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A parallel repetition theorem for entangled projection gam

Irit Dinur* David Steuret Thomas Vidick

Abstract

We study the behavior of the entangled value of two-playeri@mund projection games under par-
allel repetition. We show that for any projection gamef entangled valué — ¢ < 1, the value of the
k-fold repetition ofG goes to zero a®((1 — °)¥), for some universal constant> 1. If furthermore
the constraint graph & is expanding we obtain the optimal= 1. Previously exponential decay of
the entangled value under parallel repetition was only kméav the case of XOR and unique games.
To prove the theorem we extend an analytical framework thteed by Dinur and Steurer for the study
of the classical value of projection games under parallgtidon. Our proof, as theirs, relies on the
introduction of a simple relaxation of the entangled vahat ts perfectly multiplicative. The main tech-
nical component of the proof consists in showing that thaxed value remains tightly connected to the
entangled value, thereby establishing the parallel repetiheorem. More generally, we obtain results
on the behavior of the entangled value under products ofrarpi(not necessarily identical) projection
games.

Relating our relaxed value to the entangled value is doneiagiggan algorithm for converting a
relaxed variant of quantum strategies that we call “vect@mum strategy” to a quantum strategy. The
algorithm is considerably simpler in case the bipartitérdigtion of questions in the game has good ex-
pansion properties. When this is not the case, the algorigfigs on a quantum analogue of Holenstein’s
correlated sampling lemma which may be of independentdsterOur “quantum correlated sampling
lemma” generalizes results of van Dam and Hayden on uniMensiaezzlement to the following approx-
imate scenario: two non-communicating parties, givensitas descriptions of bipartite stat@g), |¢)
respectively such thaty) ~ |¢), are able to locally generate a joint entangled sfeite~ |¢) ~ |¢)
using an initial entangled state that is independent of thputs.
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1 Introduction

Two-player one-round games arise naturally in many aretiseofetical computer science. They are promi-
nent in complexity theory, where they are a powerful tooltfe study of constraint satisfaction problems,
and in cryptography, where they give a polyvalent abstactised to establish the security of many two-
party primitives. They have also recently proven a very eoient framework for the study of some of the
deepest issues in quantum mechanics, giving a novel viewpaithe decades-old study B&ll inequali-
ties[BCP™14], which are linear inequalities that must be satisfiedryyfamily of distributions that can be
generated locally according to the laws of classical meickaibut can be violated if the distributions are
allowed to be generated using quantum entanglement.

A gameG is specified by finite set&, V of questions,A, B of answers, a probability distributiom
on pairs of question$u,v) € U x V, and an acceptance criteridh C A x B x U x V which states,
for every possible pair of questioris, v), which pairs of answerés, b) € A x B are valid. The most
basic quantity associated to a game isvdakie This can be defined operationally as the maximum success
probability of two cooperating, but spatially isolatedaygrs in the following game: a trusted party (the
“referee”) selects a pair of questiofs, v) according torr, and sends to the first player (“Alice”) andv
to the second (“Bob”). Each player replies with an answyér and the players win the game if and only if
V(a,b,u,v) =1.

Remarkably, the precise definition of the value depends®plilysical theory used to model the a priori
vague assumption that the players be “spatially isolatélfider classical theory, isolated players are fully
described by the (possibly randomized) functions they egogity to their respective question in order to
determine their answer, and this interpretation leadsdeldssical valuevaL of the game. In contrast, in
quantum theory isolated players are allowed any set ofegjied that can be implemented by performing
local measurements on a shared entangled state. The ngsudtiue is called thentangled valueand
denotedvAaL*(G). Clearly for every game it holds thanL < vAL*, and it is the discovery of Einstein,
Podolsky and Rosen [EPR35] (formalized by Bell [Bel64], glifred by Clauser et al [CHSH69] and
experimentally verified by Aspect et al. [AGR81]) that thesast games for which the inequality is strict;
indeed there are families of gam@s,,) for which VAL (G,,) — 0 butvAaL *(G,) = 1 [Raz98/ Ara0O2]. One
can go even further and consider thmen-signaling value/aL ™, which corresponds to players allowed to
reproduce any bipartite correlations that do not imply alipg. Here agairvaL* < vAL™, and there are
games, such as the CHSH gaine [CHSH69], for which the inaguslétrict.

One of the most fundamental questions one may ask aboutlayerpgames is that of the behavior of
the value undeproduct Given gamess and H, their productG ® H is defined as follows: the question
and answer sets are the cartesian product of those@amd H; the distribution on questions is the product
of the distributions, and the acceptance criterionAR® of those ofG and of H. How does the value of
G ® H relate to that ofG and H? While it is clear that each of the three values defined abatisfigs
VAL (G ® H) > VAL(G)VAL (H), the reverse inequality, although intuitive, doest hold in general. In
particular, simple constructions of gam@sare known such tha@ < VAL (G ® G) = VAL (G) < 1 [FL92];
similar constructions exist foraL* [CSUUQ8] andvaL ' [KR10].

In spite of these examples, one may still ask for the behafigaL (G®"), for “large” values ofk. This
is known as theparallel repetitionquestion: given a gamé such thatvAL (G) < 1, does there exist a
¥ : [0,1] — [0,1] such thatp(x) < 1 wheneverr > 0 andvAaL (G®F) < (¢(1 — VAL (G))*? If so, what
form doesy take? Can it be approximately linear in the vicinityxof= 0? Answering this question is of
importance for many of the applications of two-player gantiesryptography, parallel repetition is a basic
primitive using which one may attempt to amplify the segugtiarantees of a given protocol; in the study



of Bell inequalities it can be used e.g. to amplify gaps betwthe quantum and non-signaling values; in
complexity theory it is an important tool for hardness arfigdition.

For the case of the classical value, a sequence of works4\Veed91 | FKO0] over the course of a decade
led to the breakthrough by R&z [Raz98], who was the first teideoa positive answer for general games:
Raz showed that one can always takger) = (1 — x¢)4/108[4=Bl wherec, d are universal constants.
Subsequent work focused on obtaining the best possible ¥atuw (the best known for general games is
¢ = 3 [Hol09]) and on removing the dependence on the size of the@malphabet for specific classes of
games/[Rao08, BRRD9,[RR12]. For the case of the no-signaling value, Holensteowed one can always
takey(x) = 1 — Cx? for some constant > 0 [Hol09].

In contrast, for the case of the entangled value in spitesafriportance the question is very poorly un-
derstood. Strong results are known for some very specissetaof games such as XOR ganies [CSUUO03],
for which repetition is exact (one can tag¢x) = 1 — x) and unique game5s [KR10] (far(x) = 1 — Cx?,
whereC > 0 is a universal constant). However, both these results, #saweelated results motivated by
cryptographic applications [HR09], rely on the formulatiof the entangled value as a semidefinite pro-
gram, a characterization that is not believed to extend teergeneral games. Additional results are known
but they only apply to specific games often originating frayptography[MPA11, TEKW13]. Prior to this
work the most general results known came from [KV11], wheie shown that a specific type of repeti-
tion inspired by work of Feige and Kilian [FK0O], in which tleeiginal game is mixed with “consistency”
and “free” games, reduces the entangled value at a polyhoate providedvaL*(G) < 1, the value
VAL *(GFK=%k) of k “Feige-Kilian” repetitions ofG behaves a§(1 — vAL*(G))k) ¢ for some smalt > 0.
(See “related work” below for additional discussion of moeeent results that appeared after the initial
completion of this work.)

A recent work of Dinur and Steurer [DS13] introduces a newaggh to the parallel repetition question,
focused on the case pfojection gamesA projection game is one in which the referee’s acceptarite-c
rion has a special form: for any pair of questidns v), any answeb from the second player determines
at most one valid answer= ,,(b) for the first player. Projection games are among the mostestieg
and widely-studied type of games. In particular, any loceistraint satisfaction problem can be made into
a projection game as follows: one player is asked for an aswgt to all variables appearing in a constraint
chosen at random, and the other is asked for an assignmengtofats variables. This simple transfor-
mation easily generalizes to convert any two-player g&iato a projection gamé&’, while essentially
preserving the valuel — VAL (G') = ©(1 — VAL (G)) (see Clainib). In particular, if one is only interested
in “amplifying the gap” betweewAL (G) = 1 andVvAL (G) < 1 one can first maj to G’ and then con-
sider the parallel repetition &’ itself, and this justifies the predominant role played byjgmtion games
in classical complexity theory. This transformation, hgesm maydecreasahe entangled value arbitrarily
whenever the optimal strategy for the players requires sieeofl entanglement (though we show that it can
neverincreasethe value by too much; see Claimh 5 for precise bounds). Nesieds, many of the games
studied in quantum information, such as the CHSH game [CH$bi6the Magic Square game [Ara02] are
projection games.

The approach of [DS13] is based on the introduction of a e¢law of the game value, denotedL ;.
This relaxation can be defined for any game (we give the diefimih Sectior 1. below), and it is perfectly
multiplicative. Moreover, for the case of projection games . turns out to remain closely related vaL ,
thus leading to a parallel repetition theorem. Althoughhsaitheorem already follows from Raz’s general
result [Raz98], this arguably simpler approach matchebéiseparameters currently known [Rab08], which
are known to be optimal [Raz08]. In addition, it yields newuiks for repetitions of games with small value
and the case of few repetitions, which has implications Her dpproximability of the ABEL COVER and



SET COVERproblems.

1.1 Ourresults

We extend the analytical framework introduced [in [DS13]He tase of the entangled valusL*. As
a consequence we obtain the following main theorem on thallphrepetition of the entangled value of
projection games.

Theorem 1. There exists constantsC > 0 such that the following holds. For any projection gafge

VAL*(G®F) < (1—C(1—vaL*(G))")"/.

Although we do not attempt to fully optimize the constanthe value that come out of our proof is
¢ < 12. For the case of expanding games (see definition in Sdci@m obtain the optimal = 1.

Parallel repetition results for the classical value weigioally motivated by the study of multi-prover
interactive proofs[[FRS88], and our result is likewise @gaile to the study of classes of multi-prover
interactive proofs with entangled provers. Letting §lIF) denote the class of languages havingroverl-
round interactive proofs in which completeness 1 holds with unentangled provers, but soundrgssids
even against provers allowed to share entanglement, TinéBrenplies that MIF'(2) = MIPT, ,(2)

for anys < 1 — poly~!. This is because any protocol in I\/ﬁ’ﬁz) can be put into a form where the
verifier's test is a projection constraint by following theduction already discussed above, and described
in Claim[; this will preserve both perfect completeness (lassical strategies) and soundness bounded
away from1 (for quantum strategies). Prior to our work it was not knovawho amplify soundness to
exponentially small without increasing the number of raupélinteraction. It follows from[[IV12, Vid13]
that MIF’larl_poly_l(B) = NEXP, but very little is known about thprover class MIP (2).

We believe that our results should find applications to a nwicdker range of problems. Going beyond
the application to the parallel repetition question, ouimm@ntribution is the development of a precise
framework in which general questions about the behaviohefialue under product can be studied. This
framework constitutes a comprehensive extension of theimineduced in [[DS13] for the study of the
classical value: as in [DS113], we introduce a relaxatian’, of the entangled value, prove that it is perfectly
multiplicative, and show that it remains closely related/4a™. We find it remarkable that the framework
from [DS13], introduced in a purely classical context, wbfihd such a direct extension to the case of the
entangled value. We hope that the tools developed in thimneiin will find further applications to the
proof of product theorems in areas ranging from cryptogyaplcommunication complexity. Even though
at a technical level the setting can appear quite diffeimmte of the ideas put forth here could also prove
useful to further removed areas such as the additivity otmje for the minimum output entropy of quantum
channels[[AHWO00, HW08, Has0D9].

