

Edinburgh Research Explorer

On Uniformity and Circuit Lower Bounds

Citation for published version:
Santhanam, R & Williams, R 2014, 'On Uniformity and Circuit Lower Bounds', Computational complexity,
vol. 23, no. 2, pp. 177-205. https://doi.org/10.1007/s00037-014-0087-y

Digital Object Identifier (DOI):
10.1007/s00037-014-0087-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Computational complexity

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1007/s00037-014-0087-y
https://doi.org/10.1007/s00037-014-0087-y
https://www.research.ed.ac.uk/en/publications/d254202f-5539-45ba-ba25-cfe680aa46e9

comput. complex. 23 (2014), 177 – 205

c© Springer Basel 2014

1016-3328/14/020177-29

published online May 16, 2014

DOI 10.1007/s00037-014-0087-y computational complexity

ON UNIFORMITY AND

CIRCUIT LOWER BOUNDS

Rahul Santhanam and Ryan Williams

Abstract. We explore relationships between circuit complexity, the
complexity of generating circuits, and algorithms for analyzing circuits.
Our results can be divided into two parts:
1. Lower bounds against medium-uniform circuits. Informally, a circuit
class is “medium uniform” if it can be generated by an algorithmic
process that is somewhat complex (stronger than LOGTIME) but not
infeasible. Using a new kind of indirect diagonalization argument, we
prove several new unconditional lower bounds against medium-uniform
circuit classes, including:

◦ For all k, P is not contained in P-uniform SIZE(nk). That is, for all
k, there is a language Lk ∈ P that does not have O(nk)-size cir-
cuits constructible in polynomial time. This improves Kannan’s
lower bound from 1982 that NP is not in P-uniform SIZE(nk) for
any fixed k.

◦ For all k, NP is not in PNP
|| -uniform SIZE(nk). This also improves

Kannan’s theorem, but in a different way: the uniformity condi-
tion on the circuits is stronger than that on the language itself.

◦ For all k, LOGSPACE does not have LOGSPACE-uniform branching
programs of size nk.

2. Eliminating non-uniformity and (non-uniform) circuit lower bounds.
We complement these results by showing how to convert any potential
simulation of LOGTIME-uniform NC1 in ACC0/poly or TC0/poly into a
medium-uniform simulation using small advice. This lemma can be used
to simplify the proof that faster SAT algorithms imply NEXP circuit
lower bounds and leads to the following new connection:

◦ Consider the following task: given a TC0 circuit C of nO(1) size,
output yes when C is unsatisfiable, and output no when C has
at least 2n−2 satisfying assignments. (Behavior on other inputs

178 Santhanam & Williams cc 23 (2014)

can be arbitrary.) Clearly, this problem can be solved efficiently
using randomness. If this problem can be solved deterministically
in 2n−ω(log n) time, then NEXP �⊂ TC0/poly.

Another application is to derandomize randomized TC0 simulations of
NC1 on almost all inputs:

◦ Suppose NC1 ⊆ BPTC0. Then, for every ε > 0 and every lan-
guage L in NC1, there is a LOGTIME-uniform TC0 circuit family
of polynomial size recognizing a language L′ such that L and L′

differ on at most 2nε
inputs of length n, for all n.

Keywords. Circuit complexity, uniformity, lower bounds, satisfiability
algorithms.

Subject classification. 68Q15: Complexity classes, 68Q17:
Computational difficulty of problems.

1. Introduction

An important problem at the interface of machine-based compu-
tational complexity and circuit complexity is to understand the
relationship between the complexity of circuits for solving prob-
lems, and the complexity of algorithmic processes that can gen-
erate those circuits from scratch. In the non-uniform setting, we
put no computable bounds on the complexity of generating cir-
cuits, and in this case, it is extraordinarily difficult to prove lower
bounds even against “simple” circuit classes. In low-uniform1 set-
tings like LOGTIME uniformity (Barrington et al. 1990; Buss 1987),
the circuits are extremely easy to construct—circuit complexity
in this regime falls in line with standard machine-based complex-
ity classes. The “medium-uniformity” settings, where the circuit-
generating process is neither too easy nor too hard, is a middle
ground that is less understood, and it is quite plausible that explor-
ing it will help us better understand the two extremes. In this
paper, we study this middle ground and make concrete progress
that may translate to further progress on low-uniform and non-
uniform results in the future.

1Note that somewhat counter-intuitively, the conventional meaning of
“low-uniform” is very uniform.

cc 23 (2014) On uniformity and circuit lower bounds 179

Lower bounds by amplifying uniformity. In the first part of
the paper, we prove new lower bounds against “medium-uniform”
circuits. Our key insight is that if we assume that a “medium
complexity” class has small medium-uniform circuits, this assump-
tion can be applied in multiple ways: not only is it applicable
to a language L in the medium complexity class, but it is also
applicable to another (medium complexity) language encoding cir-
cuits for L. Applying the hypothesis multiple times allows us
to simulate medium-uniformity with a very small amount of non-
uniform advice and diagonalize against the small-advice simulation
to derive a contradiction.

This strategy leads to new lower bounds against notions of uni-
formity for which it is not possible to directly obtain lower bounds
by diagonalization. Consider for example, the class of linear-size
circuits. If a LOGTIME-uniformity condition is imposed on the
class, then it can be simulated in nearly-linear deterministic time,
and we can easily diagonalize to find a function in (for example) n2

time that does not have such circuits. However, suppose we wish to
find a function in P that does not have small circuits constructible
via a “medium” uniformity notion, such as P-uniformity. Then, the
notion of uniformity (which allows for an arbitrary polynomial-time
bound) can be more powerful than the function itself (which must
lie in some fixed polynomial time bound), so it is no longer possible
to directly diagonalize. Nevertheless, we can “indirectly” diagonal-
ize, by reducing the assumption that P has small P-uniform circuits
to another time hierarchy result.

To describe our results, let us first set up some notation infor-
mally (definitions are in Section 1.1). Given a class C of languages,
recall a language L is said to have C-uniform circuits of size s(n) if
there is a size-s(n) circuit family {Dn} such that the description of
Dn is computable in C. (There are several possible choices about
what “description” means; in this paper, our notions of uniformity
will be so powerful that these choices are all essentially equivalent.)
Our first main result strengthens both the deterministic time hier-
archy theorem and the result of Kannan (1982) that for any k, NP
is not in P-uniform SIZE(nk).2

2Kannan’s work (Kannan 1982) is primarily known for proving that Σ2P �⊂

180 Santhanam & Williams cc 23 (2014)

Theorem 1.1. For every k, P �⊂ P-uniform SIZE(nk).

That is, for all k, there is an L ∈ P such that any algorithm
generating nk-size circuits for L must run in super-polynomial
time. (Of course, the common belief is that for all k, there is
an L ∈ P that does not have nk-size circuits at all, but this
is an extremely hard problem: resolving it would imply EXP �⊂
P/poly, for example.) The ideas in the proof of Theorem 1.1
can also be applied to smaller classes. Note that the best non-
uniform branching program size lower bounds known have the form
Ω(n2/poly(log n)) (Nečiporuk 1966). However, for branching pro-
grams constructible in logarithmic space, we can prove superpoly-
nomial lower bounds:

Theorem 1.2. For every k, LOGSPACE does not have LOGSPACE-
uniform branching programs of size O(nk).

We are also able to strengthen Kannan’s lower bound for NP in
a different direction, by relaxing the notion of uniformity used. To
prove this result, we combine the uniformity trade-off idea used in
the results above with ideas of Fortnow et al. (2009) to show that
fixed polynomial-size lower bounds can be “amplified.”

