

∑
1≤j≤n fi,j · zj = 0 in the

powers of t we obtain in the unique way a polynomial fi,l0 = −(#L− 1) · tai,l0 + · · · ∈ Z[t]
with ord(fi,l0) = ai,l0 . Since the rank of F (being a lifting of A) is less than n, we establish
iii).

Clearly, one can detect solvability of (1) by verifying the tropical singularity of all
(n × n)-submatrices of A (see Corollary 4.1), thus within the complexity polynomial in
logM,

(
m
n

)
, cf. [5].

Corollary 4.2 The problem of solvability of a tropical linear system belongs to the com-
plexity class NP ∩ coNP .

Remark 4.3 For (extended) rational coefficients ai,j ∈ Q∞ Theorem 2.1 and Corollary 4.1
hold literally.
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Remark 4.4 For (extended) real coefficients ai,j ∈ R∞ statements i) and ii) of Corol-
lary 4.1 are equivalent. Indeed, for the implication ii) ⇒ i) one can in the proof of
Theorem 2.1 replace the induction with the transfinite induction, while modifying vector
(yn−s+1, . . . , yn) and proving existence of a solution of (1) (again matrix C from Lemma 2.5
is tropically non-singular).

To prove the inverse implication i)⇒ ii) assume that (x1, . . . , xn) ∈ (R∞)n is a solution
of a tropical square linear system (1), i. e. m = n, and that A has a unique minimal
assignment. Reordering the rows and the columns of A one can suppose w.l.o.g. that
xj = ∞ iff j > k and in addition that the unique minimal assignment is located on the
diagonal of A. Then vector (x1, . . . , xk) ∈ Rk is a solution of (k × k)-submatrix Ak =
(ai,j), 1 ≤ i, j ≤ k of A in its upper left corner. Consider a directed graph H with k
vertices x1, . . . , xk. For a pair of vertices xi, xj, i 6= j there is an edge (xi, xj) in H if
ai,j + xj = min1≤l≤k{ai,l + xl}. Since (x1, . . . , xk) is a solution of Ak, for any 1 ≤ i ≤ k
there is 1 ≤ j ≤ k such that H contains edge (xi, xj). Therefore, there exists a simple
cycle xi1 , xi2 , . . . , xis in H. Then the assignment of A obtained from the diagonal one by
means of replacing ai1,i1 , ai2,i2 , . . . , ais,is with ai1,i2 , ai2,i3 , . . . , ais,i1, has the same sum as the
diagonal one. This contradiction with the tropical singularity of A proves ii).

5 Testing uniqueness of a solution of a tropical linear

system

Let y = (y1, . . . , yn) ∈ Zn∞ be a solution of (1) (being yielded, say, by the algorithm designed
in Theorem 2.1). One can suppose w.l.o.g. that 0 ≤ yj ≤ (M + 1) · n+ 1 when yj is finite
for 1 ≤ j ≤ n, cf. Lemma 2.2. Our purpose is to test whether y is unique (in the tropical
projective space [7]) solution of (1). We refer to two vectors as different if they are different
in the tropical projective space. The set S∞(y) ⊂ {1, . . . , n} of all 1 ≤ l ≤ n such that
yl =∞ we call the infinity support of y.

Lemma 5.1 Assume that there exists a solution z = (z1, . . . , zn) ∈ Zn∞ of (1) different
from y . Then there exists a solution w = (w1, . . . , wn) ∈ Zn∞ of (1) and a pair of indices
1 ≤ j 6= l ≤ n with {j, l} 6⊂ S∞(y) and j, l /∈ S∞(w) such that

i) if j, l /∈ S∞(y) then wl ≤ yl, wj ≤ yj, yl − wl + yj − wj = 1;
ii) if j ∈ S∞(y), l /∈ S∞(y) then wj − wl = (M + 1) · n.

Moreover, S∞(w) = S∞(y) ∩ S∞(z).

Proof of Lemma 5.1. One can suppose w.l.o.g. that 0 ≤ zj ≤ (M + 1) ·n, 1 ≤ j ≤ n,
cf. Lemma 2.2, and still y and z are different. If among three sets S∞(y) \ S∞(z), S∞(z) \
S∞(y), {1, . . . , n} \ (S∞(y) ∪ S∞(z)) at least two are nonempty, pick j from one of them
and l from another one. Otherwise, S∞(y) \ S∞(z) = S∞(z) \ S∞(y) = ∅, in this case
as j, l pick any two elements from {1, . . . , n} \ (S∞(y) ∪ S∞(z)) with the property that
yl − zl 6= yj − zj (such j, l exist since y, z are different).
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First consider the case when j, l /∈ S∞(y). Vector z′ := z + (max{yl − zl, yj − zj} −
1) · (1, . . . , 1) is a solution of (1) (note that max{yl − zl, yj − zj} ∈ Z because not both
zj, zl equal ∞ by virtue of the choice of j, l). Put w := (w1, . . . , wn) := min{y, z′}. Let for
definiteness yl − zl > yj − zj. Then wl = yl − 1, wj = yj which proves Lemma in the first
case.

Secondly, assume that j ∈ S∞(y), l /∈ S∞(y). Vector y′ := y + (zj − (M + 1) · n −
yl) · (1, . . . , 1) is a solution of (1), put w := (w1, . . . , wn) := min{y′, z}. Then wj = zj and
wl = y′l = zj − (M + 1) · n ≤ zl due to the supposition above.

Now we describe an algorithm which tests whether y is a unique solution of (1). For
each pair {j, l} 6⊂ S∞(y) the algorithm chooses integers wj, wl with min{wj, wl} = 0 which
satisfy either i) or ii) from Lemma 5.1. The algorithm extends (1) by a tropical linear
equation min{wl+xj, wj+xl} and applies to the extended system Theorem 2.1. Lemma 5.1
implies that if y is not a unique solution of (1) then the extended system for at least one
of the pairs {j, l} 6⊂ S∞(y) will have a solution. Conversely, if the extended system has a
solution x = (x1, . . . , xn) then either xj, xl ∈ Z, xj − xl = wj − wl or xj = xl =∞. In any
of two latter cases vector x differs from y. Summarizing and employing Theorem 2.1 we
conclude with the following

Corollary 5.2 There is an algorithm which for a given system (1) tests whether it has a
unique solution, within the complexity O(M · log(M · n) · n7 ·m2).

It is an open question whether one can calculate the dimension of the set of solutions
of (1) (being a polyhedral complex) with the complexity which depends polynomially on
n,m?
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