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CONNECT FOUR AND GRAPH DECOMPOSITION

LAURENT EVAIN, MATHIAS LEDERER, AND BJARKE HAMMERSHOLT ROUNE

Abstract. We introduce standard decomposition, a natural way of decom-
posing a labeled graph into a sum of certain labeled subgraphs. We motivate
this graph-theoretic concept by relating it to Connect Four decompositions of
standard sets. We prove that all standard decompositions can be generated in
polynomial time, which implies that all Connect Four decompositions can be
generated in polynomial time.

1. Introduction

Let G be a directed graph. We say that an integer-valued labeling on the nodes
of G is compatible with the edge relation if for all edges (a, b), the label of node a is
less than or equal to the label of node b. Graphs satisfying that compatibility form
the class of standard graphs ; they are the objects of study of the present paper.

The paper is divided into two parts. In the first part, we study standard graphs
and introduce a way of decomposing a standard graph as a sum of standard com-

ponents — these are the standard subgraphs of G whose labels are 0 or 1. Here
addition of labeled graphs is defined as addition of the labels. A standard decom-

position of a standard graph is a multiset of standard components whose sum is
the given graph. Standard components may be viewed as the building blocks of a
standard graph.

Standard decomposition is not unique — standard graphs in general admit more
than one standard decomposition. Figure 1 shows a simple example of a standard
graph and all its standard decompositions. This raises the question of what the
complexity of generating all standard decompositions given a standard graph is.
Theorem 1 answers this question and it is the main result of the first part of the
paper.

Theorem 1. It is possible to generate all the standard decompositions of a standard
graph in polynomial time.

In the second part of the paper, we link standard graphs and standard decompo-
sition to a previously studied subject — Connect Four decomposition of standard

sets. A standard set is an “n-dimensional staircase”, and a Connect Four decompo-
sition of a standard set ∆ is a set of n− 1 dimensional standard sets from which ∆
can be built by stacking them on top of each other and “letting gravity pull them
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Figure 1. A standard graph and its two standard decompositions

down”. Figure 2 shows a simple example of a three dimensional standard set and
all its Connect Four decompositions; the graph from Figure 1 encodes that same
standard set.

Connect Four decomposition is an ubiquitous notion relevant to the study of
the Hilbert scheme of points [Led]. It is useful in the study of singularities of
plane curves as a tool for the Horace method [Hir85], in the context of Gröbner
basis theory [Eis95], [Led08], [Led], to compute tangent spaces [Nak99, Proposition
7.5], or to produce new counterexamples to Hilbert’s fourteenth problem [Eva05].
Handling Connect Four decompositions is what originally prompted the work in
this paper. We will show:

Theorem 2. (i) The two problems,
(a) computing standard decompositions of labeled graphs, and
(b) computing Connect Four decompositions of finite standard sets,
are equivalent in the sense that for each labeled graph G, there exists a
standard set ∆ such that the standard decompositions of G are in canonical
bijection with the Connect Four decompositions of ∆, and conversely.

(ii) This equivalence preserves polynomial complexity in the sense that for each
labeled graph G, we can compute a standard set ∆ with graph G in poly-
nomial time, and for each standard set ∆, we can compute its graph G(∆)
in polynomial time.

Corollary 3. It is possible to generate all Connect Four decompositions of a stan-
dard set in polynomial time.

We conclude our paper with an appendix which links the notions introduced
in this paper to other classical tools and problems. First we present a generating
function for the number of standard decompositions of a given graph. Then we
show that the set of all Connect Four games in N

d of a given size n is in canonical
bijection with the set of (d− 1)-fold iterated partitions of n.

A word on the proofs. We prove Theorem 1 by presenting an algorithm that gen-
erates all standard decompositions in polynomial time. The algorithm is based on
reducing the problem of computing all standard decompositions of G to the prob-
lem of computing all standard decompositions of G containing a fixed node v. We
then solve that problem in a recursive way. Any choice of the node v results in a
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Figure 2. A standard set and its two Connect Four decompositions

correct algorithm, yet we give a specific choice of v that allows the algorithm to
generate its output in polynomial time.

The proof of Theorem 2 is done in several steps. We first attach a graph G(∆)
to each standard set ∆ such that the standard decompositions of G(∆) and the
Connect Four decompositions of ∆ are in canonical bijection. From G(∆) we then
define another graph G′(∆) that is easier to work with, called the canonicalized

standard graph, which has the same decompositions (see Proposition 30). We show
that all labeled graphs arising from standard sets in this way have three specific
properties, namely,

• they are standard,
• they are connected, and
• they have a unique node of maximal label.

Let S be the class of labeled graphs satisfying these conditions. The connectedness
assumption in the definition of S is not essential for the complexity of the graphs
from that class, since the standard decompositions of a disjoint union of graphs
is the product of the standard decompositions of the individual graphs. We prove
in Proposition 34 that each connected graph in S arises from a standard set if, in
addition, the relation on the nodes of the graph defined by the edges of the graph
is transitive. In Proposition 36, we show that for each connected standard graph,
there exists a graph in S such that the standard decompositions of the two graphs
are in canonical bijection.

Acknowledgements. Thanks to Dustin Cartwright, Daniel Erman, Allen Knut-
son, Diane Maclagan, Jenna Rajchgot, Roy Skjelnes, Greg Smith, Mike Stillman
and Elmar Teufl for fruitful discussions.

2. Standard graphs and standard components

All graphs under consideration are directed, have finitely many nodes and do
not have any parallel edges or loops. Given a graph, let < be the partial preorder
on the set of nodes such that a < b if b is reachable from a. The graphs that we
consider are labeled in the following sense.
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Definition 4 (Labeled graph). A labeled graph is a graph G with a finite node
set VG, an edge set EG ⊆ VG × VG such that the graph contains no loops, and a
labeling of nodes LG : VG → Z.

This definition does not allow parallel edges since the edge set is not a multiset.
The constraints on parallel edges and loops are not important to the results of this
paper. We impose those conditions for simplicity since loops and parallel edges add
nothing interesting to the problem.

Definition 5 (Standard graph). A labeled graph G is standard if all labels are
non-negative and the labeling is compatible with the partial order on the nodes in
the sense that LG (a) ≤ LG (b) for all edges (a, b) ∈ EG.

We now introduce the operations of addition and subtraction on labeled graphs.

Definition 6 (Addition and subtraction). Let G and H be labeled graphs. Then
G ⊕ H is the labeled graph with node set VG⊕H

..= VG ∪ VH , edge set EG⊕H
..=

EG ∪ EH and labeling

LG⊕H
..=











LG for v ∈ VG \ VH ,

LG + LH for v ∈ VG ∩ VH ,

LH for v ∈ VH \ VG.

We define G⊖H to have the same node set and edge set as G⊕H , but with labeling

LG⊖H
..=











LG for v ∈ VG \ VH ,

LG − LH for v ∈ VG ∩ VH ,

−LH for v ∈ VH \ VG.

The sum of two standard graphs with the same set of nodes and the same set

of edges is again a standard graph. This is in general true when the set of nodes
or edges differ, as shown in the example from Figure 3. In the present paper, we
will only consider sums and differences of graphs sharing the same set of nodes and
edges.
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Figure 3. The sum of two standard graphs

Definition 7 (0-1 graph). A labeled graph is a 0-1 graph if all labels are 0 or 1.
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If we take a standard graph and replace all positive labels by 1, then we obtain
another standard graph. This is a standard 0-1 graph — a graph that is both
standard and a 0-1 graph. Some subgraphs H of a standard graph G are standard
0-1 graphs and in some cases we can write G as H ⊕ G′, where G′ is another
standard graph. In this case we call H a standard component of G.

Definition 8 (Standard component). Let G and H be labeled graphs. Then H is
a standard component of G if

(1) H is a standard 0-1 graph;
(2) G⊖H is a standard graph; and
(3) not all labels in H are zero.

We think of standard components of G as the building blocks of G. Our goal is
to determine all the ways to build a graph out of such building blocks.

Definition 9 (Standard decomposition). Let G be a labeled graph. A multiset of
labeled graphs H is a standard decomposition of G if each H ∈ H is a standard
component of G and G =

∑

H∈H H . We denote the set of standard decompositions
of G by D (G).

To keep formulas succint, we use the shorthand notation
∑

H ..=
∑

H∈H H .
A standard 0-1 graph G admits only the standard decomposition {G}. In par-

ticular, the building blocks of a graph are indecomposable; this is why we call
them standard components. We define standard decompositions to be multisets
rather than sets since a standard component can appear multiple times within one
decomposition.

