arXiv:1106.3126v1 [cs.DS] 16 Jun 2011

Testing List H-Homomorphisms

Yuichi Yoshida*

School of Informatics, Kyoto University, and
Preferred Infrastructure, Inc.
yyoshida@kuis.kyoto-u.ac.jp

November 13, 2018

Abstract

Let H be an undirected graph. In the List H-Homomorphism Problem, given an undirected
graph G with a list constraint L(v) C V(H) for each variable v € V(G), the objective is to
find a list H-homomorphism f : V(G) — V(H), that is, f(v) € L(v) for every v € V(G) and
(f(u), f(v)) € E(H) whenever (u,v) € E(G).

We consider the following problem: given a map f : V(G) — V(H) as an oracle access, the
objective is to decide with high probability whether f is a list H-homomorphism or far from any
list H-homomorphisms. The efficiency of an algorithm is measured by the number of accesses
to f.

In this paper, we classify graphs H with respect to the query complexity for testing list
H-homomorphisms and show the following trichotomy holds: (i) List H-homomorphisms are
testable with a constant number of queries if and only if H is a reflexive complete graph or an
irreflexive complete bipartite graph. (ii) List H-homomorphisms are testable with a sublinear
number of queries if and only if H is a bi-arc graph. (iii) Testing list H-homomorphisms requires
a linear number of queries if H is not a bi-arc graph.

*Supported by MSRA Fellowship 2010.

http://arxiv.org/abs/1106.3126v1

1 Introduction

For two graphs G = (V(G), E(G)) and H = (V(H),E(H)), amap f : V(G) — V(H) is called a ho-
momorphism from G to H if (f(u), f(v)) € E(H) whenever (u,v) € E(G). In the H-Homomorphism
Problem (HOM(H) for short), given an undirected graph G, the objective is to decide whether there
exists a homomorphism from G to H. It is well known that HOM(H) is in P if H is a bipartite
graph and in NP-Complete if H is not a bipartite graph [3] 8, 21].

List H-Homomorphism Problem (LHOM(H) for short) is a variant of H-Homomorphism Problem,
in which we are also given a list L(v) C V(H) for each vertex v in G. A map f: V(G) —» V(H) is
called a list-homomorphism from G to H if f is a homomorphism from G to H and f(v) € L(v)
for every v € V(G). The objective is to decide whether there exists a list-homomorphism f from
G to H. There are many results on the relationship between the graph H and the computational
complexity of LHOM(H) [11}, 12, 13}, 14]. In particular, LHOM(H) is in P iff H is a bi-arc graph [14].

In this paper, we consider testing list-homomorphisms. See [I7, 27] for surveys on property
testing. In our setting, a map f is given as an oracle access, i.e., the oracle returns f(v) if we
specify a vertex v € V(G). A map f is called e-far from list-homomorphisms if we must modify
at least an e-fraction of f to make f a list-homomorphism. An algorithm is called a tester for
LHOM(H) if it accepts with probability at least 2/3 if f is a list-homomorphism from G to H
and rejects with probability at least 2/3 if f is e-far from list-homomorphisms. The efficiency of
an algorithm is measured by the number of accesses to the oracle f. When we say that a query
complexity is constant/sublinear/linear, it always means constant/sublinear/linear in |V (G)|, i.e.,
the domain size of f. We can assume that there exists a list-homomorphism from G to H. If
otherwise, we can reject immediately without any query.

In this paper, we completely classify graphs H with respect to the query complexity for testing
LHOM(H). Our result consists of the following two theorems.

Theorem 1.1. LHOM(H) is testable with a constant number of queries iff H is an irreflexive
complete bipartite graph or a reflexive complete graph.

Theorem 1.2. LHOM(H) is testable with a sublinear number of queries iff H is a bi-arc graph.

The central question in the area of property testing is to classify properties into the following
three categories: properties testable with a constant/sublinear/linear number of queries. Our result
first establishes such a classification for a natural and general combinatorial problem.

We note that, from Theorem [[22] and results given by [14], LHOM(H) is testable with a sublinear
number of queries iff LHOM(H) is in P. However, it is not clear whether there is a computational
class corresponding to properties testable with a constant number of queries.

To obtain our results, we exploit universal algebra, which is now a common tool to study
computational complexity of constraint satisfaction problems (see, e.g., [24]). Another contribution
of this paper is showing that universal algebraic approach is quite useful in the setting of property
testing.

Related works: It is rare that we succeed to obtain characterizations of properties testable
with a constant/sublinear number of queries. The only such a characterization we are aware of
is one for graph properties in the dense model [18]. In this model, it is revealed that Szemerédi’s
regularity lemma [28] plays a crucial role [I]. Roughly speaking, the regularity lemma gives the
constant-size sketch of a graph. It turns out that a property is testable in the dense model with a

constant number of queries iff the property is well-approximated by the union of constant number
of sketches [I]. However, no characterization is known for properties testable with a sublinear
number of queries. Similarly, for properties on Boolean functions, several partial classifications on
constant-time testability are known [5] 25].

Let B be a relational structure (see Section [2] for the definition). In Constraint Satisfaction
Problem over B (CSP(B) for short), given another relational structure A, the objective is to find
a homomorphism from A to B. There have been a lot of research on classifying B with respect
to the computational complexity of CSP(B) (see, e.g., [10, 22]). We can see that HOM(H) and
LHOM(H) are special cases of CSP, and there are also many results classifying H with respect to
the computational complexity of HOM(H) and LHOM(H) (see, e.g., [20} 22]).

Testing homomorphisms on k-SAT is already studied [4, [16]. In k-SAT, given a CNF formula for
which each clause consists of k literals, the objective is to find an assignment to variables so as to
satisfy all the clauses. The problem k-SAT coincides with CSP(B) for some appropriate relational
structure B. Testing homomorphisms for k-SAT can be restated as follows: Given an assignment,
test whether the assignment is a satisfying assignment or far from any satisfying assignments. It is
known that 2SAT is testable with O(y/n) queries [16] and testing 3SAT requires Q(n) queries [4],
where n is the number of variables in an input CNF formula. We can see that our result extends
those results to a large family of CSPs.