We turn to a more detailed explanation of our framework, hgpo highlight precisely those tools and
ideas that may find further application.

1.2 Proof sketch

In order to explain our approach it is useful to first review ttamework introduced in [DS13] for the study
of the classical value.



Classical strategies. The starting point in[[DS13] consists in viewing gamesopsratorsacting on the
space ofstrategies In this language a strategy is simply a vectff of non-negative reals indexed by
pairs (u,a) of possible questions and answefgu, a) is the probability that the strategy provides answer
a to questionu. To any game one can associate a mafriguch that, formally, the success probability of
strategieq|f), |g)) for the players equals the vector-matrix-vector prody¢6|g). The value of the game
is then the norm o6 when viewed as an operator on the appropriately normed spdctrategies.

The first crucial step taken in_[DSI13] consists in relaxing tkalue of a gamé&s to the value of a
symmetrized version of the game, which we call soqgareG*G of the game (this notation will be made
precise in Sectioh 2.2); we will denote the latter value|l§/|5. In the square of a gam@g, the referee
first samples a questian for the first player as irz. He then independently samples two questiorsd
v’ for the second player according to the conditional distiitou The players inG'G are senty and v’
respectively. They have to provide answérandb’ such that there exists ansuch that both(a, ) is a
valid answer td(u, v) in G, and(a, b’) is a valid answer tqu,v'). Note that nowG*G is in general not a
projection game, even {& was. In particularG*G treats both players symmetrically, and it turns out that
we may always assume that they both apply the same strategthd-special case of projection games it is
not hard to show that the value of the game and that of its scararquadratically related:

VAL (G)? < [|Glla < VAL(G). (1)

Indeed, using the algebraic language introduced abovérshamequality follows from the Cauchy-Schwarz
inequality and the second is an easy observation.

The second step consists in observing that the applicafittimecperator corresponding to the product
G®H, whereG and H are arbitrary projection games, can be decomposed as ag@e!) - (I®H).
Starting with a strategyf) for G ® H, the result of applyingI®H) to | f) is a new vector which no longer
satisfies the strict normalization requirements of stiatedJnderstanding the new normalization leads to a
further relaxation of| G||5, denotedvAL ;. (G), in which the optimization is performed over the approjgriat
notion of “vector strategies”, which intuitively are veciahat can be obtained by applying game operators
to strategies. With the correct definition, it is easy to shioat

IGeH| < VAL (G) - | H]. (2)

The third and last step, which constitutes most of the teahnwork in [DS13], consists in showing that
VAL 4 (G) is a good approximation tdG||5. This is done using eounding procedureby which a vector
strategy associated with a largeL . is mapped back to an actual strategy for the square gamesbdias

a high value, thus serving as a witness for the vallGe; being large as well. Altogether we get a bound
on the value ofG®H as a product of a bound on the value(®and a bound on the value éf. Repeated
application of[(2) then leads to the following chain of inaliies (where the last approximate equality hides
a polynomial dependence)

VAL (GZF)? < [|GF¥|I2 < VAL 4 (G) - [GFFHE < -+ < VALL(G)F = vaL (G), 3)
proving the parallel repetition theorem.
Quantum strategies. Our goal now is to extend the above sketch to the case of taged value/aL*.

There is good reason for optimism. In contrast to most adasgroofs that appear in the study of clas-
sical two-player games (such as those that go into Dinuoefpof the PCP theorem_[Din07], or earlier



approaches to parallel repetitian [Ver94, FKOO0, Raz98hicl are often information-theoretic or combina-
torial in nature, the analytic (one could say linear-algé&t)rframework introduced in [DS13] seems much
better suited a priori to an extension to the quantum domadeed, quantum strategies themselves are ob-
jects that live ind-dimensional complex vector space: instead of a velgtpof non-negative reals (giving
the probability of answering to questionu, for every possible: anda), a strategy is now a vectoA) of
d-dimensional positive semidefinite matricd$ that describe the measurement to be performed upon re-
ceiving any questiom. The normalization condition i5,, A} = Id for everyu, a constraint dictated by the
formalism of measurements in quantum mechanics. NotedRittgd = 1 we recover classical strategies;
guantum mechanics allowsto be arbitrarily large.

At an abstract level, going from the classical to the entshglalue thus solely requires us to think of
the gameG as an operator acting on a bigger space of strategies, ¢gémdrthe non-negative reals to the
space ofi-dimensional positive semidefinite matrices. This operais easily realized by “tensoring with
identity”, G — G ® Idcu.

It remains to show how to extend each of the steps outlinegieabbhe first step consists in obtaining
an analogue of (1). As in the classical case the second iliggisaeasy, and follows by observing that, if
|A) is a quantum strategy i6'G then(G ®1d)| A) is a valid strategy for the first player @ (this notation
will be made precise in Sectidn 2.2.) The first inequality[@) i slightly more subtle. Although it can
be shown directly by applying a suitable matrix version & @auchy-Schwarz inequality, we note that it
can also be proven using known properties of a widely usedtnggiion in quantum information theory,
the pretty-good measureme(PGM) [HW94,[HIS 96]. As it turns out, the relaxatiomaL* (G) — ||G|s
precisely corresponds to replacing the first player’s ogtichoice of strategy i by a near-optimal choice
obtained from the pretty-good-measurement derived franptst-measurement states, on the first player’s
space, that arise from the second player's measurementscéssequencd,](1) extends verbatim:

VAL*(G)? < ||IG|I2 < vAL*(G). (1%

Next we need to find an appropriate notion of vector strategiyamrresponding relaxed valvaL” . Here
we are helped by the “operational” interpretation of a vestoategy as the result of the application of a
game operator to a strategy meant for the product of sevamakg. With the suitable generalization of the
definition of classical vector strategies (see Definifio)hwé also obtain an analogue 0f (2) fexL* :

IGeHIlz < VAL’ (G) - [[H]fz. (2%

Even though this is not directly needed for our purposes, ate thatvAL?, itself is perfectly multiplicative
(see Lemmal8 for the easy proof).

Finally, and most arduous, is to relate the relaxatian* back to the value of the square gamfi&||2.

In the classical case this involves rounding vector to ddtrategies. In the quantum case rounding has
to be performed synchronously by the players, and will resrdly involve the use of an entangled state.

Intuitively, upon receiving their respective questionsdrthe players need to initialize themselves in an

entangled state that corresponds to the post-measuretatnttat they would be in, conditioned on having

given a particular pair of answers to a given pair of questiorthe game{ from which the vector strategy

is derived (recall that, informally, vector strategies #re result of applying a game operator to a strategy
meant for the product of two or more distinct games).

In case the bipartite distribution of questions in the gairteas good expansion properties we can show
that this conditioned state is roughly the same regardlesgeoespective questions received by each player
in G, so there is a way for players to renormalize their measunésrend proceed. For the non-expanding
case the states can differ significantly from question tetjole. Nevertheless, we can show that based on
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their respective questions the players are able to agrelassical descriptions of two close statg¢s ~ |¢)
that they respectively wish to be in.

Since the questions are not known to the players a priow,ribed to generate the appropriate entangled
states “on the spot”, from an initial shared entangled dstseis independent frorp) and|¢). Our new
“quantum correlated sampling” lemma allows the playersdgust this: given classical descriptions of
|p) ~ |@) respectively, they are able to generate a joint entanged |&) ~ |¢) ~ |¢) from an initial
shared universal “embezzlement state” [vHO03] independ&fp) or |¢), without any communication. The
lemma can be seen as a quantum variant of Holenstein's atmdesampling lemma [Hol09], as well as a
“robust” extension of the results of van Dam and Hayden owarsal embezzlement statées [viH03]. We
discuss this lemma and related works in more detail in Se&io

All steps having been extended, we obtain a direct genataliz of the chain of inequalitie§1(3) to the
case of entangled strateg@s:

VAL*(GZF)2 < [[GPHIE < AL (G) - [[GFF TR < - < VALL(G)F & (vaL'(G))E. (3%)

1.3 Additional related work

Although few general results are known, the question of thlealior of the entangled value of a two-
player game or protocol under parallel repetition arisegdently. It plays an important role in recent
results on device-independent quantum key distributioRQELMPA11] and related cryptographic primi-
tives [TEKW13]. The latter work considers parallel repetitof a game with quantum messages, a setting
which is also the focus of [CJPP11]. The approach of [CIPBailds upon|[JPPG10], who relate the
(classical) value of a two-player one-round game to the nofrthe game when viewed as a tensor on the
spacels (/1) ® ¢ (£1). This is similar to our starting point of viewing games asrapers acting on strate-
gies, except that it considers the game as a bilinear forneraban an operator; the two points of view are
equivalent. This perspective enables the authors to lgedtaown results on the study of tensor norms in
Banach space (resp. operator space) theory to deriveg@suthe classical (resp. entangled) value. To the
best of our knowledge this connection has not led to an @teeapproach to proving parallel repetition
for general classes of games, although partial results a#eened in[[CJPP11] for the special case of the
entangled value of rank-one quantum games.

After the completion of this work two new results establidlae exponential parallel repetition theorem
for two-player one-round games with entangled players iicivthe distribution on questions is a product
distribution. In [CS14] it is shown that the entangled vatfigiames in which the distribution on questions
is uniform decreases as

VAL*(G®F) < (1 — (1 — vaL*(G))?) 2/ leg UIIVIIAIIBI)

Very recently Jain et al. [JPY113] extended the result tateakyi product distributions on the questions, while
also removing the dependence on the number of questionsotiteined the bound

VAL*(G®F) < (1 — (1 — VAL*(G))3) K/ log |AIIB]),

Both results are based on the use of information-theoretihrtiques. They are incomparable to ours, as
they apply to games in which the acceptance predicate ig@dmng the input distribution is required to be
product. In addition, both bounds above have a dependentdgeamumber of answers in the game; while
for the case of the classical value such a dependence issaeg¢EV02], for the entangled value it is not
yet known whether it can be avoided.

1We note however that the approximate equality * (G) = vAL*(G) that we obtain in the quantum case, although it suffices
for our application to parallel repetition, is weaker thaa bne from[[DS13]. In particular, it is probably not tight.



1.4 Open questions

We briefly mention several interesting open questions. g kit does not exist any parallel repetition result
that applies to the entangled value of general, non-piiojettvo-player one-round games, and it would be
interesting to investigate whether our techniques cowd te (even relatively weak) results in the general
setting. The case of three players is also of interest, anbnetrivial parallel repetition results are known

either in the classical or quantum setting. In fact, theallpselated question of XOR repetition of three-

player games is known to fail dramatically even for the dtads/alue [BBLV12)].

Organization of the paper. We start with some important preliminaries in Secfibn 2.r€hee introduce
the representation of games and strategies that is usedytioot the remainder of the paper. In Secfibn 3 we
introduce the two relaxations of the entangled value sleetéh the introduction and give a more detailed
overview of our proof. In Sectiohl4 we prove the main techih@@mponent of our work, the relation
betweervAL* and||-||2. Finally, in Sectiori b we state and prove the quantum cdeelaampling lemma.

