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Abstract—We show that circuit lower bound proofs based on
the method of random restrictions yield non-trivial compression
algorithms for “easy” Boolean functions from the correspond-
ing circuit classes. The compression problem is defined as
follows: given the truth table of an n-variate Boolean function
f computable by some unknown small circuit from a known
class of circuits, find in deterministic time poly(2n) a circuit
C (no restriction on the type of C) computing f so that the
size of C is less than the trivial circuit size 2n/n. We get non-
trivial compression for functions computable by AC0 circuits,
(de Morgan) formulas, and (read-once) branching programs
of the size for which the lower bounds for the corresponding
circuit class are known.

These compression algorithms rely on the structural charac-
terizations of “easy” functions, which are useful both for prov-
ing circuit lower bounds and for designing “meta-algorithms”
(such as Circuit-SAT). For (de Morgan) formulas, such struc-
tural characterization is provided by the “shrinkage under
random restrictions” results [52], [21], strengthened to the
“high-probability” version by [48], [26], [33]. We give a new,
simple proof of the “high-probability” version of the shrinkage
result for (de Morgan) formulas, with improved parameters.
We use this shrinkage result to get both compression and #SAT
algorithms for (de Morgan) formulas of size about n2. We also
use this shrinkage result to get an alternative proof of the recent
result by Komargodski and Raz [33] of the average-case lower
bound against small (de Morgan) formulas.

Finally, we show that the existence of any non-trivial
compression algorithm for a circuit class C ⊆ P/poly would
imply the circuit lower bound NEXP 6⊆ C. This complements
Williams’s result [55] that any non-trivial Circuit-SAT algo-
rithm for a circuit class C would imply a superpolynomial
lower bound against C for a language in NEXP1.

Keywords-average-case circuit lower bounds; Circuit-SAT
algorithms; compression; meta-algorithms; natural property;
random restrictions; shrinkage of de Morgan formulas

I. INTRODUCTION

Circuit lower bounds (proved or assumed) have a number
of algorithmic applications. The most notable examples are
in cryptography, where a computationally hard problem is
used to construct a secure cryptographic primitive [8], [59],
and in derandomization of probabilistic polynomial-time
algorithms, where a hard problem is used to construct a
source of pseudorandom bits that can be used instead of
truly random ones when simulating an efficient randomized

1Independently, Williams [57] also proves such an implication.

algorithm [41]. In both cases, we in fact have an equivalence
between the existence of appropriately hard computational
problem and the existence of a corresponding algorithmic
procedure (appropriate pseudorandom generator) [22], [41].

In both mentioned examples, a circuit lower bound is used
in a “black-box” fashion: the knowledge that a lower bound
holds is sufficient to derive algorithmic consequences (e.g., if
some language in DTIME(2O(n)) requires circuit size 2Ω(n),
then BPP = P [27]). One would hope that looking inside
the proofs (of the few circuit lower bounds that we actually
have at present) may yield new algorithms (for the same
computational model where we have the lower bounds).

This is indeed the case as witnessed by number of
examples: a learning algorithm for AC0-computable Boolean
functions [36], a Circuit-SAT algorithm for AC0 cir-
cuits [25], [6] (using Håstad’s Switching Lemma, a main tool
used in AC0 lower bound proofs [20]), a simple pseudoran-
dom generator for AC0 circuits [9] (using [36]), a Circuit-
SAT algorithm for linear-size (de Morgan) formulas [48],
[50], and a pseudorandom generator for small (de Morgan)
formulas and branching programs [26] (using a generaliza-
tion of the “shrinkage under random restrictions” result of
[52], [21]), to mention just a few.

Trying to understand the limitations of current circuit
lower bound techniques, Razborov and Rudich [46] came up
with the notion of a natural property that can be extracted
from every lower bound proof known at the time. Loosely
speaking, a natural property is a deterministic polynomial-
time algorithm that can distinguish the truth table of an
easy Boolean function (computable by a small circuit from
a given circuit class C) from the truth table of a random
Boolean function, when given the truth table of a function
as input. They also argued that such an algorithm can be
used to break strong pseudorandom generators computable
in the circuit class C; hence, if we assume sufficiently secure
cryptography for a circuit class C, then we must conclude
that there is no natural property for the class C. The latter is
known as the “natural-proof barrier” to proving new circuit
lower bounds.

Compression of Boolean functions.: In this paper, we
focus on the “positive” part of the natural-property argument:
known circuit lower bounds yield a natural property. One
way to obtain such a natural property is to argue the



existence of an efficient compression algorithm for easy
functions from a given circuit class C. Namely, given the
truth table of n-variate Boolean function f from C, we want
to find some Boolean circuit (not necessarily of the type C)
computing f such that the size of the found circuit is less
than 2n/n (which is the trivial size achievable for any n-
variate Boolean function)2. There are two natural parameters
to minimize: the size of the found circuit and the running
time of the compression algorithm. Since the algorithm is
given the full truth table as input, we consider it efficient if
it runs in time 2O(n) (polynomial in its input size). Ideally,
we would like to find a circuit as small as the promised
size of the concise representation of a given function f .
However, any non-trivial savings over the generic 2n/n
circuit size [38] are interesting.3

Does every C-circuit lower bound known today yield a
compression algorithm for C? The positive answer would
strengthen the argument of [46] to show that every known
lower bound proof yields a particular kind of natural prop-
erty, efficient compressibility.

We hypothesize that the answer is ‘Yes,’ and make the
first step in this direction by extracting a compression
algorithm from the lower-bound proofs based on the method
of random restrictions. These include the lower bounds for
AC0 circuits [18], [60], [20], for de Morgan formulas [52],
[3], [21], for branching programs [40], and for read-once
branching programs (see, e.g., [4]).

Compression Theorem: (1) Boolean n-variate functions
computed by AC0 circuits of size s and depth d are
compressible in time poly(2n) to circuits of size at most
2n−n/O(log s)d−1

. (2) Boolean n-variate functions computed
by de Morgan formulas of size at most n2.49, by formulas
over the complete basis of size at most n1.99, or by branching
programs of size at most n1.99 are compressible in time
poly(2n) to circuits of size at most 2n−n

ε

, for some ε > 0
(dependent on the size of the formula/branching program).
(3) Boolean n-variate functions computed by read-once
branching programs of size at most 20.48·n are compressible
in time poly(2n) to circuits of size at most 20.99·n.

Finding a succinct representation of a given object is an
important natural problem studied in various settings under
various names: e.g., data compression, circuit minimization,
and computational learning. Designing efficient compression
algorithms for “data” produced by small Boolean circuits
of restricted type is an interesting task in its own right.
In addition, such algorithmic focus helps us sharpen our

2This is different than C-circuit minimization considered by [2] where
the task is to construct a small circuit of the type C.

3The compression task as defined above can be viewed as lossless
compression: we want the compressed image (circuit) to compute the given
function exactly. One can also consider the notion of lossy compression
where the task is to find a circuit that only approximates the given function.

understanding of the structural properties of easy Boolean
functions, which may be exploited in both designing new
meta-algorithms, algorithms that take Boolean functions as
inputs (e.g., the full truth table as in the case of compression
algorithms, or a small Boolean circuit computing the func-
tion, as in the case of Circuit-SAT algorithms), and proving
stronger circuit lower bounds.