Example 10. Figure 4 shows a standard graph and all its decompositions.
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Figure 4. All decompositions of a graph.
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Since the sum of two standard graphs with the same nodes and edges is standard,
a labeled graph has a standard decomposition only if it is standard. Proposition
12 shows that the converse is also true.

Definition 11 (Maximal standard component). The maximal standard component

of a standard graph G is the unique standard component H for which LH (v) = 1
if, and only if, LG (v) > 0.

The standard component is maximal in the sense that it contains all other stan-
dard components. Note that the maximal standard component is always a standard
component unless we are in the degenerate case where all nodes of G are labeled
zero.

Proposition 12. LetH be a multiset of standard components of a labeled graphG.
Then H can be extended to a standard decomposition of G if, and only if, G⊖

∑

H
is standard. In particular, a standard graph admits a standard decomposition.

Proof. if: If G =
∑

H then we are done, so suppose that G 6=
∑

H. Let C be the
maximal standard component of G ⊖

∑

H. Then G ⊖
∑

(H ∪ {C}) is standard.
The assertion follows from this by induction.

only if: If H′ is a multiset of standard components of G that contains H, and
G ⊖

∑

H is not standard, then neither is G ⊖
∑

H′, so H′ is not a standard
decomposition of G.

The last statement of the proposition follows from the first by taking H = ∅. �

Corollary 13. If H is a standard component of a standard graph G, then H is an
element of at least one standard decomposition of G.

We conclude this section with a remark on the class of graphs under consid-
eration. We stated earlier in this section that loops and parallel edges are not
interesting in the theory of standard graphs. We now state that

• neither are cycles in G,
• nor nodes with label zero,
• nor edges (a, b) ∈ EG with LG (a) = LG (b).

To support these statements, let H be a standard component of G and let (a, b)
be an edge of G such that LG (a) = LG (b). Then LH (a) = 1 if, and only if,
LH (b) = 1. So to study standard decompositions, we might as well suppress all
such edges (a, b), merging the nodes a and b into a single node ab. We then replace
each edge with source either a or b by an edge with source ab and the same target
as before, and each edge with target either a or b by an edge with target ab and the
same source as before. If a standard graph has a cycle, then the labels along the
cycle are all equal, so contracting same-label edges removes all cycles. Nodes with
label zero are not relevant for standard decomposition either, so we can get rid of
those nodes too. Combining these ideas, we get the notion of a canonical labeled

graph.

Definition 14 (Canonical labeled graph). A labeled graph G is canonical if

(1) G is standard;
(2) G has no cycles;
(3) all labels are positive;
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(4) LG (a) < LG (b) for all edges (a, b) ∈ EG.

From the above discussion, we have proved:

Proposition 15. For each standard graph G, there is a canonical graph G′ such
that the standard decompositions and standard components of G and G′ are related
by a bijection.

We call the process of replacing G with G′ canonicalization. This notion of
canonicalization is not to be confused with the usual notion of graph canonicaliza-
tion, which has to do with isomorphism classes of graphs.

Canonicalizations of graphs are useful to speed-up computer programs. We will
return to the topic of canonicalization in Section 7.

3. Standard node decompositions

We now turn to the topic of the computational complexity of the problem of
computing standard decompositions. We start with a simple instructive example.

Example 16. Let Gn be the labeled graph defined by

VGn
..= {y, x1, . . . , xn} , EGn

..= {(x1, y), . . . , (xn, y)} ,

and LGn
(xi) ..= 1 for i = 1, . . . , n, while LGn

(y) ..= 2. There are 2n standard
components ofGn, corresponding to the n independent choices of whether to include
or exclude each xi. The standard decompositions of Gn are pairs of standard
components that include complementary subsets of {x1, . . . , xn}. So Gn has 2n−1

standard decompositions while having only n+ 1 nodes.

Consider the computational problem whose input is a labeled graphG and whose
output is the set of standard decompositions D (G). Recall that D (G) 6= ∅ if, and
only if, G is standard — however, we will formulate our statements for arbitrary
labeled graphs, thus covering also the case where the output is the empty set.
Example 16 shows that this computation cannot be done in time better than expo-
nential in the worst case since just writing down the output can take exponential
time. For problems such as this, it is standard practice to consider an alternative
notion of complexity, generating complexity, in which we consider the running time
as a function of the combined size of the input and the output.

We present an algorithm for standard decomposition of graphs that runs in
polynomial time in the combined size of input and output. This algorithm is based
on the following notion of decomposing a single node of a standard graph.

Definition 17 (Standard node decomposition). Let G be a labeled graph and let
v be a node of G. A multiset of standard graphs H is a standard v-decomposition

of G if

(1) each H ∈ H is a standard component of G,
(2) LH (v) = 1 for all H ∈ H,
(3) G⊖

∑

H is standard,
(4) |H | = LG (v).

We denote the set of standard v-decompositions of G by Dv (G).

Consider a standard graph G with a standard decomposition H and a node v
of G. The submultiset of H whose elements give v a label of 1 forms a standard
v-decomposition of G. Another way of characterizing a standard v-decomposition
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is that it is a minimal multiset H of standard components of G such that G⊖
∑

H
gives v the label 0 and such that H can be extended to a standard decomposition
of G.

Every standard graph has at least one standard decomposition, so Proposition
18 implies that if we can generate standard v-decompositions in polynomial time,
then we can also generate standard decompositions in polynomial time.

Proposition 18. Let v be a node of a labeled graph G. Then

D (G) =
{

H ∪H′
∣

∣

∣
H ∈ Dv (G) ,H′ ∈ D

(

G⊖
∑

H
)}

,

where no decomposition appears twice on the right hand side.

Proof. ⊆: Let D ∈ D (G) and let H be the submultiset of D whose elements give v
the label 1. Then H ∈ Dv (G). It only remains to prove that D \H ∈ D (G⊖

∑

H),
which follows from Lemma 19 below.

⊇: Let H ∈ Dv (G) and let H′ ∈ D (G⊖
∑

H). Then H′ ∪ H is a standard
decomposition of G by Lemma 19.

no duplicates: Let H,H′′ ∈ Dv (G) such that H 6= H′′. Let A ∈ D (G⊖
∑

H)
and A′′ ∈ D (G⊖

∑

H′′). Then H ∪ A 6= H′′ ∪ A′′ since H 6= H′′ and A ∪ A′′ is
disjoint from H ∪ H′′, as the elements of A ∪ A′′ give v the label zero, while the
elements of H ∪H′′ give v the label 1. �

Lemma 19. Let G be a labeled graph. Let A be a multiset of standard 0-1
subgraphs ofG and letB be a submultiset of A. Then A is a standard decomposition
of G if, and only if, A \B is a standard decomposition of G⊖

∑

B.

Proof. if: Assume that A \ B is a standard decomposition of G ⊖
∑

B. Then
G⊖

∑

B =
∑

(A \ B) so G =
∑

A. It only remains to prove that each a ∈ A is a
standard component of G. To prove that, we need to show that G⊖ a is standard.
We already know that a is a standard component of G⊖

∑

B, which implies that
G ⊖

∑

B ⊖ a is standard. Then G ⊖ a = (G⊖
∑

B ⊖ a) ⊕
∑

B is standard, as it
is a a sum of standard graphs with identical node sets.

only if: Assume that A is a standard decomposition of G. Then G =
∑

A
so G ⊖

∑

B =
∑

(A \ B). It only remains to prove that each a ∈ A \ B is a
standard component of G⊖

∑

B. To prove that we need to show that G⊖
∑

B ⊖ a
is standard. We already know that G ⊖

∑

A has all labels zero, so it is standard.
Then G⊖

∑

B ⊖ a = (G⊖
∑

A)⊕
∑

(A \ (B ∪{a}))), so G⊖
∑

B ⊖ a is standard,
as it is a sum of standard graphs with identical node sets. �

4. Generating standard node decompositions

Proposition 18 reduces the problem of generating D (G) in polynomial time to
the problem of generating the standard node decomposition Dv (G) in polynomial
time for some freely chosen node v of G. In this section we investigate this problem.
Our solution is based on choosing the right node v to decompose.