Acknowledgments. We thank Attila Pereszlényi for comments on an earlierivarsf this manuscript.

2 Preliminaries

2.1 Notation

We identify £(C%,C%), the set of linear operators fro@? to C?, with the set ofd x d’ matrices with
complex entries: iX € £(C?,C?) then its matrix has entrieX,, = (a|X|b), where|a), |b) range over
the canonical bases fa, C? respectively, and we use the bra-ket notation to denoteraoltectorgb) and
row vectors(a| = (|a))t, wheret denotes the conjugate-transpose. We also Wi {€?) for £(C?, C%).
The spaceC(C%,C%) is a Hilbert space for the inner produgt, B) := Tr(A*B). We let| X||« be the
operator norm ok, its largest singular value. A staf#) € C“ is a vector with norn.

The following simple calculation, sometimes known as Asddéntity, will be useful.

Claim 2. LetX € £(C%),Y € £(C") be two operators anflt) € C? ® C? a bipartite state with Schmidt
decomposition¥) = Y_; A;|u;)|v;), where the\; are non-negative reals. Then

(¥|X @ Y|¥) = Tr(XKY'K"), (4)

whereK = Y, A;|u;) (v;| and the transpose is taken in the bases specified by:thand |v;). In particular,
if |u;) = |v;) for everyi, K is positive semidefinite ar@) evaluates tar(XKYTK).

Proof. The proof follows by direct calculation, expanding the Jdefind side of[(4) using the Schmidt de-
composition off'¥') and the right-hand side using the definitionkof O

We state a matrix analogue of the Cauchy-Schwarz inequaléynclude a proof for completeness (see
also [Pis03, p.123)).

Claim 3. For anyd and operatorsA; € £(C%), B; € £L(C%),
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Proof. Let [¥),|®) € C?® C? be unit vectors with Schmidt decompositit) = Y; A;|u;)|v;) and
|®) = ¥ wi|t;)|w;). ForanyA € £(C%) andB € L(C?),
(¥|A® B|®) =} Aipj(ui| Alt;) (0i| Blwy)
i)j
1/2
< (ZA il (| ALt;)] ( ‘ZA il (01| Bleoy) |

_ |<TL|A®Ayc1>L>\”2|<\PRyB ® B|ldg)|"?,

where[¥.) = ¥ Ailug)us), |PL) = X piltp) ), [¥r) = Ly Aior)|og) and [@r) = ¥ pjlw;)w)).
Applying the Cauchy-Schwarz inequality once more,

(LT eB)0)| < [l (Tae A) 00| | ( LB 5) o)

Since [5) holds for any¥') and|®), the claim is proved. O
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‘1/2

2.2 Games and strategies

Definitions. A two-player game is specified by finite question gétand), finite answer setgl andB3, a
distributiony oni/ x V, and an acceptance criteridhC A x B x U x V. We also writeV (a,b, u,v) =1
for (a,b,u,v) € V. The game may also be thought of as a bipartite constraiphgraith vertex seté/
andV, edge weights:(u, v), and constraint¥/(a, b, u,v) = 1 on each edgé¢u, v). We will write ., for
the marginal distribution oft on{, anduy its marginal on). (We omit the subscripts andR when they
are clear from context.) We also often write~ u to mean thav is distributed according to the conditional
distributiony(v|u) = u(u,v)/ur(u). The size ofG is defined asi/||V||A||B|.

In this paper we focus on projection games, which are gammedfich the acceptance criteridnis such
that for every(u,v,b) € U x V x B there is at most one € A such thatV(a, b, u,v) = 1. Equivalently,
for every edg€gu, v) the associated constraint ipeojectionconstraintz,, , : B — A such thatr, ,(b) is
the uniquez such thatV (a, b, u, v) = 1 if it exists, and a special “fail” symbal. otherwise. When the edge
(u,v) is clear from context we will writé — a to mean thatr,,(b) = a. We also writeb <> b’ to mean
that there exists amsuch thab — a andb’ — a.

Given a projection gamé&, let H be the weighted adjacency matrix associated with the sopfate
H is the |V| x |V| matrix whose(v, v")-th entry equalsi(v,v’) = Y, u(u)u(vju)u(v'|u). Let D be
the diagonal matrix with the degregg (v) on the diagonal, andl := Id —D~'/2HD~'/2 the normalized
Laplacian associated with the squaretaf We say that a family of gamédss,,), whereG,, has sizen, is
expanding if the second smallest eigenvalué pf= L(G,) is at least a positive constant independemt .of

Projection games as operators. Let G be a two-player projection game. We will think 6f as a linear
operatorG : C'Vl @ €8l — ¢l & CIAl defined as follows:

G:=) u(vlu) Y |u)(v|®la)(b| € £(cV g clBl,cHl g 4.

u,0 a,b—a

In other words, fotB) € CIVI @ CIBl, let B. = (v, b|B) denote the value dB) at the coordinates indicated
by basis vectorg) € C¥ and|b) € CB. Then

(GB)} := (u,a|G|B) = Zy vlu) ZBb

b—a



Note that here we adopted the convention that questiong/ are summed over, whereas questions V
are weighted by the corresponding conditional probabjlity|u).

Classical strategies. The actions of players in a ganéegive rise to a “probabilistic assignment”, a col-
lection of probability distributiond p(a, bju,v)} such that, for any pair of questiofis, v), p(-, -|u,v) is a
probability distribution on pairs of answers to those quest We may also represeptas the rectangular
|V||B| x |U]|.A| matrix whose( (v, b), (u,a))-th entry isp(a, blu, v). Thevalueachieved by in the game

is defined as
VAL(G,p) := ) pu(u) Y (o)) Y, plablu,v) = Tr(Gp),

a b—a

where we introduced a trace,Ton the set of allX € £(Cl @ CI4l) by defining
Tru(X) =Y () Y X(ua), (u0):
u a

In cases of interest the family of distributiod®(a, b|u, v)} is not arbitrary, but has a bipartite structure
which reflects the bipartite nature of the gan@assicaldeterministig strategies correspond to the case
whenp(a,blu,v) = f(alu)g(b|v) for functionsf(-|u) : A — {0,1} andg(-|v) : B — {0,1} taking the
valuel exactly once. The functions andg may be represented as vectors

) =Y flaju)|u)|a) e Mo and  |g) =Y g(blo)|0)|b) € CV @ ClP
u,a u,b

respectively.p is then the rank-one matrix = |g) (f

VAL (G, p) = Tru(Gp) = (f,Gg)u, = Y_pr(u) Y pu(wlu) Y ) f(alu)g(blo),

a b—a

where the inner produdt, -),,, is defined on(C¥ ® C4) x (CY @ C4) by
(& =Y pm(u) ) flalu)g(alu).
u a

, and we may express the value as

We may similarly define an inner produ¢t, -),, on (C¥ ® CF) x (CY @ CB), and we will omit the
subscriptsL, R when they are clear from context. Given a game mafjxwe define its adjoinG' as
the unique matrix such thatf, Gg),, = (G'f,g)y, forall f € C¥*Aandg € CV*5. Formally, if

G = Lo #(0[t) Lopsa [u) (0] @ |a) (b] thenGT = 1, p(u[0) Lo s [0) (u] @ [b)(al.

Quantum strategies. Next we consider quantum strategies. A quantum strategyeisifeed by measure-
ments{ A%}, for everyu and{B.}, for everyo, where in general a measurement is any collection of pesitiv
semidefinite operators, of arbitrary finite dimensifrthat sum to identity. For any stat®¥) representing
the entanglement between the plaﬁtbi,s strategy gives rise to the family of distributions

pw (a,blu,0) := (¥|A% © BY[¥)H

2Randomized strategies are convex combinations of detistigistrategies, thus a randomized strategy can alwaysgiaced
by a deterministic one achieving at least as high a value.

3In the literature the stat¥) is usually considered to be an integral part of the stratetpuwever it will be more convenient
for us to not fix it a priori. Given measurement operators fathkplayers in a game, it is always clear what is the optimalazgh
of entangled state; it is obtained as the largest eigerwett given operator depending on the game and the measuie(sep
below).

4The complex conjugate aA is not necessary, but for our purposes it is natural to ireitith light of the proof of Lemmal6.
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This formula, dictated by the laws of quantum mechanicsiesponds to the probability that the players
obtain outcomes, b when performing the measuremetitd? }, { B} on their respective share pf). One
can check that positive semidefiniteness of the measureopenators together with the “sum to identity”
condition imply thatp|y) (-, -|u,v) is a well-defined probability distribution ol x B. To a quantum
strategy we associate vectors

=Y wa)® Al e cecoc(c?) and [B)=Y |o)b) @B, e cVecheLo(c?).
u,a u,b

(Note that these definitions reduce to classical strategiemever! = 1.) To express the success probability
of this strategy in a gamé we extend the definition of the inner prodygt-), as follows.

Definition 4 (Extended Inner Product)rhe extended inner product
(s CUacM e () xcM e cM e L(c?) — £(C) @ £(C?)

is defined, fof A) = Y, , |u)|a) © A% and|B) = ¥, , |u)|a) @ B2 B by

=) ()} A} ® By
u a
With this definition the success probability of the stratég), |B)) in G can be expressed as
VAL*(G, |A), = |[(A, (G®1d)B),||,
Ao (L nel) Y B |
v b—a o
Z u(u,v) Z Al ®Bb
u,v a,b—a

aa b
_ u(u,v) Y| A% @ By|Y).
) B [¥) =1 uzz; ,bz—m T

We also define the entangled value of the game; (G), to be the highest value achievable by any quantum
strategy:

VAL*(G) = sup VAL*(G, |A),|B))

[A).|B)
= sup [[(A, (G®Id)B),||
|A).|B)
— swp Yuwo) ¥ (A @B
{Aa} {BELIY) wo ab—a
= sup ) u(u)} (Y|AL @ B[Y), (6)
{AL}BG}IY) u a

where here we slightly abuse notation and denote

B? := ({ul[{a| ®1d)(G ®1d)|B) = Z olu) Y BE. (7)

b—a

S5Note the definition depends on a fixed choice of basis for theest" || andC/Al.
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We note that in the above the supremum may in general not di@edt as optimal strategies may require
infinite dimensions. In this paper we always restrict owmelto finite dimensional strategies.

It is well-known that any two-player game can be made intaogegtion game while essentially preserv-
ing its classical value. The following claim gives a pargatension of this fact to the case of the entangled
value.

Claim 5. There exists a polynomial-time computable transformatmapping any two-player one-round
gameG to a projection gamé&;’ such that the following hold:

1—VAL(G') < 1—VAL(G) < 2(1—VAL(G")).

In particular, VAL (G’) = 1 if and only ifvAL (G) = 1, and1 — VAL (G') = ©(1 — vAL(G)). Moreover,
for the entangled value we have the weaker bound

VAL*(G,) < H_%L(G),

which impliesl — vAL*(G’) = Q(1 — vAL*(G)).