In this vein, we also have the following additional results.

A. Our results

In addition to the Compression Theorem mentioned
above, we have results on shrinkage of (de Morgan) for-
mulas, #SAT-algorithms and average-case lower bounds for
small (de Morgan) formulas, and circuit lower bounds im-
plied by compression algorithms. These are detailed next.

Shrinkage of formulas: The classical result of Sub-
botovskaya [52] shows that if one randomly chooses n− k
variables of a given n-variate de Morgan formula, and sets
each to 0 or 1 uniformly at random, then the expected size of
the resulting formula is about (k/n)Γ · |F |, where Γ (called
the shrinkage exponent) is 3/2; this Γ was subsequently
improved to the optimal value 2 by Håstad [21].

This “shrinkage in expectation” result is sufficient for
proving worst-case de Morgan formula lower bounds [3].
However, for designing SAT-algorithms and pseudorandom
generators, as well as for proving strong average-case hard-
ness results for small de Morgan formulas, it is important
to have a “high-probability” version of such a shrinkage
result, saying that “most” restrictions (of the appropriate
kind) shrink the size of the original formula. Such a version
of shrinkage for de Morgan formulas is implicit in [48] (for
linear-size formulas); Impagliazzo et al. [26] prove a version
of shrinkage with respect to pseudo-random restrictions (for
de Morgan formulas of size almost n3); Komargodski and
Raz [33] prove the shrinkage result for certain random
restrictions (for de Morgan formulas of size about n2.5).

We sharpen a structural characterization of small (de
Morgan) formulas by proving a stronger version of the
“shrinkage under random restrictions” result of [48], [33],
with a cleaner and simpler argument.

Shrinkage Lemma: Let F be a (de Morgan) formula
or general branching program of size s on n variables.
Consider the following greedy randomized process:

For n − k steps (where 0 6 k 6 n), do the
following: (1) choose the most frequent variable
in the current formula; (2) assign it uniformly at
random to 0 or 1; (3) simplify the resulting new
formula.

Then, with probability at least 1−2−k, this process produces
a formula of size at most 2 · s · (k/n)Γ, where Γ = 1.5 for
de Morgan formulas, and Γ = 1 for general formulas and
branching programs.



Formula-#SAT: The fact that SAT is NP-complete [14],
[35], and so probably not solvable in polynomial time, does
not deter researchers interested in “better-than-brute-force”
SAT-algorithms. In particular, the case of CNF-SAT has
been actively studied for a number of years (see [15] for
a recent survey), while the study of Circuit-SAT algorithms
for more general classes of circuits is more recent: see [10],
[25], [6] for AC0-SAT, [48], [50] for Formula-SAT, and [56]
for ACC0-SAT. Usually such algorithms exploit the same
structural properties of the corresponding circuit class that
are used in the circuit lower bounds for that class. In fact,
the observation that circuit lower bound proofs and meta-
algorithms are intimately related was first formulated in
Zane’s PhD thesis [61] precisely in the context of depth-
3 circuit lower bounds and improved CNF-SAT algorithms.

As a consequence of the Shrinkage Lemma above, we
get a new “better-than-brute-force” deterministic algorithm
for #SAT for (de Morgan) formulas and general branching
programs of about quadratic size, as well as give a simplified
analysis of the #SAT algorithms for linear-size (de Morgan)
formulas from [48], [50].
#SAT algorithms: Counting the number of satisfying as-
signments for n-variate de Morgan formulas of size n2.49,
formulas over the complete basis of size n1.99, or branching
programs of size n1.99 can be done by a deterministic
algorithm in time 2n−n

ε

, for some ε > 0 (dependent on
the size of the formula/branching program).

Average-case formula lower bounds: Showing that
explicit functions are average-case hard to compute by small
circuits is an important problem in complexity theory, both
for understanding “efficient computation”, and for algorith-
mic applications (e.g., in cryptography and derandomiza-
tion). Here, again, useful algorithmic ideas often contribute
to proving lower bounds for the related model of computa-
tion. For example, strong average-case hardness results for
linear-size (de Morgan) formulas are proved in [48], [50],
using the same ideas that also gave SAT-algorithms for the
corresponding formula classes.

We use our shrinkage lemma to give an alternative proof
of a recent average-case lower bound against (de Mor-
gan) formulas due to [33]: There is a Boolean function
f : {0, 1}n → {0, 1} computable in P such that every de
Morgan formula of size n2.49 (any general formula of size
n1.99) computes f(x) correctly on at most 1/2 + 2−n

σ

fraction of all n-bit inputs, for some constant 0 < σ < 1.
Circuit lower bounds from compression algorithms:

There are a number of results showing that the existence
of a meta-algorithm for a certain circuit class C implies
superpolynomial lower bounds against that class for some
function in (nondeterministic) exponential time [32], [23],
[41], [24], [31], [1], [17], [55]. In particular, the result by
Williams [55] essentially says that deciding the satisfiability
of circuits from a class C in time slightly less than that of the
trivial brute-force SAT-algorithm implies superpolynomial

circuit lower bounds against C for a language in NEXP.
Here we complement this result, by showing the following.
Compression implies circuit lower bounds: Compressing
Boolean functions from any subclass C of polynomial-size
circuits to any circuit size less than 2n/n implies super-
polynomial lower bounds against the class C for a language
in NEXP.

Thus, both non-trivial SAT algorithms and non-trivial
compression algorithms for a circuit class C ⊆ P/poly
imply superpolynomial lower bounds against that class. This
suggests trying to get an alternative proof of Williams’s
lower bound NEXP 6⊆ ACC0 [56] via designing a com-
pression algorithm for ACC0 functions. Apart from getting
an alternative proof, the hope is that such a compression
algorithm would give us more insight into the structure of
ACC0 functions, which could lead to ACC0 circuit lower
bounds against a much more explicit Boolean function, say
the one in NP or in P.

B. Our proof techniques

The circuit lower bounds proved by a method of random
restrictions yield a nice structural characterization of the
class of n-variate Boolean functions f computable by small
circuits. Roughly, we get that the universe {0, 1}n can be
partitioned into “not too many” disjoint regions, such that the
restriction of the original function f to “almost every” region
is a “simple” function, where “simple” means of description
size O(n). This is reminiscent of the Set Cover problem:
we want to cover all the 1s of the given function f using as
few as possible subsets that correspond to the truth tables of
“simple functions” of small description size. We show how
to find such a collection of few simple functions, using a
variant of the greedy heuristic for Set Cover.

For our compression algorithms, we use the “simplicity”
of functions in the disjunction to argue that they have
linear-size descriptions (as required in order to achieve
poly(2n) running time). For our #SAT algorithms, we use
the “simplicity” of the functions to argue that there will
be few distinct functions associated with the regions of the
partition of {0, 1}n. Once we solve #SAT (using a brute-
force algorithm) for all distinct subfunctions and store the
results, we can solve #SAT for almost all regions by the
table look-up, achieving a noticeable speed-up overall.

