
ar
X

iv
:1

11
0.

62
71

v2
 [

cs
.C

C
]

 2
7

M
ar

 2
01

2

Monomials in arithmetic circuits: Complete

problems in the counting hierarchy

Hervé Fournier and Guillaume Malod

Univ Paris Diderot, Sorbonne Paris Cité,

Institut de Mathématiques de Jussieu, UMR 7586 CNRS,

F-75205 Paris, France

{fournier,malod}@math.univ-paris-diderot.fr

Stefan Mengel∗

Institute of Mathematics

University of Paderborn

D-33098 Paderborn, Germany

smengel@mail.uni-paderborn.de

November 16, 2021

We consider the complexity of two questions on polynomials given by arith-
metic circuits: testing whether a monomial is present and counting the number
of monomials. We show that these problems are complete for subclasses of the
counting hierarchy which had few or no known natural complete problems before.
We also study these questions for circuits computing multilinear polynomials.

1. Introduction

Several recent papers in arithmetic circuit complexity refer to a family of classes called the

counting hierarchy consisting of the classes PP∪PPPP∪PPPP
PP

∪. . .. For example, Bürgisser [6]
uses these classes to connect computing integers to computing polynomials, while Jansen and
Santhanam [13] — building on results by Koiran and Perifel [17] — use them to derive lower
bounds from derandomization. This hierarchy was originally introduced by Wagner [31]
to classify the complexity of combinatorial problems. Curiously, after Wagner’s paper and
another by Torán [26], this original motivation of the counting hierarchy has to the best of
our knowledge not been pursued for more than twenty years. Instead, research focused on
structural properties and the connection to threshold circuits [3]. As a result, there are very
few natural complete problems for classes in the counting hierarchy: for instance, Kwisthout

∗Partially supported by DFG grants BU 1371/2-2 and BU 1371/3-1.

1

http://arxiv.org/abs/1110.6271v2

et al. give in [19] “the first problem with a practical application that is shown to be FP
PP

PP

-
complete”. The related class C=P appears to have no natural complete problems at all
(see [12, p. 293]). It is however possible to define generic complete problems by starting with
a #P-complete problem and considering the variant where an instance and a positive integer
are provided and the question is to decide whether the number of solutions for this instance
is equal to the integer. We consider these problems to be counting problems disguised as
decision problems and thus not as natural complete problems for C=P, in contrast to the
questions studied here. Note that the corresponding logspace counting class C=L is known to
have interesting complete problems from linear algebra [1].

In this paper we follow Wagner’s original idea and show that the counting hierarchy is a
helpful tool to classify the complexity of several natural problems on arithmetic circuits by
showing complete problems for the classes PP

PP, PPNP and C=P.
1 The common setting of

these problems is the use of circuits or straight-line programs to represent polynomials. Such
a representation can be much more efficient than giving the list of monomials, but common
operations on polynomials may become more difficult. An important example is the question
of determining whether the given polynomial is identically zero. This is easy to do when given
a list of monomials. When the polynomial is given as a circuit, the problem, called ACIT
for arithmetic circuit identity testing, is solvable in coRP but is not known to be in P. In
fact, derandomizing this problem would imply circuit lower bounds, as shown in [14]. This
question thus plays a crucial part in complexity and it is natural to consider other problems
on polynomials represented as circuits. In this article we consider mainly two questions.

The first question, called ZMC for zero monomial coefficient, is to decide whether a given
monomial in a circuit has coefficient 0 or not. This problem has already been studied by
Koiran and Perifel [16]. They showed that when the formal degree of the circuit is poly-
nomially bounded the problem is complete for P

#P. Unfortunately this result is not fully
convincing, because it is formulated with the rather obscure notion of strong nondeterminis-
tic Turing reductions. We remedy this situation by proving a completeness result for the class
C=P under more traditional logarithmic space many-one reductions. This provides a natural
complete problem for this class. Koiran and Perifel also considered the general case of ZMC,
where the formal degree of the circuits is not bounded. They showed that ZMC is in CH. We
provide a better upper bound by proving that ZMC is in coRP

PP. We finally study the case
of monotone circuits and show that the problem is then coNP-complete.

The second problem is to count the number of monomials in the polynomial computed by a
circuit. This seems like a natural question whose solution should not be too hard, but in the
general case it turns out to be PPPP-complete, and the hardness holds even for weak circuits.
We thus obtain another natural complete problem, in this case for the second level of the
counting hierarchy.

Finally, we study the two above problems in the case of circuits computing multilinear
polynomials. We show that our first problem becomes equivalent to the fundamental problem
ACIT and that counting monomials becomes PP-complete.

1Observe that Hemaspaandra and Ogihara [12, p. 293] state that Mundhenk et al. [23] provide natural
complete problems for PP

NP. This appears to be a typo as Mundhenk et al. in fact present complete
problems not for PP

NP but for the class NP
PP which indeed appears to have several interesting complete

problems in the AI/planning literature.

2

2. Preliminaries

Complexity classes We assume the reader to be familiar with basic concepts of computa-
tional complexity theory (see e.g. [4]). All reductions in this paper will be logspace many-one
unless stated otherwise.