Consider the set of all standard components of G that give v the label 1. We
impose an ordering, H1, . . . , Hk, on the elements of that set. This ordering can be
chosen arbitrarily, but is fixed once and for all. Now let F be any labeled subgraph
of G. For each such F and each i = 1, . . . , k, we define

τ(F, i) ..= {H ⊆ {H1, . . . , Hi} |H ∈ Dv (F )}
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Note thatDv (F ) and τ(F, i) are both sets of multisets, thus the conditionH ∈ Dv (F )
for a multiset H makes sense; If we can compute τ(F, i) in general then we can also
compute Dv (G) since τ(G, k) = Dv (G). In order to compute τ(F, i), consider the
recursive formula

(1) τ(F, i) =











{∅} if all labels of F are zero, else

∅ if F is not standard or i = 0, else

τ(F, i − 1) ∪ {H ∪ {Hi} |H ∈ τ(F ⊖Hi, i)} .

This way of writing τ immediately suggests an algorithm based on recursively eval-
uating the expression. It is a problem with this approach that this algorithm can
spend a large amount of computational steps to determine that τ(F, i) is empty.
This is an obstacle to proving that this algorithm generates its output in polynomial
time.

We say that a pair (F, i) is relevant if τ(F, i) 6= ∅, and irrelevant otherwise.1 For
making the algorithm generate its output in polynomial time, we need a criterion
for detecting irrelevant pairs. We can use such a criterion to quickly eliminate
irrelevant pairs in the algorithm.

Proposition 20. Let v be a node of minimal positive label in a labeled graph G.
Let H be a multiset of standard components of G that give v the label 1. Let H
be the maximal standard component of G. Assume that G⊖

∑

H is standard. Let
H′ be the union of H and the multiset containing LG (v)− |H| copies of H . Then
H′ is a standard v-decomposition of G.

Proof. Upon applying the proof of Proposition 12 to H, we obtain a standard
decomposition H′′ ⊇ H of G. Since the label of v is minimal among all positive
labels appearing in G, the first LG (v)−|H| rounds of the inductive construction in
that proof will use the same maximal standard component H . After that the label
of v has become zero, so the maximal standard components used in later rounds
of the construction will give v the label zero. So the subset of H′′ that gives v
the label 1 is precisely H′, which implies that H′ is a standard v-decomposition of
G. �

Through choosing wisely the node v and the order of the standard components
H1, . . . , Hk, Proposition 21 gives an if-and-only-if criterion for detecting irrelevant
pairs.

Proposition 21. Given a labeled graph G, choose v to be a node of minimal
positive label, and choose an order on the standard components H1, . . . , Hk giving
v the label 1 such that H1 is the maximal standard component of G. Let H be a
multiset whose elements are chosen among the standard components Hi of G, and
let F ..= G ⊖

∑

H. Then a pair (F, i) with 1 ≤ i ≤ k is relevant if, and only if, F
is standard.

Proof. if: Assume that F is standard. By Proposition 20, G =
∑

H⊕
∑

H1⊕
∑

H2,
where H1 is a multiset containing copies of H1 and H2 is a multiset containing
standard components of G with label 0 on v. Thus F =

∑

H1⊕
∑

H2, and τ(F, i)
is not empty.

only if: This part is obvious. �

1In particular, we see that it suffices to consider graphs such that 0 ≤ LF (w) ≤ LG (w) for all
nodes w, since (F, i) is irrelevant otherwise.
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1: function standardDecompositions(G)
2: if all labels of all nodes of G are zero then

3: return {∅}
4: else

5: choose a node v ∈ VG of minimal positive label
6: D ← StandardNodeDecompositions(G, v)
7: return {H ∪H′| H ∈ D,H′ ∈ standardDecompositions(G⊖

∑

H)}

8: end if

9: end function

10: function standardNodeDecompositions(G, v)
11: H1 ← the maximal standard component of G
12: H2, . . . , Hk ← all other standard components of G that give v the label 1
13: S ← {H1, . . . , Hk}
14: return tau(G, k, S)
15: end function

16: function tau(F , i, S)
17: if all labels of F are zero then

18: return {∅}
19: else

20: if F is not a standard graph then

21: return ∅
22: else

23: return tau(F, i − 1, S) ∪ {H ∪ {Hi} |H ∈ tau(F ⊖Hi, i, S)}
24: end if

25: end if

26: end function

Figure 5. An algorithm for standard decomposition.

5. Generating standard decompositions in polynomial time

Based on the previous two sections, we can now present an algorithm for gener-
ating standard decompositions and prove that it runs in polynomial time.

Theorem 22. The algorithm in Figure 5 generates the standard decompositions
of a labeled graph in polynomial time.

The pseudo code for standardDecompositions implements the recursive for-
mula from Proposition 18. The pseudo code for standardNodeDecompositions

implements the recursion from Section 4 where the function Tau is τ from that
section. Line 20 eliminates pairs that are irrelevant according to Proposition 21.

In reading the pseudo code for Tau, note that the first return is of the value {∅}
while the second is of the value ∅. Here {∅} is a set containing one decomposition
while ∅ is a set containing nothing.

Proof of Theorem 22 and thus also of Theorem 1. Recall that generating output in

polynomial time means that the algorithm runs in polynomial time in the combined
size of input and output — this is the meaning of the word “generate” in this
context.
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The size of the input and output depend on the representation used. We specify
a graph as a list of nodes with labels and a list of edges. We specify the set of
decompositions as a list of standard components followed by a list of sets that
specify a decomposition by referring back to the list of components. Each standard
component is specified by a bit per node indicating whether that node is an element
of the standard component.

We assume a model where all labels and indices take up one word of space, rather
than the logarithmic number of bits actually necessary to hold these numbers. The
only arithmetic operations we perform is subtractions a − b where a > b so this
assumption does not weaken the theorem.

standardNodeDecompositions is correct: Suppose that we call the function
standardNodeDecompositions on the pair (G, v). We know that v is a node of
minimal positive label in G since standardDecompositions always makes calls
to standardNodeDecompositions with such a v. Also observe that the sequence
H1, . . . , Hn are ordered to satisfy the precondition of Proposition 20. We then
see that standardNodeDecompositions computes the correct value Dv (G) since it
directly implements the recursive formula from equation 1 along with the criterion
for irrelevant pairs from Proposition 21.

standardNodeDecompositions is polynomial: LetG have n nodes and e edges.
We do not give pseudo code for generating H1, . . . , Hk, but it is not difficult to do
this in time O(k(n + e)) using backtracking. We first need to prove that k(n+ e)
is polynomial in the size of the output.

Let l be the label of v in G. Every Hi is an element of at least one standard de-
composition of G by Corollary 13, and each v-decomposition has exactly l elements,
so k ≤ ld where d is the number of standard v-decompositions of G. So computing
H1, . . . , Hk can be done in time O(ld(n+ e)). The size of the input is Θ(n+ e) and
the size of the output is Θ(ld+ kn) since it takes l elements of S to specify each of
the d decompositions and for each irreducible decomposition we need one bit per
node to specify whether it is in the graph or not. Clearly ld(n + e) = Ω(ldn2) is
bounded above by a polynomial in ld+kn, so the time to compute S is polynomial.

It remains to prove that Tau takes polynomial time. Each individual call to Tau,
not counting recursive subcalls, can be done in time O(n + e). We need an upper
bound for the number of recursive calls.

Consider a tree T where each recursive call to Tau is a node labeled by the
parameters (F, i) and where there is an edge from the caller to the callee. The
relevant leaves of T give rise to one distinct node decomposition per leaf so d, the
number of v-decompositions ofG, is also the number of relevant leaves of T . Let r be
the number of irrelevant leaves of T — these do not give rise to a v-decomposition.
Since T is a binary tree we see that there are r + d − 1 internal nodes in T . We
need an upper bound for r.

Since Proposition 21 is an if-and-only-if criterion for irrelevant pairs, we see that
the sub-tree rooted at any internal node contains a relevant pair. This implies that
the sibling of an irrelevant leaf A is a root of a sub-tree that contains some relevant
leaf B. Let f be the mapping A 7→ B. If f(A) = B then the parent of A is on the
path from the root of T to B. All the relevant leaves are at depth k or less, so f
can map at most k irrelevant leaves to each relevant leaf. This implies that r ≤ dk.

We have seen that there are d relevant leaves, at most dk irrelevant leaves and
therefore also at most d + dk internal nodes in T , which is a total of at most
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2d + 2dk nodes. So the time taken by all recursive calls to Tau is O(dk(n + e)).
Recall that the input size is Θ(n + e) and the output size is Θ(ld + kn). Clearly
dk(n + e) is dominated by a polynomial in (n + e) + (ld + kn). This proves that
standardNodeDecompositions generates Dv (G) in polynomial time.

standardDecompositions is correct: We have already done the correctness
proof since standardDecompositions directly implements the recursive formula
for D (G) from Proposition 18.

standardDecompositions is polynomial: We have already seen that each call
to standardNodeDecompositions generates its own output in polynomial time.
Consider as before a tree T where each recursive call to standardDecompositions

is a node with an edge from the caller to the callee. Let q be the number of leaves
of T . Every leaf contributes at least one distinct decomposition to the output, so
q is a lower bound on the number of decompositions of G. The multiset of node
decompositions computed by all the calls to standardNodeDecompositions is in
bijection with the edges of T . All trees have more nodes than edges and more leaves
than internal nodes so the combined time to compute all the node decompositions
is dominated by a polynomial in q(n + e) where n + e is the input size for the
original input which is an upper bound on the size of any graph produced during
the computation.