Our proof of the high-probability version of the shrinkage
lemma for formulas follows the supermartingale approach
of [33]: For a de Morgan formula F on n variables, we
consider the sequence of random variables Xi, 1 6 i 6
n, where Xi corresponds to the size of the restricted and
simplified subformula of F after i variables are set randomly.
By [52], setting a single variable at random is expected to
shrink the formula size (with the shrinkage exponent 3/2).
Thus, the sequence {Xi} is a supermartingale. However, to
apply standard concentration bounds (Azuma’s inequality),
one needs to show that the absolute value of |Xi−Xi−1| is



bounded. In our case, we have only one side of this bound,
i.e., that Xi−Xi−1 is small. We show a variant of Azuma’s
inequality that holds in this case (for one-sided bounded
random variables that take two possible values with equal
probability), and apply this bound to complete the shrinkage
analysis. This yields a simpler proof of the shrinkage result
of [33] with the following differences: (1) our restrictions
always choose deterministically which variable to restrict
(as opposed to restrictions of [33] that define “heavy” and
“light” variables, and either choose deterministically a heavy
variable, if it exists, or randomly choose a light variable
otherwise), (2) after setting n− k variables, we get that all
but at most 2−k restricted formulas have shrunk in size (as
opposed to 2−k

1−o(1)

in [33]). The fact that our restrictions
are deterministic when choosing a variable to restrict leads
to a deterministic #SAT algorithm for small (de Morgan)
formulas. The fact that our error parameter is 2−k leads
to simplified analysis of Santhanam’s #SAT algorithm for
linear-size de Morgan formulas [48].

Our proof of [33]’s average-case hardness result is more
modular and simpler. In particular, we adapt Andreev’s orig-
inal lower bound argument [3] to the case of not necessarily
truly random restrictions (by using randomness extractors),
and use the information-theoretic framework of Kolmogorov
complexity to avoid unnecessary technicalities.

Finally, our proof of circuits lower bounds for NEXP from
a compression algorithm for a circuit class C ⊆ P/poly is a
generalization of the similar result from [24], showing that
the existence of a natural property (even without the “large-
ness” assumption) for P/poly implies NEXP 6⊆ P/poly.
Here we handle the case of any circuit class C ⊆ P/poly.
Since the existence on an efficient compression algorithm
for a circuit class C implies a natural property for the same
class, the required lower bound NEXP 6⊆ C follows.

Independently, Williams [57] also proves such a gener-
alization of the result from [24] (as part of his equiva-
lence between proving C-circuit lower bounds against NEXP
and having polynomial-time computable properties useful
against C).

Other related work: Perhaps the earliest example of
a compression algorithm for a general class of Boolean
functions is due to Yablonski [58], who observed that n-
variate Boolean functions that “don’t have too many dis-
tinct subfunctions” can be computed by a circuit of size
σ · 2n/n, for some σ < 1 (related to the number of distinct
subfunctions). The complexity of circuit minimization was
studied in [39], [30], [2], [16]. In particular, [2], [16] show
that finding an approximately minimal-size DNF for a given
truth table of an n-variate Boolean function is NP-hard, for
the approximation factor nγ for some constant 0 < γ < 1.

Concurrent independent work: Raz, Komargodski, and
Tal [34] improve the average-case de Morgan formula lower
bounds of [33] to handle formulas of size about n3. They
also prove a version of the high-probability shrinkage result

for de Morgan formulas with Håstad’s shrinkage exponent
2 (rather than Subbotovskaya’s shrinkage exponent 1.5 used
in [33]). Similarly to our paper but independently of our
work, Komargodski et al. [34] also adapt Andreev’s method
to arbitrary (not necessarily completely random) restrictions
by using appropriate randomness extractors.

The remainder of the paper: We prove our compression
theorem in Section II, and the shrinkage result in Section III.
We give our #SAT algorithms in Section IV. Average-case
formula lower bounds are proved in Section V. We prove
that compression implies circuit lower bounds in Section VI.
We conclude with open questions in Section VII. Due to
page limitations, some proofs are omitted in this conference
version. For a full version of the paper, please see [11].

II. COMPRESSION FROM RESTRICTION-BASED CIRCUIT
LOWER BOUNDS

Here we prove the Compression Theorem.

A. Compression of DNFs via Set Cover

It is well-known that DNFs of almost minimum size can
be computed from the truth table of f : {0, 1}n → {0, 1}
using a greedy Set Cover heuristic [28], [37], [13]. We recall
this heuristic next.

Let U be a universe, and let S1, . . . , St ⊆ U be subsets.
Suppose U can be covered by ` of the subsets. Then the
following algorithm will find an approximately minimal set
cover.

Repeat the following, until all of U is covered:
find a subset Si that covers at least 1/` fraction of
points in U which were not covered before, and
add Si to the set cover.

For the analysis, observe that since ` subsets cover U ,
they also cover every subset of U . Hence, in each iteration
of the algorithm, there exists a subset that covers at least 1/`
fraction of the not-yet-covered points. After each iteration,
the size of the set of points that are not covered reduces by
the factor (1− 1/`). Thus, after t iterations, the number of
points not yet covered is at most |U | · (1 − 1/`)t 6 |U | ·
e−t/`, which is less than 1 for t = O(` · ln |U |). Hence,
this algorithm finds a set cover that is at most the factor
O(ln |U |) larger than the minimal set cover.

It is easy to adapt the described algorithm to find approxi-
mately minimal DNFs. Let f : {0, 1}n → {0, 1} be given by
its truth table. Suppose that there exists a DNF computing f
such that the DNF consists of ` terms (conjunctions). With
each term a on n variables, we associate the set Sa = a−1(1)
of points of {0, 1}n where it evaluates to 1. We enumerate
over all possible terms a on n variables, and keep only those
sets Sa where Sa ⊆ f−1(1) (i.e., Sa does not cover any zero
of f ); note that all ` terms of the minimal DNF for f will
be kept. Next we run the greedy set cover algorithm on the
universe U = f−1(1) and the collection of sets Sa chosen
above. By the analysis above, we get O(` · log |U |) terms



such that their disjunction computes f . That is, we find a
DNF for f of size at most O(n) factor larger than that of
the minimal DNF for f .

The running time of the described algorithm is polynomial
in 2n and the number of sets Sa. The latter is the number
of all possible terms on n variables, which is at most 22n

(we can use an n-bit string to describe the characteristic
functions of a subset of n variables, and another n-bit string
to describe the signs of the chosen variables). Thus, the
overall running time is poly(2n).

B. Compression of AC0 functions via DNFs

The known lower bounds for AC0 circuits are based on
the fact that almost all random restrictions simplify a small
AC0 circuit to a function that depends on fewer than the
remaining unrestricted variables. Intuitively, this means that
there is a partitioning of the Boolean cube {0, 1}n into not
too many disjoint regions such that the original AC0 circuit
is constant over each region. This intuition can be made
precise using the Switching Lemma [20], [45], [5], [25].