Given a relational structure B, it is also natural to ask whether a relational structure A has
a homomorphism to B or far from having homomorphisms. Here, A is given as an oracle access.
There are two major models in this setting, i.e., the dense model and the bounded-degree model. In
the dense model, it is known that any CSP is testable in constant time [2]. In the bounded-degree
model, it is known that Horn-SAT is testable in constant time [30, 29] and the number of queries
needed to test 2SAT is ©(y/n) [19] where n is the number of variables in an input structure A.

Organizations: In Section [2, we introduce definitions used throughout this paper. Sections [3]
and M shows “if” and “only if” part of Theorem [[.T] respectively. Similarly, Sections [l and [6] shows
“if” and “only if” part of Theorem [I.2], respectively.

2 Preliminaries

Let w : A — R be a weight function such that » ., w(a) = 1. Then, by a ~ w, we mean that
we pick an element a € A with probability w(a). For a function f: A — B and A’ C A, we define
flar: A" — A as the function whose domain is restricted to A’. We also define w|y : A — R as
w|a(a) = w(a)/ > ca w(a’). Note that w|a satisfies Y o4 wlar(a’) = 1.

Relational structures, polymorphisms and algebras: A wvocabulary 7 is a finite set of rela-
tional symbols; each symbol has an associated arity. A (finite) relational structure A with vocab-
ulary 7 consists of a finite set A, its universe, and for every relational symbol R € 7 of arity n,
an n-ary relation R on A, the interpretation of R by A. A homomorphism of a structure A to
a structure B with the same vocabulary 7 is a mapping ¢ : A — B from the universe of A to the
universe of B such that for each (n-ary) relational symbol R € 7 and any tuple (ay,...,a,) € RA
the tuple (¢(a1),...,¢(a,)) € RB. For relational structure B, we define HOM(B) as the problem
in which, given another relational structure A, the objective is to find a homomorphism from 4
to B. We denote by |.A| the size of universe of A and denote by ||.A|| the number of tuples in its

relations. For brevity, we use a capital letter to denote the universe of the corresponding relational
structure (e.g., A denotes the universe of A).

Let R be a relation on a set A, An (n-ary) operation f on the same set is said to be a poly-
morphism of R if for any tuples aj,...,a, € R, the tuple f(ay,...,a,) obtained by applying f
component-wise also belongs to R. The relation R is called an invariant of f. An operation f is a
polymorphism of a relational structure A if it is a polymorphism of each relation of the structure.
The set of all polymorphism of A is denoted by Pol(.A). From a collection C' of operations Inv(C')
denotes the set of invariants of all operations from C.

An algebra is a pair A = (A;F) consisting of a set A, the universe of A, and a set F' of
operations, the basic operations of A. Operations that can be obtained from the basic operations of
A and the projection operations on A, that is operations of the form f(z1,...,x,) = x;, by means
of compositions are called term operations of A. Term(A) denotes the set of all term operations of
A. Any relational structure A can be associated with an algebra Alg(A) = (A;Pol(A)). Conversely,
any algebra A = (A4; F) corresponds to a class of relational structures Str(A) that includes all the
structures A with universe A and Term(A) C Pol(.A).

An operation f is called idempotent if f(xz1,...,x) € {z1,...,2x} for any z1,...,x, where k
is the arity of f. An algebra A is called idempotent if any basic operation (thus, term operation)
is idempotent.

Graph homomorphisms: We often identify a graph H = (V(H), E(H)) with a relational struc-
ture H consisting of a universe V(H) and a binary relation F(H). In particular, |[H| = |V (H)|
and |H| = |E(H)|. Note that problem HOM(H) defined with graph terminologies and HOM(H)
defined with relational structures coincide. Similarly, LHOM(H) can be restated with relational
structures. Let H be the relational structure associated with H and define H” as the relational
structure obtained from H by adding all unary relations S™ C V(H). Then, LHOM(H) coincides
with HOM(H!). Let G be a graph with list constraints {L(v)}vev(c)- Let G be the relational struc-
ture corresponding to G. Then, we can define another relational structure G* obtained from G by
adding unary relations S9 C V(G). Here, for each (unary) tuple (v) € SY, there is a corresponding
constraint L(v) = S™. Finally, we define H* = Alg(H¥) for a graph H. Note that the algebra H”
is idempotent since H* contains unary relations S, = {(v)} for every v € V(H), and an operation
that has {S, },ev(m) as invariants must be idempotent.

Testing homomorphisms: Let A and B be relational structures and w : A — R be a weight
function with Y ., w(a) = 1. The distance between two functions f, f' : A — B is defined as
dist(f, f') = aE{y[f(a) # f'(a)]. For a function f : A — B, we define distg(f) = ming dist(f, f/)
where f’ is a homomorphism from A to B. We call a map f e-far if distg(f) > e. For subset
A" C A, we define distp(f|) similarly using the weight function w| .

We consider testing homomorphisms to a relational structure B. An input is (A, w, f) where
A is a relational structure, w : A — R is a weight function with }° ., w(a) =1, and f: A — Bis
a map. The map f is given as an oracle access. Thus, by specifying a € A, the oracle returns the

value of f(a).

Definition 2.1. An algorithm is called a tester for HOM(B) if, given an input (A, w, f), it accepts
with probability at least 2/3 when f is a homomorphism from A to B, and rejects with probability
at least 2/3 when f is e-far from homomorphisms.

A tester is called a one-sided error tester if it always accepts an input (A, w, f) if f is a homo-
morphism. An algorithm is called having query complexity q(n,m,e€) if, given an input (A, w, f),
it queries at most g(|.A[, || A]],€) times. We always assume that g(n,m,€) is an increasing function
on n,m and a decreasing function on e.

We can similarly define testers and testability for HOM(H) and LHOM(H) for a graph H
since they have equivalent formalizations using relational structures. For convenience, we write an
input for HOM(H) and LHOM(H) as (G, w, f) and (G, L,w, f), respectively, where G is a graph,
{L(v)}vev () is a set of list constraints, w is a weight function, and f is a map given as an oracle
access.