We consider different counting decision classes in the counting hierarchy [31]. These classes
are defined analogously to the quantifier definition of the polynomial hierarchy but, in addition
to the quantifiers ∃ and ∀, the quantifiers C, C= and C6= are used.

Definition 2.1. Let C be a complexity class.

• A ∈ CC if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣
≥ f(x),

• A ∈ C=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣
= f(x),

• A ∈ C6=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣ 6= f(x).

Observe that C6=C = coC=C with the usual definition coC = {Lc | L ∈ C}, where Lc is the
complement of L. That is why the quantifier C6= is often also written as coC=, so C6=P is
sometimes called coC=P.

The counting hierarchy CH consists of the languages from all classes that we can get from
P by applying the quantifiers ∃, ∀, C, C= and C6= a constant number of times. Observe that
with the definition above PP = CP. Torán [27] proved that this connection between PP and
the counting hierarchy can be extended and that there is a characterization of CH by oracles
similar to that of the polynomial hierarchy. We state some such characterizations which we
will need later on, followed by other technical lemmas.

Lemma 2.2. [27] PPNP = C∃P.

Lemma 2.3. PP
PP = CC6=P.

Proof of Lemma 2.3. This is not stated in [27] nor is it a direct consequence, because Torán
does not consider the C6=-operator. It can be shown with similar techniques and we give
a proof for completeness. We show that CC6=P = CCP, the claim then follows, because
CCP = PP

PP by [27].
The direction from left to right is straightforward: From the definition we have CC6=P ⊆

PP
#P. By binary search we have PP

#P = PP
PP = CCP. The other direction is a little more

3

work: Let L ∈ CCP. There are A ∈ P,f, g ∈ FP and a polynomial p such that

x ∈ L ⇔ there are more than f(x) values y ∈ {0, 1}p(|x|) such that
∣

∣

∣

{

z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣

∣

∣ ≥ g(x, y)

⇔ there are more than f(x) values y ∈ {0, 1}p(|x|) such that

∀v ∈ {1, . . . , 2p(|x|)} :
∣

∣

∣

{

z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣

∣

∣ 6= g(x, y) − v (1)

⇔ there are more than 2p(|x|)(2p(|x|) − 1) + f(x) pairs (x, v) with

y ∈ {0, 1}p(|x|) and v ∈ {1, . . . , 2p(|x|)]} such that
∣

∣

∣

{

z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣

∣

∣ 6= g(x, y)− v. (2)

From statement (2) we directly get L ∈ CC6=P and thus the claim. To see the last
equivalence we define r(x, y) :=

∣

∣

{

z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣

∣. Fix x, y, then obviously
r(x, y) 6= g(x, y) − v for all but at most one v. It follows that of the pairs (y, v) in the
last statement 2p(|x|)(2p(|x|) − 1) always lead to inequality. So statement (2) boils down to
the question how many y there are such that there is no v with r(x, y) = g(x, y) − v. We
want these to be at least f(x), so we want at least 2p(|x|)(2p(|x|) − 1) + f(x) pairs such that
r(x, y) 6= g(x, y)− v.

Lemma 2.4. [10] ∃C6=P = C6=P.

Lemma 2.5. [24] For a large enough constant c > 0, it holds that for any integers n and x
with |x| 6 22

n

and x 6= 0, the number of primes p smaller than 2cn such that x 6≡ 0 mod p is
at least 2cn/cn.

Lemma 2.6. [12, p. 81] For every oracle X we have PP
BPP

X

= PP
X .

Arithmetic circuits An arithmetic circuit is a labeled directed acyclic graph (DAG) con-
sisting of vertices or gates with indegree or fanin 0 or 2. The gates with fanin 0 are called
input gates and are labeled with −1 or variables X1,X2, . . . ,Xn. The gates with fanin 2 are
called computation gates and are labeled with × or +. We can also consider circuits where
computation gates may receive more than two edges, in which case we say that they have
unbounded fanin. The polynomial computed by an arithmetic circuit is defined in the obvious
way: an input gate computes the value of its label, a computation gate computes the product
or the sum of its children’s values, respectively. We assume that a circuit has only one sink
which we call the output gate. We say that the polynomial computed by the circuit is the
polynomial computed by the output gate. The size of an arithmetic circuit is the number
of gates. The depth of a circuit is the length of the longest path from an input gate to the
output gate in the circuit. A formula is an arithmetic circuit whose underlying graph is a
tree. Finally, a circuit or formula is called monotone if, instead of the constant −1, only the
constant 1 is allowed.

It is common to consider so-called degree-bounded arithmetic circuits, for which the degree
of the computed polynomial is bounded polynomially in the number of gates of the circuit.
In our opinion this kind of degree bound has two problems. One is that computing the
degree of a polynomial represented by a circuit is suspected to be hard (see [2, 16, 15]), so
problems defined with this degree bound must often be promise problems. The other problem

4

is that the bound on the degree does not bound the size of computed constants, which by
iterative squaring can have exponential bitsize. Thus even evaluating circuits on a Turing
machine becomes intractable. The paper by Allender et al. [2] discusses problems that result
from this. To avoid all these complications, instead of bounding the degree of the computed
polynomial, we choose to bound the formal degree of the circuit or equivalently to consider
multiplicatively disjoint circuits. A circuit is called multiplicatively disjoint if, for each ×-gate,
its two input subcircuits are disjoint from one another. See [22] for a discussion of degree,
formal degree and multiplicative disjointness and how they relate.