Lemma II.1 ([25]). Every d-depth s-size Boolean circuit on
n inputs has an equivalent DNF with at most poly(n) · s ·
2n(1−µ) terms, where µ > 1/O(log(s/n) + d log d)d−1.

Using this structural characterization and the greedy Set-
Cover algorithm, we get the following.

Theorem II.2. There is a deterministic poly(2n)-time algo-
rithm A satisfying the following. Let f : {0, 1}n → {0, 1}
be any Boolean function computable by an AC0 circuit of
depth d and size s = s(n). Given the truth table of f , and
d and s, algorithm A produces a DNF for f with at most
poly(n) · s · 2n(1−µ) terms, where µ > 1/O(log s)d−1.

Note the described algorithm achieves nontrivial compres-
sion for depth-d AC0 circuits of size up to 2n

1/(d−1)

, the size
for which we know lower bounds against AC0.

C. Formulas and branching programs

The known lower bounds for (de Morgan) formulas are
also proved using the method of random restrictions. One
of the earliest results here is by Subbotovskaya [52] who
argued that the size of a de Morgan formula shrinks in
expectation when hit by a random restriction; this result
was subsequently tightened by Håstad [21]. However, these
results are not strong enough to provide a kind of structure
of easy functions that would be useful for compression.
By analogy with the case of AC0, we would like to say
something like “for every small de Morgan formula, there
is a partition of the Boolean cube into not too many regions
such that the original formula is constant on each region”.
In particular, we need a “high probability” version of the
classical shrinkage results of [52], [21].

Recently, there have been several such shrinkage results
proved for different purposes. Santhanam [48] implicitly

proved such a result for linear-size de Morgan formulas and
used it to obtain a deterministic SAT algorithm for such
formulas that runs in time better than that of the “brute-
force” algorithm. Impagliazzo et al. [26] proved a version
of shrinkage result with respect to certain pseudorandom
restrictions, in order to construct a non-trivial pseudorandom
generator for small de Morgan formulas. Komargodski and
Raz [33] proved a shrinkage result for certain random
restrictions (different from the ones in [48]), and used it
to get a strong average-case lower bound against small de
Morgan formulas.

We will give an improved and simplified proof of the
shrinkage result due to [48], [33]. We use the same notion
of random restrictions as in [48], which will allow us later to
get a “better than brute force” deterministic SAT algorithms
for super-quadratic-size de Morgan formulas. We get a
smaller error probability than that of [33], which allows
us to analyze Santhanam’s SAT algorithm for linear-size
de Morgan formulas as an easy corollary. Finally, we get
a clean and simple proof which avoids some of the ad hoc
technicalities from [33].

1) Structure of functions computable by small formulas:
First, we state our version of the shrinkage result. Let F
be a de Morgan formula on n variables. As in [48], we
consider adaptive restrictions that proceed in i rounds, for
0 6 i 6 n, and in each round set uniformly at random the
most frequent variable in the current formula, and simplify
the resulting new formula (using the standard simplification
rules). Note that these restrictions are not completely ran-
dom: the next variable to be restricted is chosen completely
deterministically (as the most frequent one), but the value
assigned to this variable is then chosen uniformly at random
to be either 0 or 1.

For a given de Morgan formula F , define F0 = F .
For 1 6 i 6 n, we define Fi to be the random formula
obtained from Fi−1 by uniformly at random assigning the
most frequent variable of Fi−1, and simplifying the result.
Note that Fi is a formula on n− i remaining (unrestricted)
variables.

Lemma II.3 (Shrinkage Lemma). Let F be
any given (de Morgan) formula or a branching
program on n variables. For any k > 4, we have
Pr
[
L(Fn−k) > 2 · L(F ) ·

(
k
n

)Γ]
< 2−k, where Γ = 3/2

for de Morgan formulas, and Γ = 1 for formulas over the
complete basis and for branching programs.

We postpone the proof of Shrinkage Lemma till Sec-
tion III. Now we apply this lemma to obtain the following
structural characterization of small formulas and branching
programs, which will be useful for compression.

Corollary II.4. Let F (x1, . . . , xn) be any formula (branch-
ing program) of size O(nd), where the constant d is such that
d < 2.5 for de Morgan formulas, and d < 2 for formulas



over the complete basis and for branching programs. There
exist constants 0 < δ, γ < 1 (dependent on d) such that
for k = dnδe the following holds. The Boolean function
computed by F is computable by a decision tree of depth
n − k whose leaves are labeled by the restrictions of F
(determined by the path leading to the leaf) such that all
but 2−k fraction of the leaf labels are formulas (branching
programs) on k variables of size less than nγ .

Proof: We consider the case of de Morgan formulas
only; the case of formulas over the complete basis or branch-
ing programs can be argued analogously. Let d = 2.5 − ν,
for some constant ν > 0. Set δ := ν/3, and γ := 1 − ν/2.
By Lemma II.3 applied to F , we get that for all but 2−k

fraction of the branches of the restriction decision tree
of depth n − k, the restricted formula has size less than
O(nd/n1.5(1−δ)) = O(n1−ν/2).

2) Generalized greedy Set-Cover heuristic: The Shrink-
age Lemma allows us to decompose the Boolean cube into
not too many regions so that, over almost all regions, the
original formula simplifies to a formula of sublinear size.
This falls short of our original hope to get a constant function
over most regions. In fact, the latter cannot be achieved since
a de Morgan formula of size O(n2) computes the parity of
n bits, and the parity function doesn’t simplify to a constant
unless all of its variables are fixed.

Fortunately, we can still use a version of the greedy Set
Cover heuristic to compress de Morgan formulas of size
about n2.5. The reason is that a similar algorithm works also
for a function f : {0, 1}n → {0, 1} computed by a circuit of
the form ∨`+1

i=1Ci, for ` 6 2n, where all but one circuit are
small, while the remaining circuit accepts few inputs.

Theorem II.5. There is a deterministic poly(2n)-time algo-
rithm A satisfying the following. Let f : {0, 1}n → {0, 1}
be any function computable by a circuit ∨`+1

i=1Ci, for 1 6
` 6 2n, where the circuits C1, . . . , C` have both circuit size
and description size at most cn for a constant c > 0, while
the last circuit C`+1 evaluates to 1 on at most fraction α of
points in {0, 1}n, for some 0 6 α < 1.

Given the truth table of f and the parameters `, c, and
α, algorithm A finds a circuit for f of the form ∨mi=1Di,
where m = O(n · `), the circuits D1, . . . , Dm−1 are of size
O(n) each, and the circuit Dm is a DNF with O(α2n) terms.
Hence the overall size of the found circuit is O(`n2+αn2n).

Proof: Let U = f−1(1), and let β = |U |/2n. If β 6 2α,
then our algorithm A outputs the circuit which is a DNF with
β2n terms, where each term evaluates to 1 on a single point
in U , and is 0 everywhere else. Note that the size of this
circuit is O(αn2n), as required.