We finally define bi-arc graphs for reference though we do not use the definition in our proof.
Let C be a circle with two specified points p and ¢q. A bi-arc is a pair of arcs (N, .S) such that N
contains p but not ¢ and S contains ¢ but not p. A graph H = (V, E) is a bi-arc graph if there is a
family of bi-arcs {(N., S;) | * € V'} such that, for every z,y € V, the following holds: (i) if z and
y are adjacent, then neither NNV, intersects S, nor N, intersects S;, and (i¢) if x is not adjacent to
y then both N, intersects S, and NN, intersects S,. An undirected graph is called reflexive if every
vertex has a loop and irreflezive if no vertex has loop. It is known that a reflexive graph is bi-arc iff
it is an interval graph, and that an irreflexive graph is bi-arc iff it is bipartite and its complement
is an circular-arc graph [14].

3 Graphs Testable with a Constant Number of Queries

In this section, we show the following lemma, which is the “if” part of Theorem [L.11

Lemma 3.1. When H is an irreflexive complete bipartite graph or a reflexive complete graph, then
there exists a one-sided error tester for LHOM(H) with query complezity O(1/€?).

Let (G, L,w, f) be an input for LHOM(H). For a vertex v € V(G), let C(v) be the connected
component containing v.

Proposition 3.2. Let (G, L,w, f) be an input for LHOM(H). Suppose that distg(f) > €. Then,
E [distr(leg)] > e a

Proof. Let f be a list-homomorphism closest to f and ¢, = dist(f |C’(v)7?|0(v))' It is clear that
€y = disty (f|c()). Since disty (f) > ¢, we have E [disty (f|cw))] = E [e] > e O

Corollary 3.3. Suppose that there exists a one-sided error tester A for LHOM(H) with query
complezity q(€) if an input graph is restricted to be connected. Then, there exists a one-sided error
tester A’ for LHOM(H) with query complezity q(€)/e for any input graph.

Proof. Let (G,L,w, f) be an input. Our algorithm A’ is as follows: Let S be a set of O(1/¢)
vertices chosen from G according to w. For each vertex v € S, we run A with an error parameter e
on the input whose domain is restricted to C'(v). We reject if A rejects for some v € S. We accept
otherwise.

It is easy to see that the above algorithm always accepts when f is a list-homomorphism, and
the query complexity is at most g(e)/e.

Suppose that disty(f) > e. From Proposition B.2] we have E [disty(f|c(y))] = €. Thus,
Pr [disty (f|c(w)) > €] > eholds. For a vertex v with disty (f|c(y)) > €, the algorithm A rejects with
probability at least 2/3. Thus, A’ rejects with probability at least 1 — (1 —2/3-¢€)®(/) > 2/3. [

Lemma 3.4. Suppose that there exists a one-sided error tester A for LHOM(H) with query com-
plezity q(€) if an input map is restricted to satisfy list constraints. Then, there also exists a one-sided
error tester A’ for LHOM(H) with query complexity O(1/¢) + q(€/2) for any input.

Proof. Let (G, L,w, f) be an input. We define f': G — H as

o) = {f(v) if f(v) € L(v)

any element in L(v) otherwise

Note that we can compute f/(v) by querying f once, i.e., f(v).

Our algorithm A’ is as follows: Let S be a set of ©(1/¢) vertices chosen from G according to w.
We reject if f(v) ¢ L(v) for some v € S. If otherwise, we simply return the output by A running
on f’/ with an error parameter €/2.

It is easy to see that the above test always accepts when f is a list-homomorphism, and the
query complexity is at most O(1/€) + q(e/2).

Suppose that disty(f) > e. If dist(f, f’) > €/2, then A’ rejects with probability at least
1 — (1 —¢/2)°W9) > 2/3 when checking f(v) € L(v) for v € S. If dist(f, f') < €/2, from the
triangle inequality, we have disty (f') > €/2. Thus, A’ rejects with probability at least 2/3. U

Lemma 3.5. Let H be a reflexive complete graph. Then, there exists a one-sided error tester for
LHOM(H) with query complexity O(1/¢).

Proof. Let (G, L, w, f) be an input and assume that f satisfies list constraints. Then, we can always
accept since any map is a list-homomorphism to H. The lemma follows from Lemma [3.4 O

Lemma 3.6. Let Ky be an irreflexive complete graph with two vertices. There exists a one-sided
error tester A for LHOM(K>) with query complezity O(1/€?).

Proof. Let (G, L,w, f) be an input and assume that G is connected and f satisfies list constraints.
Note that G must be bipartite in order to have a homomorphism to H, and let V; U V5 be the
bipartition of G. Let a,b be two vertices in K». Then, we have two homomorphisms, i.e., f! and
f? where flly, = a, fllv, = b, and 2|y, = b, 2|1, = a.

Our algorithm A is as follows: Let S; (resp., S2) be a set of ©(1/¢) vertices chosen from Vj
(resp., Vi) according to wly, (resp., w|y,). Then, we check f(u) = f(v) for every u,v € Sj,
f(u) = f(v) for every u,v € S, and f(u) # f(v) for every u € S1,v € Sy. We reject if any of them
do not hold. We accept otherwise.

It is easy to see that the above test always accepts when f is a list-homomorphism, and the
query complexity is O(1/e).

Suppose that disty (f) > e. Note that f! or f2 must satisfy list constraints. We assume below
that both f! and f? satisfy list constraints. The analysis is similar when either of them does not
satisfy list constraints.

Since f is e-far from f!, we have 2 vevi f)=b W) = €/208 37 vy p)—q w(v) > €/2. Similarly,
we have 30 cvi ri)=q W(V) 2 €/2 08 30 ey) w(v) = €/2. In any case, the probability that we

reject is at least 1 — 2(1 — ¢/2)91/€) > 2/3,

From Corollary B3] and Lemma 34 LHOM(K?) is testable with O(1/€?) queries. O

Now, we show that any complete bipartite graph is testable with a constant number of queries.
For two graphs G and H, we call a map f : V(G) — V(H) a full-homomorphism if (u,v) € E(G)
iff (f(u), f(v)) € E(H). The difference from a homomorphism is that we must have (f(u), f(v)) &
E(H) when (u,v) ¢ E(G).

Proposition 3.7. Let h be a full-homomorphism from H to H'. For a graph G and a homomor-
phism f' from G to H', let f : V(G) — V(H) be a map such that f(v) is any element in h=(f'(v)).
Then, f is also a homomorphism from G to H.