3. Zero monomial coefficient

We first consider the question of deciding if a single specified monomial occurs in a polynomial.
In this problem and others regarding monomials, a monomial is encoded by giving the variable
powers in binary.

ZMC

Input: Arithmetic circuit C, monomial m.
Problem: Decide if m has the coefficient 0 in the polynomial computed
by C.

Theorem 3.1. ZMC is C=P-complete for both multiplicatively disjoint circuits and formulas.

Proof. Using standard reduction techniques from the #P-completeness of the permanent (see
for example [4]), one define the following generic C=P-complete problem, as mentioned in the
introduction.

per=

Input: Matrix A ∈ {0, 1,−1}n, d ∈ N.
Problem: Decide if per(A) = d.

Therefore, for the hardness of ZMC it is sufficient to show a reduction from per=. We
use the following classical argument. On input A = (aij) and d we compute the formula

Q :=
∏n

i=1

(

∑n
j=1 aijYj

)

. It is a classical observation by Valiant [28]2 that the monomial

Y1Y2 . . . Yn has the coefficient per(A). Thus the coefficient of the monomial Y1Y2 . . . Yn in
Q− dY1Y2 . . . Yn is 0 if and only if per(A) = d.

We now show that ZMC for multiplicatively disjoint circuits is in C=P. The proof is based
on the use of parse trees, which can be seen as objects tracking the formation of monomials
during the computation [22] and are the algebraic analog of proof trees [29]. A brief description
is given in Appendix A.

Consider a multiplicatively disjoint circuit C and a monomial m, where the input gates of
C are labeled either by a variable or by −1. A parse tree T contributes to the monomial m
in the output polynomial if, when computing the value of the tree, we get exactly the powers
in m; this contribution has coefficient +1 if the number of gates labeled −1 in T is even and
it has coefficient −1 if this number is odd. The coefficient of m is thus equal to 0 if and only
if the number of trees contributing positively is equal to the number of trees contributing
negatively.

2According to [30] this observation even goes back to [11].

5

Let us represent a parse tree by a boolean word ǭ, by indicating which edges of C appear
in the parse tree (the length N of the words is therefore the number of edges in C). Some of
these words will not represent a valid parse tree, but this can be tested in polynomial time.
Consider the following language L composed of triples (C,m, ǫ0 ǭ) such that:

1. ǫ0 = 0 and ǭ encodes a valid parse tree of C which contribute positively to m,

2. or ǫ0 = 1 and ǭ does not encode a valid parse tree contributing negatively to m.

Then the number of ǭ such that (C,m, 0ǭ) belongs to L is the number of parse trees con-
tributing positively to m and the number of ǭ such that (C,m, 1ǭ) belongs to L is equal to 2N

minus the number of parse trees contributing negatively to m. Thus, the number of ǫ0ǭ such
that (C,m, ǫ0ǭ) ∈ L is equal to 2N if and only if the number of trees contributing positively
is equal to the number of trees contributing negatively, if and only if the coefficient of m is
equal to 0 in C. Because L is in P, ZMC for multiplicatively disjoint circuits is in C=P.

Theorem 3.2. ZMC belongs to coRP
PP.

Proof. Given a circuit C, a monomial m and a prime number p written in binary, CoeffSLP

is the problem of computing modulo p the coefficient of the monomial m in the polynomial
computed by C. It is shown in [15] that CoeffSLP belongs to FP

#P.
We now describe a randomized algorithm to decide ZMC. Let c be the constant given in

Lemma 2.5. Consider the following algorithm to decide ZMC given a circuit C of size n and
a monomial m, using CoeffSLP as an oracle. First choose uniformly at random an integer
p smaller than 2cn. If p is not prime, accept. Otherwise, compute the coefficient a of the
monomial m in C with the help of the oracle and accept if a ≡ 0 mod p. Since |a| ≤ 22

n

,
Lemma 2.5 ensures that the above is a correct one-sided error probabilistic algorithm for
ZMC. This yields ZMC ∈ coRP

CoeffSLP. Hence ZMC ∈ coRP
PP.

Theorem 3.3. ZMC is coNP-complete both for monotone formulas and monotone circuits.

Proof. For hardness, we reduce the NP-complete problem Exact-3-Cover [9] to the comple-
ment of ZMC on monotone formulas, as done in [25, Chapter 3] (we reproduce the argument
here for completeness).

Exact-3-Cover

Input: Integer n and C1, . . . , Cm some 3-subsets of {1, . . . , n}.
Problem: Decide if there exists I ⊆ {1, . . . ,m} such that {Ci | i ∈ I} is
a partition of {1, . . . , n}.