Theorem 1.3. For every k, NP �⊆ PNP
|| -uniform SIZE(nk).

Reducing non-uniformity for “simple” circuit classes. The
above lower bounds work by simulating medium-uniform circuits
with low-uniformity and a little advice. In the second part of the
paper, we study situations where non-uniform circuits can be sim-
ulated by “medium-uniform” ones with a little advice. We show
how to translate non-uniform constant-depth circuits for NC1 into
subexponential-time uniform constant-depth circuits for NC1:

Footnote 2 continued
SIZE(nk) for all constants k. The statement NP �⊂ P-uniform SIZE(nk) is
a corollary, because its negation implies that P = NP ⊂ SIZE(nk), hence
Σ2P = NP ⊂ SIZE(nk), contradicting the lower bound for Σ2P.

cc 23 (2014) On uniformity and circuit lower bounds 181

Lemma 1.4. Suppose NC1 is contained in C/poly, where C ∈
{ACC, TC0}.3 For every ε, k > 0, there is a 2O(nε) time and O(nε)
space algorithm that, given any circuit C of size n and depth
k log n, prints an O(k/ε)-depth, nO(k)-size C-circuit that is equiva-
lent to C.

That is, a non-uniform inclusion of NC1 in TC0 implies small-
space uniform (and hence subexponential-time uniform) TC0 cir-
cuits for NC1. We remark that Lemma 1.4 holds for any constant-
depth circuit class over any basis (with arbitrary fan-in): ACC0

and TC0 just happen to be the most popular such classes.
An interesting consequence of Lemma 1.4 is that, for simula-

tions of NC1 in smaller classes, non-uniformity can be simulated by
low-uniformity with small advice:

Corollary 1.5. For C ∈ {ACC, TC0}, NC1 ⊂ C/poly if and only
if for all ε > 0, NC1 ⊂ C/nε.

Another consequence of Lemma 1.4 is that randomized simula-
tions based on constant-depth circuits can be meaningfully deran-
domized, assuming they are powerful enough. For a (LOGTIME-
uniform) complexity class C, we define BPC to be its randomized
version with two-sided error in the standard way.

Theorem 1.6. Suppose NC1 ⊆ BPTC0. Then, for every ε > 0
and every language L in NC1, there is a (LOGTIME uniform) TC0

circuit family of polynomial size recognizing a language L′ such
that L and L′ differ on at most 2nε

inputs of length n, for all n.

That is, if NC1 can be solved with uniform probabilistic TC0

circuits, then the circuits can be made deterministic while pre-
serving uniformity, at the expense of making errors on a small
fraction of inputs. This is somewhat surprising, and it is reason-
able to think that Theorem 1.6 may be applied to prove lower

3In this paper, the default assumption (unless otherwise specified) is that a
complexity class C defined with respect to some polynomial-size class of circuits
is LOGTIME-uniform , and we use C/poly to denote the non-uniform version of
the class. This notation makes it clear when we are discussing uniform versus
non-uniform classes.

182 Santhanam & Williams cc 23 (2014)

bounds against BPTC0 in the future. (Currently, EXPNP = BPTC0

is open!) The idea is to combine the ideas of Lemma 1.4 with prior
work of Goldreich & Wigderson (2002), who show how to deran-
domize algorithms in generic settings when the random bits used
are both “small” with respect to the input length and “oblivious”
to the input.

Lemma 1.4 can also be applied to simplify and strengthen a
key component of the proof that faster C-SAT algorithms imply
NEXP �⊂ C/poly (for many circuit classes C) (Williams 2010, 2011).
In particular, a necessary intermediate theorem says that if (a)
there are SAT algorithms for all polynomial-size C-circuits with n
inputs running in O(2n/n10) time and (b) NEXP ⊂ C/poly, then
there is a nondeterministic o(2n) time algorithm that, given an
unrestricted circuit D of polynomial size, can generate a polynomi-
al-sized C-circuit equivalent to D.4 By exploiting the structure
of NC1, Lemma 1.4 can be used to deterministically generate an
equivalent TC0 (respectively, ACC) circuit from a given NC1 circuit
in subexponential (2nε

) time, without assuming any algorithmic
improvement on circuit satisfiability.

Finally, we weaken the conditions necessary to prove lower
bounds like NEXP �⊂ TC0/poly. Consider the following problem.

Derandomize-TC0: given a TC0 circuit C of nO(1) size, output
yes when C is unsatisfiable, and output no when C has at least
2n−2 satisfying assignments. (Behavior on other inputs can be
arbitrary.)

This problem can be trivially solved with high probability, by
simply trying random assignments. We prove that a deterministic
2n−ω(log n) time algorithm for the problem is sufficient for NEXP �⊂
TC0/poly:

Theorem 1.7. Suppose for all k, there is an O(2n/nk) time deter-
ministic algorithm for solving Derandomize-TC0 on all TC0 cir-
cuits of n inputs, nk size, and depth k. Then NEXP �⊂ TC0/poly.

4Recently, Jahanjou et al. (2013) gave a succinct AC0 version of the Cook-
Levin theorem, which also simplifies the proof of the original SAT-to-circuit-
lower-bounds connection, but does not imply Lemma 1.4.

cc 23 (2014) On uniformity and circuit lower bounds 183

Goldreich and Meir (personal communication) have observed
that the existing framework for proving NEXP circuit lower bounds
from SAT algorithms also extends to derandomization problems
which seem much “simpler” than SAT: for example, 2n−ω(log n) time
algorithms for approximating the acceptance probability of a given
circuit to within 1/10 is already enough to yield NEXP �⊂ P/poly.
The above theorem strengthens their observation even further: we
may focus on the case of distinguishing unsatisfiable circuits from
“very satisfiable” circuits.

1.1. Preliminaries and notation. We assume basic knowledge
of computational complexity (Arora & Barak 2009). Along with
that, we will need standard notions of uniformity for circuits. The
direct connection language for a sequence of circuits C = {Cn},
where Cn is on n input bits, is the language LC consisting of all
tuples of the form 〈1n, g, h, r〉, where g and h are indices of gates,
r is the type of g (AND/OR/NOT/INPUT, and in case of INPUT,
which of the n input bits g is, with an additional bit to specify
whether g is the designated output gate) and h is a gate feeding
in to g in case the type r is not INPUT. Other encodings of the
direct connection language are of course possible, but for the large
classes C we will consider, this encoding will not affect the results.

Given a class C of languages, a language L is said to have
C-uniform circuits of size s(n) if there is a size-s(n) circuit family
{Cn} such that its direct connection language LC is computable
in C. By a description of a circuit Cn, we mean the list of tuples
in LC corresponding to gates in Cn. A language L is said to have
LOGTIME-uniform circuits of size s(n) if there is a size-s(n) cir-
cuit family {Cn} such that the “compressed” direct connection
language

L′
C = {〈n, g, h, r〉 | 〈1n, g, h, r〉 ∈ LC}

is computable in linear time. (Note that a linear time algorithm
for L′

C runs in time logarithmic in n and the size of the circuit.)
Given a size function s : N → N and depth function d : N → N,

SIZE(s) is defined to be the class of languages with non-uniform
circuits of size O(s(n)), DEPTH(d) the class of languages with non-
uniform circuits of depth d(n), and SIZEDEPTH(s, d) the class of

184 Santhanam & Williams cc 23 (2014)

languages which simultaneously have size O(s(n)) and depth d(n)
non-uniform circuits. (The class LOGTIME-uniform SIZEDEPTH
(s, d) has the usual interpretation: The “compressed” direct con-
nection language for such a family of such circuits is in linear time.)