If β > 2α, then algorithm A does the following.
Enumerate4 all linear-size circuits C of description

4Here we assume the correspondence between circuits and their descrip-
tions is efficiently computable and is known.

size at most cn, keeping only those C where
C−1(1) ⊆ f−1(1). Call the kept circuits legal.
Let S = ∅.
Repeat the following until the number of not-yet-
covered points of U becomes at most 2α2n: find
a legal circuit C such that the set C−1(1) covers
at least 1/(2`) fraction of not-yet-covered points
in U , and add C to the set S.
Once the number of non-covered points in U
becomes at most 2α2n, construct a DNF D that
evaluates to 1 on each non-covered point, and is 0
everywhere else. Output the disjunction of D and
the circuits in S.

For the analysis, let W = C−1
`+1(1), and let let V = U\W .

We claim that at each iteration of the algorithm before the
last iteration, the set of not-yet-covered points in V is at least
as big as the set of not-yet-covered points in W . Indeed,
otherwise the total number of not-yet-covered points at that
iteration is at most 2 · |W | 6 2α2n, making this the last
iteration of the algorithm.

Next observe that at each iteration before the last one,
the set of not-yet-covered points in V is non-empty, and is
covered by ` legal circuits. Hence, there is a legal circuit
that covers at least 1/` fraction of non-covered points in
V , which, by the earlier remark, constitutes at least 1/(2`)
fraction of all non-covered points of U . Thus our algorithm
will always find a required legal circuit C. It follows that
after each iteration, the size of not-yet-covered points in U
decreases by the factor (1 − 1/(2`)), and hence the total
number of iterations is t = O(` · log |U |) = O(` · n).

Thus, after at most t iterations, at most 2α2n points of
U are still not covered. We denote the t found circuits
D1, . . . , Dt, and let Dt+1 be the DNF with at most 2α2n

terms which evaluates to 1 on the non-covered points of U ,
and is 0 everywhere else. Note that the circuit size of Dt+1

is O(αn2n), while all Di’s, for 1 6 i 6 t, are of circuit
size O(n) by construction. The overall running time of the
described algorithm is poly(2n, t) = poly(2n).

Using this generalized algorithm, we get the following.

Theorem II.6. There is an efficient compression algorithm
that, given the truth table of a formula (branching program)
F on n variables of size L(F ) 6 nd, produces an equivalent
Boolean circuit of size at most 2n−n

ε

, for some constant
0 < ε < 1 (dependent on d), where d < 2.5 for de Morgan
formulas, and d < 2 for formulas over the complete basis
and for branching programs.

Proof: Let F be a de Morgan formula, a complete-
basis formula, or a branching program of the size stated in
the theorem. By Corollary II.4, this F can be computed by a
decision tree of depth m := n−nδ such that all but at most
α := 2−n

δ

fraction of the leaves correspond to restricted
subformulas of F of size nγ on k := nδ variables, for some
constants 0 < δ, γ < 1 dependent on d.



Each leaf of the decision tree corresponds to a restriction
of some subset of m input variables. Let us associate with
each leaf i, 1 6 i 6 2m, of the decision tree, the conjunction
ci of m literals that defines the corresponding restriction.
Also let Fi, for 1 6 i 6 2m, denote the restriction of the
original F corresponding to the restriction given by ci. We
get that F ≡ ∨2m

i=1(ci ∧ Fi).
We know that all but b := α · 2m of formulas Fi are

sublinear-size nγ . Let us assume, without loss of generality,
that all the first ` := 2m − b formulas Fi are small. Define
the circuits Ci := (ci ∧ Fi), for 1 6 i 6 `, and C`+1 :=
∨2m

i=`+1(ci ∧ Fi).
Observe that the circuit C`+1 can evaluate to 1 on at most

b ·2k = α ·2n inputs from {0, 1}n (since the decision tree of
depth m partitions the set {0, 1}n into 2m disjoint subsets
of size 2k each, and C`+1 corresponds to b such subsets).
Each circuit Ci, for 1 6 i 6 `, is of size at most O(m +
nγ) 6 O(n). We also claim that each such circuit can be
described by a string of O(n) bits. Indeed, we can specify
the conjunction ci using 2n bits (n bits to describe the subset
of variables in the conjunction, and another n bits to specify
the signs of the variables), and we can specify the formula
(branching program) Fi of size nγ by at most O(nγ log n) 6
O(n) bits in the standard way.

Thus we get that F ≡ ∨`+1
i=1Ci satisfies the assumption

of Theorem II.5. Running the greedy algorithm of The-
orem II.5, we get a circuit for F of total size at most
O(`n2 + αn2n) 6 poly(n) · 2n−nδ .

D. Read-once branching programs

Read-once branching programs are quite well-understood,
with strongly exponential lower bounds known. A property
that makes a function f hard for read-once branching pro-
grams is that of being m-mixed: for every set S of variables
such that |S| = m every two distinct assignments a and b
to variables in S give rise to different functions fa 6≡ fb.
Any read-once branching program computing an m-mixed
Boolean function must have at least 2m − 1 nodes [49].

On the other hand, a function that has a small read-
once branching program cannot be m-mixed for large m.
Intuitively, such a function can be represented by a decision
tree of depth m, whose leaves are labeled by subfunctions g
(in the remaining n−m variables) so that many of the leaves
share the same subfunction. If a program has size s, then the
number of distinct such subfunctions is at most s. Thus, f
can be computed as an OR of at most s subformulas, where
each subformula encodes the conjunction of a particular
subfunction g and the DNF describing all branches leading
to this subfunction g. The fact that f can be represented as
an OR of few simple formulas allows us to use the greedy
SetCover heuristic to compress such f .

Theorem II.7. There is a deterministic poly(2n)-time algo-
rithm A satisfying the following. Let f : {0, 1}n → {0, 1} be

any Boolean function computable by a read-once branching
program of size s. Given the truth table of f , algorithm A
produces a formula for f of size at most O(sn3 · 2n/2).

III. SHRINKAGE OF DE MORGAN FORMULAS

Here we prove the Shrinkage Lemma. We use the adaptive
restrictions of [48] (each time randomly restricting the most
frequent variable in the formula). Following [33], our idea
is to analyze how the size of a formula is changed after a
single (most frequent) variable is randomly assigned. The
new formula size is a random variable, which is expected
to get smaller than the previous formula size. We would
like to treat the sequence of these random variables as a
supermartingale, and use the standard concentration results
(Azuma’s inequalities) to show that the final formula is very
likely to have a small size.

One technical problem with this approach is that in one
step the formula size may drop by an arbitrary amount,
and we don’t seem to get the boundedness condition (that
a random variable changes by at most some fixed amount
after each step) that is a condition for the standard ver-
sion of Azuma’s inequality. In [33], this technicality was
circumvented by introducing some “dummy” variables into
the formula to artificially keep the one-step change in the
formula size bounded, and then apply the standard version
of Azuma’s inequality. However, it seems unnecessary to do
that, since if the formula size drops by a lot in a single step,
this should be even better for us!