Proof. Suppose that f is not a homomorphism. Then, there exist u,v € V(G) such that (u,v) €
E(G) while (f(u), f(v)) € E(H). Then, we have (f'(u), f'(v)) = (h(f(w)), h(f(v))) & E(H') since

h is a full-homomorphism, which is contradicting the fact that f’ is a homomorphism. O

Lemma 3.8. Let H be a graph and suppose that there exists a full-homomorphism h from H to
H'. If there exists a one-sided error tester for LHOM(H') with query complexity q(e), then there
exists a one-sided error tester for LHOM(H) with query complexity O(1/€) + q(e/2).

Proof. Let (G, L,w, f) be an input and assume that f satisfies list constraints. We define L' = hoL
and f' = ho f. Then, we run the tester for LHOM(H') on an input (G, L', w, f’) with an error
parameter e.

If f is a list-homomorphism, then f’ is also a list-homomorphism, and the tester always accepts.
_ Suppose that disty(f) > € and let f' be the list-homomorphism closest to f’. We define
f:V(G) = V(H) as follows.

Fo) = {f(v) if (v) = /(v),
any element in L(v) Nh~!(f'(v)) otherwise.

Note that, in the latter case, L(v) N h~!(f’(v)) is not empty since f’(v) € L'(v) = h(L(v)). Thus,
[is well-defined. We can easily see that f satisfies list constraints from the construction. When
f'(v) = f'(v), we have f(v) € h~'(f'(v)). Thus, f is a list-homomorphism from Proposition BZl
It means that dist(f’, f/) > dist(f, f) > distg(f) > e. Thus, the tester rejects with probability at
least 2/3.

We have shown that LHOM(H) is testable with g(e) queries when an input is restricted to satisfy

list constraints. The lemma follows from Lemma [3.41 O

Lemma 3.9. Let H be an irreflexive complete bipartite graph. Then, there exists a one-sided error
tester for LHOM(H) with query complezity O(1/€?).

Proof. Since there exists a full-homomorphism from H to Ko, LHOM(H) is testable with O(1/€?)
queries from Lemmas and 3.8

Proof of Lemmal[31l The claim immediately follows from Lemmas and

4 Graphs Not Testable with a Constant Number of Queries

In this section, we show the following lemma, which is the “only if” part of Theorem [T.1l

Lemma 4.1. If H is neither an irreflexive complete bipartite graph nor a reflexive complete graph,

testing LHOM(H) requires Q(lolgoign) queries.

The following is immediate since we can freely restrict the range of a map by list constraints.

Proposition 4.2. Let H be a graph and H' be an induced subgraph of H. If testing LHOM(H')
requires q queries, then testing LHOM(H) also requires q queries.

The following lemma is implicitly stated in [16] when showing lower bounds for testing 2SAT.

Lemma 4.3 ([16]). Let H be a graph and G be a graph with list constraints {L(v)}yev (- For
vertices u,v € V(GQ) with u # v, let R = {(f(u), f(v)) | f is a list-homomorphism from G to H}.
If R = {(a,c),(b,c), (b,d)} for vertices a,b,c,d € H,a # b,c # d, then testing LHOM(H) requires

logn .
(oglogn) dqueries.

We also use the following lemma, which is a special case of Lemma (see Section [0)).

Lemma 4.4. Let K3 be an irreflexive complete graph with three vertices. Then, testing LHOM(K3)
requires 2(n) queries.

Note that K3 is not a bi-arc graph.
The following two lemmas deal with reflexive graphs and irreflexive graphs, respectively.

Lemma 4.5. Let H be a reflexive graph. If H is not a complete graph, testing LHOM(H) requires

logn .
Q(W) queries.

Proof. Let P = ({a,b,c};{(a,a), (b,b), (c,c), (a,b), (b,c)}) be a reflexive path of length 2 and G =
({u,v}; {(u,v)}) be an irreflexive edge with list constraints L(u) = {a,b} and L(v) = {b,c}. Tt is
easy to see that the relation R in Lemma [£3] becomes R = {(a,b), (b,b), (b,c)}. It follows that
testing LHOM(P) requires Q(lolgﬁj gn) queries. From Proposition 2] if LHOM(H) is testable with
a constant number of queries, H must have a diameter 1, implying that H is a reflexive complete
graph. O

Lemma 4.6. Let H be an irreflexive graph. If H is not a complete bipartite graph, testing

LHOM(H) requires Q(lolgol%) queries.

Proof. Let P = ({a,b,c,d}; {(a,b), (b,c), (¢c,d)}) be an irreflexive path of length 3 and G = ({u, v}; {(u,v)})
be an irreflexive edge with list constraints L(u) = {a,c} and L(v) = {b,d}. It is easy to see that
the relation R in Lemma 3] becomes R = {(a,b), (¢,b), (¢,d)}. It follows that testing LHOM(P)
requires Q(logign) queries. Also, for an irreflexive triangle 7', testing LHOM(T') requires (n)
queries from Lemma 441

Thus, if LHOM(H) is testable with a constant number of queries, H must not have a path of
length 3 or a triangle as induced subgraphs from Proposition Thus, H must be a complete

bipartite graph. O

Proof of Lemma[{.1l Let P = ({a,b};{(a,b),(b,b)}) be an edge with aloop and G = ({u,v}; {(u,v)})
be an irreflexive edge with list constraints L(u) = L(v) = {a, b}. Then, the relation R in Lemma [£.3]

becomes {(a,b), (b,b),(b,a)}, and it follows that testing LHOM(P) requires Q(log)lgogn) queries.

Thus, if LHOM(H) is testable with a constant number of queries, H must be reflexive or irreflexive
from Proposition Then, the lemma follows from Lemmas and d

5 Graphs Testable with a Sublinear Number of Queries

In this section, we show the following lemma, which is the “if” part of Theorem [L.2

Lemma 5.1. Let H be a bi-arc graph. Then, there exists a one-sided error tester for LHOM(H)
with query complexity O(\/n/e).