Consider the formula F =
∏m

i=1(1+
∏

j∈Ci
Xj). The monotone formula F has the monomial

∏n
i=1Xi if and only if (n,C1, . . . , Cm) is a positive instance of Exact-3-Cover.
Let us now show that ZMC for monotone circuits is in coNP. This proof will use the

notion of parse tree types, which are inspired by the generic polynomial introduced in [21]
to compute coefficient functions. We give here a sketch of the argument, more details are
provided in Appendix A. The parse trees of a circuit which is not necessarily multiplicatively
disjoint may be of a much bigger size than the circuit itself, because they can be seen as parse
trees of the formula associated to the circuit and obtained by duplicating gates and edges.
Define the type of a parse tree by giving, for each edge in the original circuit, the number of
copies of this edge in the parse tree. There can be many different parse trees for a given parse

6

tree type but they will all contribute to the same monomial, which is easy to obtain from the
type: the power of a variable in the monomial is the sum, taken over all input gates labeled
by this variable, of the number of edges leaving from this gate. In the case of a monotone
circuit, computing the exact number of parse trees for a given type is thus not necessary, as
a monomial will have a non-zero coefficient if and only if there exists a valid parse tree type
producing this monomial.

Parse tree types, much like parse trees in the proof of Theorem 3.1, can be represented
by Boolean tuples which must satisfy some easy-to-check conditions to be valid. Thus the
coefficient of a monomial is 0 if and only if there are no valid parse tree types producing this
monomial, which is a coNP condition.

4. Counting monomials

We now turn to the problem of counting the monomials of a polynomial represented by a
circuit.

CountMon

Input: Arithmetic circuit C, d ∈ N.
Problem: Decide if the polynomial computed by C has at least d mono-
mials.

To study the complexity of CountMon we will look at what we call extending polynomials.
Given two monomials M and m, we say that M is m-extending if M = mm′ and m and m′

have no common variable. We start by studying the problem of deciding the existence of an
extending monomial.

ExistExtMon

Input: Arithmetic circuit C, monomial m.
Problem: Decide if the polynomial computed by C contains an m-
extending monomial.

Proposition 4.1. ExistExtMon is in RP
PP. For multiplicatively disjoint circuits it is

C6=P-complete.

Proof. We first show the first upper bound. So let (C,m) be an input for ExistExtMon

where C is a circuit in the variables X1, . . . ,Xn. Without loss of generality, suppose that
X1, . . . ,Xr are the variables appearing in m. Let d = 2|C|: d is a bound on the degree of the
polynomial computed by C. We define C ′ =

∏n
i=r+1(1 + YiXi)

d for new variables Yi. We
have that C has an m-extending monomial if and only if in the product CC ′ the polynomial
P (Yr+1, . . . , Yn), which is the coefficient of m

∏n
i=r+1X

d
i , is not identically 0. Observe that

P is not given explicitly but can be evaluated modulo a random prime with an oracle for
CoeffSLP. Thus it can be checked if P is identically 0 with the classical Schwartz-Zippel-
DeMillo-Lipton lemma (see for example [4]). It follows that ExistExtMon ∈ RP

PP.
The upper bound in the multiplicatively disjoint setting is easier: we can guess an m-

extending monomial M and then output the answer of an oracle for the complement of ZMC,
to check whether M appears in the computed polynomial. This establishes containment in
∃C6=P which by Lemma 2.4 is C6=P.

7

For hardness we reduce to ExistExtMon the C6=P-complete problem per6=, i.e., the com-
plement of the per= problem introduced for the proof of Theorem 3.1. We use essentially

the same reduction constructing a circuit Q :=
∏n

i=1

(

∑n
j=1 aijYj

)

. Observe that the only

potential extension of m := Y1Y2 . . . Yn is m itself and has the coefficient per(A). Thus
Q− dY1Y2 . . . Yn has an m-extension if and only if per(A) 6= d.

CountExtMon

Input: Arithmetic circuit C, d ∈ N, monomial m.
Problem: Decide if the polynomial computed by C has at least d m-
extending monomials.

Proposition 4.2. CountExtMon is PP
PP-complete.

Proof. ClearlyCountExtMon belongs to PPZMC and thus with Theorem 3.2 it is in PP
coRP

PP

.
Using Lemma 2.6 we get membership in PP

PP. To show hardness, we reduce the canonical
CC6=P-complete problem CC6=3SAT to CountExtMon. With Lemma 2.3 the hardness for
PP

PP follows.

CC6=3SAT

Input: 3SAT-formula F (x̄, ȳ), k, ℓ ∈ N.
Problem: Decide if there are at least k assignments to x̄ such that there
are not exactly ℓ assignments to ȳ such that F is satisfied.

Let (F (x̄, ȳ), k, ℓ) be an instance for CC6=3SAT. Without loss of generality we may assume
that x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) and that no clause contains a variable in both
negated and unnegated form. Let Γ1, . . . ,Γc be the clauses of F .

For each literal u of the variables in x̄ and ȳ we define a monomial I(u) in the variables
X1, . . . ,Xn, Z1, . . . , Zc in the following way:

I(xi) = Xi

∏

{j | xi∈Γj}

Zj , I(¬xi) =
∏

{j | ¬xi∈Γj}

Zj,

I(yi) =
∏

{j | yi∈Γj}

Zj, I(¬yi) =
∏

{j | ¬yi∈Γj}

Zj.