Proof. Let G be a game with (without loss of generality disjoint) questaetsl{, V, answer setsA, B,
distribution on questiong and acceptance predicate Let G’ be the projection game corresponding to
the following scenario. The referee selects a pair of qaesiju, v) at random frony, which it sends to
the second player, and then sends either v to the first player, each with probability/2. Formally, G’

is defined by question seté’ = L/ UV, V' = U x V, answer setsd’ = AUB, B = Ax B, and a
distributiony’ given by’ (u, (u,v)) = ' (u,v)/2, p' (v, (u,v)) = y'(u,v)/2, and0 otherwise. For any
(u,v) and(a,b) let m, () be such thatr,, , ,y(a,b) = a andr, , ,y(a,b) = bif V(a,b,u,v) =1, and
there is no valid answer for the first player if the second @layanswers are such thé{a, b, u, v) = 0.

Then clearlyG’ is a projection game. Léif), |¢) be classical deterministic strategies for the players
such thatvaL (G, |f),|g)) = VAL(G). Consider the strategli /'), |g’)) for G’ in which |f’) answers as
|f) to questions: € U and as|g) to questions € V, and|g’) answers a$|f),|g)). Then whenever the
strategy(|f), |g)) provides answers to a pair of questions v) that satisfy the predicat& the strategy
(1f"),1¢")) gives answers to bothy, (1, v)) and(v, (1,v)) that are accepted i@’, hence

VAL(G') = VAL (G|, 1g')) = VAL (G, |f), [g)) = VAL (G).

Conversely, le{|f"),|g’)) be a strategy foG’ such thatvaL (G') = vaL (G, |f'),|¢’)). Decomposef’)
into a pair of strategie$f), |g) in G, depending on whether the questioruis=s ¢/ orv € V. The pair
(1), |g)) will give a rejected answer to a pair of questiqmsv) only if (| '), |¢’)) gave a rejected answer
to at least one of the questiofws, (1, v)) and(v, (1,v)) in G’. In the worst case the — VAL (G, |f),|g)))
probability that(|f’),|g’)) provides rejected answers @& is, say, fully concentrated on questions of the
form (u, (u,v)). Hence

VAL(G) > VAL (G, [£),1g)) > 1~ 2(1 VAL (G, If'),|g))) = 1 2(1 — vaL (G')).

5Thus when we say thdt A), |B)) achieve the value of we really mean thaf|A),|B)) are finite-dimensional strategies
whose value irG can be made arbitrarily close to the optimum; for clarity wedre this simple technicality in the whole paper.
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Finally, let(|A), |B)) be a pair of quantum strategies such tat*(G’) = vaL*(G/, |A),|B)). To|A) we
unambiguously associate measurement operdtafg , for everyu € U, and{ A%}, forv € V. Hence

VAL*(G') = E % ) A7 @ B + Ab @ B
(a,b):V(a,bu,0)=1 *©
1 a b a b 172 hab a,b 172
< e 04_1 (Au+Av) ® (A11+Av) ~ uNEv Z BMU@Buv ~
(a,b):V(a,bu,v)=1 (a,b):V(a,bu,v)=1
11 _ 1/2
= <§ + E Uu~v Z A?’ ® Ag) oo) 4

(a,b):V(a,bu,v)=1

where the first inequality uses Clalih 2 and the last usesitgte inequality for the operator norm and the
fact that|| 1_; X; ® Yille = || L; ¥i ® Xi||e fOr any X;, Y; to bound the first term, and usg$ , Bt < 1d
for everyu, v, which implies

E Y Id ®B%,

a,b b
uEv Z Bu,v ® BZ’U S Uu~°v
(a,b):V(ab,uv)=1 *© (a,b):V(abuv)=1

< ld®ld|e =1,

to bound the second. Hence the pair of strategfiés;), |A|y)) for G achieves a value at least
VAL*(G) > VAL*(G,|Ap), |Apy)) > 2vAaL*(G')* -1,

as claimed. O

3 Relaxations of the game value

In this section we introduce two relaxations of the entamgi@luevAL* (G) of a projection gamé&. Both
are quantum analogues of relaxations in [DS13], and areingbd same way. The first relaxation, denoted
|G ||=, is related to playing a “squared” version@fwith two players Bob and Bob’ treated symmetrically. It
is defined in Section 3.1, and is easily seen to give a goodappation tovAL*, as shown in the following
lemma (see Sectidn 3.1 for the proof):

Lemma 6. For any projection gamé,
VAL*(G)? < [|GI3 < VAL*(G). ®)

The second relaxation, denotedL” (G), is defined in Section 3.2. It will be proven to be a good
approximation td| G|z and thus to/aL*, although this will require more work.

Lemma 7. For any projection gamé,
IG|I5 < VAL (G) <1-C(1—|GI2)S, 9)
for some positive constan@ c > 0.

The proof of Lemmal7 is given in Sectiém 4. The definitionveiL’ is motivated by the following
multiplicative property.
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Lemma 8. For any two projection gamesS and H,
IG@ H|2 < vaLL(G) - | H|]2, (10)
andvAL is perfectly multiplicative:
VALY (G® H) = VALY (G) - VAL’ (H). (12)

The proof of Lemma&l8 is given in Sectibn B.2.
With these three inequalities in hand we easily derive thalleh repetition theorem, Theorem 1, as
follows. By repeated applications ¢f(10), followed by (@ get

IG#¥)E = 11IG © GF 12 < VALL(G) - |G IE < -+ < (vaLL(G))".
Combining with [8) and[(9) we get
VAL*(GFF)? < [[GFF|IE < (VALL(G)F < (1= C(1—[|IGI5))" < (1—C(1 - VAL (G))")F,

where the last step follows frorhl(8) and the monotonicityx 6f> 1 — C(1 — x)° on [0, 1].

3.1 The square norm

Definition 9. For a gameG and a quantum strategyB) write |G ® Id |B)|jz := (||(G®1dB,G &
Id B) || ) /% and define
|Gl := sup||G @ 1d|B)|ls,
|B)
where the supremum is taken overd#ind quantum strategie®) € CIVl @ CIBl @ £(C?).

We note that||- ||y is clearly homogeneous and non-negative. Although we vatl use it, one can
check that||- || is also definite, and hence a norm, by settBfg= Id for everyv and anyb such that
(G+G)(v,h),(v,b) # 0 (when it exists, and for an arbitratyotherwise).

Lemmd. 6 claims thafG ® Id | B) ||s gives a good approximation to the maximum success probatuili
the game, when Bob uses the strategy specifie@byWe give a self-contained proof of the lemma below,
but before proceeding readers familiar with quantum infation theory may find it interesting to note that
a direct proof of the first inequality can be derived usingwnagroperties of the pretty-good measurement
(PGM) [HW94,/HIS 96]. We briefly indicate how. Suppose Bob’s strategyGinis fixed to |B). Upon
receiving her question, Alice has to decide on an answer She knows that Bob will receive a question
v distributed according t@(-|u) and apply his measurement, obtaining an outcéraed resulting in the
post-measurement state,Tid ®+/B5|¥) (¥|Id ®+/BE) on her system. From her point of view, Alice
needs to provide an answesuch thatr,,(b) = a. Only knowingu, her task thus amounts to optimally
distinguishing between the collection of post-measurdrmattes

=E ) Tf2(1d®\/372!‘1’><‘1f11d®\/375).
b—a

If, instead of applying the optimal distinguishing measneat, Alice applied the pretty-good measurement
(PGM) derived from this family of states then it follows frBK02] that the players’ success probability
would be at most quadratically worse than what it would be Ma=e to apply the optimal measurement.
Using the explicit form of the PGM one can verify that the éeg value exactly corresponds {G ®

1d | B) ||2, which proves the first inequality ifl(8).

14



Proof of Lemmalé We prove the following inequality, from whichl(8) follows ligking the supremum over
all |B):
max VAL*(G, |A),|B))* < |G®Id|B)|2 < max VAL*(G, |A), |B)). (12)
A A

For the second inequality, using th@tis a projection game we note that for afyglimensional strategiB)
for the second playefG ® Id)|B) is a valid strategy for the first player, hence

(G@Id)[B)Ilz = I{G®1dB,G®IdB),[e < T{%X\KA/(G@Id)BMHoo ZH‘}ngAL*(G/IA%IBD-

To show the first, we write the following:

VAL*(G, |A), |B)) = ||( (G®Id) Dulloo
A“@B‘Z

gH;mw;thzw

< [I[(G ®1d)B) [

| Z ) E B

where for the first inequality we used the matrix Cauchy-Satavinequality stated in Claifd 3, and the last
inequality useg_, A% < Id for everyu. O

3.2 The relaxationvaL” (G)

In order to motivate our definition ofAL”, let us consider two projection gamés H and any quan-
tum strategy|B) for G @ H that achieves the optimal valyg&G® H||2 in the square game. Letting:=
|GRH||s/ || H|ls we want to bound: by a quantity that depends d@hand not onH. Consider the fac-
torizationG ® H = (G ® I)(I ® H) wherel is the identity operator on the question and answer spaces
associated with the first (resp. second) playeHifresp. G); note that/ can also be understood as a game
in which the two players are asked the same question and vaimdifonly if they return the same answer.
The application ofz ® H thus gives rise to a two step process

GO | 4y JoH
|A") ¢ |A) < |B),

mapping|B) to |A) := ((I ® H) ®Id)|B) and then mappingA) to |A’) := ((G®I)®1d)|A). Let
us view|B) as a table with rows indexed By; x B and columns indexed byy x By, whereVg, Vi
and Bg, By are the question and answer sets associated with the selaymdl ;n G and H respectively,
and whose entries are measurement operators, i.e. elemef(€“). Then|A) is the result of applying
H ® Id on each row of|B) separately, and we applg® Id on each column ofA) separately to get
|A") = (GRIX®I)|A).

It is instructive to view the strateghB) as an assignment to eache Vs andb € B of a row vector
({(v|(b|®I®1d)|B) of dimensions Vy||By| (whose entries are again (C?)). Observe that for any,
|By) = Y, ((v](b|®I®1d)|B) is a quantum strategy fdd, since for each questiari for H, the sum over
answers’ of

((@'|(¢'|®1d)|B,) = Bl = ) BUY,

0,0
b
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is Yy BY,) = Y Xy BYY = Id. In particular, | H® 1d |B,)||2 < ||H|]2. We write

oo T

|Ao) =) _((v|(b|®Ix1d)|A) (13)
b

and observe that it is equal td® Id |B,), hence it satisfie§|A,)|z < | H|s for everyv. Thus the
ratio between|GRI® Id |A) ||z and max,|| Ay ||z is at leastc = ||GRH||z/||H|lz- As a result of our
observations the ratio can be upper bounded in a manner that depends only amd isindependent of.
Abstracting the selt/y; x Ay associated with pairs of questions and answers for the fagepin H asQ)
for some discrete s€2[] we are led to the definition ofaL* (G) as the supremum ¢iiG @ In ® Idca |A)||2
ranging over vector quantum strategjes with norm||A||; < 1 defined as follows.