Line 7 could a priori seem to require too much time by going through all the
elements of D. However, we can charge this work to each of the children of that
node that are produced in this way which clears up the problem. As trees have
more leaves than internal nodes the total number of nodes of T is less than 2q.
This proves that the total time to compute D (G) is bounded by a polynomial in
w(n+ e) where w is the number of decompositions and Θ(n+ e) is the size of the
input. �

We can extract some bounds on the number of node decompositions from the
arguments just given.

Proposition 23. Let v be a node of a standard graph G. Let l ..= LG (v). If G has

k standard components that give v label 1, then there are between k
l
and

(

k+l−1
l

)

standard v-decompositions of G. If v is a node of minimal positive label in G, then
there are at least k standard v-decompositions of G.

Proof. Every v-decomposition of G has exactly l elements, and the elements of each
such multiset are chosen among the k standard components that give v the label
1, so there cannot be more than

(

k+l−1
l

)

standard v-decompositions.
Every one of the k standard components giving v label 1 can be extended to

a standard decomposition of G by Corollary 13 and therefore also to a standard
v-decomposition. We get the minimal number of standard v-decompositions when
each of these extensions are unique. As each standard v-decomposition has l ele-
ments, that implies the existence of at least k

l
standard v-decompositions.

If v is a label of minimal positive label, then each standard component H that
gives v the label 1 can be extended to a v-decomposition using only the max-
imal standard component by Proposition 20. So there are at least k standard
v-decompositions in this case. �

Here are examples in which the bounds from the proposition are sharp.
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G

✟✟✟✟✟✟✟✟✯

✑
✑
✑
✑
✑
✑✸

�
�
�
�✒

✁
✁
✁
✁✕ ✻

❆
❆
❆

❆❑

❅
❅

❅
❅■

◗
◗

◗
◗

◗
◗❦

❍❍❍❍❍❍❍❍❨
w

v v1 v2 v3 v4 v5 . . . . . . vm

G′ 1 ✲ 2 ✲ 3 ✲ . . . ✲ l − 2 ✲ l − 1 ✲ l

G′′ 1 ✲ 2 ✲ 3 ✲ . . . ✲ l − 2
✑
✑✸

◗
◗s

l − 1

l − 1

◗
◗s

✑
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l

Figure 6. Three graphs leading to sharp bounds in Proposition 23

Example 24. Consider the graph G from Figure 6, whose labels we will presently
specify, and the graphs G′ and G′′ from the same figure, whose labels are specified
in the picture.

• Choose the labels such that LG (vi) ≥ LG (v) for all i and LG (w) ≥
LG (v)+

∑

i LG (vi). Then for each multiset of standard graphsH satisfying
conditions (1), (2) and (4) from Definition 17, condition (3) is automati-
cally satisfied. The number k from the proposition depends on the choice
of the labels, but in any case, G has

(

k+l−1
l

)

standard v-decompositions.
The upper bound for the number of standard v-decompositions is therefore
sharp.
• Define LG (v) ..= 1, LG (vi) ..= 1 for all i and LG (w) ..= 2. Then the
standard components that give v the label 1 correspond to the power set of
{v1, . . . , vm}, whose cardinality is 2m. All standard components that give
v the label 1 lead to standard v-decompositions of G. The lower bound for
the number of standard v-decompositions is therefore sharp.
• The graph G′ provides another example of sharpness of the lower bound,
this time with l > 1. We define v as the node of label l. As in the
proposition, we denote by k the number of standard components of G′ that
give v the label 1. Since v is labeled 1 in every standard component, k is
just the number of components of G′. Likewise, a standard v-decomposition
of G′ is just a standard decomposition of G′. Obviously k = l, and there
exists precisely one standard v-decomposition.
• Also in the graph G′′, we define v as the node of label l. This graph has
the property that the lower bound is sharp while, unlike in the previous
example, there exists more than one standard v-decomposition. Note that
the fraction k

l
= 2l−1

l
is not an integer, but ⌈k

l
⌉ = 2.

We leave the question open whether there exist k and l as in the proposition
such that k

l
> 2 and there exists a graph G such that the lower bound from the

proposition is sharp.
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6. From standard sets to standard graphs

In the remaining three sections, we investigate the relation between standard
decomposition of labeled graphs and another combinatorial problem called Connect

Four decomposition. In the end we show that the two problems are equivalent.
A standard set, or staircase, is a subset ∆ ⊆ N

d whose complement C ..= N
d \∆

satisfies C + N
d = C. We are only going to consider standard sets of finite car-

dinalities. Standard sets in N are just intervals starting at 0; in N
2, they can be

identified with partitions, or with Young diagrams2; in N
3, they are also known as

plane partitions ; in N
d for d > 3, they are also known as solid partitions. Stan-

dard sets in N
d canonically correspond to monomial ideals in the polynomial ring

k[x1, . . . , xd]. See Figure 7 for examples in dimensions 1, 2, and 3.

q q q q q

✑ ✑

✑ ✑
✑
✑
✑

✑
✑

✑

✑

✑

✑

✑

✑

Figure 7. Standard sets in dimensions 1, 2 and 3

Consider the projection to the first d − 1 components, qd : Nd → N
d−1 : β 7→

(β1, . . . , βd−1) and its complementary projection, qd : Nd → N : (β1, . . . , βd) 7→ βd

For each standard set ∆, we have the equality

∆ =
{

β ∈ N
d
∣

∣ qd(β) <
∣

∣(qd)−1(qd(β)) ∩∆
∣

∣

}

.

The integer
∣

∣(qd)−1(qd(β)) ∩∆
∣

∣ appearing on the right-hand side is the cardinality

of the fiber of the projection qd : ∆→ N
d−1 over the point γ ..= qd(β). We call that

quantity the height of ∆ over γ. The equation displayed above implies that the
datum of standard set ∆ is equivalent to the datum of the projection ∆′ ..= qd(∆),
which is a standard set in N

d−1, and the datum of the heights over all γ ∈ ∆′.
The heights satisfy a compatibility condition: Upon denoting by hγ the height over
γ ∈ ∆′, we see that hγ+ei ≤ hγ for all standard basis elements ei ∈ N

d−1 and
all γ ∈ ∆′ such that also γ + ei ∈ ∆′. These observations motivate the following
definition:

2in the French notation
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Definition 25 (Standard graph of a standard set). Let ∆ ⊆ N
d be a finite standard

set. We define the standard graph of ∆, denoted by G(∆), by setting

VG(∆)
..= qd(∆),

EG(∆)
..= { (γ′, γ)| γ′ = γ + ei for some i}

LG(∆) (γ)
..=

∣

∣(qd)−1(γ) ∩∆
∣

∣ .

The discussion leading to the definition proves that G(∆) is indeed a standard
graph. The transition from a standard set to its standard graph is illustrated in
the first two pictures in Figure 9.

Addition of standard graphs has a counterpart on standard sets, called C4 ad-

dition.

Definition 26 (C4 sum). Let ∆1 and ∆2 be two finite standard sets in N
d. We

define the Connect Four sum, or C4 sum of ∆1 and ∆2 by

∆1 +∆2
..=

{

β ∈ N
d qd(β) <

∣

∣(qd)−1
(

qd(β)
)

∩∆1

∣

∣

+
∣

∣(qd)−1
(

qd(β)
)

∩∆2

∣

∣

}

.

So for determining the C4 sum of ∆1 and ∆2, we define ∆′ to be the union of
qd(∆1) and qd(∆2) and, for all γ ∈ ∆′, hγ to be the sum of the heights over γ of
∆1 and ∆2.

3 Then ∆ is characterized by its projection ∆′ and the heights hγ .
Here is a more graphic way of thinking about the C4 sum: Place ∆1 and

∆2 somewhere on the d-axis in N
d such that they do not intersect, subsequently

drop the cubes along the d-axis, until they get stacked above each other on the
1, 2, . . . , (d − 1)-hyperplane. The result is the standard set ∆1 + ∆2. Figure 8 il-
lustrates that process in two examples. The figure also explains the analogy to the
eponymous game Connect Four.