From these monomials we compute a formula C by

C :=
n
∏

i=1

(I(xi) + I(¬xi))
n
∏

i=1

(I(yi) + I(¬yi)) . (3)

We fix a mapping mon from the assignments of F to the monomials computed by C: Let
ᾱ be an assignment to x̄ and β̄ be an assignment to ȳ. We define mon(ᾱβ̄) as the monomial
obtained in the expansion of C by choosing the following terms. If αi = 0, choose I(¬xi),
otherwise choose I(xi). Similarly, if βi = 0, choose I(¬yi), otherwise choose I(yi).

The monomial mon(ᾱβ̄) has the form
∏n

i=1X
αi

i

∏c
j=1Z

γj
j , where γj is the number of true

literals in Γj under the assignment ᾱβ̄. Then F is true under ᾱβ̄ if and only if mon(ᾱβ̄) has

8

the factor
∏c

j=1 Zj. Thus F is true under ᾱβ̄ if and only if mon(ᾱβ̄)
∏c

j=1

(

1 + Zj + Z2
j

)

has

the factor
∏n

i=1X
αi

i

∏c
j=1Z

3
j . We set C ′ = C

∏c
j=1

(

1 + Zj + Z2
j

)

.

Consider an assignment ᾱ to x̄. The coefficient of the monomial
∏n

i=1X
αi

i

∏c
j=1 Z

3
j in C ′

is the number of assignments β̄ such that ᾱβ̄ satisfies F . Thus we get

(F (x̄, ȳ), k, ℓ) ∈ CC6=3SAT

⇔ there are at least k assignments ᾱ to x̄ such that the monomial
n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

does not have coefficient ℓ in C ′

⇔ there are at least k assignments ᾱ to x̄ such that the monomial

n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

occurs in C ′′ := C ′ − ℓ
n
∏

i=1

(1 +Xi)
c
∏

j=1

Z3
j

⇔ there are at least k tuples ᾱ such that C ′′ contains the monomial

n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

⇔ C ′′ has at least k (
c
∏

j=1

Z3
j)-extending monomials.

Theorem 4.3. CountMon is PP
PP-complete. It is PP

PP-hard even for unbounded fan-in
formulas of depth 4.

Proof. CountMon can be easily reduced to CountExtMon since the number of monomials
of a polynomial is the number of 1-extending monomials. Therefore CountMon belongs to
PP

PP.
To show hardness, it is enough to prove that instances of CountExtMon constructed in

Proposition 4.2 can be reduced to CountMon in logarithmic space. The idea of the proof
is that we make sure that the polynomial for which we count all monomials contains all
monomials that are not m-extending. Thus we know how many non-m-extending monomials
it contains and we can compute the number of m-extending monomials from the number of all
monomials. We could use the same strategy to show in general that CountExtMon reduces
to CountMon but by considering the instance obtained in the proof of Proposition 4.2
and analyzing the extra calculations below we get hardness for unbounded fanin formulas of
depth 4.

So let (C ′′, k,m) be the instance of CountExtMon constructed in the proof of Proposi-
tion 4.2, with m =

∏c
j=1Z

3
j . We therefore need to count the monomials computed by C ′′

which are of the form f(X1, . . . ,Xn)
∏c

j=1 Z
3
j . The circuit C

′′ is multilinear in X, and the Zj

can only appear with powers in {0, 1, 2, 3, 4, 5}. So the non-m-extending monomials computed
by C ′′ are all products of a multilinear monomial in the Xi and a monomial in the Zj where at
least one Zj has a power in {0, 1, 2, 4, 5}. Fix j, then all monomials that are not m-extending

9

because of Zj are computed by the formula

C̃j :=

(

n
∏

i=1

(Xi + 1)

)





∏

j′ 6=j

5
∑

p=0

Zp
j′





(

1 + Zj + Z2
j + Z4

j + Z5
j

)

. (4)

Thus the formula C̃ :=
∑

j C̃j computes all non-m-extending monomials that C ′′ can
compute. The coefficients of monomials in C ′′ cannot be smaller than −ℓ where ℓ is part
of the instance of CC6=3SAT from which we constructed (C ′′, k,m) before. So the formula
C∗ := C ′′ + (ℓ + 1)C̃ contains all non-m-extending monomials that C ′′ can compute and it
contains the same extending monomials. There are 2n6c monomials of the form that C ′′ can
compute, only 2n of which are m-extending, which means that there are 2n(6c−1) monomials
computed by C∗ that are not m-extending. As a consequence, C ′′ has at least k m-extending
monomials if and only if C∗ has at least 2n(6c − 1) + k monomials.

Theorem 4.4. CountMon is PP
NP-complete both for monotone formulas and monotone

circuits.

Proof. We first show hardness for monotone formulas. The argument is very similar to the
proof of Theorem 4.3. Consider the following canonical C∃P-complete problem C∃3SAT.

C∃3SAT
Input: 3SAT-formula F (x̄, ȳ), k ∈ N.
Problem: Decide if there are at least k assignments ᾱ to x̄ such that
F (ᾱ, ȳ) is satisfiable.