Definition 10 (Fractional Strategy and Vector Strategy)et G be a projection game anfl) a discrete
measured space. An element

1A) = Y |o)|b) ® AL e VI @ CBl @ £(C?)
v,b

is a fractional quantum strategipr G if for everyv, b the matrix Al is positive semidefinite and, :=
Y, AL < 1d for everyo. Avector quantum strategyg an element

1A) = ¥ |w)|Ao) € C¥ecV & ClPlg £(C)

we)

such that eachA,,) is a fractional quantum strategy. Tim®rmof a vector quantum strategy is defined as
H’A>H+ = (mZ?XHEAwU(@vaHOO)l/Z- (14)

The definition ofvAL? is given by,

Definition 11 (The relaxatiorvAL? ). LetG be a projection game. Then

VAL’ (G) := sup sup |G ® In ®1dea |A) ;,
Q a)ecVigcBlecOgL(ct)
Al <1

where the supremum is taken over all discrete measured space
With these definitions in place we prove Lemma 8 relating tiigase norm of a product of games to
VAL

Proof of Lemmal8Let |B) be an optimal strategy in the square game associat&d toH. It follows
immediately from our observations above that) = I®H®1d |B) is a vector quantum strategy f6r
(where the spac@ = Uy x Ay, and the measure is the cartesian product of the probatviysureg:; on
Uy and the counting measure ofy;) whose norm ig||A) ||+ < ||H|lz. This means that

IGeH|g = IGeH®1d[B)| = |Gl d|A)|g < vaL:(G) - [IHII5,

7In order for the extended inner produet-), to remain well-defined, we also need to eqivith a measure — here, it would
be the cartesian product of the probability measuren {;; and the counting measure oty;.
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where the last inequality comes by observing ﬁﬁ%ﬁ |A) is a vector strategy with norrh ||, at mostl, so
3]

its value is at mostAL” (G).

Multiplicativity of vAL*_ follows along the same lines. First we note that’ (G ® H) > VAL* (G)VALY (H)
is clear. To show the converse, proceed as above by first fadngptimal vector quantum strategy) for
the square game associateddGa» H, such that|||B)|+ = 1. As in the above, it is easy to see that
|A) = IoH®Id |B) is a vector quantum strategy forwhose norm satisfie|A) || < vAL* (H). Thus

VALY (G®H) = ||G®H®1d |B>Hé = ||GeI®Id ]A)Hé < VAL’ (G) - VALY (H),

proving the claim. O

4 Relating vAL* (G) to the square norm

In this section we prove Lemnia 7, which states that* (G) is a good relaxation of the square norm
|G|l of a projection game and establishes the last step in ourf pfothe parallel repetition theorem,
Theoren]l. We will also show that @ is an expanding projection game then one can take 1 in the
boundvAL® (G) <1—C(1—||G|]2)".

To prove the lemma, we need to show that the existence of a\gemdr strategy for the players Bob
and Bob’ in the square gam@'G implies that||G||2 is large, i.e. there also exists a good (standard)
quantum strategy for the players Alice and BobGn We will establish this by describing an explicit
rounding procedure mapping the former to the latter. Thadmg argument is simpler in cagehas the
additional property of being expanding (see Section 2.2Herdefinition), and we give the proof in that
case in Section 4.1. In Sectibn 4.2 we treat the case of ggmejaction games. In that case the rounding
argument is more involved and relies on a “quantum correélssénpling” lemma which is stated and proved
in Sectior{’b.

In both cases, the starting point for the rounding proceduitiee existence of a vector strategi/} and
entangled staté¥) satisfying inequality[(T5) in the following claim, which &ssentially a restatement of
the inequality VAL (G) > 1 —7".

Claim 12. Let G be a projection game ang > 0 such thatvAaL® (G) > 1 —#. Then there exists a
discrete measured spa€®, an integerd, a bipartite state|¥) € C? ® C? and a vector strategyA) €
Cl% @ V@ clBl @ £(C?) such that for everyw ando, b, A > 0and A, = ¥, A’ < Id, and

E E ) (VAL @ AL, ¥) > (1-n) max{ E(¥|Adw ® Awl¥) }, (15)
~U b
where formallyE,..s Y.,y is shorthand fory, p(u) Y-, Y- o p(0|t) (0" |40) X py—,-  Furthermore,

without loss of generalitﬁ’ ) can be chosen so as to have the following symmetry: its reddemsities on
either subsystem are identical, and denoting eithep dpr any X, Y it holds that

F|X2Y[¥) = Tr(Xp'?vp'/?). (16)

Proof. By definition of vAL?, , there exists a discrete measured sgacand a vector strateg’yfl) such that
[|A)]ly = 1 and|ldq ®G ®1d |A)||2 > 1 — 5. Recalling the definition off-||; (see Definitiori I0) and
of ||-|le (see Definitio P), we may reformulate this statement asrtequality

‘ EE Y AL, @Al

/
wv
w p~o! besb 00

> (1 —#n)max H EAuo ® Awo
(% w

17)

[ee]
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Letting [¥) be a state which achieves the operator norm on the left-hidedyaves [(T5). The fact that)
can be assumed to take the claimed form follows from the symynoéthe left-hand side of (17). O

Let |A) be a vector strategy an@) a state such thaf (IL5) holds. Our goal is to identify a quantum
strategy|A) such that|G ® Id | A) |2 > 1 — O(5/¢), which by ClainI2 will suffice to prove Lemnfa 7.
The “rounding procedure” constructirigl) will differ in the expanding and non-expanding cases. Both
cases however build on the same measurement operators wéicbw define.

Fix an arbitraryw € Q). The only “defect” of|Aw> that prevents it from directly giving us a quantum
strategy is that it is only a fractional strategy, meanirag for any questiomw the sumA., = ¥, Afw may
not equal the identity. It is natural to define a re-normais&rategy as follows. Ldtl,, be a unitary such
that

1/2
uwvAi;/vzpl/4 = pl/4Agu/02uZ)v = (Pl/4vaPl/4) (18)

is Hermitian positive semidefinite; such a unitary can beioietd from the singular value decomposition of
Al/201/%, For every pair of questions ' € V we introduce the post-measurement state

7 1/2 £1/214
"wiv’> = UwoAwo @ Uy A "Y> (19)

wv’

The state|¥,,,./) is the post-measurement state that corresponds to applyiginary measurements
{Auy,Id —A,,} for the first player{ A, 1d — A} for the second, t¢¥) and conditioning on both
of them obtaining the first outcome. In general the post-nremsent state is only defined up to a local
unitary, and this freedom is represented in the unitalgs and U,,,/; our particular choice of unitaries
satisfying [(18) will prove convenient in the analysis. Néxtevery questiorv € V and answeb € B we
define the measurement operator

A= U ASY2AY AV

wo* Twou wuvu’

(20)

where hered1/2 denotes the square root of the pseudo-inversé.gf = Y, AL . Again, there is always a
unitary degree of freedom in the choice of the square roacttla@ unitaried I, the same as in_(19), repre-
sent that degree of freedom. With this definition it is easyetdfy that eachA? is positive semidefinite and
thaty", A? < Id; since we may always add a “dummy” outcome in order for thesuesment operators to
sum to identity,{ A%}, is easily extended into a well-defined measurement|djd= Y, , |0, b) ® A?,

is a valid quantum strategy iG*G.

Now suppose that, upon receiving their respective questicandv’, players Bob and Bob’ irG'G
were to measure their respective share of the (re-norndltate| ¥ ,,.v) using the measurements given
by the{ AL, }», {AY ,}i respectively. The probability that they obtain the pair ofames(b, t') is given,
up to normalization byi|¥ ..o )| =2, by

— oy a7V 2——t 10 An o
<vav’|A2w®Ab ’vav’> = <T|(va Uwo ®A1/2UI)U/) (uwvAwflf/zAgwAw?lf/zuZw

wv’ wv'
——1/2

® uwv’A;zli'/zAng’Ail/zuz;v’) (uwvva ® uwv’Al/z) |1ij>

wv' wv'

= (¥|Ab, ® AV, |¥), (21)

perfectly reproducing the correlations induced by thetfoaal strategy A, ) together with|¥). Thus if it
were the case that for glb, v'), [¥Y o) = |[Yw), @ vector independent ¢b, '), then the players could use
|'¥.) (for an appropriate, “good” choice of) as their initial shared entangled state and perfectly ataul
|A,) using the quantum stratedyi).

18



While it may unfortunately not be the case that fHig,,,/) are independent dfv, v’ ), the main claim in
the proof of Lemmal7 will establish that they are close, onaye, wherv andv’ are neighboring vertices
in the constraint graph. In the case where the game is expgutigis will be sufficient, as we will be able
to conclude that all statd¥ /) are close to a singlg¥,,) independent o6 andv’. In the non-expanding
case we will rely on a more complicated strategy that inwlaestep of correlated sampling in which the
players,after having received their respectizeand’, jointly sample anv and create the corresponding
bipartite state'¥,,,.) locally.

We first turn to the case of expanding games, for which we camaysimpler (and tighter) analysis.

4.1 The expanding case

Suppose thaG is expanding. Our first step consists in fixing a “good” value= () and restricting our
attention to the fractional strategyi,,) := ((w| ® I ® Id)|A) specified by the operatord?,, obtained
from thatw. Using that the max is larger than the average, [EG. (15) anpli

E(E L (¥ds, e A1) = (1 =) E( E(F]Aw® Awl®) ). (22)
For the remainder of this section fix ansuch that[(2R) holds for tha2. The only property we will need
of the {Afw} in order to construct a good strategy@i G is that they are positive semidefinite operators
which satisfy that inequality. (In contrast, for the norparding case, Ed. (R2) by itself turns out to be too
weak an inequality, and we must work with115).)

Having fixed a value fotv, for clarity of notation for every, v’ we letlU, be the unitary defined b/ (IL8),
|¥,.) the state defined ifi(19), antf, the measurement operators introducedn (20). Let

-1
wim (ENFued ) Eluu) (Yl 3

The operatorsA?, together with the density matrix, form a well-defined strategy for the players in the
square game. In order to prove Leminha 7 (for the case of expgugdimes) it remains to bound the error

e:= E Y Tr(AbeAYo), (24)

v~/ beab!
incurred by that strategy, under the assumption that (2@shaVe show the following.

Claim 13. Supposd22) holds, and the constraint grap@ is such that the smallest nonzero eigenvalue of
the LaplacianL := ¥, [0) (0] — Yy om0 #(0, 0" )u(0) "1/ 2u(0") ~1/2[0") (0] is at leastA > 0, where here
1(v,v') is the distribution on questions in the square game, as defimSectiof Z2. LetAY, o) be the
strategy defined above. Then

e= E Y Tr(Ab Al o) = O(y/A). (25)

/
U~0 besb’!