✑
✑

✑
✑

✑
✑

✑
✑+

✑
✑

✑
✑

✑
✑+

✑ ✑ ✑ ✑ ✑

✑

=

✑

✑
✑

✑
✑

✑
✑ ✑ ✑

✑
+

✑
✑

✑
✑

✑
✑+

✑ ✑ ✑

✑

=

✑

✑
✑

✑
✑ ✑

✑

✑
✑ ✑

✑

✑ ✑

Figure 8. C4 sums of 2-dimensional standard sets yielding a 3-
dimensional standard set

It is easy to see that

• ∆1 +∆2 is a standard set;
• its cardinality is the sum of the cardinalities of ∆1 and ∆2;

3We say that the height of ∆i over γ is zero if γ /∈ qd(∆i).
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• C4 addition is associative and commutative, and ∅ is its neutral element;
• G(∆1 +∆2) = G(∆1)⊕G(∆2).

The last item confirms that C4 addition of standard set is indeed the counterpart
of addition of standard graphs. Here is the counterpart of standard decomposition
of standard graphs.

Definition 27 (C4 decomposition). Let ∆ ⊆ N
d be a finite standard set. A C4

decomposition of ∆ is a multiset {∆1, . . . ,∆h} of standard sets in N
d−1 whose C4

sum equals ∆. Here we understand each ∆i to be a standard set in N
d via the

embedding N
d−1 →֒ N

d : γ 7→ (γ, 0).

Figure 8 shows C4 decompositions of the standard set in N
3 on the right hand

side into two (multi)sets of standard set in N
2. Note, however, that the three-

dimensional standard set of that example has more C4 decompositions than the
two shown in the figure.

The following proposition is the first step of four in proving that C4 decomposi-
tion and standard decomposition of labeled graphs are equivalent.

Proposition 28. Let ∆ ⊆ N
d be a finite standard set. Then the C4 decompositions

of ∆ and the standard decompositions of G(∆) are in canonical bijection.

Proof. Let {∆1, . . . ,∆h} be a C4 decomposition of ∆. Consider, for j = 1, . . . , h,
the graph Hj whose nodes and edges are identical to the nodes and edges of G(∆)
and whose labeling is given by

LHj
(γ) =

{

1 if γ ∈ Hj

0 else.

In other words, we think of ∆j , which is a priori a standard set in N
d−1, as being a

standard set in N
d, as we do in Definition 27, and define Hj

..= G(∆j). Then Hj is
obviously a standard 0-1 graph. The fact that {∆1, . . . ,∆h} is a C4 decomposition
of ∆ implies that H ..= {H1, . . . , Hh} is a standard decomposition of G(∆).

Conversely, let H be a standard decomposition of G(∆). Recall that the node
set of G(∆) is ∆′ ..= qd(∆), which is a standard set in N

d−1. For every H ∈ H,
we define ∆(H) to be the set of all γ ∈ ∆′ with LH (γ) = 1. The definition of
EG(∆), together with the fact that H is a standard graph, shows that ∆(H) ⊆ N

d−1

is a standard set contained in ∆′. The fact that H is a standard decomposition
of G(∆) means that for each γ ∈ ∆′, the labels of all nodes γ, which are 0 or 1,
sum up to the height hγ . This means that C4 sum of the corresponding multiset
{∆(H) |H ∈ H} equals ∆, so that multiset is a C4 decomposition of ∆.

The two constructions are readily seen to be mutual inverses. �

7. Canonicalization for graphs of standard sets

The graph of a given standard set will in general contain many nodes of identical
label which are connected by an edge. From the discussion at the end of Section 2,
we know that edges between nodes of the same label are irrelevant for computing
the standard decomposition of that graph. We also know that we can get rid of
those redundancies, without spoiling standard decompositions, by passing from a
graph to its canonicalization. Given a standard set ∆, we should therefore not work
with its standard graph, but rather the canonicalization of its standard graph.
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Definition 29 (Canonicalization of the standard graph of ∆).

• We say that a subset B of Nd−1 is connected if for all γ, γ′ ∈ B, there
exists a sequence (γj) in B starting at γ0 = γ and ending at γn = γ′ such
that for all j, we either have γj+1 = γj + ei or γj = γj+1 + ei for some
i ∈ {1, . . . , d− 1}.
• A connected component of A ⊆ N

d−1 is a connected B ⊆ A, maximal with
respect to inclusion.
• Let ∆ ⊆ N

d be a standard set, h ..= max(qd(∆)) its height, and ∆′ ..= qd(∆)
its projection. For a = 1, . . . , h, we define the a-th isohypse as

∆a ..=
{

γ ∈ ∆′
∣

∣

∣

∣(qd)−1(γ) ∩∆
∣

∣ = a
}

,

the set of all points in the projection of height a.
• We define the graph G′(∆) by

VG′(∆)
..= {connected components of ∆a |a = 1, . . . , h} ;

EG′(∆)
..= {(∆a

b ,∆
c
d) |∃γ

′ ∈ ∆a
b , γ ∈ ∆c

d : γ′ = γ + ei for some i}

LG′(∆) (∆
a
b )

..= a,

where we denote by ∆a
b the connected components of isohypse ∆a.

The transition from ∆ to G(∆) and to G′(∆) is illustrated in Figure 9.

✑ ✑

✑ ✑
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✑
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(1, 1)
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✻ ✻

❅
❅
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❅❅■

G(∆)

∆3

∆2

∆1

✡
✡
✡✡✣ ✻

❏
❏

❏❏❪

G′(∆)

Figure 9. A standard set of height 3, its graph, and its canoni-
calized graph

The following proposition is the second step of four in proving that C4 decom-
position and standard decomposition of labeled graphs are equivalent.

Proposition 30. Let ∆ ⊆ N
d be a finite standard set. Then G′(∆), as defined

above, is the canonicalization of the standard graph of ∆.

Proof. Let G(∆) be the standard graph of ∆. Then ∆′ is the node set of G(∆),
and two nodes get the same label if, and only if, they lie in the same isohypse ∆a.
Moreover, the definition of G(∆) shows that two nodes of this graph lying in the
same isohypse are connected by a sequence of edges in that graph if, and only if,
they lie in the same connected component of some ∆a. So we may contract each
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connected component ∆a
b of each isohypse to one node. This is what the definition

of G′(∆) does.
For finishing the proof, we have to show that no more pairs of nodes in G′(∆)

may be contracted into one node. Contraction only happens if two nodes have the
same label and are connected by an edge. Suppose that ∆a

b and ∆a
d are connected

by an edge. Then there exist γ′ ∈ ∆a
b and γ ∈ ∆a

d such that γ′ = γ + ei, so γ′ and
γ lie in the same connected component of ∆a, a contradiction. �

8. From standard graphs with unique maximal nodes to standard sets

For each standard set ∆, the canonicalized graph G′(∆) is connected and con-
tains a unique node of maximal label, namely, the highest isohypse ∆h. This graph
thus lies in the class S defined in the Introduction. Example 31 and Proposition
32 show that graphs in S may or may not arise from standard sets.

Example 31. Figure 10 shows a standard graph which arises as the standard graph
of a standard set in N

4, namely,

∆ =















(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2),
(1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1),
(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 1, 0, 0), (1, 0, 1, 0)















.

The picture on the right hand side of that figure shows ∆3,∆2 and ∆1 ⊆ N
3.
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✑
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Figure 10. A standard graph arising from a standard set in N
4

Proposition 32. The graph shown in Figure 11 does not arise as the standard
graph of a standard set.

Proof. Assume that ∆ ⊆ N
d is a standard set whose standard graph is the given

graph G. In particular, the nodes of G are the isohypses ∆i, for i = 1, 2, 3, 4.
We claim that there exists an element β ∈ ∆1 and i, j ∈ {1, . . . , d− 1} such that
β − ei ∈ ∆2 and β − ej ∈ ∆4. This will finish the proof, since β − ei − ej will then
lie in ∆. But β − ei − ej can lie in neither ∆1 nor ∆2 nor ∆3, since either of these
inclusions would contradict the standard set property of ∆. However, an inclusion
β − ei − ej ∈ ∆4 would force an edge from node ∆2 to node ∆4 in the standard
graph of ∆, which isn’t there.
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4

3
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1

✻

✻

❏
❏❏❪

✡
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Figure 11. A graph not arising from a standard set

So we have to prove the above assertion. There exists elements σ ∈ ∆4 and
τ ∈ ∆2 and a sequence (γk)

N
k=0 such that

• its subsequence (γk)
N−1
k=1 lies in ∆1,

• its starting point γ0 is σ,
• its end point γN is τ , and
• it has the property that for all k, γk+1 = γk ± ei for some i.