For more robust circuit complexity classes C ∈ {ACC, TC0, NC1,
NC} defined with polynomial-size circuits, we use C to denote the
uniform version of the complexity class (with LOGTIME unifor-
mity being the default, unless otherwise specified), and C/poly to
denote the non-uniform version. For instance, in this notation, we
would say that prior work has established that NEXP �⊂ ACC/poly
(Williams 2011). This notation makes it clear when we are dis-
cussing uniform versus non-uniform classes.

Given a language L, Ln is the “slice” of L at length n, i.e.,
Ln = L ∩ {0, 1}n.

In one of our results, we also require the notion of a direct
connection language for a branching program. This is defined in
analogously as for a circuit, and for the notions of uniformity we
use, the precise encoding will not matter.

For a uniform complexity class defined using machines or cir-
cuits, and given an advice length function a : N → N, we incor-
porate advice into the class in the standard way: the machines or
circuits defining the class receive an additional advice input, which
depends only on the input length n and is of length at most a(n).

2. Lower bounds against medium uniformity

We will use a folklore result about a time hierarchy for determin-
istic time, where the lower bound holds against sublinear advice.

Proposition 2.1. DTIME(nd+1) �⊆ DTIME(nd)/n, for all d ≥ 1.

Proof. Let {Mi} be a list of machines running in time nd.
We will construct a machine M ′ running in nd+1 time that differs
from every Mi and infinite sequence of advice strings {an} where
|an| ≤ n: given an input x, M ′(x) simulates M|x|(x) augmented
with advice string x′, where x′ is the first |a|x|| bits of x. �

The following result simultaneously strengthens the hierarchy
theorem that P �⊂ DTIME(nk) for every fixed k (Hartmanis &

cc 23 (2014) On uniformity and circuit lower bounds 185

Stearns 1965; Hennie & Stearns 1966) and Kannan’s result (Kan-
nan 1982) that NP �⊆ P-uniform SIZE(nk) for every fixed k.

Reminder of Theorem 1.1 P �⊆ P-uniform SIZE(nk), for all k.

Proof (Theorem 1.1). Assume P ⊆ P-uniform SIZE(nk). Let
L ∈ P be arbitrary. We will show that L can be simulated in a
fixed deterministic time bound with o(n) advice, which will yield
a contradiction to Proposition 2.1.

By assumption, L ∈ P-uniform SIZE(nk), so there is a circuit
family {Cn} for L of size at most c · nk for some constant c. Fur-
thermore, by P-uniformity, the direct connection language Ldc for
{Cn} (see Section 1.1 for the definition) is in P. We consider a
“succinct” version Lsucc of the language Ldc, defined as follows.
Letting Bin(n) be the binary representation of n, define

Lsucc = {〈Bin(n)01�n1/(3k)�, g, h, r〉 | 〈1n, g, h, r〉 ∈ Ldc}.

Intuitively, Lsucc is an “unpadded” version of Ldc.

Observe that Lsucc ∈ P. Given an input y for Lsucc, our
polynomial-time algorithm first checks if y can be parsed as a
“valid” tuple 〈z, g, h, r〉, where z = Bin(n)01�n1/(3k)� for some pos-
itive integer n, g and h are valid gate indices between 1 and c · nk

and r is a valid gate type. If this check fails, reject. Otherwise,
the algorithm runs the polynomial-time machine deciding Ldc on
〈1n, g, h, r〉, and accepts if and only if this machine accepts. Note
that this algorithm for Lsucc runs in time polynomial in |y|, since
we only simulate the machine for Ldc when n1/(3k) ≤ |y| ≤ n and
the machine for Ldc runs in time polynomial in n.

Now, we apply the assumption P ⊆ P-uniform SIZE(nk) for a
second time. Since Lsucc ∈ P, there is a circuit family {Dm} of
O(mk) size for Lsucc. Given an integer n, let m(n) be the least

integer such the size of the tuple 〈Bin(n)01�n1/(3k)�, g, h, r〉 is at
most m(n) for any valid gate indices g and h for Cn and any valid
gate type r. Using a standard encoding of tuples, we can assume,
for large enough n, that m(n) ≤ n1/(2k), since g, h, r can all be
encoded with O(log n) bits each. (Note that this step in fact only
requires the assumption P ⊂ SIZE(nk).)

186 Santhanam & Williams cc 23 (2014)

We now describe a simulation of L in time O(n2k+2) with o(n)
bits of advice. Let M be an advice-taking machine which operates
as follows. On input x of length n, M receives an advice string of
length O(n1/2 log n). It interprets this advice as a circuit Dm for
the language Lsucc on inputs of length m(n) ≤ n1/(2k). For every
possible pair of gate indices g and h of Cn and every possible gate
type r, M simulates the circuit Dm on 〈Bin(n)01�n1/(3k)�, g, h, r〉 to
decide whether gate h is an input to gate g and whether the type
of gate g is r. Each such simulation can be done in time O(n),
as the size of Dm is O(n1/2). There are at most O(n2k+1) such
simulations that M performs, since there are at most that many
relevant triples 〈g, h, r〉. Once all these simulations are performed,
M has a full description of the circuit Cn. It then simulates Cn on
x and accepts if and only if Cn(x) outputs 1. This simulation can
be done in time O(n2k) since the circuit Cn is of size O(nk). The
total time taken by M is O(n2k+2), and M uses O(n1/2 log n) bits
of advice. By our assumptions on Cn and Dm, the simulation is
correct. Thus, L ∈ DTIME(n2k+2)/O(n1/2 log n).

However, as L ∈ P was chosen to be arbitrary, we have
P ⊆ DTIME(n2k+2)/O(n1/2 log n), which contradicts Proposition 2.1.

�

Note that for every L ∈ P, there is some k such that L ∈
P-uniform SIZE(nk); Theorem 1.1 shows that for every k, there are
languages that not in P-uniform SIZE(nk).

A significant property of Theorem 1.1 is that the lower bound
holds for a notion of uniformity which we cannot directly diagonal-
ize against in polynomial time. Indeed, the following proposition
shows that for each d, the class we prove a lower bound against
contains a language that is not in DTIME(nd).

Proposition 2.2. For every d ≥ 1, there is a language in
P-uniform SIZE(O(n)) that is not in DTIME(nd).

Proof. The standard proof of the deterministic time hierarchy
theorem (Hartmanis & Stearns 1965; Hennie & Stearns 1966) can
be adapted to show that for each d, there is a unary language
L which is in DTIME(nd+1) but not in DTIME(nd). This unary

cc 23 (2014) On uniformity and circuit lower bounds 187

language L can be recognized by P-uniform circuits of linear size –
for each n, decide whether 1n ∈ L in time O(nd+1), outputting the
trivial circuit which outputs the AND of its input bits if yes and
the trivial circuit which outputs 0 on all inputs if no. �

The proof ideas of Theorem 1.1 can be adapted to prove lower
bounds for other classes. We next show that there for each k, there
are languages in NC which do not have NC-uniform formulas of
size nk, or indeed NC-uniform circuits of fixed polynomial size and
fixed polylogarithmic depth. Note that the best-known formula
size lower bound in NC against non-uniform formulas is Ω(n3−o(1))
(H̊astad 1998).

We will require a hierarchy theorem for NC, which can again
be shown using standard diagonalization.

Proposition 2.3. For every k, NC is not contained in
LOGTIME-uniform SIZEDEPTH(nk, (log n)k)/o(n).