Before proceeding with the proof of Claim]13 we show that iplies Lemmalr.
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Proof of Lemmal7, expanding caseet 7 > 0 be such thavAL® (G) > 1 —#. Then it follows directly
from Claim[12 that[(22) holds for this choice of Let (A%, o) be as defined if{20) and(23). By definition,

IG®Id|A)|2=sup E Y (¥|AbwAL|Y)
) 77 pob
> E Y Tr((Abe AY)o)
oY o

=1-0(n/1),

where the last line follows froni(25). UsingG||2 > ||G @ Id|A)||2 concludes the proof of the lemma,
with exponent = 1. O

It remains to prove Claifin13. The proof of the claim will use #xpansion properties 6f through the
following:

Claim 14. Supposd22) holds, andG is such that the smallest nonzero eigenvalue of the Lapiatia=
Y0 [0) (0] = Lot (0, V) p(0) Y 2u(v') ~1/2|0") (0] is at leastA > 0. Then

E (¥ Awo ® Awwr[¥) = (1 -29/A) E(¥] Ao ® A ¥). (26)

0,0

Proof. Using [16) we can write
<1?’A—wv ® va’|1ij> = Tr(vaPl/ZAm’Pl/Z),

wherep is the reduced density ¢%) on either subsystem. Lét:= L ® Id andA := Y, u(0)"?|0) ®
A . Using that[[ZR) holds for our choice af,

Tr(ATL(Id @) A(ld @p'/?)) = ETr(Auep? Auop'?) = E Tr(Auwop'* Auwp'’?)
< ) ETH(Aust?Au? ). @

The normalized Laplaciaih. has smallest eigenvalug and second smallest > 0. Let the smallest
eigenvector of. be |uy) = ¥, 1(v)/2|v), and writeA = |ug) ® Ag + Yjuo |ui) @ A;, where theu;) are
the remaining eigenvectors, with associated eigenvajuef L, andAg = ¥, 11(v)/2 Ap. Then

ATL(Id®p'?)A(Id @p'/?) = Y N Afpt/2 At/ (28)

i>0
Taking the trace we get
!}ETr<(va — Eval)pl/z (va — z!’Eval)pl/2> = Tr((A — ’Uo> X Ao)+p1/2(A — |U()> X Ao)pl/z)
= Y Tr(Afp!24;0')

i>0
where the last inequality follows frorh (28) and {27). O
We conclude this section by giving the proof of Cldini 13.
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Proof of Clain{IB.For any four vertice, v, w andw’ define

S%(’/ = Z (Yeur ’ATzh) ® Agi Yo ) -
bt/
Note also that, given our choice of the unitariéssatisfying [18) and using (16),
(Faow| AL ® Al [Yo) = Tr(0"?(Aw) /> Al (Aw) 2012 (A0) 2 AY (Au) )
= Tr( Agpt/*Abp/4 Ao/ Aﬁi p1/4), (29)

an identity that will prove useful.
By (24) and the definition of we havee = ( E|||¥uw)||?)* E Esww To prove the claim it will
w

vy’ *
suffice to show that = O(17/A E|||Yww) ||?)- EQ. [22) implies that
w
E Yoo} I* = (1= 17) El[¥oo) %
V~D %

hence (using (22) once more) a’gg/, = O(n E|||[¥ww)|*). We relate these quantities by establishing the
v~ w
following three bounds.

UE},‘%:/ - Z?/‘ = O(n) !]5||’1Fvv>|\2, (30)
JE Eletty — et = 0(n/2) Ell¥wo) 1, 31)
B E[el — €3] = O(n/A) El|[¥o0) | (32)
~v

It is clear that[(3l1) and (32) together will conclude the frate first show([(3D). Usind (29),

Ay — A )pl/4/1391/414091/41‘1591/4)‘

vv’
b b’
A A " ~ 1/2 , 1/2
< (Tr((AU, — Ao)p" XAy = An)p'?)) (X Tr(Aup! A AL A Aup ALY )
b b’

where the inequality follows from applying the Cauchy-Semminequality to
~p'\1/2 A A ~p\1/2 ~p\1/2 A ~p'\1/2
(A%) V4 (Ay — Ay)p'/* (AY) and  (AL) “p1ApV4(AY)

and usingy", A} < Id. Taking the expectation ovar ~ v and using [(22) together withx — y| <
Vvax = x < a+ 4y gives [30). To prove (31), write

v’

e — ey | = | 1o Tr(App! /1AL (Ay — Ay)pt/ ALY
bbb’
n ~ n n 1/2 _ n . 1/2
< (Tr((Ao = Au)p" (Ao = Au)o'2)) (| X Tr(Avp 2 ALp" 4 A 0! AlpV4) ),

bbb’

where the inequality follows from a similar application tetCahuchy-Schwarz inequality as performed
above. The second term above:j%’“,’, so using[(30), and (26) to bound the first term, we have pr¢S&j
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Finally, to provel(3R) write

wo' ww’

va/ — va/ = ‘ Z Tr((Av/ — Aw/)p1/4AZh}pl/4Aypl/4AZipl/4)‘
berb!
A A \A1/2( A ARV A1/ 70 1/4 & 174 50 174y 2
< (T0((Aw = Au)p (Ao = Au)p") ) (1 Tr(Aop! At Aup!#ALLp1 %))
benb!
which is again bounded using (30) and](26). Combining (34)(@&) proves the claim.
]

4.2 Non-expanding games

SupposeG is an arbitrary (not necessarily expanding) projection gam the gameS*G the players Bob
and Bob’ are always sent neighborimg~ ©’. Using notation from the previous section, we would like
to enable the players to take advantage of the possibilitysofg an arbitrary entangled state in order to
initialize themselves in a state that is closd'%Q,,,/). The difficulty is that this must be done “on the fly”,
as|Y¥..) depends on the questionsv’; indeed sinces is not expanding there may not be a single state
close to all|'¥ ../} that they could have agreed upon before the start of the gmmigistanceG could be
a direct sum of two independent games for which the optimeregled state and measurements need not
bear any relation to each other.

To get around this we resort to the use of a so-called famifupiversal embezzling statesl';) €
C? @ C%. These states, introduced in [vH03], have the propertyftirany given stat¢y) there exists @
and unitaried], V such thatl ® V|T';) =~ |¢)|T'y) for somed’. Hence ifbothplayers have a description of
the target staté¥ /) they can easily generate it locally from the universal sfgje. Our setting presents
and additional difficulty: only the first player, Bob, knowsand the second, Bob’, knows; how to make
them agree on which state to embezzle? We will use the faligédmma.

Lemma 15. Let |®) be a bipartite state invariant under permutation of the twbsystemsp its reduced
density on either subsysteh,< A, < Id, andv a distribution onV x V that is symmetric under per-
mutation of the two coordinates (we also denote/liie marginal distribution on either coordinate), such
that

E (@A Ay[@) > (1) E (@A, A:[@). @)

(v,0")~v
Let U, be unitaries such that
1/2
uvAzli/2p1/4 _ p1/4Azl,/2UZ _ (p1/4Avp1/4) ) (34)

and let o
’q)vv’> = Uy Ay X uv/Azl;//Zlq)>'

Then for anyw” € V,

7

1/2
UNE.U/ H|q)m;//> - |q)v/y//> 2 _ O(Ul/Z)(EH|<Dw>H2) H’q)v,,v,,>

and
E
~7p!

[Do0) — |[P)[|* = O(772) E [[|@u0)]|”

%
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The lemma is stated in a stand-alone form, but we may apply tié present setting by letting)
be the statd¥) and A, the measurement operatofs,, (for somew) whose existence is guaranteed by
Claim[12. Recalling the definition d¥ /) in (19), LemmdIb5 (together with(IL5) to obtain]33)) implies
that (for mostw)
2 2
JE M) = Famo)|” = OGr') E [[¥ro)

7

that is, all three stateB¥ ), [Ywoo) and|¥..r) are close for neighboring ~ ©'. Hence the first
player, knowing his question, can compute a classical description of the sf#tg,,); the second player
can compute a classical description|#f,,./). These two states are close to each other as well as to the
target state: are these conditions sufficient for the twgeaskato successfully embezzle a joint state close to
either of the three?

It turns out that, if one naively applies the embezzlingcpaure described in [vH03], it can fail com-
pletely even when the states are arbitrarily close (sead®dgtfor an example). Nevertheless, in the next
section we state and prove a “quantum correlated samplmmé&’, which extends the results [n [vHO3] to
this “approximate” scenario.

We first prove Lemmga 15, and then show how the lemma, togethieithe correlated sampling lemma,
Lemmd 1Y, imply Lemm@l7 for the case of general games.

Proof of Lemm&I5Let X, be defined as
= U,A%p"* = p'/*A2Ug. (35)
Using (34),X, is positive semidefinite. With this notation we have thedwaiing useful identities.
Claim 16. For everyv, v’ € V we have
Tr(X5) = Tr((XoX;)?) = (@A ® Ag|®) = [[|®oo)||? (36)
and
Tr(X2X2) = (DA, @ Ay|D). (37)
Proof. For (38) we use the definition &, to write
Tr(Xp) = Tr(XoX3)?) = Tr(Awp'/2Aup!?) = (®[A, @ Ao|®),

where the last equality follows from Ando’s identity, Clatogether with our assumption ¢&) being
permutation-invariant. To show (87), expand using the d&fin(35)

Tr(X2X2) = Tr(U,AY 202 Al 2utu, Al/2 el 2 Al2Ud)
= Tr(Ax0'?Ayp'/?)
= <q)|A_v & Av’ ’q)>,
where the second equality follows frofn {34) and the last f@aim[2. O

Now for any threev, v/, v”,
[[@oor) = (Do) 1> = ((Poor| — (Porer|) (|Powr) — [Poror))

= (@ |(A1/2U+ A1/2u+)(u Al/z uv/Azl,r/z)@)A
Tr((Xo — X, ) (Xo — Xor) X Xor)
< (Tr((X (X

))” 2(Tr(x4))"?, (38)

1/2u+”uv”A1/2’®>

-UH v -UH
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where the last inequality follows from Cauchy-Schwarz amalfact that theX, are positive semidefinite.
The first term on the right-hand side 6f{38) can be bounded as

Tr((Xo — Xo)*) < Tr((X2 - X2)?)
= (D|A, @ Ay|D) + (P[Ay @ Ay |P) — 2(D|A, @ Ay |D),

where the first inequality can be found as e.g. Corollary Zin86] and the equality follows fron (36)
and [37). Going back t¢ (88), we obtain

2 2 1/2 2 1/2
CE o) = [@uw) |2 < (20 ENI@) ) (1w I?)

where the first inequality uses the assumption made in thenketo bound the first term b (88) arld {36) to
rewrite the second. This proves the first inequality clairmeithe lemma. The second is obtained by taking
v"” = vin ([@8), and then the expectation over- v’ as in the above. O

We conclude this section with the proof of Lemfia 7.

Proof of Lemma&]7, general casket |A) be a vector strategy, arl) a state such thaf (IL5) holds. Our
goal is to identify a quantum strateggl) such that|G ®1d | A)||2 > 1 — O(5'/¢), which by Clain{I2 will
suffice to prove Lemmia 7.