We first describe a propagation algorithm to solve CSPs. Let A and B be two relational struc-
tures. To check whether there exists a homomorphism f from A to B, we can use the following
algorithm. Let k, ¢ be integers with k < ¢. For each subset U C A, |U| < ¢, we keep track of a set
Sy of tuples corresponding to maps from A|y to B. First, we initialize Sy to the set of solutions to
the partial instance A|y. Then, for each subsets U, U’ C A with |U NU’| < k, we eliminate tuples
a in Sy if alyr is not contained in Syv|y. We continue this process until no update occurs. This
propagation algorithm is called (k,¢)-Minimality [9]. If Sy becomes empty for some U C A, we can
conclude that A has no homomorphism to B. Even if no Sy is empty when propagation stops, A
may not have a homomorphism to 5. If A has a homomorphism to B in such a case, then B is
called having width (k,¢).

A ternary operation f : B> — B is called a majority if f(z,z,y) = f(z,y,2) = f(y,z,z) = x
for z,y € B. It is known that a relational structure B such that the associated algebra Alg(B)
admits a majority operation has width (2,3) [24]. We say a map f: A — BU{L} is extendable
to a homomorphism if there exists a homomorphism f’: A — B such that f/(v) = f(v) whenever
f(v) € B. We call a vertex v a violating vertex if f(v) ¢ S,y and a pair of vertices (v, u) a violating
pair if (f(v), f(v)) & S{v,uy- It is known that the majority operation implies the following property.

Lemma 5.2 (2-Helly property, [15]). Let B be a relational structure such that Alg(B) admits a
magority operation. For a relational structure A and U C A,|U| < 3, let Sy be the set of tuples
obtained by (2,3)-Minimality running on A. If a map f : A — B U{L} is not extendable to a
homomorphism, then there is a violating vertex v or a violating pair (v,u) for some u,v € f~1(B).

Lemma 5.3 ([I1]). Let H be a bi-arc graph. Then, H admits a magjority operation.

Proof of Lemma (51l Let (G, L,w, f) be an input for LHOM(H). From Lemmas [5.2] and (53] we
can assume the 2-Helly property. Our algorithm is described below.

Algorithm 1 LHOM(H) tester for a bi-arc graph H

Run (2, 3)-Minimality and let Syy be the set of tuples obtained for U C V(G),|U| < 3.
Let X be a set of ©(1/¢) vertices chosen according to w
if Jv € X such that f(v) € Sy,) then
Reject the input.
Let Y1, Y be sets of ©(1/n/e) vertices chosen according to w.
if Jv € Y1, u € Ya such that (f(v), f(u)) € Sqy,uy then
Reject the input.
Accept the input.

Note that (2, 3)-Minimality updates Sy using not only the graph G but also the list constraint
L. The query complexity is clearly O(y/n/e). It is clear that the tester always accepts when f is
a list-homomorphism.

Suppose that distz(f) > €. Let U be a subset of V(G) with maximum weight such that the
partial homomorphism f|; is extendable to a list-homomorphism. Clearly, we have w(U) + € < 1.
Let v be a vertex in V(G) \ U. From the maximality of U, we cannot extend f|yyg,) to a list-
homomorphism. Thus, from the 2-Helly property, v is a violating vertex or (v,u) is a violating pair
for some u € U. Let A be the set of violating vertices in V(G) \ U, and B = V(G) \ (UU A). Note
that for any v € B, a pair (v,u) is a violating pair for some u € U. Since AU B = V(G) \ U, we
have w(A) + w(B) > 1 —-w(U) > e.

When w(A) > €/2, we reject at Line @ with probability at least 1 — (1 — €/2)9(1/€) > 2/3.

Suppose that w(B) > €/2. For a subset B’ C B, we define N(B') = {u € U | Jv €
B’ (v,u) is a violating pair}. Note that f|y is extendable to a list-homomorphism where U’ =
(U\ N(B')) U B’. Thus, we must have w(B’) < w(N(B’)) from the maximality of U.

Let ¢ = |Y1| = |Ya| and ¢ > 0 be a parameter. Let B’ = Y1 N B and F; be the event that
w(B’) < £ By choosing ¢ large enough, we have Pr[F;] < 1—10 from Chernoff’s bound. Note
that w(N(B')) > w(B’) > ZL. Let F, be the event that no violated edge is detected. Then,
Pr[Fy] < Pr[F]+Pr[F, | Fi] < 15+ (1— <2)7 < L by choosing the hidden constant in ¢ = ©(y/n/e)
large enough. O

Note that we only use the fact that H” admits a majority operation. Thus, our algorithm can
be also used to testing homomorphisms to other CSPs admitting majority operations, e.g., 2SAT.

6 Graphs Not Testable with a Sublinear Number of Queries

In this section, we prove the following, which is “only if” part of Theorem
Lemma 6.1. If a graph H is not a bi-arc graph, then testing LHOM(H) requires Q2(n) queries.

To prove Lemma [6.1], we make use of a sequence of reductions. First, we define reductions used
in this section.

Definition 6.2. Let A and B be relational structures. We say that there is a (randomized) gap-
preserving local reduction from B to A if there exist functions ti(n,m),ta(n,m) and constants
c1,c2 satisfying the following: there exists a (randomized) construction such that given an input
(T, wy, fr) for HOM(B), it generates an input (Z,wr, fr) for HOM(A) such that

Z] < 1 (|TL 11T 1D,

IZI < t2(1T L N T,

if f7 is a homomorphism, then fr is also a homomorphism,

if distg(fy) > €, then Pr[dist 4(f7) > c1€] > 9/10, and

we can compute fr(v) for any v € I by querying fy at most cy times.

Gud o =

Lemma 6.3. Let A be a relational structure such that there exists a tester for HOM(A) with query
complezity q(n,m,¢€). If there exists a gap-preserving local reduction from a relational structure B
to A, there exists a tester for HOM(B) with query complezity O(q(t1(n,m),ta(n,m),O(e))).

Proof. Let (J,wy, fr) be an input for HOM(B). Let (Z,wy, f1) be the (random) input for HOM(.A)
given by the reduction.

We run A with an error parameter cie. If f;is a homomorphism, then A accepts with probability
at least 2/3. If fj is e-far from homomorphisms, then A rejects with probability at least 9/10-2/3 =
3/5. In both cases, we can increase the probability by running A4 a constant number of times and
take the majority of outputs.