Proof. Ruzzo (1981) characterized LOGTIME-uniform
SIZEDEPTH(nO(1), (log n)k) as the class of languages decided
by alternating Turing machines operating simultaneously in
time O((log n)k) and space O(log n). His simulation extends to
the following: There is a universal constant c such that every
language in LOGTIME-uniform SIZEDEPTH(nk, (log n)k) can be
decided by an alternating machine using O((log n)k) time and
c · k log n + o(log n) space. (Note the LOGTIME machine for the
direct connection language runs in time linear in the gate indices;
by known simulations of time with alternations (Dymond &
Tompa 1985), this machine can be simulated in O(log n/ log log n)
alternating time and space.)

The result then follows using the same proof as of Proposi-
tion 2.1, but applied to simultaneously time and space bounded
alternating Turing machines. �

Theorem 2.4. For every k ≥ 1, NC is not contained in
NC-uniform SIZEDEPTH(nk, (log n)k)).

Proof. Assume for a contradiction that there is a k such that
NC ⊆ NC-uniform SIZEDEPTH(nk, (log n)k). Let L ∈ NC be arbi-

188 Santhanam & Williams cc 23 (2014)

trary. Let {Cn} be a sequence of circuits of size O(nk) and depth
(log n)k solving L, and Ldc ∈ NC be the direct connection lan-
guage of {Cn}. Define the succinct version Lsucc of Ldc as in the
proof of Theorem 1.1, with the same parameter m(n). Observe
that Lsucc ∈ NC since checking whether a “succinct” tuple is valid
and then converting to a full tuple that can be offered as input to
Ldc are both procedures that can be implemented in polylogarith-
mic depth. Hence, Lsucc has circuits of depth O(mk) and depth
O((log m)k), by assumption.

Now, we will define a family of LOGTIME-uniform
SIZEDEPTH(nk′

, (log n)k′
) circuits taking o(n) bits of advice

which decide if x ∈ L, where k′ is a fixed constant depending on k.
The circuits interpret the advice as small-depth circuits for Lsucc

on inputs of length m(n). The circuits simulate Cn on x implicitly,
running the small-depth circuit for Lsucc to retrieve any bit of Cn

that is required. Since m(n) ≤ n1/(2k), each run of the small-depth
circuit for Lsucc incurs a depth cost at most O((log n)k) and size
cost at most n2/3. Simulating a circuit of depth O((log n)k) and
size O(nk) on an input can be done uniformly in size O(n2k)
and depth O((log n)k). Because the circuit is being simulated
implicitly, we incur an additional cost in size and depth, but the
overall size is at most O(n3k) and depth at most O((log n)k2

).
Thus, by setting k′ = k2, we have the required simulation. But
this contradicts Proposition 2.3, since L is arbitrary. �

Similarly, the following can be shown. We omit the proof
because of its similarity to the previous ones.

Reminder of Theorem 1.2 For any k, LOGSPACE does not
have LOGSPACE-uniform branching programs of size O(nk).

Theorem 1.1 improves Kannan’s old result that NP �⊆
P-uniform SIZE(nk) by showing a better upper bound for the hard
language, i.e., P rather than NP. We can improve his result in a
different way by relaxing the uniformity condition instead to PNP

|| -
uniformity. The main idea is to first relativize Theorem 1.1 to
allow parallel access to an NP oracle both in the upper bound and
in the uniformity bound, and then to strengthen the upper bound
using an idea of Fortnow et al. (2009).

cc 23 (2014) On uniformity and circuit lower bounds 189

Reminder of Theorem 1.3 Let k ≥ 1 be any constant. Then
NP �⊆ PNP

|| -uniform SIZE(nk).

Proof. First we claim that PNP
|| is not contained in

PNP
|| -uniform SIZE(nk); the proof is completely analogous to that

of Theorem 1.1. Then, we claim that PNP
|| �⊆ PNP

|| -uniform SIZE(nk)

implies that NP �⊆ PNP
|| -uniform SIZE(nk−1). This result was shown

without the uniformity conditions by Fortnow et al. (2009). An
examination of their proof shows that a circuit Cn for any lan-
guage in PNP

|| can be constructed using fixed polynomial-time ora-
cle access to circuits for two specific languages in NP. If each of the
circuit sequences for these languages is PNP

|| -uniform then so is the

small circuit sequence for the PNP
|| -uniform language, by converting

the polynomial-time oracle machine to an oracle circuit and then
substituting the circuits for the two oracles. Since k is arbitrary,
we are done. �

For E = DTIME(2O(n)), we do not get an unconditional lower
bound, but rather a “gap result” in the style of Impagliazzo &
Wigderson (2001) or Buresh-Oppenheim & Santhanam (2006).
The result states that if we can diagonalize in E against an arbitrar-
ily small exponential amount of advice, then we get lower bounds
against E-uniform circuits of size close to the best possible. The
main idea is to use the proof idea of Theorem 1.1 recursively.

Theorem 2.5. If E �⊆ DTIME(22n)/2εn for some ε > 0, then E �⊆
E-uniform SIZE(2δn) for any δ < 1.

Proof. Let δ < 1 be any constant. Assume that for any L ∈ E,
L ∈ E-uniform SIZE(2δn). We will show that it follows that L ∈
DTIME(22n)/2εn for any constant ε > 0.

We define a sequence of languages Li as follows. L0 = L. In
general, Li will be a “succinct” version of a connection language of
circuits for Li−1. The direct connection language we used before
will not be succinct enough for our purposes, so we use instead
what we call the indirect connection language Lic of a sequence of
circuits, where a tuple 〈1n, g, i, b1, b2, r〉 is in Lic iff the gate with
index g has type r, and moreover, if the type r is not INPUT, then

190 Santhanam & Williams cc 23 (2014)

if the bit b1 = 0, the ith bit of the index of the first input to g
is b2, and if the bit b1 = 1, the ith bit of the index of the second
input to g is b2. For technical reasons, we also require that all gate
indices G of the circuit are encoded with the same number of bits.
Essentially, Lic encodes the adjacency list corresponding to the
DAGs of the circuit sequence rather than the adjacency matrix.
Note that for any sequence of circuits of size 2O(n), Lic ∈ E iff
Ldc ∈ E.

We now define L1 more precisely. By assumption, there is a
sequence of circuits {Cn} for L such that Cn is of size O(2δn) for
each n, and the indirect connection language Lic,0 of the sequence
of circuits can be decided in E (since by assumption, the direct
connection language can be decided in E). L1 is the succinct version
of Lic,0 defined as follows: A tuple 〈Bin(n), g, i, b1, b2, r〉 belongs
to L1 iff the tuple 〈1n, g, i, b1, b2, r〉 belongs to Lic,0. Note that
since the gate index of g requires at least δn bits to describe (by
definition), we can decide L1 in time 2O(n). Hence by assumption,
L1 has E-uniform circuits of size 2δm, where m is the length of the
input.

Let {C1
m} be an E-uniform sequence of circuits of size 2δm for

L1. As a function of n, the size of C1
m is at most O(2δ(δn+O(log n))) =

O(2δ2npoly(n)). Let Lic,1 be the indirect connection language of the
sequence {C1

m}. We define L2 to be the succinct version of Lic,1

completely analogously to the previous paragraph.
Continuing in this way, we get a sequence of languages L1, L2 . . .

such that Lk has E-uniform circuits of size O(2δknpoly(n)). Let k
be such that δk < ε. Since δ < 1, there exists such a k.

We now define a simulation of L in time O(22n) with O(2εn)
bits of advice. The advice is the description of a circuit for Lk.
Given this description, we can recover in time 2(δk−1+δk+o(1))n the
description of a circuit for Lk−1. Again, from this description, we
can recover in time 2(δk−1+δk−2+o(1))n the description of a circuit
for Lk−2. Continuing in this way, we can recover in total time
2(δ+δ2+o(1))n = O(22n) the circuit Cn for L, whereupon we can run
Cn on L to determine whether the input belongs to L or not. �

Note that the conditional lower bound of Theorem 2.5 is close
to best possible, as shown by the following easy result.

cc 23 (2014) On uniformity and circuit lower bounds 191

Proposition 2.6. E has E-uniform circuits of size at most n2n.