We define a “re-normalized” vector strateg§) € CI?l @ €V @ €8l @ £(C?), from which we will
later obtain a quantum strategyl,,) by making a good choice @b € (). As previously, for everyo we
may define states

A—l/2 A1/2 A
’Twm}’> = Uwvva & uwv’A |T>r (39)

wv'

where thel,,, are the unitaries given by Lemrhal15: as a consequende lofrgf@in¢ing the max on the
right-hand-side by an average) the assumption of the lersrsatisfied, on average over € ), for the
stateg¥ 7). The lemma gives the following bound:

E E,|HTWW> - ’vav’>”2 = 0(771/2) E E||’vav>||2- (40)
U~0 w v

In addition, for everyv and questiow € V let V,,, andW,,, be the unitaries that are defined in Lenimh 17,
for the (re-normalized) stat®¥ ,,) and a choice of = 2. By convexity the lemma gives us that

|vav> ’va v’
’vav> | H |va’v’

E E [[Viow & WowITaar) = [ ¥amo) | [¥eo) ITa) |2 = O( E | [7)- @
w p~y! vﬁ’vl || H

For any questio € V and answeb € B, define measurement operators
Al = VI (UwoAGY? AL, ALY Ul @1dy ) Vi, BY, = ij(uwA;}/zAﬁwA;g/ 2ut, @1dg ) Wew

Itis easy to verify that eacA?,, andB? , is positive semidefinite, and thg, A, Y, B, < Id. Since we
may always add a “dummy” outcome |n order for the measuremasriators to sum to |dent|ty bo(m o}b
and{B?,,}, are easily made into well-defined measurements, and foy evef4,,) := ¥, |0, b) ® Al
and|B.) := Y, |v,b) ® BY, valid strategies for the players Bob and Bob’GiG (we will soon show
that at least one of these strategies must be a good stratethefsquare game).
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We first bound
E E [Vaw @ Wow|Taar) = I'¥oo) |7 ¥ o) [T} |
< E E [|Viw ® Waw[Taar) = [ ¥aeo) I [Ewwo) L) 2 + E_E I ¥aon) |21 ¥r) = [Faor)

|vav> ’va/v’> 2/6 1/2
=0 E E — +0
(B ey — eyl ) +ou™
= O(E_E I ¥uaood | ™/ o) | ¥arn) — o) [7) + O 2)
— o('%), (42)

where in the second line we uséd](40) and the Cauchy-Schwequality to bound the last term, andi(41)
for the first; in the third line we used thdt¥,,)|| < 1, and in the last we again applied {40) and the
Cauchy-Schwarz inequality. Note that

_ . —_— /2 — ., 12
E(|G 2 1d|Au)elG@1d[B.) s = | E E Y A, @Al,|| 7| E E ¥ B, @B,
@ GO S oo NWonvy S o0
> Ab o BY ,
- HEUNEU,h;h/AwU(ngU 4
where the last inequality follows from Claimh 3. Hence
IGIE > ElIG®1d|Aw) sl G @ 1d|Bo) s
> EE Y (TlAL, ® BYy|Tar)
WOy Sy
> E E Y 1¥woo) |72 (Yoo U Ace’? Al At Uao
GO Sty
@ U Ao/ 2 Al Ayt Ul [¥r) = O(112)
-EE ) ¥ ewoo) | (¥ AL, @ AL, [F) —O('/12), (43)

~U st

where the second line uses the definitionAff, and [42) and the third is by definition ¢¥./). To
conclude, note that applying Markov’s inequality f0l(15) get that a fraction at leagt— 7'/ of v ~ v/
are such that L
E Y (#]AL,® AU, [¥) > (1— 1) E|[¥uu)|?,

bl
where here we crucially used tieax on the right-hand side of (15) to allow ourselves use the sao®
the right-hand side as on the left-hand side. For any susho’, a fractionl — ;71/3 of w € Q) will be such
that L

Y (FlAL, @ ALy ) > (1—7")[[Fawoo) >

b b
For thesev ~ v’ andw the right-hand side of (33) is at least- #1/3 — O(1'/12), and their total weight
constitutes at least afi — 257'/3) fraction of the total. O
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5 The correlated sampling lemma

In this section we prove our quantum correlated samplingriam

Lemma 17. Letd be an integer and > 0. There exists an integet, and for every statéy) € C? ® C*
unitaries Vy,, Wy, acting onC?*', such that the following holds for any two statqs, lp) € C1C™:

1V @ WolTaar) — [)|Tar) | = O(max {62 [[|y) — |g)[/}).B

where herél;) o Y1;<4i1/2|i)]i) is the (properly normalizedj-dimensional embezzlement state.

A variant of the lemma holding for the special case|®f = |¢) was shown in[[vHO3], where the
“embezzlement state|T;) was first introduced. It is not hard to see however that thestcoction of
the unitariesVy, W, given in that paper does not satisfy the conclusion of Lernifia For instance, if

=v(1+e)/ |00 Y+ /(1 —¢)/2|11) and|¢) = /(1 —€)/2|00) + /(1 + &) /2|11)) then one can
check that for any > 0 the unitaries from [vHO3] will be such thail, @ W, ]FM) )| Ta)| > 1/4.
This is due to our taking advantage of the degenerate speaifithe reduced density of the EPR pair
(]00) + [11))/+/2 to split the spectrum of the reduced density matrices of tharby statesy), |¢) in
two different ways; our proof of Lemmall7 shows that this iseesially the only obstacle that needs to be
overcome in order to obtain a robust correlated samplinggatore.

Lemmal 1Y can be seen as a quantum analogue of Holensteindated sampling lemma [Hol09],
which played an important role in his proof of the classicailgtiel repetition theorem. There the players,
Alice and Bob, receive as inputs a description of a distiisup, g respectively such thdtp — g||; = 9.
Their goal is to sample an elememt~ p for Alice, v ~ g for Bob, such thau = v with probability
1—0(9). This task can be reproduced in our setting by giving thestagt) = Y, \/p(u)|u)|u) to Alice
and|p) = Y, \/q(v)|v)|v) to Bob. If the players run our procedure and then measurelmat state in
the computatlonal baS|s they will obtain samples with arithistion close top andg, and moreover these
samples will be identical with high probability (though qumoof would require them to use entanglement
in order to do so!).

After the completion of this work Anshu et al. [AJM 4] proposed a different quantum generalization
of the classical correlated sampling lemma. In the task domgider the players are given reduced density
matricesr, T respectively such thdir — t||; = 6. Their task is to generate a shared st&te4 4/3p/, Wwhere
Alice holds registersAA’ and Bob register8B’, such that the reduced density |§) on A (resp. B) is
o (resp. 1), and furthermore¥) is close to being maximally entangled betwe¢d’ and BB’. This task
does not seem directly related to the one we consider; iicpkat, Anshu et al. show how their task can be
accomplished starting from a sufficiently large number afred EPR pairs while our task provably requires
a universal embezzlement state to be successfully accsfmadﬂ

We note that we have not tried to optimize the parametersaaipgein the lemma. In particular, from
our proof one can verify that taking = 20((4/6)*) in the lemma is sufficient, but this is probably far from
optimal. Indeed, the method in [vHO3] givés= 4°(1/9): it may be possible to achieve such a polynomial
dependence o here as well. (We refer the interested reader to recent wptkebing and Wand [LW13]
for an investigation of optimal families of embezzlemertas, in the sense of van Dam and Hayden.)

8Note that here we implicitly re-ordered the registers, apdT ;) should be understood as a bipartite stat€fd' @ C4',
with the first (resp. second) spa€4?’ being associated with the tensor product of the first (resgorsd) spaces;? andC?,
respectively associated witlp) and|T' ;).

%Indeed, local operations alone cannot change the Schmédficents, and local operations on a maximally entangletest
will only yield maximally entangled states (possibly of yigng dimension). See [LW13] for further discussion of thieria for
universal embezzlement.

26



Proof of Lemma_17We define the unitarie?l,,, W, implicitly through the following procedure, in which
two players Alice, Bob receive classical descriptions of tipartite statesy), |¢) respectively, each of
local dimensioni, as well as a precision parameter- 0. The unitaries\7¢ andW,, correspond to their re-
spective local quantum operations as described in the guoee The players’ initial state consists of a clas-
sical description of the statés), |¢) respectively (where each coefficient is specified with pogy(s,d 1)
bits of precision), a large supply of private qubits iniiad in the|0) state, a large supply of shared EPR
pairs that they will use as classical shared randomnessamminbezzlement stat€;; ) for some large
enoughd’.

1. Letd be the local dimension dfy) and|¢), d the precision parameter given as part of the input, and
n > 0 a small parameter to be specified later.

2. Using shared randomness, the players jointly computgueseer, . . ., k1, WhereK = mgg((fdf;)ﬂ ,

random in the interval(1 +7) %, (1 +#) 1),

3. Both players individually compute a classical desaniptf the same (nhormalized) state

K

o) o Y wlk, k) ap|Pa) an,
k=0

where|®;) = Y4, |i)|i) is the un-normalized maximally entangled state@hs C?. Let N =
[(26d Y ) ~%]. Alice and Bob jointly generat® copies of|Zy), which they can achieve using the
universal embezzling procedure from [vH 03] provid&ds large enough.

4. Alice (resp. Bob) computes the Schmidt decomposition= Y_; A;|u;)|u}) (resp.|¢) = ¥_; uilvi)|v})).
She setsS; (resp. Ty) as the set of those indicésuch that\; € [1.1, ) (resp. u; € [Ter1, T)),
sy = |Sk| (resp. ty = |Tk|), and Py (resp. Q) the projector on the the span of the) for i € Sy
(resp.|v;) fori € Ty).

5. Alice measures her share of the first copyda using the two-outcome measureméiy, Id —Py4 }
wherePy, := Y |k) (k| ® P. Bob proceeds similarly witl®s := Y, |k) (k| ® Q. If either of them
obtains the first outcome they proceed to the next step. ®tberthey repeat this step with the next
copy of |&y). If either player has used up all his or her copies he or shesatie protocol.

6. Alice (resp. Bob) controls on the second registefa} to eraselk) in the first register. (This is
possible since thé&, (resp. Qi) are orthogonal projections.) The players discard all gubut the
remaining register ofZo). Bob applies the unitary map;) — [v}) to his share.

Throughout the analysis we assume without loss of gengthbits > |||¢) — |@)||?. We will show that
with probability at least — O(6'/12) the procedure described above results in a shared statedrefice
and Bob that is within trace distan€(5'/1?) of both |¢) and |¢). Our first claim shows that, based on
the 7, the players can each compute a discretized version ofitipits that both have (a slightly re-scaled
version of) ther, as Schmidt coefficients.

Claim 18. Define

_CZTkZ|ul lul)  and —C’ZTkZ]vl |0),

i€Sy i€Ty
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where thet;, S and T are as defined in the protocol ar@ C’ are appropriate normalization constants.
Then
1+m7t<CC <y, (44)

and
max { [|[y) — )% lllg) —®)[*} = O(n). (45)
Proof. We haveC~2 = ¥, t2s; which by definition ofS; satisfies

1=) A7 < Y s < ) (L+1)%A7 < (L+p)%
i k i

A similar calculation holds foc”’, proving [44). Next we bound the first term in{45), the secbeihg
similar. Using the definition of¥) and [44) we have

) = )2 < 3 ) (A — w)* +O(n)

k i€Sy
1
< 7 (1-——) +0(n)
;i;:k k( 1—|—;7>
=0(n)

0

Our next claim shows that the subspad®sQ; computed by the players are close, in the following
sense.