Since we can compute the value of fr(v) by querying f; at most ¢ times, the number of queries
to fyis at most O(coq(t1(n,m),ta(n, m), cre)). O

For an algebra A, we say that HOM(A) is testable with g(n,m,€) queries if, for any relational
structure A € Str(A), HOM(A) is testable with ¢(n,m,€) queries.

Lemma 6.4. Let A be a relational structure such that HOM(A) is testable with q(n, m,€) queries.
Then, HOM(A) is also testable with O(1/e + q(O(n +m),0(m), O(¢))) queries.

Proof. Let B be a relational structure in Str(A). Then, each relation of B is obtained from relations
of A in finitely many steps by using the following constructions [6] [7]:

. removing a relation,
. adding a relation obtained by permuting the variables of a relation,

. adding the intersection of two relations of the same arity,

1
2
3
4. adding the product of two relations,
5. adding the equality relation, and

6

. adding a relation obtained by projecting an n-ary relation to its first n — 1 variables.

It thus suffices to prove that B is testable if B is obtained by any of those constructions from
A. To this end, we will give gap-preserving local reductions from B to A with t1(n,m) < n +
m,to(n,m) < 2m,c; = co = O(1). (For Case 5, we need reprocessing that costs O(1/€) queries.)
Let (J,wy, fr) be an input of HOM(B). Then, we construct another input (Z,wy, fr) of HOM(A)
so that the construction satisfies conditions of gap-preserving local reductions. Since checking
conditions (),(2), [B) and (Bl are straightforward, we will only check the condition (). For any
case below, we define fr: I — A as the homomorphism closest to f;. Then, we will construct a
homomorphism f 7:J — B using f; and show that dist(f7, f;) must be large using the fact that
dist(fs, f J) > €. Then, the lemma follows by iteratively applying Lemma [6

Case 1: Let us suppose first that B is obtained from 4 by removing a relation of A. Let Z be
the relational structure obtained from 7 by supplementing the relations of 7 by an empty relation
corresponding to the relation removed from A. We set wy = w; and f; = f;. Then, we define
f7 = f;. It is clear that fJ is a homomorphism from J to B. Thus, dist(f7, f;) = dlst(fJ,fJ) >€
holds.

Case 2: Let us suppose that B is obtained from A by adding a relation S obtained from a relation
R of A by permuting the variables according to a permutation 7. Let Z be the relational structure
obtained from J by deleting S7 and replacmg R7 by RT = R7 U SY where SY is obtained by
permuting the variables of S7 according to 7~ !. We set w; = w; and f; = f;. Then, we define
f] = f;. It is clear that f] is a homomorphism from J to B. Thus, dist(f7, f;) = dist(f, f]) >e€
holds.

10

Case 3: Let R and S be two relations of the same arity of A. Let T denote the intersection
of R and S. Let us suppose that B is obtained from A by adding the relation T'. Let Z be the
relational structure obtained from J by deleting 77 and replacing Rj by R = RTUTY and ST
by ST =87 UTY. We set w; = wy and f; = f;. Then, we define fJ = f;. It is clear that fJ isa
homomorphism from 7 to B. Thus, dist(f7, f;) = dist(fy, f7) > € holds.

Case 4: Let R and S be two relations of A. Let T denote the product of R and S, and let B be
obtained from A by adding the relation T'. Let Z be the relational structure obtained from J by
deleting 77 and replacing R7 by RT = RV UTJ and S7 by §* = 87 UTJ where Tj (resp., Tj)
is the projection of TV onto the variables of the R-part (resp., S-part) Of T7. We set w; = wy
and f; = f7. Then, we define f 7 = f;. Tt is clear that f 7 is a homomorphism from J to B. Thus,
dist(fz, f;) = dlst(fJ,fJ) > ¢ holds.

Case 5: Let us suppose that B is obtained from A by adding the equality relation. Let 6 be
the reflexive, symmetric, transitive closure of 6’ where 6 is the relation of J corresponding to
equality in B. Clearly, 6 is an equivalent relation on J. For a variable v € J, we define v/y

as the corresponding 6-block. For a 6-block u, we define w(u,b) = oo wy(v), wy(u) =
veu:fr(v)=b

S wy(u,b), w (u) = maxw,(u,b), and f7¥(u) = argmaxw (u,b).

beB beB beB

Before we reduce the problem to HOM(A), we run the following algorithm first: Pick a set of
©(1/¢) variables according to w and check whether those variables obey 6. Let f;: J — B be the
map such that f;(v) = maj(v/g) Note that f; is the map closest to f; obeying 6. It is easy to see
that the above algorithm always accepts when f; is a homomorphism from J to B and the query
complexity is O(1/e). R

Suppose that dist(fy, f7) > €/20. This indicates 3o 1o (W (1) — w5 (u)) > €/20. Tt is not
hard to show that, in such a case, the algorithm above rejects fJ with probability at least 2/3.
Thus, we assume that dist(f7, 1) = 3 uoiea (W (1) — w5 (u)) < €/20 in what follows.

Now, we define the input (Z,wy, fr) for HOM(A). We define a structure Z so that its base set
is the set of #-blocks, and its relations are defined as follows: For each relation R of J distinct
from ', we define a relation RZ on the 6-blocks by stipulating that

(ug,...,u) € R? iff Ju; € uy, ..., v, € u, such that (v1,...,0) e Rr7.

Also, we set wr(u) = wy(u). We define fr(u) = f;(v) where v is a variable in u randomly chosen
according to wjly, i.e., v is chosen with probability w(v)/w j(u).

We define dist(f, fr) = > > w j(v). For a #-block u, we define dist,(fs, f1) =
u:0-block vew: fr (w)#f 5 (v)

Z;j(v). It is clear that dist(fs, f1) > wy(u)disty(fr, f1)-
veu: fr(u)#£fs(v) u:0-block

€

11

We have

Eldist.(f7, f1)] =

beB

Wity (et | e
ws(u) (1 wJ<u>>+<1 wJ<u>> !