Proof. For any language L in E, the truth table of L can be
computed in linear exponential time, and from the truth table it
is easy to compute canonical DNFs or CNFs of size at most n2n

for L. �

3. A uniformization lemma for NC1

We now turn to the problem of eliminating non-uniformity in low-
complexity circuit classes. Recall the Formula Eval problem:
given a formula F and input v to it, determines whether F (v) =
1. Buss (1987) showed that Formula Eval is complete under
LOGTIME-reductions for NC1.

Theorem 3.1. Suppose NC1 ⊂ C/poly, where C ∈ {ACC, TC0}.
For every ε > 0, there is a 2O(nε) time and O(nε) space algorithm
that, given 1n, prints an O(1/ε)-depth, nO(1)-size C-circuit that
solves Formula Eval on formulas of size n.

The following lemma is an immediate corollary:

Reminder of Lemma 1.4 Suppose NC1 ⊂ C/poly, where C ∈
{ACC, TC0}. For every ε, k > 0, there is a 2O(nε) time and O(nε)
space algorithm that, given any circuit C of size n and depth k log n,
prints an O(k/ε)-depth, nO(k)-size C-circuit that is equivalent
to C.

The proof is inspired by Allender & Koucký (2010) who showed
that if NC1 ⊂ C/poly, then the problem Balanced Formula

Evaluation has n1+ε size C-circuits, for C ∈ {ACC, TC0}. Rather
than focusing on reducing circuit sizes, we focus on reducing non-
uniformity.

Proof (of Theorem 3.1). Assuming NC1 ⊂ C/poly, let k ≥ 1
be such that the Formula Eval problem on formulas of size
n has C-circuits of nk size. Recall that Formula Eval can be
solved in (logtime uniform) NC1. Applying this algorithm, we can
generate (in polynomial time) an nc size formula G(F, x) such that
G(F, x) = 1 ⇐⇒ F (x) = 1, for all formulas F of size n and all

192 Santhanam & Williams cc 23 (2014)

potential inputs x of length up to n. WLOG, G has depth at most
c log n, for some fixed c ≥ 1.

Partition G into t = nc−ε/k subformulas F1, . . . , Ft of at most
nε/k gates each. More precisely, we break the c log n levels of G
into kc/ε groups, where each group contains (ε/k) log n adjacent
levels. Each group consists of subformulas of depth (ε/k) log n and
size at most nε/k. WLOG, we may assume each Fi has the same
number of inputs (roughly nε/k).

Next, we “brute force” a small C circuit for small instances of
Formula Eval. Try all possible C circuits of size nε for Formula

Eval on all formula-input pairs of length up to nε/k. For each trial
circuit T , we try all possible 2Õ(nε/k) formula-input pairs and check
that T correctly evaluates the input on the formula. By our choice
of k, at least one T will pass this check on all of its inputs.

Once a suitable T has been found, we replace every subfor-
mula Fi(y1, . . . , yq) in G with the C circuit T (Fi, y1, . . . , yq). By
our choice of T , the resulting circuit is equivalent to G, has size
O(nc−ε/k ·nε) ≤ O(nc+ε) and has depth dkc/ε, where d is the depth
of T .

It is clear that the algorithm can run in 2O(nε) time for any
ε > 0. Furthermore, it can also be implemented to run in O(nε)
space: Any desired bit of the nc size formula G for Formula

Eval instance can be generated in LOGTIME, so the brute-force
search for an nε size C circuit T equivalent to Formula Eval

can be carried out in O(nε) space. Given T , the rest of the C can
easily be generated in O(nε) space by reading the appropriate bits
from G. �

Note that, rather than brute-forcing the small C circuit for
Formula Evaluation, we could have simply provided it as
advice. This implies:

Reminder of Corollary 1.5 For C ∈ {ACC, TC0}, NC1 ⊂ C/poly
⇐⇒ for all ε > 0, NC1 ⊂ C/nε.

Note that when the direct connection language of the C-circuit
of size O(nε) is provided as advice in the proof of Theorem 3.1, the
resulting C-circuits for Formula Evaluation are LOGTIME-uniform
(given the advice).

cc 23 (2014) On uniformity and circuit lower bounds 193

Lemma 1.4 and Corollary 1.5 have consequences for lower
bounds as well as algorithms. We first give a consequence for lower
bounds, showing that either TC0 computations cannot be speeded
up in general using logarithmic depth and bounded fan-in, or NC1

does not have non-uniform polynomial-size threshold circuits of
bounded depth.

We need a hierarchy theorem for TC0, which can be shown
analogously to Propositions 2.1 and 2.3.

Proposition 3.2. For every constant k and d and all ε < 1, there
is a language in TC0 which cannot be decided by (logtime uniform)
TC0 circuits of size nk and depth d with nε bits of advice.

Proof. The result follows using the proof idea of Proposition 2.1,
and applying it to the threshold Turing machine characterization
of TC0 (Allender 1999; Parberry & Schnitger 1988). �

Theorem 3.3. At least one of the following holds:

◦ For all constants k, there is a language in TC0 which does
not have LOGTIME-uniform circuits of depth k log n.

◦ NC1 �⊂ TC0/poly.

Proof. Assume that NC1 ⊂ TC0/poly and that there is a
constant k such that each language in TC0 has LOGTIME
-uniform circuits of depth k log(n). We derive a contradiction.

Let L ∈ TC0. By the second assumption, L has LOGTIME
-uniform circuits of depth k log(n). From the first assumption and
using Corollary 1.5 with ε = 1/(2k), we have that there exists
constants c and d such that Formula Eval can be decided by
uniform threshold circuits of size mc and depth d with mε bits
of advice on inputs of length m. This implies that any language
with LOGTIME-uniform circuits of depth k log(n) can be decided by
uniform threshold circuits of size O(nkc) and depth d with O(n1/2)
bits of advice, and hence so can L. Since L is an arbitrary language
in TC0, this contradicts Proposition 3.2. �

194 Santhanam & Williams cc 23 (2014)

We can also use Lemma 1.4 to derive algorithmic consequences
of NC1 ⊂ ACC/poly. Practically anything computable in subex-
ponential time on ACC circuits can be extended to NC1 circuits,
under the assumption. For instance:

Corollary 3.4. If NC1 ⊂ ACC/poly then for all c, satisfiability
of nc size formulas with n variables can be computed (determinis-
tically) in O(2n−nε

) time, for some ε > 0 depending on c.

Proof. Given a formula F of size nc, apply Lemma 1.4 to gen-
erate an equivalent nO(c/δ) size ACC circuit of depth O(1/δ), in
2O(nδ) time, for some δ < 1. Satisfiability of the ACC circuit can
be determined in 2n−nε

time via an ACC-SAT algorithm (Williams
2011). �

3.1. Derandomizing TC0 by assuming randomized TC0 is
powerful. Next, we prove that if NC1 can be simulated in ran-
domized TC0, then we can derive a non-trivial deterministic TC0

simulation of NC1 as well.

Reminder of Theorem 1.6 Suppose NC1 ⊆ BPTC0. Then for
every ε > 0 and every language L in NC1, there is a (LOGTIME
uniform) TC0 circuit family of polynomial size recognizing a lan-
guage L′ such that L and L′ differ on at most 2nε

inputs of length
n, for all n.