We reduce C∃3SAT to CountMon. With Lemma 2.2 the hardness for PP
NP follows.

Consider a 3SAT-formula F (x̄, ȳ). Let n = |x̄| = |ȳ| and let c be the number of clauses
of F . Define the polynomial C∗ = C +

∑c
j=1 C̃j where C is defined by Equation 3 and C̃j

by Equation 4. The analysis is similar to the proof of Theorem 4.3. The polynomial C∗ is
computed by a monotone arithmetic formula and has at least 2n(6c−1)+k monomials if and
only if (F, k) is a positive instance of C∃3SAT.

We now prove the upper bound. Recall that CountMon ∈ PP
ZMC. From Theorem 3.3, it

follows that CountMon on monotone circuits belongs to PP
NP.

5. Multilinearity

In this section we consider the effect of multilinearity on our problems. We will not consider
promise problems and therefore the multilinear variants of our problems must first check if
the computed polynomial is multilinear. We start by showing that this step is not difficult.

CheckML

Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C is multilinear.

Proposition 5.1. CheckML is equivalent to ACIT.

10

Proof. Reducing ACIT to CheckML is easy: Simply multiply the input with X2 for an
arbitrary variable X. The resulting circuit is multilinear if and only if the original circuit was
0.

For the other direction the idea is to compute the second derivatives of the polynomial
computed by the input circuit and check if they are 0.

So let C be a circuit in the variables X1, . . . ,Xn that is to be checked for multilinearity.
For each i we inductively compute a circuit Ci that computes the second derivative with
respect to Xi. To do so for each gate v in C the circuit C ′ has three gates vi, v

′
i and v′′i . The

polynomial in vi is that of v, v
′
i computes the first derivative and v′′i the second. For the input

gates the construction is obvious. If v is a +-gate with children u and w we have vi = ui+wi,
v′i = u′i + w′

i and v′′i = u′′i + w′′
i . If v is a ×-gate with children u and w we have vi = uiwi,

v′i = u′iwi + uiw
′
i and v′′i = u′′iwi + 2u′iw

′
i + uiw

′′
i . It is easy to see that the constructed circuit

computes indeed the second derivative with respect to Xi.
Next we compute C ′ :=

∑n
i=1 YiCi for new variables Yi. We have that C ′ is identically zero

if and only if C is multilinear. Also C ′ can easily be constructed in logarithmic space.

Next we show that the problem gets much harder if, instead of asking whether all the
monomials in the polynomial computed by a circuit are multilinear, we ask whether at least
one of the monomials is multilinear.

MonML

Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C contains a multilinear
monomial.

The problem monML lies at the heart of fast exact algorithms for deciding k-paths by
Koutis and Williams [18, 32] (although in these papers the polynomials are in characteristic 2
which changes the problem a little). This motivated Chen and Fu [7, 8] to consider monML,
show that it is #P-hard and give algorithms for the bounded depth version. We provide
further information on the complexity of this problem.

Proposition 5.2. MonML is in RP
PP. It is C6=P-complete for multiplicatively disjoint cir-

cuits.

Proof. For the first upper bound, let C be the input in variables X1, . . . ,Xn. We set C ′ =
∏n

i=1(1 +XiYi). Then C computes a multilinear monomial if and only if in the product CC ′

the coefficient polynomial P (Y1, . . . , Yn) of
∏n

i=1Xi is not identically 0. This can be tested
as in the proof of Proposition 4.1, thus establishing MonML ∈ RP

PP.
The C6=P-completeness in the multiplicatively disjoint case can be proved in the same way

as in Proposition 4.1.

We now turn to our first problem, namely deciding whether a monomial appears in the
polynomial computed by a circuit, in the multilinear setting.

ML-ZMC

Input: Arithmetic circuit C, monomial m.
Problem: Decide if C computes a multilinear polynomial in which the
monomial m has coefficient 0.

Proposition 5.3. ML-ZMC is equivalent to ACIT.

11

Proof. We first show that ACIT reduces to ML-ZMC. So let C be an input for ACIT.
Allender et al. [2] have shown that ACIT reduces to a restricted version of ACIT in which
all inputs are −1 and thus the circuit computes a constant. Let C1 be the result of this
reduction. Then C computes identically 0 if and only if the constant coefficient of C1 is 0.
This establishes the first direction.

For the other direction let (C,m) be the input, where C is an arithmetic circuit and m is
a monomial. First check if m is multilinear, if not output 1 or any other nonzero polynomial.
Next we construct a circuit C1 that computes the homogeneous component of degree deg(m)
of C with the classical method (see for example [5, Lemma 2.14]). Observe that if C computes
a multilinear polynomial, so does C1. We now plug in 1 for the variables that appear in m and
0 for all other variables, call the resulting (constant) circuit C2. If C1 computes a multilinear
polynomial, then C2 is zero if and only if m has coefficient 0 in C1. The end result of the
reduction is C∗ := C2+ZC3 where Z is a new variable and C3 is a circuit which is identically
0 iff C computes a multilinear polynomial (obtained via Proposition 5.1). C computes a
multilinear polynomial and does not contain the monomial m if and only if both C2 and ZC3

are identically 0, which happens if and only if their sum is identically 0.