Instead, we show a version of Azuma’s inequality holds in
the special case of random variables which take two values
with equal probability and where the boundedness condition
is one-sided: we just require that the next random value
be smaller than the current value by at least some known
amount, meanwhile allowing it to be arbitrarily small. This
turns out to be precisely the setting in our case, and so we
can bound the probability of producing a large formula by a
direct application of Azuma’s inequality. Apart from making
the overall argument simpler, this also gives a quantitatively
better bound. We give the details next.

A. A variant of Azuma’s Inequality

Lemma III.1. Let Y be a random variable taking two values
with equal probability. If E[Y ] 6 0 and there exists c > 0
such that Y 6 c, then for any t > 0, E[etY ] 6 et

2c2/2.

Proof: Suppose Y takes two values a and b with equal
probability, and a 6 b 6 c. If b 6 0, then etY 6 1 6 et

2c2/2.
If b > 0, since E[Y ] = 1

2 (a + b) 6 0, then a 6 −b and
E[etY ] = 1

2 (eta + etb) 6 1
2 (e−tb + etb) 6 et

2b2/2 6 et
2c2/2,

by the inequality 1
2 (e−x + ex) 6 ex

2/2.
Recall that a sequence of random variables

X0, X1, X2, . . . , Xn is a supermartingale with respect
to a sequence of random variables R1, R2, . . . , Rn if
E[Xi | Ri−1, . . . , R1] 6 Xi−1, for 1 6 i 6 n.



Lemma III.2. Let {Xi}ni=0 be a supermartingale with
respect to {Ri}ni=1. Let Yi = Xi − Xi−1. If, for every
1 6 i 6 n, the random variable Yi (conditioned on
Ri−1, . . . , R1) assumes two values with equal probability,
and there exists a constant ci > 0 such that Yi 6 ci, then,
for any λ, we have Pr[Xn−X0 > λ] 6 exp

(
− λ2

2
∑n
i=1 c

2
i

)
.

The proof, omitted here, is by adapting the standard proof
of Azuma’s inequality to our “one-side bounded” variables.

B. Shrinkage lemma

A de Morgan formula can be simplified using the follow-
ing simplification rules, which have been used in [21], [48].
We denote by ψ an arbitrary subformula, and y a literal. The
rules are: (1) If 0∧ψ or 1∨ψ appears, then replace it by 0
or 1, respectively. (2) If 0∨ψ or 1∧ψ appears, then replace
it by ψ. (3) If y ∨ ψ appears, then replace all occurrences
of y in ψ by 0 and y by 1; if y ∧ ψ appears, then replace
all occurrences of y in ψ by 1 and y by 0. We say a de
Morgan formula is simplified if none of the above rules are
applicable. Note that in a simplified formula, by the rule 3,
if a leaf is labeled with x or x, then its sibling subtree does
not contain the variable x.

For a given de Morgan formula F on n variables, define
F0 = F . For 1 6 i 6 n, we define Fi to be the
simplified formula obtained from Fi−1 by uniformly at
random assigning the most frequent variable of Fi−1.

We re-state the Shrinkage Lemma for the case of de Mor-
gan formulas; the case of general formulas and branching
programs is similar with the shrinkage exponent Γ = 1 used
throughout instead of Γ = 3/2.

Lemma III.3 (Shrinkage Lemma). Let F be any given de
Morgan formula on n variables. For any k > 4, we have
Pr
[
L(Fn−k) > 2 · L(F ) ·

(
k
n

)3/2]
< 2−k.

We need the following auxiliary lemma; its proof follows
easily from the simplification rules (see also [48], [29]).

Lemma III.4. L(Fi+1) 6 L(Fi) · (1− 1/n), and
E[L(Fi+1)] 6 L(Fi) · (1− 1/n)

3/2.

Let Ri be the random value assigned to the restricted
variable in step i. Set Li := L(Fi), and li := logLi. Define
a sequence of random variables {Zi} as follows:

Zi = li − li−1 −
3

2
log

(
1− 1

n− i+ 1

)
.

Conditioned on R1, . . . , Ri−1, the formula Fi−1 is fixed,
and Zi assumes two values with equal probability. Using
Lemma III.4 and Jensen’s inequality, we get the following.

Lemma III.5. Let X0 = 0 and Xi =
∑i
j=1 Zj . Then the

sequence {Xi} is a supermartingale with respect to {Ri},
and, for each Zi, we have Zi 6 ci := − 1

2 log
(

1− 1
n−i+1

)
.

Now we can complete the proof of the Shrinkage Lemma.

Proof of Lemma III.3: Let λ be arbitrary, and let ci’s be
as defined in Lemma III.5. By Lemma III.5 and Lemma III.2,
we get Pr

[∑i
j=1 Zj > λ

]
6 exp

(
− λ2

2
∑i
j=1 c

2
j

)
. The left-

hand side, by the fact that
∑i
j=1 Zj = li − l0 − 3

2 log n−i
n ,

is Pr
[
Li > eλL0

(
n−i
n

)3/2]
.

For each 1 6 j 6 i, we have cj 6 1/2(n− j), using the
inequality log(1+x) 6 x. Thus,

∑i
j=1 c

2
j 6 1/4(n− i−1).

Taking i = n − k, we get Pr
[
Ln−k > eλL0

(
k
n

)3/2]
6

e−2λ2(k−1). Choosing λ = ln 2 concludes the proof.

IV. #SAT ALGORITHMS FOR FORMULAS

A. n2.49-size de Morgan and n1.99-size general formulas

Here we show the existence of “better than brute-force”
#SAT algorithms for formulas of about quadratic size.

Theorem IV.1. There is a deterministic algorithm counting
the number of satisfying assignments in a given formula on n
variables of size 6 nd which runs in time t(n) 6 2n−n

δ

, for
some constant 0 < δ < 1 (dependent on d), where d < 2.5
for de Morgan formulas, and d < 2 for formulas over the
complete basis and for branching programs.

Proof: We consider the case of de Morgan formulas
only; the case of general formulas and branching programs
is similar (using the shrinkage exponent Γ = 1 rather than
Γ = 1.5). Suppose we have a formula F on n variables
of size n2.5−ε for a small constant ε > 0. Let k = nα

and α < 2
3ε. We build a restriction decision tree with 2n−k

branches as follows:
Starting with F at the root, find the most frequent
variable in the current formula, set the variable
first to 0 then to 1, and simplify the resulting two
subformulas. Make these subformulas the children
of the current node. Continue until get a full binary
tree of depth exactly n− k.

Note that constructing this decision tree takes time
2n−kpoly(n). By Lemma III.3, all but 2−k fraction of the
leaves have the formula size < 2L(F )

(
k
n

)3/2
= 2 · n2.5−ε ·

n1.5(α−1) = 2n1−ε+1.5α.
To solve #SAT for all “big” formulas (those that haven’t

shrunk), we use brute-force enumeration over all possible
assignments to the k variables left. The running time is
bounded by 2n−k · 2−k · 2k · poly(n) 6 2n−k · poly(n).