Take σ, τ and (γk) sharing these properties such that, in addition, N , the length
of the sequence (γk) is minimal. If N = 2, then β ..= γ1 is of the desired shape.
We now assume that N > 2, and are going to show that this assumption leads to
a contradiction. For doing so, we prove three claims concerning the sequence (γk).
The first claim is that for all k < N ,

(2) γk = σ +
∑

i∈Ik

ei

for some multiset of indices Ik. Note that γk ∈ ∆1 for all k in question. For k = 0, 1,
equation (2) is evident. We assume that the equation holds for k and prove it to
hold for k + 1. Suppose that γk+1 = σ +

∑

i∈Ik
ei − ej for some j /∈ Ik. Then,

in particular, σ′ ..= σ − ej ∈ ∆4 and γk+1 ∈ ∆1. Consider the sequence (γ′
l)

N−1
l=0 ,

where

γ′
l
..=

{

γl − ej for l < k,

γl+1 for l ≥ k.

This sequence is one element shorter than the original sequence (γk). Like the
original sequence, it starts in ∆4 and ends in ∆2. A priori the elements γ′

m, for
m = 1, . . . , k − 1, may lie in ∆1, ∆2, ∆3 or ∆4.

• If all of them lie in ∆1, the sequence (γ′
l) contradicts the minimality of N .

• If γ′
m ∈ ∆2, the sequence (γ′′

p )
m+1
p=0 , where

γ′′
p

..=

{

γp for l ≤ m,

γ′
m for p = m+ 1

contradicts the minimality of N .
• If γ′

m ∈ ∆3, we obtain an edge from node ∆1 to node ∆3, which isn’t there.
• If γ′

m ∈ ∆4, we consider the largest index M such that γ′
M ∈ ∆4 and

consider the subsquence γ′
M , . . . , γ′

N . The condition γi ∈ ∆1 implies that
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γ′
i ∈ ∆1 ∪ ∆2 ∪ ∆4, since there is no node from ∆1 to ∆3. Thus the

first term of γ′
M , . . . , γ′

N lies in ∆4, and the other terms in ∆1 ∪∆2. The
subsequence γ′

M , . . . , γ′
M ′ , where M ′ ≥M is the smallest index with γ′

M ′ ∈
∆2, contradicts the minimality of N .

This finishes the proof of the first claim.
Our second claim is that Ik ⊆ Ik+1 for all sets appearing in (2). This is true for

I0 ⊆ I1; moreover, since γk+1 = γk ± ei, our first claim shows that either Ik ⊆ Ik+1

or Ik ⊇ Ik+1 holds. Let m be the smallest index such that Im ⊇ Im+1. Then the
sequence (γk)

m+1
k=0 is obtained by adding to σ a number of ei, one by one, and finally

subtracting one of them, say ej . We obtain a shorter sequence (γ′
k)

m−1
k=0 by adding

to σ the same sequence of ei as above, but leaving out ej . The same arguments
as the ones from the four bulleted items above then lead to a contradiction. This
finishes the proof of the second claim.

Our third claim is that τ , the final member of our sequence (γk), takes the shape

τ = γN = γN−1 − ej ,

for some ej /∈ IN−1. The complementary cases include γN = γN−1 − ej for some
ej ∈ IN−1, which immediately contradicts minimality of N , and γN = γN−1 + ej
for some ej. In the latter case, the inclusion γN = τ ∈ ∆2 shows that γN−1 would
also lie in ∆2, a contradiction. This finishes the proof of the third claim.

The sequence (γk)
N
k=0 is therefore obtained by adding to σ a number of ei, one

by one, and finally subtracting some ej which is not found among the ei previously
added. We denote by eu the last element from the sequence of ei which we add,
that is, the one element which we add for passing from γN−2 to γN−1. Consider
ρ ..= τ − eu. Then ρ may lie in ∆2, ∆3 or ∆4.

• If τ ′ ∈ ∆2, the sequence (γ′
l)

N−1
l=0 , where

γ′
l
..=

{

γl for l ≤ N − 2,

τ ′ for l = N − 1

contradicts the minimality of N .
• If τ ′ ∈ ∆3, we obtain an edge from node ∆1 to node ∆3, which isn’t there.
• If τ ′ ∈ ∆4, we obtain an edge from node ∆2 to node ∆4, which isn’t there.

So we have disproved the assumption that N > 2. The proposition follows. �

The graphs in Figures 10 and 11 define relations on their respective node sets
which both fail to be transitive. So one might not guess that transitivity of graphs
in S is crucial for such graphs to arise from standard sets. That, however, is indeed
true, as we shall see in Proposition 34 below. Let us first establish that passing
from a graph to its transitive closure has no impact on standard decompositions.

Lemma 33. Let G be a standard graph and G its transitive closure. Then the
standard decompositions of G and G are in canonical bijection.

Proof. Given a standard decomposition H of G, replace every member H by its
transitive closure H . The resulting multiset H is a standard decomposition of G.
Given a standard decomposition K of G, we delete from every member K all edges
that appear in G but not in G, and call the resulting graph K◦. The resulting
multiset K◦ is a standard decomposition of G. The maps H 7→ H and K 7→ K◦ are
mutual inverses. �
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The following proposition is the third step of four in proving that C4 decompo-
sition and standard decomposition of labeled graphs are equivalent.

Proposition 34. Let G be a canonical, connected and transitive standard graph
containing a unique node of maximal label. Then there exists a standard set ∆ ⊆
N

d, for some d ≥ 1, whose canonicalized standard graph is G.

Proof. Upon using the terminology of Definition 29, we denote byG′(∆) the canoni-
calized standard graph of a standard set ∆. We prove the proposition by two nested
inductions, the outer over the number of nodes of G, and the inner over the number
of edges of G. The base case of the outer induction is trivial. As for the outer in-
duction step, let G be a given connected and transitive standard graph containing a
unique node vh of maximal label, h. Let v0 be a node of minimal label. We remove
from G the node v0, along with all edges whose source is v0. We call the graph
thus obtained G0. Then G0 is also canonical, connected and transitive. Canonicity
and transitivity are obvious. As for connectedness, we note that each node in G
other than the node v0 is the starting point of a sequence of edges ending up in vh,
which sequence does not pass through v0 by minimality of v0 and canonicity of G.
Moreover, when replacing G by G0, we do not change the labels of the remaining
nodes. Thus G0 contains a unique node of maximal label. We may therefore assume
that there exists a standard set ∆0 ⊆ N

d, for some d, such that G′(∆0) = G0.
For establishing the outer induction step, we shall put the node v0 back into the

graph. Transitivity of G implies that this graph contains an edge from v0 to vh.
Let G1 be the (transitive) graph that arises from G0 by adding the one node v0 and
the one edge (v0, vh). We now construct a standard set ∆1 such that G′(∆1) = G1.

Consider the embedding ι : N
d →֒ N

d+1 : β 7→ (0, β). The transition from
∆0 to ι(∆0) does not affect the standard graph of ∆0. We may therefore assume
that ∆0 ⊆ N

d is contained in the hyperplane {β1 = 0} of Nd. The node vh ∈ G0

corresponds to the isohypse (∆0)
h. Let h0 < h be the label of v0. We may assume

that v0 > 1. The set

∆1
..= ∆0 ∪M1, where

M1
..= {(1, 0, . . . , 0, βd) |0 ≤ βd ≤ h0 − 1}

(3)

is standard. See Figure 12 for a visualization of the transition from ∆0 to ∆1.
For a 6= h0, the isohypses (∆0)

a and (∆1)
a are identical. The isohypse (∆1)

h0 is
(∆0)

h0 ∪ qd(M1) = (∆0)
h0 ∪ {e1}. When passing to G′(∆1), we see that this graph

arises from G′(∆0) by adding the one node qd(M1) and the one edge connecting
that new node and (∆1)

h. This establishes the outer induction step, and at the
same time the inner induction basis.