In the case of our second problem, counting the number of monomials, the complexity falls
to PP.

ML-CountMon

Input: Arithmetic circuit C, d ∈ N.
Problem: Decide if the polynomial computed by C is multilinear and has
at least d monomials.

Proposition 5.4. ML-CountMon is PP-complete (for Turing reductions).

Proof. We first show ML-CountMon ∈ PP. To do so we use CheckML to check that
the polynomial computed by C is multilinear. Then counting monomials can be done in
PP

ML-ZMC, and ML-ZMC is in coRP. By Lemma 2.6 the class PPcoRP is simply PP.
For hardness we reduce the computation of the {0, 1}-permanent to ML-CountMon. The

proposition follows, because the {0, 1}-permanent is #P-complete for Turing reductions. So
let A be a 0-1-matrix and d ∈ N and we have to decide if per(A) ≥ d. We get a matrix B
from A by setting bij := aijXij . Because every entry of B is either 0 or a distinct variable, we
have that, when we compute the permanent of B, every permutation that yields a non-zero
summand yields a unique monomial. This means that there are no cancellations, so that
per(A) is the number of monomials in per(B).

The problem is now that no small circuits for the permanent are known and thus per(B)
is not a good input for ML-CountMon. But because there are no cancellations, we have
that det(B) and per(B) have the same number of monomials. So take a small circuit for
the determinant (for instance the one given in [20]) and substitute its inputs by the entries
of B. The result is a circuit C which computes a polynomial whose number of monomials
is per(A). Observing that the determinant, and thus the polynomial computed by C, is
multilinear completes the proof.

Acknowledgements We would like to thank Sylvain Perifel for helpful discussions. The
results of this paper were conceived while the third author was visiting the Équipe de Logique
Mathématique at Université Paris Diderot Paris 7. He would like to thank Arnaud Durand

12

for making this stay possible, thanks to funding from ANR ENUM (ANR-07-BLAN-0327).
The third author would also like to thank his supervisor Peter Bürgisser for helpful advice.

References

[1] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

[2] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the Com-
plexity of Numerical Analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

[3] E.W. Allender and K.W. Wagner. Counting hierarchies: polynomial time and constant
depth circuits. Current trends in theoretical computer science: essays and Tutorials,
40:469, 1993.

[4] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[5] P. Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7.
Springer Verlag, 2000.

[6] P. Bürgisser. On Defining Integers And Proving Arithmetic Circuit Lower Bounds. Com-
putational Complexity, 18(1):81–103, 2009.

[7] Zhixiang Chen and Bin Fu. Approximating multilinear monomial coefficients and maxi-
mummultilinear monomials in multivariate polynomials. InWeili Wu and Ovidiu Daescu,
editors, COCOA (1), volume 6508 of Lecture Notes in Computer Science, pages 309–323.
Springer, 2010.

[8] Zhixiang Chen and Bin Fu. The Complexity of Testing Monomials in Multivariate Poly-
nomials. In Weifan Wang, Xuding Zhu, and Ding-Zhu Du, editors, COCOA, volume
6831 of Lecture Notes in Computer Science, pages 1–15. Springer, 2011.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[10] F. Green. On the Power of Deterministic Reductions to C=P . Theory of Computing
Systems, 26(2):215–233, 1993.

[11] J. Hammond. Question 6001. Educ. Times, 32:179, 1879.

[12] L.A. Hemaspaandra and M. Ogihara. The complexity theory companion. Springer Verlag,
2002.

[13] M. Jansen and R. Santhanam. Permanent Does Not Have Succinct Polynomial Size
Arithmetic Circuits of Constant Depth. In Luca Aceto, Monika Henzinger, and Jiri
Sgall, editors, ICALP, volume 6755 of Lecture Notes in Computer Science, pages 724–
735. Springer, 2011.

[14] V. Kabanets and R. Impagliazzo. Derandomizing Polynomial Identity Tests Means Prov-
ing Circuit Lower Bounds. Computational Complexity, 13:1–46, 2004.

13

[15] N. Kayal and C. Saha. On the Sum of Square Roots of Polynomials and related problems.
In IEEE Conference on Computational Complexity, pages 292–299, 2011.

[16] P. Koiran and S. Perifel. The complexity of two problems on arithmetic circuits. Theor.
Comput. Sci., 389(1-2):172–181, 2007.

[17] P. Koiran and S. Perifel. Interpolation in Valiant’s Theory. Computational Complexity,
pages 1–20, 2011.

[18] I. Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP, volume 5125 of Lecture Notes in Computer Science,
pages 575–586. Springer, 2008.

[19] J. H. P. Kwisthout, H. L. Bodlaender, and L. C. Van Der Gaag. The complexity of
finding kth most probable explanations in probabilistic networks. In Proceedings of
the 37th international conference on Current trends in theory and practice of computer
science, SOFSEM’11, pages 356–367, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proceedings
of the eighth annual ACM-SIAM symposium on Discrete algorithms, pages 730–738.
Society for Industrial and Applied Mathematics, 1997.