~w ()
’ (1 w (u)) '

E[dist(fs, f)] =E[Y wy(u)disty(f7,)] < Y 2ws(u) —wh™ () < —

10°
u:0-block u:0-block

w,(u,b) (1 wy(y, b))

w,(u)

IA

IN

Thus,

Also, we have

Var[dist, (f7, f1)]
= E[(distu(fs, fr) — Eldistu(f7, f1)])?]

maj maj 2 maj
w™ () <1_ W™ (u) —E[distu(fJ,fz)]> n (1_ Lj(u)) 1

w,(u) w7 (u) wy(u)
. 2 . .
(o wi P ~wi(u) ~wiV(y)
= <1)) + <1 o)) §2<1) >

Var|dist(f;, f1)] = Var| Z wy(u)disty(fr, f1)] < Z 2(wy(u) — w?aj(u)) <

u:0-block u:0-block

Thus,
-
10°
Thus, from Chebyshev’s inequality, Pr[dist(fy, fr) > €/2] < 1/16. N
We check the condition (). We define f; as f;(v) = fr(v/g). It is clear that f; is a homo-

morphism from J to B. Since we have dist(f;, f) + dist(fr, f;) > dist(fs, f7) > €, it follows that
Pr[dist(fr, f;) > €/2] > 15/16.

Case 6: Let us suppose that B is obtained from A by adding the projection S of an r-ary relation
R of A to its first » — 1 variables. Let Z be the relational structure with the base set J extended
by a new element for each (r — 1)-tuple in S7. The relations of Z are those of 7, except that S
is removed and RY is replaced by R = R7 U 5;7_ 1 Where S;,7_ | is obtained from S7 by extending
every (r — 1)-tuple of ST with the corresponding new element in the base set of I. Note that
IZ| < |T|+|T | and | Z]| = ||T|]. We set w;(v) = w ;(v) for a variable v € J is and w;(v) = 0 for a
variable v corresponding to (r — 1)-tuple in S7. We define f; as follows: We set f;(v) = f;(v) for
v € J and arbitrary value for a variable v corresponding to an (r — 1)-tuple in 5. (Indeed, we do
not have to care about those values since there weights are zero.) Then, we define f;(v) = f;(v)
for v € J. Tt is easy to check that f; is a homomorphism, and dist(f7, f;) > dist(f, f7) > e. O

12

We introduce some notions related to algebras. Let A = (A;F') be an algebra. A set B C A
is a subuniverse of A if for every basic operation f € F restricted to B has all the results in B.
For a nonempty subuniverse B of an algebra A, f|p is the restriction of f to B. The algebra
B = (B, F|p) where F|p ={f|p | f € F'} is a subalgebra of A. Algebras A,B are of the same type
if they have the same number of basic operations and corresponding operations have equal arities.
Given algebras A, B of the same type, a product A x B is the algebra with the same type as A and B
with universe A x B and basic operations computed coordinate-wise. An equivalence relation 6 on
A is called a congruence of an algebra A if 8 is a subalgebra of A x A. Given a congruence 6 on A,
we can form the homomorphic image A /g, whose elements are the equivalence classes of A and the
basic operations are defined so that the natural projection mapping is a homomorphism A — A /.
If A is idempotent, 6-classes are subuniverses of A. It is known that a relational structure A is in
Str(A) if each relation in A is a subuniverse of a finite power of A.

A wariety is a class of algebras of the same type closed under formation of subalgebras, ho-
momorphic images and finite products. For any algebra A, there is a smallest variety containing
A, denoted by V(A) and called the variety generated by A. It is well known that any variety is
generated by an algebra and that any member of V(A) is a homomorphic image of a subalgebra of
a power of A.

Lemma 6.5. Let A be an algebra such that HOM(A) is testable with g(n,m,¢) queries. Then, for
any finite algebra B € V(A), HOM(B) is also testable with O(q(O(n),O(m),O(€))) queries.

Proof. 1t suffices to show that every subalgebra, homomorphic image and finite power of A is
testable with O(¢(O(n),0(m),O(€))) queries. Let B be a subalgebra, a homomorphic image, or a
finite power of A and let B be a relational structure on B such that the relations of B are subalgebras
of finite powers of B. From Lemma [6.3], it suffices to show a gap-preserving local reduction from B
to A. We follow the approach similar to the proof of Lemma Given an input (J,wy, f) for
HOM(B), we define another structure (Z,wr, fr) for HOM(.A). Then, we show that the construction
satisfies the conditions of gap-preserving local reductions. Since checking conditions (), @), (3],
and (B]) are straightforward, we will only check the condition (). For any case below, we define
fr: I — A as a homomorphism closest to f;. Then, we will construct a homomorphism f;: J — B
from f; and show that dist(f7, f;) must be large by using the fact that dist(fy, f7) > e.

Suppose first that B is a subalgebra of A. Let A be the relational structure whose base set is A
and whose relations are all the relations of B and B as a unary relation. Notice that the relations of
A are subalgebras of finite powers of A, and A € Str(A). We take 7 to be J with all of its relations
adding B as a unary relation. In particular, I = J. Then, we define w; = wy and f; = f;. Due to
the unary relations, f;(v) € B must hold for every v € I. Thus, f; is also a homomorphism from
J to B. Thus, dist4(f) = dist(fr, f;) > €.

Secondly, suppose that B is a homomorphic image of A under the homomorphism h : A — B.
This time, let A be the relational structure whose base set is A and whose relations are the preimages
under the homomorphism A of all the relations of B. Notice that the relations of A are subalgebras
of finite powers of A, and A € Str(A). We take Z to be the relational structure whose base set is
J and whose relations are the preimages under the homomorphism A of all the relations of Z. We
define w; = wy and f; : I — A so that f;(v) is any element in h=1(f;(v)). Note that ho f; is a
homomorphism from I to B. From the construction, we have dist(f7, f;) > dist(h o fr,ho f;) =
dist(fs,ho f;) > e

Finally, suppose that B = AF. Let A be the relational structure with the following relations:
If R is an s-ary relation of B, define Ry to be the sk-ary relation such that, if (b1,...,bs) € R