As for the inner induction step, we may assume to have a transitive graph G1

• with the same nodes and the same labels as G,
• and a distinguished node v0
• such that all edges but those with source v0 agree in G and G1,

along with a standard set ∆1 ⊆ N
d such that G′(∆1) = G1. Let v1 be a node of

G such that (v0, v1) is an edge in G, but our original graph G contains no chain of
edges from v0 to v1 of length more than 1. We may assume that LG (v0) < LG (v1).
Denote by G2 the graph that arises from G1 by adding the edge (v0, v1). We will
prove the existence of a standard set ∆2 such that G′(∆2) = G2. This will establish
the inner induction step, and finish the proof of the proposition.
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Analogously as above, we assume that ∆1 ⊆ N
d is contained in the hyperplane

{β1 = 0} of Nd. The choice of v1 implies that G2 is again transitive. For i = 0, 1,
the node vi ∈ G1 corresponds to a connected component Ci of (∆1)

hi , where hi is
the label of vi. The set

∆1 1

2

..= ∆1 ∪M 1

2

, where

M1 1

2

..=
(

∪α∈Nd

(

(qd)−1(C1) ∩∆1 + e1 − α
)

)

∩N
d

(4)

is standard. See the first two pictures in Figure 13 for a visualization of the transi-
tion from ∆1 to ∆1 1

2

: We create a copy of the set (qd)−1(C1)∩∆1 in the hyperplane

{β1 = 1} of Nd and subsequently pass to the smallest standard set containing both
∆1 and that copy. Transitivity of G1 implies that G′(∆1 1

2

) = G′(∆1). Indeed,

for all heights a 6= h1, the connected components of (∆1 1

2

)a are identical to of the

connected components of (∆1)
a. For height h1, the same is true for those con-

nected components of (∆1 1

2

)h1 that do not project to C1 under qd. The connected

component C1 of (∆1)
h1 , however, has a much larger counterpart in ∆1 1

2

, namely,

the union of C1 and the set qd(M1 1

2

). As for edges in G′(∆1 1

2

) emerging from node

C1∪qd(M1 1

2

), the presence of M1 1

2

obviously leads to new adjacencies in connected

components of isohypses of ∆1 1

2

. But transitivity of G1 guarantees that none of

those adjacencies lead to an edge in G′(∆1 1

2

) that does exist in G′(∆1). So the

graphs G′(∆1) and G′(∆1 1

2

) are identical.

However, we do not want another standard set with the same canonicalized
graph, but rather a graph with one additional edge. We obtain that edge by
applying the same trick once more, defining

∆2
..= ∆1 ∪M1 1

2

∪M2, where

M2
..=

(

∪α∈Nd

(

(qd)−1(C1) + e1 − α
)

)

∩N
d.

(5)

This is another standard set. See the last two pictures in Figure 13 for a vi-
sualization of the transition from ∆1 1

2

to ∆2: We also create a copy of the set

(qd)−1(C1) ∩ ∆1 in the hyperplane {β1 = 1} of Nd and subsequently pass to the
smallest standard set containing both ∆1 and that copy. For all heights a 6= h0, h1,
the connected components of (∆2)

a are identical to the connected components of
(∆1 1

2

)a. For heights a = h0, h1, the same is true for those connected components

of (∆2)
a that do not project to C0 or C1. Note that the sets M1 1

2

and M2 will

in general intersect. The counterpart of C1 in ∆2 is the union C1 ∪M1 1

2

; and the

counterpart of C0 in ∆2 is (C0∪M2)\M1 1

2

. The graph G′(∆2) contains all the edges

that appear in G′(∆1 1

2

), plus an edge from node (C0∪M2)\M1 1

2

to node C1∪M1 1

2

:

the extra edge exists since (1, 0, . . . , 0, h1) ∈ C1∪M1 1

2

and z0+e1 ∈ (C0∪M2)\M1 1

2

for z0 ∈ (qd)−1(C0). This establishes the inner induction step. �

Readers might wonder how the polynomial dependence from Theorem 1 is pre-
served in Proposition 34. Indeed, in the inductive construction of the standard
set ∆ from the proof of the proposition, the dimension of ∆ and the number of
elements in it grow rapidly. However, we don’t specify ∆ as list of its elements, but
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Figure 12. From ∆0 to ∆1
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Figure 13. From ∆1 to ∆1 1

2

and ∆2

rather as a list of the minimal generators of the N
d-module N

d \∆. This set is also
known as the set of outer corners of ∆. Doing so, we avoid large data sets when
handling large standard sets. We will use this representation of ∆ in the proof of
Theorem 2 below.

9. Reduction to standard graphs with unique maximal nodes

The following proposition provides the fourth and last step in proving that C4
decomposition and standard decomposition of labeled graphs are equivalent. Here
is a small example illustrating its assertion.

Example 35. Let G be the graph with nodes x and y, both of label 1, and no
edges. Let G′ be the graph with nodes x and y of label 1 and z of label 2, with
edges from x and from y to z. Figure 14 shows that there is a bijection between
the standard decompositions of G and the standard decompositions of G′.
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G = 1 1 = 1 1

= 1 0 ⊕ 0 1

G′ =
2

�✒ ❅■
1 1

=
1

�✒ ❅■
1 1

⊕
1

�✒ ❅■
0 0

=
1

�✒ ❅■
1 0

⊕
1

�✒ ❅■
0 1

Figure 14. The decompositions of the graphs from Example 35

Proposition 36. Let G be a labeled graph. Then there exists a graph G′ such
that

(1) G is a subgraph of G′,
(2) G′ has a unique node of maximal label that is reachable from all nodes of

G′ and,
(3) the standard decompositions of G and G′ are in canonical bijection.

Proof. Let l be the maximal label among all nodes of G. Let G′ be equal to G,
except that G′ has an extra node v with label l + 1, and v has an edge to it from
all other nodes. The first two conditions are immediate, so it remains to show that
the standard decompositions of G and G′ are in canonical bijection.

It is not hard to see that the function

f : {standard cmps of G′} \ {{v}} → {standard cmps of G}

H 7→ H \ {v} without edges in H with target v

is a bijection. We extend f to a map of multisets of standard components by
applying it to each standard component individually, so for example f({A,B}) ..=
{f(A), f(B)}.

Let D′ be a standard decomposition of G′. Write D′ as a union of D and V
where V is a multiset that contains only copies of {v} while D does not contain
{v} at all. Then obviously f(D) is a decomposition of G.

For the other direction, let D be a standard decomposition of G and let D′ ..=
f−1(D). Then G′−

∑

D′ is a graph in which all nodes but v have label zero, node
v having a label l > 0. Let V be the multiset that contains l copies of {v}. Then
D′ ∪ V is a decomposition of G′. Let g be the function D 7→ D′ ∪ V . It is not hard
to see that f and g are mutual inverses. �

We can now prove that C4 decomposition and standard decomposition of labeled
graphs are equivalent.

Proof of Theorem 2. (i) A solution of problem (a) implies a solution of problem
(b) by Proposition 28. Assume we are able to solve problem (b), and are given a
labeled graph G. We pass to the canonicalization G′, which has the same standard
decompositions as G by Proposition 15. If G′ has multiple nodes of locally maximal
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label l, we pass to the graph G′′ with only one node of maximal label l + 1 from
Proposition 36. G′′ still has the same standard decompositions as G. Then we
replace G′′ by its transitive closure G′′′. By Lemma 33, this transition does not
harm the decompositions either. Finally, Proposition 34 provides a standard set
∆′′′ whose canonicalized standard graph is G′′′. Problem (a) is solved.

(ii) This assertion depends on the representations of G and ∆. In the proof of
Theorem 22, we explained that we specify a graph as a list of nodes with labels
and a list of edges. After the proof of Proposition 34, we explained that we specify
a standard set by its outer corners.

Let us first show that for any graph G with n nodes and e edges, a staircase ∆
whose graph equals G can be computed in polynomial time. We may assume that
G is canonical and transitive, and has only one node of maximal label, since the
operations

• passing to the canonicalization,
• passing to a graph with only one node of maximal label, and
• passing to the transitive closure

are obviously polynomial in the datum of G. It therefore remains to show that
the construction from the proof of Proposition 34 is polynomial. That construction
builds ∆ using two nested inductions over n and e. The respective base cases being
trivial, it suffices to show that both induction steps are polynomial in the datum
of G. Let us stick to the notation from the proof of Proposition 34. In addition
to that notation, we define Ci ⊆ N

d as the set of corners of ∆i for i = 0, 1, 2. In
both the inner and the outer induction, the dimension of the standard sets involved
rises by one. Thus the dimension d is polynomial in the datum of G. The outer
induction step is the passage from ∆0 to ∆1, as defined in (3). That definition
shows that e1 ∈ C0 and

C1 = (C0 \ {e1}) ∪ {e1 + ei |i = 1, . . . , d− 1} ∪ {h0ed} ,

cf. Figure 12. The inner induction step is thus polynomial.
The inner induction step is the passage from ∆1 via ∆1 1

2

to ∆2. Remember that

for i = 0, 1, the node vi ∈ G1 corresponds to a connected component Ci of (∆1)
hi .