Claim 19. The following holds with probability at leagt— O(6'/64~1/3) over the choice of the:
Y 7 Tr(PQr) = 1—0(8"6y71/3). (46)
k

Proof. Using Claim[I8 and||y) — |¢)||*> < & we deduce thal(®[¥)|*> = CC' Yy p 4y Tr(PQp) =
1 —0O(#). To prove the claim we bound the contribution of those teronsvhichk # k’:

Y uweTr(PQu) = Y wwe Y, Y Kuilo)|?

k£k! k£ €Sk jeT,
<+ X amlwl)P+ O AallulyP),
k#K ,i€Sy,je Ty k#K z,i€Sy,j€ Ty
|/ Ail =1/ Ai*>6 |/Ailui—+/ni/ Al <6

(47)

wheref > 0 is a parameter to be fixed later. We bound each of the two terside the brackets in_(#7)
separately. The first term is at most

2 |Ai — ,”j|2 2
Z Aitkj|(uilop) |= < Z T’<ui|7}j>|
ij i)j
I/Ailuj=/ui/ il =6 i—pi2=0Am;
<¢! Z Ai = il (uilog)|?
i)j
<07y — ol
<607t
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To bound the second term in_(47), note first that proviflésiat most a small constant timgsnecessarily
k' = k+1ork’ = k— 1; our choice of9 will satisfy this condition. Suppos€ = k — 1, the other case
being similar. Fixi, j such thatl\/A;/u; — \/u;/A;|> < 6. This condition impliegA; — jj|* < OujA; <
0(1 + 1) 3t. Sincet is chosen uniformly in an interval of lengtia;y (1 + 7)1, the expected fraction of
pairs (i, j) such that such thdt /A;/p; — /i /Ai|* < 6 andA; < 7 < p; is at mostO(v/0/77). Hence,
on expectation over the choice of tihewe have
Y. Al (uilop) P < O(VO ™) Y Aipj | (wilo) P = O(Von ™).
k#K ,i€Sy,j€ Ty ij

I\/Ai/ =1/ AP <0

Choosingd = (677)%/3, we obtain that{46) holds, on expectation over the choitbef;, with a right-hand
side of1 — O(81/35772/3). (The condition tha? < 7 is equivalent t5 < ;'/3, which we may assume
holds without loss of generality, as otherwise the boundhéndiaim is trivial.) The left-hand side is at most
1, and applying Markov’s inequality proves the claim. O

Our last claim analyzes the outcome of the sampling proegqgwoving the lemma.

Claim 20. Let |¢), |@) be such that]||p) — |@)||> < 6, and sety = §'/#. With probability at least
1 — O(6/12), the sampling procedure described above terminates witieAhd Bob in a shared staté)
such that||¢) — [¢)[|* = O("/").

Proof. Suppose first thai (46) holds and that Alice and Bob both gmde the step 6 synchronously. In
that case, at the end of the procedure their joint state is

8) = C"Y Y. (uilop)|u)|oy),
k ic€Sy,jeTy
where the normalization constait’ satisfies
()" ZTk Y. Huwilopl? = L g@Tr(PQy) = 1—-0(y +6'y72?)
lGSk,jGTk k
by Claim[19. We can thus evaluate the overlapiofwith |®) as
@€e) =Y. % Y, Nuilop> —0(8'y727%)
k ieSyjeTy
—1— 0(51/6]7—1/3),
where for the first equality we used orthogonality of thg, and the last again follows from Claim]19.
Next we compute the probability that in step 5 Alice and Bokhbabtain the first outcome of their
respective POVM in the same iteration. The probability thiite alone obtains a successful outcome is
Y mesk/ (A ?) = (1+0(y))(dL, ?) ! by (48). The same holds for Bob. With probability at least

1 — 42, both of them obtain a successful outcome before the nuilErcopies of|&y) runs out. Moreover,
the probability that they simultaneously obtain the firsgicome is

@) DR RQ) = (1206 ) @)
k k

by Claim[19. Hence the probability that they simultaneoyslyceed to the third step of the protocol is at
leastl — O(6'/65~1/3). Choosingy = 5'/* proves the lemma. O

O

29



References

[AGR81] A. Aspect, P. Grangier, and G. Roger. Experimergats of realistic local theories via Bell's
theorem.Phys. Rev. Lett47(7):460-463, 1981.

[AHWO00] G. G. Amosov, A. S. Holevo, and R. F. Werner. On somditadty problems in quantum
information theory. Technical report, arXiv:math-ph/@002, 2000.

[AJMT14] A. Anshu, R. Jain, P. Mukhopadhyay, A. Shayeghi, and . YA new operational inter-
pretation of relative entropy and trace distance betweentgun states. Technical report,
arXiv:1404.1366, 2014.

[Ara02] P. K. Aravind. The magic squares and Bell's theorerechnical report, arXiv:quant-
ph/0206070, 2002.

[BBLV12] J. Briét, H. Buhrman, T. Lee, and T. Vidick. Muligptite entanglement in XOR gameQuan-
tum Information and Computatio2012.

[BCP™14] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and\@&hner. Bell nonlocalityRev. Mod.
Phys, 86:419-478, Apr 2014.

[Bel64] J. S. Bell. On the Einstein-Podolsky-Rosen paradRixysics 1:195-200, 1964.

[BKO2] H. Barnum and E. Knill. Reversing quantum dynamicghwiear-optimal quantum and classical
fidelity. J. Math. Physics43(5):2097-2106, 2002.

[BRRT09] B. Barak, A. Rao, R. Raz, R. Rosen, and R. Shaltiel. Styargllel repetition theorem for
free projection games. IApproximation, Randomization, and Combinatorial Optatian.
Algorithms and Techniquegolume 5687, pages 352—365. Springer Berlin Heidelb&i§92

[CHSH69] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. HoRroposed experiment to test local
hidden-variable theorief?hys. Rev. Lett23:880-884, 1969.

[CIPP11] T.Cooney, M. Junge, C. Palazuelos, and D. Péaeci&s Rank-one quantum games. Technical
report, arXiv:1112.3563, 2011.

[CS14] A. Chailloux and G. Scarpa. Parallel repetition db@gled games with exponential decay via
the superposed information cost. In J. Esparza, P. Fraignia Husfeldt, and E. Koutsoupias,
editors,Automata, Languages, and Programmirnglume 8572 ol ecture Notes in Computer
Science pages 296-307. Springer Berlin Heidelberg, 2014. ISBN-3B82-43947-0. doi:
10.1007/978-3-662-43948-25.

[CSUUO08] R. Cleve, W. Slofstra, F. Unger, and S. Upadhyayfdeeparallel repetition theorem for quan-
tum XOR proof systemsComput. Complexityl7(2):282—-299, 2008.

[Din07] I. Dinur. The PCP theorem by gap amplificatiah. ACM 54(3), June 2007.

[DS13] I. Dinur and D. Steurer. Analytical approach to pllarepetition. Technical report,
arXiv:1305.1979, 2013. To appear in STOC'14.

30



[EPR35]

[Feiol]

[FKOO]

[FLO2]

[FRS88]

[FV02]

[Has09]

[HIS'96]

[Hol09]

[HRO9]

[HWO4]

[HWO8]

[IV12]

A. Einstein, B. Podolsky, and N. Rosen. Can quantuechanical description of physical
reality be considered completé®hysical Review47:777-780, 1935.

U. Feige. On the success probability of two provarsrie-round proof systems. Rroc. 6th
IEEE Structure in Complexity Thegrgages 116-123. 1991.

U. Feige and J. Kilian. Two-Prover Protocols—Low &rat Affordable RatesSIAM J. Com-
put., 30(1):324, 2000.

U. Feige and L. Lovasz. Two-prover one-round progftems: Their power and their problems.
In Proc. 24th STOCpages 733—744. 1992.

L. Fortnow, J. Rompel, and M. Sipser. On the power oltiaprover interactive protocols. In
Theoretical Computer Sciengeages 156—161. 1988.

U. Feige and O. Verbitsky. Error reduction by parhtipetition — a negative resul€ombina-
torica, 22(4):461-478, 2002.

M. B. Hastings. Superadditivity of communicaticspacity using entangled inputdature
Physics 5(4):255-257, 2009.

P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoretamtl W. K. Wootters. Classical
information capacity of a quantum channBhys. Rev. A54:1869, 1996.

T. Holenstein. Parallel repetition: Simplificati@and the no-signaling cas&€heory of Comput-
ing, 5(1):141-172, 2009.

E. Hanggi and R. Renner. Device-independent qurarktey distribution with commuting mea-
surements. Technical report, arXiv:1009.1833, 2009.

P. Hausladen and W. K. Wootters. A ‘pretty good’ maasoent for distinguishing quantum
states.J. Modern Optics41(12):2385-2390, 1994.

P. Hayden and A. Winter. Counterexamples to the makpmnorm multiplicativity conjecture
forall p > 1. Comm. Math. Phys284(1):263—-280, 2008.

T. Ito and T. Vidick. A multi-prover interactive prdofor NEXP sound against entangled
provers. InProc. 53rd FOCSpages 243-252. IEEE Computer Society, 2012.

[JPPG 10] M. Junge, C. Palazuelos, D. Pérez-Garcia, . Villamyend M. M. Wolf. Operator space

[JPY13]

[Kit86]

[KR10]

theory: A natural framework for Bell inequalitiePhysical Review Letterd04:170405, 2010.

R. Jain, A. Pereszlényi, and P. Yao. A parallel tijpa theorem for entangled two-player one-
round games under product distributions. Technical repoXiv:1311.6309, 2013. To appear
in CCC’14.

F. Kittaneh. Inequalities for the Schattganorm. iv. Comm. Math. Phys106(4):581-585,
1986.

J. Kempe and O. Regev. No strong parallel repetiticth entangled and non-signaling provers.
In Proc. 25th IEEE Conf. on Computational Complexity (CCC,jtgges 7-15. IEEE Com-
puter Society, Washington, DC, USA, 2010.

31



[KV11]

[LW13]

[MPA11]

[Pis03]
[Rao08]

[Raz98]
[Raz08]

[RR12]

[TFKW13]

[Vero4]

[VHO3]

[Vid13]

J. Kempe and T. Vidick. Parallel repetition of entde) games. IrProc. 43rd STOCpages
353-362. 2011.

D. Leung and B. Wang. Characteristics of universaberrling families. Technical report,
arXiv:1311.6842, 2013.

L. Masanes, S. Pironio, and A. Acin. Secure dewimiependent quantum key distribution with
causally independent measurement devid&stiure Communication(238):7, 2011.

G. PisierIntroduction to Operator Space Theor€ambridge University Press, 2003.

A. Rao. Parallel repetition in projection games amoncentration bound. Froc. 40th STOC
pages 1-10. ACM, 2008.

R. Raz. A parallel repetition theore®IAM J. Compu}t.27:763—803, 1998.

R. Raz. A Counterexample to Strong Parallel Repetiin Proc. 49th FOCSpages 369-373.
2008.

R. Raz and R. Rosen. A strong parallel repetition rieofor projection games on expanders.
In Proc. 27th IEEE Conf. on Computational Complexity (CCC,Y8ges 247-257. 2012.

M. Tomamichel, S. Fehr, J. Kaniewski, and S. Wehn&monogamy-of-entanglement game

with applications to device-independent quantum cry@phgy. New Journal of Physics
15(10):103002, 2013.

O. Verbitsky. Towards the parallel repetition cecture. Proceedings of IEEE 9th Annual
Conference on Structure in Complexity Thegrsiges 304-307, 1994.

W. van Dam and P. Hayden. Universal entanglemensfoamations without communication.
Phys. Rev. A67:060302(R), 2003.

T. Vidick. Three-player entangled XOR games are hNid to approximate. I®Proc. 54th
FOCS 2013.

32



	1 Introduction
	1.1 Our results
	1.2 Proof sketch
	1.3 Additional related work
	1.4 Open questions

	2 Preliminaries
	2.1 Notation
	2.2 Games and strategies

	3 Relaxations of the game value
	3.1 The square norm
	3.2 The relaxation val+*(G)

	4 Relating val+*(G) to the square norm
	4.1 The expanding case
	4.2 Non-expanding games

	5 The correlated sampling lemma