[21] G. Malod. The Complexity of Polynomials and Their Coefficient Functions. In IEEE
Conference on Computational Complexity, pages 193–204. IEEE Computer Society, 2007.

[22] G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes. J.
Complexity, 24(1):16–38, 2008.

[23] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of Finite-Horizon
Markov Decision Process Problems. Journal of the ACM (JACM), 47(4):681–720, 2000.

[24] A. Schönhage. On the Power of Random Access Machines. In Hermann A. Maurer, editor,
ICALP, volume 71 of Lecture Notes in Computer Science, pages 520–529. Springer, 1979.

[25] Y. Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université
Paris Diderot - Paris 7, 2010.

[26] J. Torán. Succinct Representations of Counting Problems. In Teo Mora, editor, AAECC,
volume 357 of Lecture Notes in Computer Science, pages 415–426. Springer, 1988.

[27] J. Torán. Complexity Classes Defined by Counting Quantifiers. J. ACM, 38(3):753–774,
1991.

[28] L.G. Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual
ACM symposium on Theory of computing, pages 249–261. ACM, 1979.

[29] H. Venkateswaran and M. Tompa. A New Pebble Game that Characterizes Parallel
Complexity Classes. SIAM J. Comput., 18(3):533–549, 1989.

[30] J. Von Zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. Journal of
Symbolic Computation, 4(2):137–172, 1987.

14

[31] K. W. Wagner. The Complexity of Combinatorial Problems with Succinct Input Repre-
sentation. Acta Informatica, 23(3):325–356, 1986.

[32] R. Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109(6):315–318, 2009.

A. Parse trees and coefficients

Define inductively the parse trees of a circuit C in the following manner:

1. the only parse tree of an input gate is the gate itself,

2. the parse trees of an addition gate α with argument gates β and γ are obtained by
taking either a parse tree of β and adding the edge from β to α or by taking a parse
tree of γ and adding the edge from γ to α,

3. the parse trees of a multiplication gate α with argument gates β and γ are obtained
by taking a parse tree of β and a parse tree of γ and adding the edge from β to α and
the edge from γ to α, renaming vertices so that the chosen parse trees of β and γ are
disjoint.

The value of a parse tree is defined as the product of the labels of each input gate in the
parse tree (note that in the parse tree there may be several copies of a given input gate of
the circuit, so that the corresponding label will have as power the number of copies of the
gate). It is easy to see that the polynomial computed by a circuit is the sum of the values of
its parse trees:

C(x̄) =
∑

T parse tree of C

value(T).

In the case of a multiplicatively disjoint circuit, any parse tree is a subgraph of the circuit.
In this case, a parse tree can be equivalently seen as a subgraph defined by a subset of T of
the edges satisfying the following properties:

1. it contains the output gate,

2. for any addition gate α, if T contains an edge with origin α, then T contains exactly
one edge with destination α,

3. for any multiplication gate α, if T contains an edge with origin α, then T contains both
(all) edges with destination α,

4. for any gate α, if T contains an edge with destination α, then T contains an edge with
origin α.

In the case of an arbitrary circuit, the set of parse trees of a circuit C is equal to the set of
parse trees of the associated arithmetic formula (or of the associated multiplicatively disjoint
circuit). But a parse tree of a circuit C need not be a subgraph, in particular the size of a
parse tree may be exponential in the size of the circuit, because of the duplication involved in
the definition of parse trees. This means that for a given edge e in the circuit C, there may
be several copies of e in a parse tree. We will call the number of copies the multiplicity of e.

15

The type τ of a parse tree T for a circuit C is the function which associates to each edge
e of C its multiplicity τ(e) in T . One could give an inductive characterization of parse tree
types similar to the definition of parse trees above, but the following characterization is more
useful. Add a unique artificial edge eout whose origin is the output gate of the circuit. A
parse tree type τ must satisfy the properties below:

1. the multiplicity of eout is 1,

2. for any addition gate α with arguments β and γ, the sum of multiplicities of the edges
with origin α is equal to the sum of the multiplicity of (β, α) and the multiplicity of
(γ, α),

3. for any multiplication gate α with arguments β and γ, the sum of multiplicities of the
edges with origin α is equal both to the multiplicity of (β, α) and to the multiplicity of
(γ, α),

4. for any gate α, if the multiplicity of an edge with destination α is strictly positive, then
there must be an edge with origin α whose multiplicity is strictly positive.

Note that if the circuit is multiplicatively disjoint, since all parse trees are subgraphs of the
circuit, the multiplicity of an edge in a parse tree is always at most 1. In this case a parse
tree type contains exactly one parse tree and we could identify parse tree types and parse
trees, the characterization above becomes identical to the one given for parse trees.

Define the value of a parse tree type as the product, for all input gate α, of the label of α
raised to a power equal to the sum of the multiplicities of edges with origin α. The sum of
the values of the parse trees can now be partitioned by parse tree types to express the value
computed by C:

C(x̄) =
∑

τ a type for C

|{T parse tree of type τ}| · value(τ).

16

	1 Introduction
	2 Preliminaries
	3 Zero monomial coefficient
	4 Counting monomials
	5 Multilinearity
	A Parse trees and coefficients