Let C ′ be the union of the following three sets:

• all corners α ∈ C1 such that α− ej ∈ (qd)−1(C1) ∩∆1 for some ej 6= e1,
• the projections to the hyperplane {xd = 0} of all corners α ∈ C1 such that
α− ej ∈ (qd)−1(C1) ∩∆1 for some ej 6= e1, ed, and
• the elements 2e1 and h1ed.

Then C ′ is the set of corners of M1 1

2

from (4). Remember that ∆1 1

2

is the union

of ∆1 and M1 1

2

. The set C1 1

2

of corners of ∆1 1

2

is therefore obtained by

• collecting the exponents of least common multiples of xα xβ , for all α ∈ C1

and all β ∈ C ′,
• and subsequently cleaning that set up, that is, detecting pairs α, β such
that α ∈ β + N

d and deleting each such α.

This establishes the passage from ∆1 to ∆1 1

2

. As for the passage from ∆1 1

2

to ∆2,

we construct a set of corners C ′′ in an analogous way as we constructed C ′ in the
three bulleted items above, but using C0 rather than C1 and h0 rather than h1.
Then ∆2 is the union of ∆1 1

2

and the standard set with corners C ′′. The set C2 is



26 LAURENT EVAIN, MATHIAS LEDERER, AND BJARKE HAMMERSHOLT ROUNE

therefore obtained from sets C1 1

2

and C ′′ by the method of taking least common

multiples and cleaning up which we employed above. All operations are polynomial.
Let us now show that for each standard set ∆, its canonicalized graph G′(∆)

can be computed in polynomial time. In other words, we have to compute the
connected components of the iysohypses in polynomial time. We assume ∆ to be
given by its corner set C . For each α ∈ C , we define ∆α

..= qd(α) + ⊕d−1
i=1Nei. For

each height a, we define ∆a as the union of all ∆α, for all α with |α| ≤ a. Then
the a-th isohypse is

∆a = ∆a \∆a−1 = ∪|α|=a(∆α \ Ta−1).

Obviously each Eα
..= ∆α \ Ta−1 is connected. Moreover, it is easy to see that

Eα ∪ Eβ is connected if, and only if, the least common multiple of the monomials

xqd(α) and xqd(β) has its exponent outside of Ta−1. Upon applying this observation
to all α, β of total degree a, we compute the connected components of the a-th
isohypse in polynomial time. �

Appendix A. A generating function

We will now present a natural generating function for the number of standard
decompositions of a standard graph G. The analogue of this generating function in
the setting of standard sets is discussed in [Led, Section 2.3].

It is good to temporarily forget about labelings. So let F be an unlabeled directed
graph. Let E be the set of all standard 0-1 subgraphs of F 4 with node set VF . We
identify each E ∈ E with the characteristic function of the labeling, that is, with
the vector χE

..= (χE,v)v∈VF
indexed by nodes of F , with entries

χE,v
..=

{

1 if v ∈ VE

0 else.

We define χ ..= (χE,v)E∈E,v∈VF
to be the matrix whose rows are indexed by E ,

the row with index E being the vector χE . Moreover, we introduce a vector t ..=
(tv)v∈VF

of indeterminates, also indexed by nodes of F . If w ..= (wv)v∈VF
is any

vector of nonnegative integers, indexed by nodes of F , we write tw ..=
∏

v∈VF
twv
v .

Consider the power series

g ..=
∏

E∈E

1

1− tχE
.

We define integers Φχ(w), one for each integer-valued vector w as above, by ex-
panding the power series g,

g =..
∑

v∈NVF

Φχ(w)t
w .

Φχ is called a vector partition function, see [Stu95]. Note that labelings of graphs
G with the same nodes and edges as F correspond to vectors w as above via

w = (LG (v))v∈VF
.

We denote by Gw the labeled graph G with the same nodes and edges as F and
labeling given by w.

4We defined standard 0-1 subgraphs only for labeled graphs; if F is unlabeled, we give each
node the trivial label 1; then the notion of 0-1 subgraphs is well-defined.
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Proposition 37. (1) Given any vector w ∈ N
VF , the coefficient Φχ(w) van-

ishes unless the labeled graph Gw is standard.
(2) If the labeled graphGw is standard, the coefficient Φχ(w) equals the number

of standard decompositions of F .

Proof. We expand each term 1
1−tχE

in the product expression of g as a geometric
series,

g =
∏

E∈E

(1 + tχE + t2·χE + t3·χE + t4·χE + . . .).

Upon expanding the product, we see that each monomial appearing in the series
takes the shape m =

∏

E∈F tnE ·χE for some finite F ⊆ E and some nE ∈ N. We
replace the set F by the multiset H in which each E ∈ F appears nE times. Since
each member of H is a standard 0-1 subgraph of F , the graph G ..=

∑

H standard
graph and has the same nodes and edges as F . The above monomial m equals
∏

v∈VF
tLG(v). This establishes (1).

As for (2), let G be a standard graph with the same nodes and edges as VF . The
above discussion shows that the coefficient of the monomial m ..=

∏

v∈VF
tLG(v)

shows up in the expansion of g, and its coefficient counts the number of ways of
writing G as a sum G =

∑

H of elements of E . This is just the number of standard
decompositions of G. �

Appendix B. Partitions of partitions

Appendix A suggests a connection between standard decompositions and parti-
tions. Let us further investigate this.

Example 38. • The set of partitions of an integer n is in natural bijection
with the set of standard sets of cardinality n by identifying a partition and
its Young diagram (in the French notation).
• If p = {n1, . . . , nh} (a multiset) is a partition of n and for each i, pi is a
partition of ni, we call {p1, . . . , ph} a partition of partition of n. The set of
partitions of partitions of n is in natural bijection with the set of standard
sets ∆ ⊆ N

3 of cardinality n, together with all their C4 decompositions.

Both bijections are visualized in Figure 15. For generalizing the statements, we
introduce the notion of C4 games.

Definition 39 (Iterated partition). Let n be a positive integer. We recursively
define a q-fold iterated partition of n as follows:

• for q = 1, it is a partition of n, that is, a multiset p = {n1, . . . , nh} of
positive integers such that

∑

ni = n;
• for q > 1, it is a multiset p = {p1, . . . , ph} of (q− 1)-fold iterated partitions
of integers n1, . . . , nh such that

∑

ni = n.

In other words, we look at all partitions of n into ni, together with all partitions
of all parts ni into ni,j , together with all partitions of all parts ni,j into ni,j,k, etc.

Definition 40 (C4 game). Let n be a positive integer. We recursively define a C4

game of size n in N
d as follows:

• for d = 1, 2, it is standard set ∆ ⊆ N
d of cardinality n;
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{5, 3, 2, 2} =







{4, 3}
{2, 1}
{5}







=

✑

✑
✑
✑
✑

✑
✑

✑
✑ ✑

✑
+

✑

✑
✑

✑
✑

✑

✑+

✑ ✑ ✑ ✑ ✑ ✑

✑

Figure 15. Partitions (of partitions, resp.) and C4 games in N
2

(in N
3, resp.) correspond to each other

• for d > 2, it is a multiset {g1, . . . , gh} of C4 games of respective sizes ni in
N

d−1 such that
∑

ni = n.

In other words, we look at all standard sets ∆ ⊆ N
d of a cardinality n, together

with all C4 decompositions of ∆ into ∆i ⊆ N
d−1, together with all C4 decompo-

sitions of all ∆i into ∆i,j ⊆ N
d−2, together with all C4 decompositions of all ∆i,j

into ∆i,j,k ⊆ N
d−3, etc.

Proposition 41. For all d, n ∈ N, there is a natural bijection

fd : {(d− 1)-fold iterated partitions of n} →
{

C4 games of size n in N
d
}

.

Proof. The assertion is obvious for d = 1, 2. For d > 2, the bijection fd sends each
multiset {H1, . . . , Hl} of (d− 2)-fold iterated partitions of integers n1, . . . , nl to the
multiset {fd−1(H1), . . . , fd−1(Hl)}. �

Note that the bijection is only natural up to the choice of coordinate axes in
N

d. In other words, replacing the tuple (e1, . . . , ed) of standard basis elements by
(eσ(1), . . . , eσ(d)) for some permutation σ induces an automorphism of the source of
bijection fd. For d = 2, this corresponds to the ambiguity between a partition and
its transpose.
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