13

with b; = (a1,,...,a,), we put the sk-tuple (a1 1,...,a1,5,...,0k,1,--.,0ks) in Ry. Note that the
sk-ary relations obtained in this way are subalgebras of finite powers of A, and A € Str(A). We
take Z to be the union of k£ disjoint copies of J with one sk-ary relation for each s-ary relation
of J. An sk-tuple in the new relation on Z is formed by the k& copies of an s-tuple in the old
relation on J, that is, if (z1,...,25) is in the old relation on J and x;; is the i-th copy of z;
in J, then (z11,...,%1,6,.., 2k 1,.--,%ks) is in the new relation. We define wy(x;) = wy(x)/k
if z; is a copy of x. For a map f; : J — B, we define fr : I — A as follows: If z;; is the
i-th copy of z;, we define fr(z;;) as the i-th element of f;(z;). We make fr:J — B from

f; by f:](xj) = (fi(@14),.-., fr(zn). Clearly, f; is a homomorphism. Thus, dist(fr,f;) >

dist(fs, f1)/k > €/k. O

We define 3LIN = ({0, 1}; {(0,0,0), (0,1,1), (1,0,1), (1,1,0)}, {(0,0,1), (0,1,0), (1,0,0), (1,1,1)})
as the relational structure expressing a system of linear equations over o such that each equation
has arity three.

Lemma 6.6 ([4]). Testing HOM(3LIN) requires ©(n) queries even if m = O(n).

We introduce the notion of type set of an algebra and of a variety. Roughly speaking, the
type set of a finite algebra is a subset of the set 1,2,3,4,5 whose elements are called types and
correspond to certain classes of algebras: 1 to unary algebras, 2 to vector spaces over finite fields,
3 to Boolean algebras, 4 to distributive lattices and 5 to semilattices. See [23] for details. If V is a
variety, the type set of V is the union of the type sets of the finite algebras in V. We say that an
algebra or variety admits (omits) type ¢ when 7 is (is not) in its type set.

Lemma 6.7 ([26]). Let A be an idempotent algebra such that V(A) admits type 1. There exists an
algebra B € V(A) such that 3LIN € Str(B).

Lemma 6.8 ([14]). Let H be a non bi-arc graph. Then, V(HY) admits type 1.

Proof of Lemma 61l Assume that LHOM(H) is testable with o(n) queries when m = O(n). Then,
from Lemma [6.4] HOM(HY) is testable with o(n) queries. Then, from Lemma 6.5, HOM(H') is
testable with o(n) queries for any H' € V(H¥). However, H” is idempotent and V(H¥) admits type
1 from Lemma Thus, 3LIN € V(H") from Lemmas 6.7, and testing 3LIN requires Q(n) queries
from Lemma Contradiction. O

References

[1] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity. In Proc. 38th ACM symposium on Theory
of computing, pages 251-260, 2006.

[2] N. Alon and A. Shapira. Testing satisfiability. Journal of Algorithms, 47:87-103, 2003.

[3] L. Barto and M. Kozik. Cyclic terms in algebraic approach to CSP. In Proc. 25th IEEE
Symposium on Logic in Computer Science, volume 1, 2010.

[4] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3cnf properties are hard to test. STAM
Journal on Computing, 35(1):1-21, 2006.

14

[5]

[6]

[7]

A. Bhattacharyya, E. Grigorescu, and A. Shapira. A unified framework for testing linear-
invariant properties. In Proc. 51st IEEE Symposium on Foundations of Computer Science,
pages 478-487, 2010.

V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for post
algebras. i. Cybernetics and Systems Analysis, 5(3):243-252, 1969.

V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for post
algebras. ii. Cybernetics and Systems Analysis, 5(5):531-539, 1969.

A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science, 349(1):31-39, 2005.

A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2):321—
339, 2006.

A. Bulatov and M. Valeriote. Recent results on the algebraic approach to the CSP. Complexity
of Constraints, pages 68-92, 2008.

L. Egri, A. Krokhin, B. Larose, and P. Tesson. The complexity of the list homomorphism
problem for graphs. In Proc. 27th International Symposium on Theoretical Aspects of Computer
Science, volume 5, pages 335346, 2010.

T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236-250, 1998.

T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica,
19(4):487-505, 1999.

T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphisms.
Journal of Graph Theory, 42(1):61-80, 2003.

T. Feder and M.Y. Vardi. The computational structure of monotone monadic snp and con-
straint satisfaction: A study through datalog and group theory. SIAM Journal of Computing,
28(1):57-104, 1998.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proc. 34th ACM symposium on Theory
of computing, pages 474-483, 2002.

O. Goldreich. Introduction to testing graph properties, 2010.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653-750, 1998.

O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Com-
binatorica, 19(3):335-373, 1999.

P. Hell. Algorithmic aspects of graph homomorphisms. Surveys in Combinatorics, 307:239-276,
2003.

P. Hell and J. NeSetfil. On the complexity of h-coloring. Journal of Combinatorial Theory,
Series B, 48(1):92-110, 1990.

15

[22]

23]

[24]

[25]

[26]

P. Hell and J. Negettil. Colouring, constraint satisfaction, and complexity. Computer Science
Review, 2(3):143-163, 2008.

D.C. Hobby, R. McKenzie, and American Mathematical Society. The structure of finite alge-
bras. American Mathematical Society, 1988.

P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM,
44(4):527-548, 1997.

T. Kaufman and M. Sudan. Algebraic property testing: the role of invariance. In Proc. 40th
ACM symposium on Theory of computing, pages 403-412, 2008.

A. Krokhin, A. Bulatov, and P. Jeavons. The complexity of constraint satisfaction: an algebraic
approach. Structural theory of automata, semigroups, and universal algebra, pages 181-213,
2005.

D. Ron. Algorithmic and analysis techniques in property testing, 2009.

E. Szemerédi. Regular partitions of graphs. Problémes combinatoires et théorie des graphes,
260:399-401, 1975.

Y. Yoshida. Optimal constant-time approximation algorithms and (unconditional) inapprox-
imability results for every bounded-degree CSP. In Proc. 43rd ACM symposium on Theory of
computing, pages 665674, 2011.

Y. Yoshida and Y. Kobayashi. Testing (s,t)-disconnectivity of graphs and digraphs, 2011.
manuscript.

16

	1 Introduction
	2 Preliminaries
	3 Graphs Testable with a Constant Number of Queries
	4 Graphs Not Testable with a Constant Number of Queries
	5 Graphs Testable with a Sublinear Number of Queries
	6 Graphs Not Testable with a Sublinear Number of Queries