For “small” formulas (those that shrunk to the size less
than 2nγ for some γ = 1 − ε + 1.5α), we use memoiza-
tion. First, we enumerate all formulas of such size, and
compute and store the number of satisfying assignments
for each of them. Then, as we go over the leaves of
the decision tree that correspond to small formulas, we
simply look up the stored answers for these formulas. There
are at most 2O(nγ logn) such formulas, and counting the
satisfying assignments for each one (with k inputs) takes



time 2kpoly(nγ) = 2n
α · poly(n). Including pre-processing,

computing #SAT for all small formulas takes time at most
2n−k · poly(n) + 2O(nγ logn) 6 2n−n

α · poly(n).

The overall runtime is at most 2n−n
δ

for some δ > 0.

B. Linear-size formulas

We analyze Santhanam’s 2n−δn-time satisfiability algo-
rithm [48] for cn-size de Morgan formulas, using the “su-
permartingale approach”, and get an explicit bound on δ.

Theorem IV.2 ([48]). There is a deterministic algorithm for
counting the number of satisfying assignments of a given
cn-size de Morgan formula on n variables that runs in time
2n−δn, for δ > 1/(32c2).

We also use the “supermartingale approach” to provide
a different analysis of the #SAT algorithm for linear-size
general formulas of [50].

Finally, we observe that the proof of Theorem IV.2
immediately yields an average-case lower bound for linear-
size de Morgan formulas [48]. Indeed, by the proof of
Theorem IV.2, every cn-size de Morgan formula F on n
variables can be computed by a decision tree of height n−k,
for k = n/(16c2), where all but 2−k branches of the tree
correspond to subformulas on at most k/2 of the remaining
k variables. Any such subformula has zero correlation with
the parity function. Hence, F can correctly compute parity
with probability at most 1/2 + 2−k = 1/2 + 2−n/(16c2).

Note that this average-case hardness is nontrivial for c <√
n, i.e., for de Morgan formulas of size at most n1.5. In

the following section, we show how to get an average-case
lower bound against de Morgan formulas of size about n2.5.

V. AVERAGE-CASE HARDNESS FOR DE MORGAN
FORMULAS OF SIZE n2.49

Here we use our shrinkage result for adaptive restrictions
to re-prove a recent result by Komargodski and Raz [33]
on average-case hardness for de Morgan formulas. Our
proof is more modular than the original argument of [33],
and is arguably simpler. The main differences are: (i) we
use restrictions that choose which variable to restrict in a
completely deterministic way (rather than randomly), and
(ii) we use an extractor for oblivious bit-fixing sources
(instead of Andreev’s extractor for block-structured sources).

A. Andreev’s original argument

We sketch the original idea of Andreev first. Andreev [3]
defined a function A : {0, 1}n×{0, 1}n → {0, 1} as follows:
Given inputs x, y ∈ {0, 1}n, partition y into log n blocks
y1, . . . , ylogn of size n/ log n each. Let bi be the parity of
block yi, and output the bit of x in the position b1 . . . blogn

(where we interpret the log n-bit string b1 . . . blogn as an
integer between 0 and n − 1). Note that the de Morgan
formula complexity of A(x, y) is at least that of A(x0, y)
for any fixed string x0. Andreev argued that if x0 is a truth

table of a function of maximal formula complexity, then
the resulting function A′(y) = A(x0, y) will be hard for
de Morgan formulas of certain size (dependent on the best
available shrinkage exponent Γ).

The proof is by contradiction. Suppose we have a small
de Morgan formula computing A′(y). The argument relies
on two observations. First, under a random restriction (with
appropriate parameters), the restricted subformula of A′(y)
will have size considerably less than n. Secondly, a random
restriction is likely to leave at least one variable free (un-
restricted) in each of the blocks. When both these events
happen, we get a small-size de Morgan formula that can
be used to compute the bits of x0, which contradicts the
assumed hardness of x0.

Looking at Andreev’s argument more closely, we observe
that he uses the second string y to extract log n bits that are
used as a position in the truth table x0. He needs y to have
the property that every log n-bit string can be obtained from
y even after y is hit by a random restriction, leaving few
variables free. Intuitively, each unrestricted variable in y is
a source of a truly random bit, and so the restricted string y
is a weak source of randomness containing k truly random
bits, where k is the number of unrestricted variables left in
y. In fact, this is an oblivious bit-fixing source with k bits
of min-entropy.

Andreev uses a very simple extractor for y (extracting
one bit of randomness from each block in y), but this
extractor works only for “sources of randomness” which
have a “block structure”, namely, every block contains at
least one truly random bit. This dictates that the argument be
constrained to use restrictions which in addition to leaving k
unrestricted bits, also respect this “block structure” (at least
with high probability). This is not an issue in Andreev’s
argument which uses random restrictions (that indeed respect
the “block structure” with high probability). However, this
creates difficulties if one wants to use other choices of
restrictions as is the case in both [33] and the argument
of this paper.

B. Adapting Andreev’s argument to arbitrary restrictions,
using extractors

We will show that Andreev’s argument can be adapted to
work with any choice of restrictions (in particular, our adap-
tive restrictions that choose deterministically which variables
to restrict). To this end, we shall use explicit extractors
for oblivious bit-fixing sources; in fact, a disperser suffices
in this context of worst-case hardness, but an extractor
is needed for the case of average-case hardness that we
consider later.

One difficulty we need to overcome when using an
arbitrary extractor/disperser instead of Andreev’s original
extractor is an apparent need of invertibility: Given a position
z into the truth table of x0, and a restriction, we need
to find extractor’s pre-image y′ of z that is consistent



with the restriction. This task is very easy for Andreev’s
extractor, but quite non-trivial in general. However, we will
show that for Andreev’s argument, one can start with any
incompressible string x0, not just of high de Morgan formula
complexity, but rather, say, of high Kolmogorov complexity.
This makes the whole argument of deriving a contradiction
to the assumed hardness of x0 much simpler: we just need
to argue that the existence of a small de Morgan formula
for A(x0, y) implies the existence of a short description in
the Kolmogorov sense for the string x0. The reconstruction
procedure for x0 may take arbitrary amount of time, and so
in particular, it is acceptable to use even brute-force inverting
procedures for extractors/dispersers.

C. Average-case hardness

We use the following extractor by Rao [43].

Theorem V.1 ([43]). There exist constants d < 1 and c > 1
such that for every k(n) > logc n, there is a polynomial
time computable extractor E : {0, 1}n → {0, 1}k−o(k) for
(n, k)-bit-fixing sources, with error 2−k

d

.

We also use the following binary code whose existence is
a folklore result.

Theorem V.2. Let r = nγ , for any given 0 < γ < 1.
There exists a binary code C mapping (4n)-bit message to
a codeword of length 2r, such that C is (ρ, L)-list decodable
for ρ = 1/2 − O(2−r/4) and L 6 O(2r/2). Furthermore,
there is a polynomial-time algorithm for computing C(x) in
position z, for any inputs x ∈ {0, 1}4n and z ∈ {0, 1}r.