Proof. Assume NC1 ⊆ BPTC0. It follows that NC1 ⊂
TC0/poly, and therefore by the arguments of Lemma 1.4, by pro-
viding nε advice (namely a small TC0 circuit for evaluating arbi-
trary formulas of size nε/k) we can translate any nc size NC1 circuit
into a nO(c) size TC0 circuit of depth O(1/ε), in polynomial time.

However, the assumption that NC1 ⊆ BPTC0 yields more:
rather than nε bits of non-uniform advice, the inclusion provides a
LOGTIME-uniform TC0 circuit C(F, x, r) of size nε, which takes a
formula F of size nε/k, an input x of size nε/k and at most nε bits
of randomness r as input, such that for every F and x,

Pr
r∈{0,1}nε

[C(F, x, r) = F (x)] > 3/4.

cc 23 (2014) On uniformity and circuit lower bounds 195

We first need to amplify the success probability of the cir-
cuit C. Let t be a parameter and define a new TC0 circuit
C ′(F, x, r1, . . . , rt) which takes the MAJORITY of C(F, ri) for
i = 1, . . . t. By standard probabilistic arguments, for every F and
x we have

Pr
r1,...,rt∈{0,1}nε

[C ′(F, x, r1, . . . , rt) = F (x)] > 1 − 2Ω(t).

Choose t = d · nε for sufficiently large d, so that the probability of
agreement is greater than 1 − 1/23nε

. Then, by a union bound, we
have that random choices of r1, . . . , rt are simultaneously good for
all F and x of at most nε/k size, i.e.,

Pr
ri∈{0,1}nε

[(∀ F, x) C ′(F, x, r1, . . . , rt) = F (x)] > 1 − 2nε

.

Now, for a given NC1 circuit N of size nc, after converting N into
a formula FN of size S = nO(c), there will be at most 2S/nε/k

subformulas of FN , each of nε/k size, which need to be accurately
modeled by the TC0 circuit C ′. Replace each nε/k-size subformula
F ′(x′) of FN with C ′(F ′, x′, r1, . . . , rt), and let D be the TC0 circuit
that results from this replacement. Since C ′ succeeds against all
formulas F and inputs x of size at most nε/k with high probability,
we conclude that in fact our circuit D works for all inputs (of length
n) with high probability, i.e.,

Pr
r1,...,rt∈{0,1}nε

[(∀ x of length n) D(x, r1, . . . , rt) = N(x)] > 1 − 2nε

.

Therefore, using only d·n2ε random bits r1, . . . , rt, we can efficiently
construct a TC0 circuit D that agrees with N on a given input.
That is, we are in a situation where short, sublinear-length, and
randomly chosen “advice” (chosen prior to receiving the input x)
succeeds against all inputs x simultaneously, with high probability.

This is precisely the situation described in a paper of (Goldreich
& Wigderson 2002) who prove that in such situations, one can
generically provide, for every ε > 0, a deterministic simulation
which is successful on all but 2nε

inputs of length n, by extracting
additional randomness from the input itself. In more detail, say

196 Santhanam & Williams cc 23 (2014)

that a function En : {0, 1}n × {0, 1}m → {0, 1}� is a k-extractor
if, for every random variable X over {0, 1}n that puts probability
mass at most 1/2k on all inputs,5 the random variable E(X,Um)
has statistical distance at most 1/10 from U� (where Uq denotes the
uniform distribution on {0, 1}q). Given a randomized algorithm R
using � bits of randomness, and an extractor En which takes n
bits and e log n bits and outputs � bits, Goldreich and Wigderson’s
deterministic simulation of R is simply:

Given an input x of length n, output the majority
value of R(x,En(x, r)) over all binary strings r of length
e log n.

Goldreich & Wigderson (2002, Theorem 3) prove that, when
we use a family of functions

{En : {0, 1}n × {0, 1}e log n → {0, 1}�(n)}n

such that En is a k(n)-extractor for all n, the above algorithm
agrees with R on all but 2k(n) of the n-bit inputs. To complete the
proof, it suffices for us to exhibit an extractor family {En} that is
computable in LOGTIME-uniform TC0 and has k(n) = �(n)c for a
fixed constant c. Then, our final uniform TC0 simulation of C will
compute the MAJORITY value of D(x,E|x|(x, r)) over all O(ne)
random seeds r. In our case, the amount of randomness needed
can be made �(n) = nε for any desired ε > 0, so this simulation
will err on at most 2k(n) ≤ 2ncε

inputs for a fixed c and arbitrarily
small ε > 0.

Finally, we observe that such extractors do exist: by
using Theorem 4.6 in Viola (2005), the extractors correspond-
ing to Impagliazzo-Wigderson pseudorandom generators pro-
vided by Theorem 5 in Trevisan (2001) are computable in
LOGTIME-uniform TC0. �

3.2. Very weak derandomization for TC0 lower bounds.
Lemma 1.4 also has bearing on the emerging connections between
circuit satisfiability algorithms and circuit lower bounds. We can

5More formally, for all x ∈ {0, 1}n, Pr[X = x] ≤ 1/2k.

cc 23 (2014) On uniformity and circuit lower bounds 197

give a much simpler proof that faster TC0 SAT algorithms imply
NEXP �⊂ TC0/poly (originally proved in Williams 2011 with a more
involved argument):

Theorem 3.5. Suppose for all k, there is an O(2n/n10) time algo-
rithm for solving satisfiability of TC0 circuits with n inputs, nk size,
and depth k. Then NEXP �⊂ TC0/poly.

Proof. In their work on succinct PCPs, Ben-Sasson et al. (2005)
also gave a very efficient proof of the Cook-Levin theorem, showing
that for any L ∈ NTIME[2n] and instance x of length n, one can
generate (in poly(n) time) an NC1 circuit Cx with n+c log n inputs
and nc size for a universal c < 10, such that x ∈ L if and only if
the truth table of Cx encodes a satisfiable constraint satisfaction
problem, where each constraint has O(1) variables.

Williams (2010) (Theorem 3.4) applies this result to prove that
if NC1 circuit satisfiability on all n-input nk-size circuits is solvable
in O(2n/n10) time (for all k), then NEXP �⊂ NC1/poly. In brief,
the proof assumes that the circuit SAT algorithm exists and that
NEXP ⊂ NC1/poly, and uses the two assumptions to nondetermin-
istically simulate an arbitrary L ∈ NTIME[2n] in nondeterministic
o(2n) time (a contradiction to the nondeterministic time hierar-
chy).6 This simulation of an arbitrary L can be done by construct-
ing the aforementioned NC1 circuit Cx on the input x, guessing an
NC1 circuit C ′ that encodes a satisfying assignment (i.e., a wit-
ness) to the constraint satisfaction problem, then composing Cx

and C ′ to form an NC1 circuit D which is unsatisfiable if and only
if the truth table of C ′ is a satisfying assignment. An NC1 circuit
SAT algorithm that takes O(2n+c log n/(n + c log n)10) = o(2n) time
results in a contradiction.

Assume now that NEXP ⊂ TC0/poly and we have an algorithm
A for TC0 circuit satisfiability according to the hypothesis of the
theorem. We wish to derive a contradiction. The first assumption,

6Technically speaking, Theorem 3.4 in Williams (2010) only shows the
consequence ENP �⊂ NC1/poly, but this can be easily improved to NEXP �⊂
NC1/poly, by extending work of Impagliazzo et al. (2002) to show that
NEXP ⊂ NC1/poly implies every problem in NEXP has witnesses that can
be encoded as truth tables of NC1 circuits.

198 Santhanam & Williams cc 23 (2014)

along with Lemma 1.4, implies there is a deterministic 2O(nε)-time
algorithm Bε which, given an arbitrary NC1 circuit D, can generate
an equivalent TC0 circuit E that is only polynomially larger than
D, where the degree of this polynomial is linear in 1/ε. There-
fore, we can solve NC1 circuit SAT in O(2n/n10) time as well, by
applying the algorithm Bε to convert a given NC1 circuit into TC0

for some ε < 1, then applying algorithm A for TC0 circuit SAT.
By the previous paragraph, this implies that NEXP �⊂ NC1/poly, a
contradiction (as TC0 is contained in NC1). �

Recently, Jahanjou et al. (2013) showed that the result of Ben-
Sasson et al. cited above can be implemented with the NC1 circuits
replaced by AC0 circuits. This stronger result also implies Theo-
rem 3.5.

Using succinct PCPs instead of a succinct Cook-Levin reduc-
tion, we can also show that very weak derandomization of TC0

suffices for such lower bounds. For C ∈ {P, NC1, TC0}, define
Derandomize-C to be the problem:

Given a C/poly circuit C, output yes when C is unsat-
isfiable and no when C has at least 2n−2 satisfying assign-
ments, with arbitrary behavior otherwise.

(We choose this version of the problem rather than the version
where C has either a high fraction of satisfying assignments or a
small fraction, as that problem is in PromiseBPP while the problem
is “merely” in PromiseRP.)

We say that a nondeterministic algorithm A solves
Derandomize-C if for every infinite family of circuits {C}
from the class,

◦ every computation path of A(C) leads to one of three possible
final states: don’t know, yes, or no,

◦ at least one path of A(C) does not lead to don’t know,

◦ if C has at least 2n−2 satisfying assignments, then no path of
A(C) leads to yes, and

◦ if C is unsatisfiable, then no path of A(C) leads to no.

cc 23 (2014) On uniformity and circuit lower bounds 199

Reminder of Theorem 1.7 Suppose for all k, there is an O(2n/
nk) time algorithm for solving Derandomize-TC0 on all TC0 cir-
cuits of n inputs, nk size, and depth k. Then NEXP �⊂ TC0/poly.

Proof. The proof is by contradiction, as in Theorem 3.5.
Briefly, we first follow Williams (2010) and apply a succinct ver-
sion of the PCP theorem proved by Ben-Sasson et al. (2005) to
argue how to reduce the question of proving NEXP �⊂ P/poly to
that of solving Derandomize-P faster. That reduction involves
guessing a poly-size circuit D encoding an alleged witness for an
NTIME[2n] computation, then using the succinct PCP and the
faster Derandomize-P algorithm to verify the witness in non-
deterministic o(2n) time. In order to replace P with TC0¡, we have
to guess D and guess a “helper” TC0 circuit D′ which is intended
to give output information on every gate of D. Verifying D′ is
correct will imply that D is correct. We then show how to reduce
the problem of verifying D′ to calls to Derandomize-TC0.

The succinct PCP work of Ben-Sasson et al. (2005) also shows
that for any L ∈ NTIME[2n] and input x of length n, one can
generate (in poly(n) time) an NC1 circuit Cx with n+c log n inputs
and nc size such that:

◦ if x ∈ L, then the truth table of Cx encodes a satisfiable CSP,
where each constraint has poly(n) variables, and

◦ if x /∈ L, then the truth table of Cx encodes such a CSP,
where every variable assignment satisfies at most 10% of the
constraints.

(Contrast this with the Cook-Levin result used in Theorem 3.5,
which only distinguishes satisfiable and unsatisfiable instances, but
each constraint has only O(1) variables.) This can be applied to
show that if Derandomize-P on all n-input nk-size circuits can be
solved in O(2n/n10) time, then NEXP �⊂ P/poly (Williams 2010).
An improvement of Ben-Sasson et al.’s construction given by Mie
(2009) yields succinct PCPs with only O(1) queries (instead of
poly(n)). That is, given any L ∈ NTIME[2n] and instance x of

200 Santhanam & Williams cc 23 (2014)

length n, one can generate (in poly(n) time) a circuit Cx with
n + c log n inputs and nc size7 such that

◦ if x ∈ L, then the truth table of Cx encodes a satisfiable
k-CSP (for some constant k), and

◦ if x /∈ L, then the truth table of Cx encodes a k-CSP such
that every variable assignment satisfies at most 10% of the
constraints.

Say that a circuit is at most ρ-satisfiable (respectively, at least
ρ-satisfiable) if it has at most (at least) ρ·2n satisfying assignments.
Analogously to the proof of Theorem 1.3 in Williams (2010), Mie’s
PCPs can be used to show that a nondeterministic o(2n)-time algo-
rithm that can distinguish unsatisfiable circuits from circuits which
are at least 9/10-satisfiable would imply NEXP �⊂ P/poly.

Let us first outline that proof. We construct a new nonde-
terministic algorithm for L, which given an instance x guesses a
|x|O(1)-size circuit D intended to encode a satisfying assignment S
to the k-CSP encoded by Cx. (Assuming NEXP ⊂ P/poly, such a
circuit D exists when x ∈ L.) The algorithm verifies the guessed D
by constructing a circuit C ′ of polynomially larger size which con-
tains copies of Cx and k copies of D, such that C ′(i) = 0 if and only
if the ith constraint of the k-CSP is satisfied by the assignment S.
(This construction appears in Williams (2010) and is straightfor-
ward, so we will not repeat it here.) By properties of the PCP, this
circuit C ′ is either:

◦ unsatisfiable (i.e., all constraints of the k-CSP are satisfied)
or

◦ at least 9/10-satisfiable (i.e., every variable assignment sat-
isfies at most 10% of the constraints).

7We believe that the circuit Cx in Mie’s construction can be made to have
O(log n) depth as well, which would simplify our argument: we could assume
that Cx is NC1, then apply the strategy of Theorem 3.5. Indeed, an earlier
version of this work (Santhanam & Williams 2012) states that such a construc-
tion follows from Ben-Sasson et al.. However, verifying this is indeed true is
quite technically involved, so we leave it as an interesting open problem here
and provide an alternative argument. It appears that, very recently, this open
problem has been resolved (Ben-Sasson & Viola 2014).

cc 23 (2014) On uniformity and circuit lower bounds 201

With an O(2n/n10) time algorithm that can distinguish the two
cases, N can recognize L in nondeterministic o(2n) time; this is a
contradiction.

We now extend the above argument to show that a slightly
faster algorithm for Derandomize-TC0 is enough to yield a con-
tradiction to NEXP �⊂ TC0/poly. The argument has similarities to
those found in Williams (2011), so we shall keep the discussion at
a high level, emphasizing those places where the proof differs.

Assuming P ⊂ TC0/poly, the generated circuits C ′ in the above
argument have equivalent TC0 circuits D of polynomially larger
size. Just as above, we will construct a nondeterministic o(2n)
time algorithm N recognizing an arbitrary L ∈ NTIME[2n]. The
algorithm N begins by guessing a circuit D as described above,
constructing the circuit C ′, then guessing a TC0 circuit D′(x, i)
which prints the output of the ith gate of C ′(x), where i ranges
from 1 to the size of C ′. (It is easy to see that if P ⊂ TC0/poly, then
such a D′ also exists.) Next, N uses polynomially many copies of
D′ to construct a TC0 circuit E (of poly(n) size) such that E(x) = 0
if and only if for all gates i of C ′, D′(x, i) is consistent : that is, if
i1 and i2 are the two gate indices whose outputs are the inputs to
gate i, then E(x, i) outputs 0 if and only if the output value D′(x, i)
is consistent with the input values D′(x, i1) and D′(x, i2), and the
gate type of i. (The construction of E is analogous to Lemma 3.1
in Williams 2011.) Letting i� be the index of the output gate of
C ′, we have that E(x) = 0 implies D′(x, i�) = C ′(x).