Loosely speaking, as in [33], the code is used to perform
“worst-case to average-case hardness amplification” in the
spirit of [53]: When applied on a truth table x0 of a function
that is hard in the worst case, C(x0) is the truth table of a
function that is hard on average. Here “hardness” refers to
description size.

We extend the definition of the previous section and use
the modified Andreev’s function after applying the error-
correcting code. Namely, let f : {0, 1}4n×{0, 1}n → {0, 1}
be defined by f(x, y) = C(x)E(y), where C is the code from
Theorem V.2 and E is Rao’s extractor (from Theorem V.1)
mapping n bits to m = r = nγ bits, for the min-entropy
k > 2m. We prove the following.

Theorem V.3. Let x0 be any fixed (4n)-bit string of Kol-
mogorov complexity K(x0) > 3n. Define f ′(y) = f(x0, y).
Then there exists a constant 0 < σ < 1 such that, for any
de Morgan formula F of size at most n2.49 on n inputs,
Pry∈{0,1}n [F (y) = f ′(y)] < 1

2 + 1
2nσ

.

By an averaging argument applied to Theorem V.3, we
get the following corollary.

Theorem V.4. There is a constant 0 < σ < 1 such that,
for any de Morgan formula F of size at most n2.49 on 5n

inputs, we have Prx∈{0,1}4n,y∈{0,1}n [F (x, y) = f(x, y)] <
1
2 + 1

2nσ
.

Since the function f(x, y) is computable in P (using the
fact that the code C and the extractor E are efficiently
computable), we get an explicit function in P that has
exponential average-case hardness with respect to de Morgan
formulas of size n2.49.

VI. CIRCUIT LOWER BOUNDS FROM COMPRESSION

Since incompressibility of Boolean functions is a special
case of a natural property in the sense of [46], the existence
of compression algorithms for a circuit class C implies
that there is no strong PRG in C. Here we argue that
such compression algorithms would also yield circuit lower
bounds against C for a language in NEXP.

A. Arbitrary subclass of polynomial-size circuits

It was shown in [24] that the existence of a natural
property for P/poly would imply that NEXP 6⊆ P/poly.
In particular, the same conclusion follows if we assume the
existence of a compression algorithm for P/poly-computable
Boolean functions. We generalize this result by proving that
the same is true if we replace P/poly with any subclass
C ⊆ P/poly.

Theorem VI.1. Let C ⊆ P/poly be any circuit class.
Suppose that for every c ∈ N there is a deterministic
polynomial-time algorithm that compresses a given truth
table of an n-variate Boolean function f ∈ C[nc] to a circuit
of size less than 2n/n. Then NEXP 6⊆ C.

It is easy to get an analogue of Theorem VI.1 also for
deterministic lossy compression algorithms.

Remark VI.2. If we could show that ACC0-computable
functions are compressible, we would get an alternative
proof of Williams’s lower bound NEXP 6⊆ ACC0 [56]. In-
terestingly, while such a compression algorithm would yield
a natural property for ACC0, the overall lower bound proof
would still use non-natural arguments and non-relativizing
arguments that come from the use of [24].

B. Other function classes that are hard to compress

Large AC0 circuits: Compressing functions computable
by “large” AC0 circuits (of size 2n

ε

with ε� 1/d, where d
is the depth of the circuit) is difficult since every function
computable by a polynomial-size NC1 circuit has an equiva-
lent AC0 circuit of size 2n

ε

(and some depth d dependent on
ε). The existence of a compression algorithm for such large
AC0 circuits would imply a natural property in the sense of
[46] useful against NC1. The latter implies that no strong
enough PRG can be computed by NC1 circuits [46], [2].
Also, using Theorem VI.1, we get that such compression
would imply that NEXP 6⊂ NC1.



Theorem VI.3. For every ε > 0 there is a d ∈ N such that
the following holds. If there is a deterministic polynomial-
time algorithm that compresses a given truth table of an
n-variate Boolean function f ∈ AC0

d[2
nε ] to a circuit of size

less than 2n/n, then NEXP 6⊂ NC1.

Monotone functions: Every monotone Boolean func-
tion on n variables can be computed by a (monotone)
circuit of size O(2n/n1.5) [42], [47]. Using the well-known
connection between non-monotone functions and monotone
slice functions [7], we argue that compressing polynomial-
size monotone functions is as hard as compressing arbitrary
functions in P/poly.

Theorem VI.4. If there is an efficient algorithm that
compresses a given truth table of an m-variate monotone
Boolean function of monotone circuit size poly(m) to a (not
necessarily monotone) circuit of size at most 2m/m1.51, then
there is an efficient algorithm for compressing arbitrary n-
variate P/poly-computable Boolean functions to circuits of
size less than 2n/n.

VII. OPEN QUESTIONS

Can we extend our compressibility results to other cir-
cuit classes with known lower bounds, e.g., constant-depth
circuits with prime-modular gates for which the polynomial-
approximation method was used [44], [51]? Can we com-
press functions computable by ACC0 circuits? More gener-
ally, do all known circuit lower bound proofs yield compres-
sion algorithms for the corresponding circuit classes?

The compressed circuit sizes for our compression algo-
rithms are barely less than exponential. Can we achieve
better compression for the circuit classes considered?

Is there a general connection between compression and
SAT algorithms?

Using the recent independent work by Komargodski et
al. [34] on the “high-probability version of shrinkage” for
de Morgan formulas, we can get compression and #SAT
algorithms for de Morgan formulas of size almost n3. How-
ever, unlike our #SAT-algorithm (for n2.5-size de Morgan
formulas), the #SAT-algorithm resulting from [34] is only
randomized (due to the notion of random restrictions used
in [34]). It is an interesting open question to get a deter-
ministic such algorithm for n3-size de Morgan formulas. (A
similar problem is also open for AC0-SAT algorithms, where
there is a quantitative gap between the AC0 circuit size that
can be handled by the randomized algorithm of [25] and
the deterministic algorithm of [6].) Very recently, [12] give
a deterministic #SAT-algorithm for de Morgan formulas of
size n2.63, with the running time 2n−n

Ω(1)

.
For small AC0 circuits and small AC0 circuits with few

threshold gates, one can get nontrivial lossy compression
using the Fourier transform [36], [19]. What about lossy
compression for other circuit classes?

For example, for polynomial-size AC0 circuits with parity-
gates, we know by the results of Razborov and Smolen-
sky [44], [51] that every such function can be approximated
by a (poly log n)-degree polynomial over GF (2) to within
error 1/n. This is a binary Reed-Muller codeword of order
poly log n that disagrees with our received word (the given
truth table of a function) in at most 1/n fraction of positions.
The problem of lossy compression leads to the following
natural question on decoding: Given a received word x of
size 2n such that there is a Reed-Muller codeword (of order
poly log n) within the Hamming ball of relative radius 1/n
around x, find in time poly(2n) some codeword that is at
most 1/n away from x. Note that this is different from the
usual list-decoding question: here the number of codewords
within this Hamming ball can be huge, and so we don’t ask
to find all of them, but rather any single one. (The only
result in this direction that we are aware of is [54] for the
case of binary Reed-Muller codes of order 2.)
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