Let A be a nondeterministic algorithm solving Derandomize-

TC0, as defined earlier (i.e., A outputs no on some computation
path if a given TC0 circuit is at least 1/4-satisfiable, and yes on
some path if the circuit is unsatisfiable, but never outputs yes on
some path and no on another path). Our nondeterministic N runs
A on E and rejects if A returns no. Next, N runs A on the circuit
E ′(x) := D′(x, i�) and accepts if and only if A returns yes. This
concludes the description of N .

To see that the algorithm N correctly recognizes L, first sup-
pose x ∈ L. Then, there is a circuit D such that the resulting
circuit C ′ is unsatisfiable. If N guesses D and a TC0 circuit D′

consistent with C ′, then E is unsatisfiable and A returns yes on

202 Santhanam & Williams cc 23 (2014)

E. The circuit E ′ must be unsatisfiable as well, so the nondeter-
ministic A returns yes on E ′ and N accepts on some path.

For the other case, suppose x �∈ L. Then regardless of the D
that is guessed, the resulting circuit C ′ is at least 9/10-satisfiable.
N guesses some TC0 circuit D′ and constructs E. If A returns no
on E, then the computation path rejects. Otherwise, if A returns
yes on E, then by assumption, E is at most 1/4-satisfiable, so we
have E(x) = 1 on at most 1/4 of all possible x. Therefore, C ′(x) =
D′(x, i�) on at least 3/4 of all x. In the worst case, D′(x, i�) = 1
on at least (9/10 − 1/4) of the possible inputs x. Therefore, E ′ is
at least (9/10−1/4)-satisfiable, the algorithm A returns no on E ′,
and N rejects on these computation paths as well. �

Acknowledgements

We thank Eli Ben-Sasson for useful discussions on the nice prop-
erties of known succinct PCPs. R.S. was supported in part by the
2013 ERC Consolidator Grant ALUnif: “Algorithms and Lower
Bounds: A Unified Approach.” R.W. was supported in part by a
David Morgenthaler II Faculty Fellowship at Stanford, and NSF
CCF-1212372. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

References

Eric Allender (1999). The Permanent Requires Large Uniform
Threshold Circuits. Chicago Journal of Theoretical Computer Science.

Eric Allender & Michal Koucký (2010). Amplifying lower bounds
by means of self-reducibility. J. ACM 57(3), 14:1–14:36.

Sanjeev Arora & Boaz Barak (2009). Computational Complexity
- A Modern Approach. Cambridge University Press.

David Barrington, Neil Immerman & Howard Straubing

(1990). On Uniformity within NC1. Journal of Computer and Sys-
tem Sciences 41.

cc 23 (2014) On uniformity and circuit lower bounds 203

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu

Sudan & Salil Vadhan (2005). Short PCPs verifiable in polyloga-
rithmic time. In Proceedings of Twentieth Annual IEEE Conference on
Computational Complexity, 120–134.

Eli Ben-Sasson & Emanuele Viola (2014). Short PCPs with pro-
jection queries. Electronic Colloquium on Computational Complexity
(ECCC) 21, 17.

Joshua Buresh-Oppenheim & Rahul Santhanam (2006). Making
Hard Problems Harder. In Proceedings of 21st Annual IEEE Conference
on Computational Complexity, 73–87.

Samuel R. Buss (1987). The Boolean formula value problem is in
ALOGTIME. In STOC, 123–131.

Patrick W. Dymond & Martin Tompa (1985). Speedups of deter-
ministic machines by synchronous parallel machines. Journal of Com-
puter and System Sciences 30(2), 149–161.

Lance Fortnow, Rahul Santhanam & Ryan Williams (2009).
Fixed Polynomial Size Circuit Bounds. In Proceedings of 24th Annual
IEEE Conference on Computational Complexity, 19–26.

Oded Goldreich & Avi Wigderson (2002). Derandomization that is
Rarely Wrong from Short Advice that Is Typically Good. In Proceedings
of the 6th International Workshop on Randomization and Approxima-
tion Techniques in Computer Science, 209–223.

Juris Hartmanis & Richard Stearns (1965). On the Computa-
tional Complexity of Algorithms. Trans. Amer. Math. Soc. (AMS) 117,
285–306.

Johan Håstad (1998). The Shrinkage Exponent of de Morgan Formu-
las is 2. SIAM Journal on Computing 27(1), 48–64.

Frederick Hennie & Richard Stearns (1966). Two-Tape Sim-
ulation of Multitape Turing Machines. Journal of the ACM 13(4),
533–546.

Russell Impagliazzo, Valentine Kabanets & Avi Wigderson

(2002). In search of an easy witness: Exponential time vs. probabilistic
polynomial time. Journal of Computer and System Sciences 65(4),
672–694.

204 Santhanam & Williams cc 23 (2014)

Russell Impagliazzo & Avi Wigderson (2001). Randomness vs
time: derandomization under a uniform assumption. Journal of Com-
puter and System Sciences 63(4), 672–688.

Hamidreza Jahanjou, Eric Miles & Emanuele Viola (2013).
Local reductions. CoRR abs/1311.3171.

Ravi Kannan (1982). Circuit-Size Lower Bounds and Non-Reducibility
to Sparse Sets. Information and Control 55(1), 40–56.

Thilo Mie (2009). Short PCPPs verifiable in polylogarithmic time
with O(1) queries. Annals of Mathematics and Artificial Intelligence
56(3–4), 313–338.

Eduard Nečiporuk (1966). On a Boolean Function. Doklady of the
Academy of the USSR 169(4), 765–766.

Ian Parberry & Georg Schnitger (1988). Parallel Computation
with Threshold Functions. Journal of Computer and System Sciences
36(3), 278–302.

Walter Ruzzo (1981). On Uniform Circuit Complexity. Journal of
Computer and System Sciences 22(3), 365–383.

Rahul Santhanam & Ryan Williams (2012). Uniform Circuits,
Lower Bounds, and QBF Algorithms. Electronic Colloquium on Com-
putational Complexity (ECCC) 19, 59.

Luca Trevisan (2001). Extractors and pseudorandom generators.
Journal of the ACM 48(4), 860–879. URL http://doi.acm.org/10.
1145/502090.502099.

Emanuele Viola (2005). The Complexity of Constructing Pseudo-
random Generators from Hard Functions. Computational Complexity
13(3), 147–188.

Ryan Williams (2010). Improving Exhaustive Search Implies Super-
polynomial Lower Bounds. In Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing, 231–240.

Ryan Williams (2011). Non-uniform ACC Circuit Lower Bounds. In
Proceedings of 26th Annual IEEE Conference on Computational Com-
plexity, 115–125.

http://doi.acm.org/10.1145/502090.502099
http://doi.acm.org/10.1145/502090.502099

cc 23 (2014) On uniformity and circuit lower bounds 205

Manuscript received 24 June 2013

Rahul Santhanam

School of Informatics,
University of Edinburgh,
Edinburgh, UK.
rsanthan@inf.ed.ac.uk

Ryan Williams

Computer Science Department,
Stanford University,
Stanford, CA, USA.
rrwilliams@gmail.com

	On uniformity andcircuit lower bounds
	Abstract
	Introduction
	Preliminaries and notation

	Lower bounds against medium uniformity
	A uniformization lemma for NC1
	Derandomizing TC0 by assuming randomized TC0 is powerful
	Very weak derandomization for TC0 lower bounds

	Acknowledgements
	References

